1
|
Simsek YK, Tofil HP, Rosenthal MI, Evans RM, Danielski CL, Beasley KE, Alsayed H, Shapira ME, Strauss RI, Wang M, Roggero VR, Allison LA. Nuclear receptor corepressor 1 levels differentially impact the intracellular dynamics of mutant thyroid hormone receptors associated with resistance to thyroid hormone syndrome. Mol Cell Endocrinol 2024; 594:112373. [PMID: 39299378 PMCID: PMC11531384 DOI: 10.1016/j.mce.2024.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Thyroid hormone receptor α1 (TRα1) undergoes nucleocytoplasmic shuttling and mediates gene expression in response to thyroid hormone (T3). In Resistance to Thyroid Hormone Syndrome α (RTHα), certain TRα1 mutants have higher affinity for nuclear corepressor 1 (NCoR1) and may form stable complexes that are not released in the presence of T3. Here, we examined whether NCoR1 modulates intranuclear mobility and nuclear retention of TRα1 or RTHα-associated mutants in transfected human cells, as a way of analyzing critical structural components of TRα1 and to further explore the correlation between mutations in TRα1 and aberrant intracellular trafficking. We found no significant difference in intranuclear mobility, as measured by fluorescence recovery after photobleaching, between TRα1 and select RTHα mutants, irrespective of NCoR1 expression. Nuclear-to-cytoplasmic fluorescence ratios of RTHα mutants, however, varied from TRα1 when NCoR1 was overexpressed, with a significant increase in nuclear retention for A263V and a significant decrease for A263S and R384H. In NCoR1-knockout cells, nuclear retention of A263S, A263V, P389R, A382P, C392X, and F397fs406X was significantly decreased compared to control (wild-type) cells. Luciferase reporter gene transcription mediated by TRα1 was significantly repressed by both NCoR1 overexpression and NCoR1 knockout. Most RTHα mutants showed minimal induction regardless of NCoR1 levels, but T3-mediated transcriptional activity was decreased for R384C and F397fs406X when NCoR1 was overexpressed, and also decreased for N359Y in NCoR1-knockout cells. Our results suggest a complex interaction between NCoR1 and RTHα mutants characterized by aberrant intracellular localization patterns and transcriptional activity that potentially arise from variable repressor complex stability, and may provide insight into RTHα pathogenesis on a molecular and cellular level.
Collapse
Affiliation(s)
- Yigit K Simsek
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - H Page Tofil
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Matthew I Rosenthal
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Rochelle M Evans
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Caroline L Danielski
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Katelyn E Beasley
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Haytham Alsayed
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Molly E Shapira
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Rebecca I Strauss
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Moyao Wang
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Vincent R Roggero
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Lizabeth A Allison
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA.
| |
Collapse
|
2
|
R C, E KS, F A, M S, E A, C R P, W P, K A G, A W. Adaptation in landlocked Atlantic salmon links genetics in wild and farmed salmon to smoltification. BMC Genom Data 2024; 25:78. [PMID: 39215221 PMCID: PMC11363631 DOI: 10.1186/s12863-024-01263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Increased knowledge of heritable traits in Atlantic Salmon (Salmo salar) is important to overcome bottlenecks in salmonid aquaculture. Atlantic salmonid populations, both landlocked and anadromous, represent an interesting model to gain insight into anadromy related traits, most notably, the probability to smoltify. While a previous study has identified several genomic regions diverging between anadromous and landlocked populations across the species range, the present study explores these data further with the aim to uncover if some of these genomic regions are linked to beneficial genetic traits associated with smoltification. In this study 17 of these loci were monitored in 669 anadromous salmon originating from 36 full-sibling families that had been reared under common garden conditions. The Smolt Index was calculated, using multiple visual markers, and provided a means of assessing smoltification stage. One SNP, located in Ssa04, showed a significant association with probability to smoltify, where individuals homozygous for the landlocked variant (LL) displayed a decrease in probability of smoltifying after one winter when compared with the homozygous for the anadromous variant (AA). This effect was independent of individual fish size. A separate common garden study comprising 200 individuals from either anadromous or landlocked strains showed that expression levels of ncor1, a thyroid mediator hormone located on the same chromosomal region (Ssa04), were significantly reduced in landlocked individuals post smoltification but remained constant in their anadromous counterparts. This study therefore suggests that while size is still the most important trigger for the induction of smoltification, there may also be an additional genetic component or trigger that has been 'lost' during the years deprived of SW transfer. In conclusion, the LL genotype identified here could potentially be used by the industry to delay smoltification and may also represent one of the first clues to the genetic regulation of smoltification in Atlantic salmon.
Collapse
Affiliation(s)
- Cairnduff R
- Institute of Marine Research, Bergen, Norway.
| | | | - Ayllon F
- Institute of Marine Research, Bergen, Norway
| | - Solberg M
- Institute of Marine Research, Bergen, Norway
| | - Andersson E
- Institute of Marine Research, Bergen, Norway
| | - Primmer C R
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (hiLIFE), University of Helsinki, Helsinki, Finland
| | - Perry W
- Cardiff University, Cardiff, UK
| | - Glover K A
- Institute of Marine Research, Bergen, Norway
| | - Wargelius A
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
3
|
Maddox SA, Ponomareva OY, Zaleski CE, Chen MX, Vella KR, Hollenberg AN, Klengel C, Ressler KJ. Evidence for thyroid hormone regulation of amygdala-dependent fear-relevant memory and plasticity. Mol Psychiatry 2024:10.1038/s41380-024-02679-2. [PMID: 39039155 DOI: 10.1038/s41380-024-02679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The amygdala is an established site for fear memory formation, and clinical studies suggest involvement of hormone signaling cascades in development of trauma-related disorders. While an association of thyroid hormone (TH) status and mood disorders is established, the related brain-based mechanisms and the role of TH in anxiety disorders are unknown. Here we examine the role that TH receptor (TR, a nuclear transcriptional repressor when unbound and a transcriptional activator when bound to TH) may have in mediating the initial formation of fear memories in the amygdala. We identified mRNA levels of TR and other TH pathway regulatory genes, including thyrotropin-releasing hormone (Trh), transthyretin (Ttr), thyrotropin-releasing hormone receptor (Trhr), type 2 iodothyronine deiodinase (Dio2), mediator complex subunit 12 (Med12/Trap230) and retinoid X receptor gamma (Rxrg) to be altered in the amygdala following Pavlovian fear conditioning. Using TH agonist and antagonist infusion into the amygdala, we demonstrated that this pathway is both necessary and sufficient for fear memory consolidation. Inhibition of TH signaling with the TR antagonist 1-850 decreased fear memory consolidation; while activation of TR with T3 (triiodothyronine) resulted in increased memory formation. Using a systemic hypothyroid mouse model, we found that intra-amygdala infusions of T3 were sufficient to rescue deficits in fear memory. Finally, we demonstrated that T3 was sufficient to activate TR-specific gene pathways in the amygdala. These findings on the role of activity-dependent TR modulation support a model in which local TH is a critical regulator of fear memory-related plasticity in the amygdala.
Collapse
Affiliation(s)
- Stephanie A Maddox
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Olga Y Ponomareva
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cole E Zaleski
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Northeastern University, Boston, MA, USA
| | - Michelle X Chen
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- University of Iowa, Iowa City, IA, USA
| | - Kristen R Vella
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Anthony N Hollenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Claudia Klengel
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
| | - Kerry J Ressler
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Hauck AK, Mehmood R, Carpenter BJ, Frankfurter MT, Tackenberg MC, Inoue SI, Krieg MK, Cassim Bawa FN, Midha MK, Zundell DM, Batmanov K, Lazar MA. Nuclear receptor corepressors non-canonically drive glucocorticoid receptor-dependent activation of hepatic gluconeogenesis. Nat Metab 2024; 6:825-836. [PMID: 38622413 PMCID: PMC11459266 DOI: 10.1038/s42255-024-01029-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
Nuclear receptor corepressors (NCoRs) function in multiprotein complexes containing histone deacetylase 3 (HDAC3) to alter transcriptional output primarily through repressive chromatin remodelling at target loci1-5. In the liver, loss of HDAC3 causes a marked hepatosteatosis largely because of de-repression of genes involved in lipid metabolism6,7; however, the individual roles and contribution of other complex members to hepatic and systemic metabolic regulation are unclear. Here we show that adult loss of both NCoR1 and NCoR2 (double knockout (KO)) in hepatocytes phenocopied the hepatomegalic fatty liver phenotype of HDAC3 KO. In addition, double KO livers exhibited a dramatic reduction in glycogen storage and gluconeogenic gene expression that was not observed with hepatic KO of individual NCoRs or HDAC3, resulting in profound fasting hypoglycaemia. This surprising HDAC3-independent activation function of NCoR1 and NCoR2 is due to an unexpected loss of chromatin accessibility on deletion of NCoRs that prevented glucocorticoid receptor binding and stimulatory effect on gluconeogenic genes. These studies reveal an unanticipated, non-canonical activation function of NCoRs that is required for metabolic health.
Collapse
Affiliation(s)
- Amy K Hauck
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rashid Mehmood
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bryce J Carpenter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell T Frankfurter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Tackenberg
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin-Ichi Inoue
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria K Krieg
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fathima N Cassim Bawa
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohit K Midha
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Delaine M Zundell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirill Batmanov
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Contreras-Jurado C, Montero-Pedrazuela A, Pérez RF, Alemany S, Fraga MF, Aranda A. The thyroid hormone enhances mouse embryonic fibroblasts reprogramming to pluripotent stem cells: role of the nuclear receptor corepressor 1. Front Endocrinol (Lausanne) 2023; 14:1235614. [PMID: 38107517 PMCID: PMC10722291 DOI: 10.3389/fendo.2023.1235614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Pluripotent stem cells can be generated from somatic cells by the Yamanaka factors Oct4, Sox2, Klf4 and c-Myc. Methods Mouse embryonic fibroblasts (MEFs) were transduced with the Yamanaka factors and generation of induced pluripotent stem cells (iPSCs) was assessed by formation of alkaline phosphatase positive colonies, pluripotency gene expression and embryod bodies formation. Results The thyroid hormone triiodothyronine (T3) enhances MEFs reprogramming. T3-induced iPSCs resemble embryonic stem cells in terms of the expression profile and DNA methylation pattern of pluripotency genes, and of their potential for embryod body formation and differentiation into the three major germ layers. T3 induces reprogramming even though it increases expression of the cyclin kinase inhibitors p21 and p27, which are known to oppose acquisition of pluripotency. The actions of T3 on reprogramming are mainly mediated by the thyroid hormone receptor beta and T3 can enhance iPSC generation in the absence of c-Myc. The hormone cannot replace Oct4 on reprogramming, but in the presence of T3 is possible to obtain iPSCs, although with low efficiency, without exogenous Klf4. Furthermore, depletion of the corepressor NCoR (or Nuclear Receptor Corepressor 1) reduces MEFs reprogramming in the absence of the hormone and strongly decreases iPSC generation by T3 and also by 9cis-retinoic acid, a well-known inducer of reprogramming. NCoR depletion also markedly antagonizes induction of pluripotency gene expression by both ligands. Conclusions Inclusion of T3 on reprogramming strategies has a potential use in enhancing the generation of functional iPSCs for studies of cell plasticity, disease and regenerative medicine.
Collapse
Affiliation(s)
- Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raúl F. Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-UNIOVI-Principado de Asturias, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (BOS), University of Oviedo, Oviedo, Spain
- CIBER of Rare Diseases (CIBERER), Oviedo, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Mario F. Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-UNIOVI-Principado de Asturias, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (BOS), University of Oviedo, Oviedo, Spain
- CIBER of Rare Diseases (CIBERER), Oviedo, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Paluvai H, Shanmukha KD, Tyedmers J, Backs J. Insights into the function of HDAC3 and NCoR1/NCoR2 co-repressor complex in metabolic diseases. Front Mol Biosci 2023; 10:1190094. [PMID: 37674539 PMCID: PMC10477789 DOI: 10.3389/fmolb.2023.1190094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Histone deacetylase 3 (HDAC3) and nuclear receptor co-repressor (NCoR1/2) are epigenetic regulators that play a key role in gene expression and metabolism. HDAC3 is a class I histone deacetylase that functions as a transcriptional co-repressor, modulating gene expression by removing acetyl groups from histones and non-histone proteins. NCoR1, on the other hand, is a transcriptional co-repressor that interacts with nuclear hormone receptors, including peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR), to regulate metabolic gene expression. Recent research has revealed a functional link between HDAC3 and NCoR1 in the regulation of metabolic gene expression. Genetic deletion of HDAC3 in mouse models has been shown to improve glucose intolerance and insulin sensitivity in the liver, skeletal muscle, and adipose tissue. Similarly, genetic deletion of NCoR1 has improved insulin resistance and reduced adiposity in mouse models. Dysregulation of this interaction has been associated with the development of cardio-metabolic diseases such as cardiovascular diseases, obesity and type 2 diabetes, suggesting that targeting this pathway may hold promise for the development of novel therapeutic interventions. In this review, we summarize the current understanding of individual functions of HDAC3 and NCoR1/2 and the co-repressor complex formation (HDAC3/NCoR1/2) in different metabolic tissues. Further studies are needed to thoroughly understand the mechanisms through which HDAC3, and NCoR1/2 govern metabolic processes and the implications for treating metabolic diseases.
Collapse
Affiliation(s)
- Harikrishnareddy Paluvai
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kumar D. Shanmukha
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Jens Tyedmers
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
7
|
Nuclear corepressor SMRT acts as a strong regulator of both β-oxidation and suppressor of fibrosis in the differentiation process of mouse skeletal muscle cells. PLoS One 2022; 17:e0277830. [PMID: 36454860 PMCID: PMC9714868 DOI: 10.1371/journal.pone.0277830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Silencing Mediator of Retinoid and Thyroid hormone receptors (SMRT; NCoR2) is a transcriptional corepressor (CoR) which has been recognized as an important player in the regulation of hepatic lipogenesis and in somatic development in mouse embryo. SMRT protein is also widely expressed in mouse connective tissues, for example adipocytes and muscle. We recently reported that mice with global deletion of SMRT develop significant obesity and muscle wasting which are independent from thyroid hormone (TH) signaling and thermogenesis. However, the tissue specific role of SMRT in skeletal muscle is still not clear. METHODS To clarify role of SMRT in muscle differentiation, we made myogenic C2C12 clones which lack SMRT protein (C2C12-SKO) by using CRISPR-Cas9. Wild-type C2C12 (C2C12-WT) and C2C12-SKO cells were cultured in differentiation medium, and the resulting gene and protein profiles were compared between the two cell lines both before and after differentiation. We also analyzed muscle tissues which were dissected from whole body SMRT knockout (KO) mice and their controls. RESULTS We found significant up-regulation of muscle specific β-oxidation markers; Peroxisome proliferator-activated receptor δ (PPARδ) and PPARγ coactivator-1α (PGC-1α) in the C2C12-SKO cells, suggesting that the cells had a similar gene profile to what is found in exercised rodent skeletal muscle. On the other hand, confocal microscopic analysis showed the significant loss of myotubes in C2C12-SKO cells similar to the morphology found in immature myoblasts. Proteomics analysis also confirmed that the C2C12-SKO cells had higher expression of markers of fibrosis (ex. Collagen1A1; COL1A1 and Fibroblast growth factor-2; FGF-2), indicating the up-regulation of Transforming growth factor-β (TGF-β) receptor signaling. Consistent with this, treatment with a specific TGF-β receptor inhibitor ameliorated both the defects in myotube differentiation and fibrosis. CONCLUSION Taken together, we demonstrate that SMRT functions as a pivotal transcriptional mediator for both β-oxidation and the prevention for the fibrosis via TGF-β receptor signaling in the differentiation of C2C12 myoblasts. In contrast to the results from C2C12 cells, SMRT does not appear to play a role in adult skeletal muscle of whole body SMRT KO mice. Thus, SMRT plays a significant role in the differentiation of myoblasts.
Collapse
|
8
|
Richter HJ, Hauck AK, Batmanov K, Inoue SI, So BN, Kim M, Emmett MJ, Cohen RN, Lazar MA. Balanced control of thermogenesis by nuclear receptor corepressors in brown adipose tissue. Proc Natl Acad Sci U S A 2022; 119:e2205276119. [PMID: 35939699 PMCID: PMC9388101 DOI: 10.1073/pnas.2205276119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Brown adipose tissue (BAT) is a key thermogenic organ whose expression of uncoupling protein 1 (UCP1) and ability to maintain body temperature in response to acute cold exposure require histone deacetylase 3 (HDAC3). HDAC3 exists in tight association with nuclear receptor corepressors (NCoRs) NCoR1 and NCoR2 (also known as silencing mediator of retinoid and thyroid receptors [SMRT]), but the functions of NCoR1/2 in BAT have not been established. Here we report that as expected, genetic loss of NCoR1/2 in BAT (NCoR1/2 BAT-dKO) leads to loss of HDAC3 activity. In addition, HDAC3 is no longer bound at its physiological genomic sites in the absence of NCoR1/2, leading to a shared deregulation of BAT lipid metabolism between NCoR1/2 BAT-dKO and HDAC3 BAT-KO mice. Despite these commonalities, loss of NCoR1/2 in BAT does not phenocopy the cold sensitivity observed in HDAC3 BAT-KO, nor does loss of either corepressor alone. Instead, BAT lacking NCoR1/2 is inflamed, particularly with respect to the interleukin-17 axis that increases thermogenic capacity by enhancing innervation. Integration of BAT RNA sequencing and chromatin immunoprecipitation sequencing data revealed that NCoR1/2 directly regulate Mmp9, which integrates extracellular matrix remodeling and inflammation. These findings reveal pleiotropic functions of the NCoR/HDAC3 corepressor complex in BAT, such that HDAC3-independent suppression of BAT inflammation counterbalances stimulation of HDAC3 activity in the control of thermogenesis.
Collapse
Affiliation(s)
- Hannah J. Richter
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Amy K. Hauck
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Kirill Batmanov
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Shin-Ichi Inoue
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Bethany N. So
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Matthew J. Emmett
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Ronald N. Cohen
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL 60637
| | - Mitchell A. Lazar
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
9
|
Influence of Altered Thyroid Hormone Mechanisms in the Progression of Metabolic Dysfunction Associated with Fatty Liver Disease (MAFLD): A Systematic Review. Metabolites 2022; 12:metabo12080675. [PMID: 35893242 PMCID: PMC9330085 DOI: 10.3390/metabo12080675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
We performed a systematic review of the mechanisms of thyroid hormones (THs) associated with metabolic dysfunction associated with fatty liver disease (MAFLD). This systematic review was registered under PROSPERO (CRD42022323766). We searched the MEDLINE (via PubMed) and Embase databases from their inception to March 2022. We included studies that assessed thyroid function by measuring the serum level of THs and those involved in MAFLD. We excluded reviews, case reports, editorials, letters, duplicate studies and designed controls. Forty-three studies included MAFLD, eleven analyzed THs, and thirty-two evaluated the mechanisms of THs in MAFLD. Thyroid hormones are essential for healthy growth, development and tissue maintenance. In the liver, THs directly influence the regulation of lipid and carbohydrate metabolism, restoring the homeostatic state of the body. The selected studies showed an association of reduced levels of THs with the development and progression of MAFLD. In parallel, reduced levels of T3 have a negative impact on the activation of co-regulators in the liver, reducing the transcription of genes important in hepatic metabolism. Overall, this is the first review that systematically synthesizes studies focused on the mechanism of THs in the development and progression of MAFLD. The data generated in this systematic review strengthen knowledge of the impact of TH changes on the liver and direct new studies focusing on therapies that use these mechanisms.
Collapse
|
10
|
Mendoza A, Tang C, Choi J, Acuña M, Logan M, Martin AG, Al-Sowaimel L, Desai BN, Tenen DE, Jacobs C, Lyubetskaya A, Fu Y, Liu H, Tsai L, Cohen DE, Forrest D, Wilson AA, Hollenberg AN. Thyroid hormone signaling promotes hepatic lipogenesis through the transcription factor ChREBP. Sci Signal 2021; 14:eabh3839. [PMID: 34784250 DOI: 10.1126/scisignal.abh3839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormone (TH) action is essential for hepatic lipid synthesis and oxidation. Analysis of hepatocyte-specific thyroid receptor β1 (TRβ1) knockout mice confirmed a role for TH in stimulating de novo lipogenesis and fatty acid oxidation through its nuclear receptor. Specifically, TRβ1 and its principal corepressor NCoR1 in hepatocytes repressed de novo lipogenesis, whereas the TH-mediated induction of lipogenic genes depended on the transcription factor ChREBP. Mice with a hepatocyte-specific deficiency in ChREBP lost TH-mediated stimulation of the lipogenic program, which, in turn, impaired the regulation of fatty acid oxidation. TH regulated ChREBP activation and recruitment to DNA, revealing a mechanism by which TH regulates specific signaling pathways. Regulation of the lipogenic pathway by TH through ChREBP was conserved in hepatocytes derived from human induced pluripotent stem cells. These results demonstrate that TH signaling in the liver acts simultaneously to enhance both lipogenesis and fatty acid oxidation.
Collapse
Affiliation(s)
- Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Catherine Tang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jinyoung Choi
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Mariana Acuña
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Maya Logan
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Adriana G Martin
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lujain Al-Sowaimel
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Bhavna N Desai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Danielle E Tenen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Yulong Fu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
11
|
Bim LV, Carneiro TNR, Buzatto VC, Colozza-Gama GA, Koyama FC, Thomaz DMD, de Jesus Paniza AC, Lee EA, Galante PAF, Cerutti JM. Molecular Signature Expands the Landscape of Driver Negative Thyroid Cancers. Cancers (Basel) 2021; 13:5184. [PMID: 34680332 PMCID: PMC8534197 DOI: 10.3390/cancers13205184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. However, the cytological diagnosis of follicular thyroid carcinoma (FTC), Hürthle cell carcinoma (HCC), and follicular variant of papillary thyroid carcinoma (FVPTC) and their benign counterparts is a challenge for preoperative diagnosis. Nearly 20-30% of biopsied thyroid nodules are classified as having indeterminate risk of malignancy and incur costs to the health care system. Based on that, 120 patients were screened for the main driver mutations previously described in thyroid cancer. Subsequently, 14 mutation-negative cases that are the main source of diagnostic errors (FTC, HCC, or FVPTC) underwent RNA-Sequencing analysis. Somatic variants in candidate driver genes (ECD, NUP98,LRP1B, NCOR1, ATM, SOS1, and SPOP) and fusions were described. NCOR1 and SPOP variants underwent validation. Moreover, expression profiling of driver-negative samples was compared to 16 BRAF V600E, RAS, or PAX8-PPARg positive samples. Negative samples were separated in two clusters, following the expression pattern of the RAS/PAX8-PPARg or BRAF V600E positive samples. Both negative groups showed distinct BRS, ERK, and TDS scores, tumor mutation burden, signaling pathways and immune cell profile. Altogether, here we report novel gene variants and describe cancer-related pathways that might impact preoperative diagnosis and provide insights into thyroid tumor biology.
Collapse
Affiliation(s)
- Larissa Valdemarin Bim
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Thaise Nayane Ribeiro Carneiro
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Vanessa Candiotti Buzatto
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Gabriel Avelar Colozza-Gama
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Fernanda C. Koyama
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Debora Mota Dias Thomaz
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Ana Carolina de Jesus Paniza
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA;
| | - Pedro Alexandre Favoretto Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| |
Collapse
|
12
|
Nuclear CoRepressors, NCOR1 and SMRT, are required for maintaining systemic metabolic homeostasis. Mol Metab 2021; 53:101315. [PMID: 34390859 PMCID: PMC8429965 DOI: 10.1016/j.molmet.2021.101315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Objective The nuclear receptor corepressor 1 (NCOR1) and the silencing mediator of retinoic acid and thyroid hormone (SMRT, also known as NCOR2) play critical and specific roles in nuclear receptor action. NCOR1, both in vitro and in vivo specifically regulates thyroid hormone (TH) action in the context of individual organs such as the liver, and systemically in the context of the hypothalamic-pituitary-thyroid (HPT) axis. In contrast, selective deletion of SMRT in the liver or globally has shown that it plays very little role in TH signaling. However, both NCOR1 and SMRT have some overlapping roles in hepatic metabolism and lipogenesis. Here, we determine the roles of NCOR1 and SMRT in global physiologic function and find if SMRT could play a compensatory role in the regulation of TH action, globally. Methods We used a postnatal deletion strategy to disrupt both NCOR1 and SMRT together in all tissues at 8–9 weeks of age in male and female mice. This was performed using a tamoxifen-inducible Cre recombinase (UBC-Cre-ERT2) to KO (knockout) NCOR1, SMRT, or NCOR1 and SMRT together. We used the same strategy to KO HDAC3 in male and female mice of the same age. Metabolic parameters, gene expression, and thyroid function tests were analyzed. Results Surprisingly, adult mice that acquired NCOR1 and SMRT deletion rapidly became hypoglycemic and hypothermic and perished within ten days of deletion of both corepressors. Postnatal deletion of either NCOR1 or SMRT had no impact on mortality. NCOR1/SMRT KO mice rapidly developed hepatosteatosis and mild elevations in liver function tests. Additionally, alterations in lipogenesis, beta oxidation, along with hepatic triglyceride and glycogen levels suggested defects in hepatic metabolism. The intestinal function was intact in the NCOR1/SMRT knockout (KO) mice. The KO of HDAC3 resulted in a distinct phenotype from the NCOR1/SMRT KO mice, whereas none of the HDAC3 KO mice succumbed after tamoxifen injection. Conclusions The KO of NCOR1 and SMRT rapidly leads to significant metabolic abnormalities that do not survive – including hypoglycemia, hypothermia, and weight loss. Hepatosteatosis rapidly developed along with alterations in hepatic metabolism suggesting a contribution to the dramatic phenotype from liver injury. Glucose production and absorption were intact in NCOR1/SMRT KO mice, demonstrating a multifactorial process leading to their demise. HDAC3 KO mice have a distinct phenotype from the NCOR1/SMRT KO mice—which implies that NCOR1/SMRT together regulate a critical pathway that is required for survival in adulthood and is separate from HDAC3. The knockout of corepressors NCoR1 and SMRT is rapidly lethal. Metabolic abnormalities observed include hypoglycemia and hypothermia. Hepatic glucose production and intestinal absorption is intact despite hypoglycemia. The lethal action of NCoR1/SMRT deletion is independent of HDAC3.
Collapse
|
13
|
Baksi S, Pradhan A. Thyroid hormone: sex-dependent role in nervous system regulation and disease. Biol Sex Differ 2021; 12:25. [PMID: 33685490 PMCID: PMC7971120 DOI: 10.1186/s13293-021-00367-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) regulates many functions including metabolism, cell differentiation, and nervous system development. Alteration of thyroid hormone level in the body can lead to nervous system-related problems linked to cognition, visual attention, visual processing, motor skills, language, and memory skills. TH has also been associated with neuropsychiatric disorders including schizophrenia, bipolar disorder, anxiety, and depression. Males and females display sex-specific differences in neuronal signaling. Steroid hormones including testosterone and estrogen are considered to be the prime regulators for programing the neuronal signaling in a male- and female-specific manner. However, other than steroid hormones, TH could also be one of the key signaling molecules to regulate different brain signaling in a male- and female-specific manner. Thyroid-related diseases and neurological diseases show sex-specific incidence; however, the molecular mechanisms behind this are not clear. Hence, it will be very beneficial to understand how TH acts in male and female brains and what are the critical genes and signaling networks. In this review, we have highlighted the role of TH in nervous system regulation and disease outcome and given special emphasis on its sex-specific role in male and female brains. A network model is also presented that provides critical information on TH-regulated genes, signaling, and disease.
Collapse
Affiliation(s)
- Shounak Baksi
- Causality Biomodels, Kerala Technology Innovation Zone, Cochin, 683503, India
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
14
|
Geiger MA, Guillaumon AT, Paneni F, Matter CM, Stein S. Role of the Nuclear Receptor Corepressor 1 (NCOR1) in Atherosclerosis and Associated Immunometabolic Diseases. Front Immunol 2020; 11:569358. [PMID: 33117357 PMCID: PMC7578257 DOI: 10.3389/fimmu.2020.569358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is part of chronic immunometabolic disorders such as type 2 diabetes and nonalcoholic fatty liver disease. Their common risk factors comprise hypertension, insulin resistance, visceral obesity, and dyslipidemias, such as hypercholesterolemia and hypertriglyceridemia, which are part of the metabolic syndrome. Immunometabolic diseases include chronic pathologies that are affected by both metabolic and inflammatory triggers and mediators. Important and challenging questions in this context are to reveal how metabolic triggers and their downstream signaling affect inflammatory processes and vice-versa. Along these lines, specific nuclear receptors sense changes in lipid metabolism and in turn induce downstream inflammatory and metabolic processes. The transcriptional activity of these nuclear receptors is regulated by the nuclear receptor corepressors (NCORs), including NCOR1. In this review we describe the function of NCOR1 as a central immunometabolic regulator and focus on its role in atherosclerosis and associated immunometabolic diseases.
Collapse
Affiliation(s)
- Martin A Geiger
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Kahn JH, Goddi A, Sharma A, Heiman J, Carmona A, Li Y, Hoffman A, Schoenfelt K, Ye H, Bobe AM, Becker L, Hollenberg AN, Cohen RN. SMRT Regulates Metabolic Homeostasis and Adipose Tissue Macrophage Phenotypes in Tandem. Endocrinology 2020; 161:bqaa132. [PMID: 32770234 PMCID: PMC7478322 DOI: 10.1210/endocr/bqaa132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
The Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) is a nuclear corepressor, regulating the transcriptional activity of many transcription factors critical for metabolic processes. While the importance of the role of SMRT in the adipocyte has been well-established, our comprehensive understanding of its in vivo function in the context of homeostatic maintenance is limited due to contradictory phenotypes yielded by prior generalized knockout mouse models. Multiple such models agree that SMRT deficiency leads to increased adiposity, although the effects of SMRT loss on glucose tolerance and insulin sensitivity have been variable. We therefore generated an adipocyte-specific SMRT knockout (adSMRT-/-) mouse to more clearly define the metabolic contributions of SMRT. In doing so, we found that SMRT deletion in the adipocyte does not cause obesity-even when mice are challenged with a high-fat diet. This suggests that adiposity phenotypes of previously described models were due to effects of SMRT loss beyond the adipocyte. However, an adipocyte-specific SMRT deficiency still led to dramatic effects on systemic glucose tolerance and adipocyte insulin sensitivity, impairing both. This metabolically deleterious outcome was coupled with a surprising immune phenotype, wherein most genes differentially expressed in the adipose tissue of adSMRT-/- mice were upregulated in pro-inflammatory pathways. Flow cytometry and conditioned media experiments demonstrated that secreted factors from knockout adipose tissue strongly informed resident macrophages to develop a pro-inflammatory, MMe (metabolically activated) phenotype. Together, these studies suggest a novel role for SMRT as an integrator of metabolic and inflammatory signals to maintain physiological homeostasis.
Collapse
Affiliation(s)
- Jonathan H Kahn
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Anna Goddi
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Aishwarya Sharma
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Joshua Heiman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Alanis Carmona
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, Illinois
| | - Alexandria Hoffman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kelly Schoenfelt
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Honggang Ye
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alexandria M Bobe
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Lev Becker
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | | | - Ronald N Cohen
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
- Department of Medicine, University of Chicago, Chicago, Illinois
- Section of Endocrinology, Diabetes, and Metabolism; University of Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Ritter MJ, Amano I, Hollenberg AN. Thyroid Hormone Signaling and the Liver. Hepatology 2020; 72:742-752. [PMID: 32343421 DOI: 10.1002/hep.31296] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (TH) plays a critical role in maintaining metabolic homeostasis throughout life. It is well known that the liver and thyroid are intimately linked, with TH playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Indeed, patients with hypothyroidism have abnormal lipid panels with higher levels of low-density lipoprotein levels, triglycerides (triacylglycerol; TAG), and apolipoprotein B levels. Even in euthyroid patients, lower serum-free thyroxine levels are associated with higher total cholesterol levels, LDL, and TAG levels. In addition to abnormal serum lipids, the risk of nonalcoholic fatty liver disease (NAFLD) increases with lower free thyroxine levels. As free thyroxine rises, the risk of NAFLD is reduced. This has led to numerous animal studies and clinical trials investigating TH analogs and TH receptor agonists as potential therapies for NAFLD and hyperlipidemia. Thus, TH plays an important role in maintaining hepatic homeostasis, and this continues to be an important area of study. A review of TH action and TH actions on the liver will be presented here.
Collapse
Affiliation(s)
- Megan J Ritter
- Division of Endocrinology, Weill Cornell Medicine, New York, NY
| | - Izuki Amano
- Division of Endocrinology, Weill Cornell Medicine, New York, NY.,Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | |
Collapse
|
17
|
Szigety KM, Liu F, Yuan CY, Moran DJ, Horrell J, Gochnauer HR, Cohen RN, Katz JP, Kaestner KH, Seykora JT, Tobias JW, Lazar MA, Xu M, Millar SE. HDAC3 ensures stepwise epidermal stratification via NCoR/SMRT-reliant mechanisms independent of its histone deacetylase activity. Genes Dev 2020; 34:973-988. [PMID: 32467224 PMCID: PMC7328513 DOI: 10.1101/gad.333674.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Here, Szigety et al. investigated the function of histone deacetylases in epidermal development, and they found that HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3, and suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. Their data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition. Chromatin modifiers play critical roles in epidermal development, but the functions of histone deacetylases in this context are poorly understood. The class I HDAC, HDAC3, is of particular interest because it plays divergent roles in different tissues by partnering with tissue-specific transcription factors. We found that HDAC3 is expressed broadly in embryonic epidermis and is required for its orderly stepwise stratification. HDAC3 protein stability in vivo relies on NCoR and SMRT, which function redundantly in epidermal development. However, point mutations in the NCoR and SMRT deacetylase-activating domains, which are required for HDAC3's enzymatic function, permit normal stratification, indicating that HDAC3's roles in this context are largely independent of its histone deacetylase activity. HDAC3-bound sites are significantly enriched for predicted binding motifs for critical epidermal transcription factors including AP1, GRHL, and KLF family members. Our results suggest that among these, HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3. In parallel, HDAC3 suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. These data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition.
Collapse
Affiliation(s)
- Katherine M Szigety
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Fang Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chase Y Yuan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Deborah J Moran
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy Horrell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Heather R Gochnauer
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan P Katz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John W Tobias
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sarah E Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
18
|
Kang Z, Fan R. PPARα and NCOR/SMRT corepressor network in liver metabolic regulation. FASEB J 2020; 34:8796-8809. [DOI: 10.1096/fj.202000055rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan China
| | - Rongrong Fan
- Department of Biosciences and Nutrition Karolinska Institute Stockholm Sweden
| |
Collapse
|
19
|
Takahashi SS, Sou YS, Saito T, Kuma A, Yabe T, Sugiura Y, Lee HC, Suematsu M, Yokomizo T, Koike M, Terai S, Mizushima N, Waguri S, Komatsu M. Loss of autophagy impairs physiological steatosis by accumulation of NCoR1. Life Sci Alliance 2020; 3:e201900513. [PMID: 31879337 PMCID: PMC6932742 DOI: 10.26508/lsa.201900513] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 02/02/2023] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that store neutral lipids during times of energy excess, such as after a meal. LDs serve as an energy reservoir during fasting and have a buffering capacity that prevents lipotoxicity. Autophagy and the autophagic machinery have been proposed to play a role in LD biogenesis, but the underlying molecular mechanism remains unclear. Here, we show that when nuclear receptor co-repressor 1 (NCoR1), which inhibits the transactivation of nuclear receptors, accumulates because of autophagy suppression, LDs decrease in size and number. Ablation of ATG7, a gene essential for autophagy, suppressed the expression of gene targets of liver X receptor α, a nuclear receptor responsible for fatty acid and triglyceride synthesis in an NCoR1-dependent manner. LD accumulation in response to fasting and after hepatectomy was hampered by the suppression of autophagy. These results suggest that autophagy controls physiological hepatosteatosis by fine-tuning NCoR1 protein levels.
Collapse
Affiliation(s)
- Shun-Saku Takahashi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Saito
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akiko Kuma
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Yabe
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukushima, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Hyeon-Cheol Lee
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukushima, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Shimizu H, Lu Y, Vella KR, Damilano F, Astapova I, Amano I, Ritter M, Gallop MR, Rosenzweig AN, Cohen RN, Hollenberg AN. Nuclear corepressor SMRT is a strong regulator of body weight independently of its ability to regulate thyroid hormone action. PLoS One 2019; 14:e0220717. [PMID: 31404087 PMCID: PMC6690520 DOI: 10.1371/journal.pone.0220717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) and the nuclear receptor co-repressor1 (NCoR1) are paralogs and regulate nuclear receptor (NR) function through the recruitment of a multiprotein complex that includes histone deacetylase activity. Previous genetic strategies which deleted SMRT in a specific tissue or which altered the interaction between SMRT and NRs have suggested that it may regulate adiposity and insulin sensitivity. However, the full role of SMRT in adult mice has been difficult to establish because its complete deletion during embryogenesis is lethal. To elucidate the specific roles of SMRT in mouse target tissues especially in the context of thyroid hormone (TH) signaling, we used a tamoxifen-inducible post-natal disruption strategy. We found that global SMRT deletion causes dramatic obesity even though mice were fed a standard chow diet and exhibited normal food intake. This weight gain was associated with a decrease in energy expenditure. Interestingly, the deletion of SMRT had no effect on TH action in any tissue but did regulate retinoic acid receptor (RAR) function in the liver. We also demonstrate that the deletion of SMRT leads to profound hepatic steatosis in the setting of obesity. This is unlike NCoR1 deletion, which results in hepatic steatosis due to the upregulation of lipogenic gene expression. Taken together, our data demonstrate that SMRT plays a unique and CoR specific role in the regulation of body weight and has no role in TH action. This raises the possibility that additional role of CoRs besides NCoR1 and SMRT may exist to regulate TH action.
Collapse
Affiliation(s)
- Hiroaki Shimizu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yu Lu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kristen R. Vella
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, New York, United States of America
| | - Federico Damilano
- Division of Cardiology Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Inna Astapova
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Izuki Amano
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, New York, United States of America
| | - Megan Ritter
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, New York, United States of America
| | - Molly R. Gallop
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anthony N. Rosenzweig
- Division of Cardiology Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ronald N. Cohen
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois, United States of America
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
21
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
22
|
Freudenthal B, Shetty S, Butterfield NC, Logan JG, Han CR, Zhu X, Astapova I, Hollenberg AN, Cheng SY, Bassett JD, Williams GR. Genetic and Pharmacological Targeting of Transcriptional Repression in Resistance to Thyroid Hormone Alpha. Thyroid 2019; 29:726-734. [PMID: 30760120 PMCID: PMC6533791 DOI: 10.1089/thy.2018.0399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Thyroid hormones act in bone and cartilage via thyroid hormone receptor alpha (TRα). In the absence of triiodothyronine (T3), TRα interacts with co-repressors, including nuclear receptor co-repressor-1 (NCoR1), which recruit histone deacetylases (HDACs) and mediate transcriptional repression. Dominant-negative mutations of TRα cause resistance to thyroid hormone alpha (RTHα; OMIM 614450), characterized by excessive repression of T3 target genes leading to delayed skeletal development, growth retardation, and bone dysplasia. Treatment with thyroxine has been of limited benefit, even in mildly affected individuals, and there is a need for new therapeutic strategies. It was hypothesized that (i) the skeletal manifestations of RTHα are mediated by the persistent TRα/NCoR1/HDAC repressor complex containing mutant TRα, and (ii) treatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) would ameliorate these manifestations. Methods: The skeletal phenotypes of (i) Thra1PV/+ mice, a well characterized model of RTHα; (ii) Ncor1ΔID/ΔID mice, which express an NCoR1 mutant that fails to interact with TRα; and (iii) Thra1PV/+Ncor1ΔID/ΔID double-mutant adult mice were determined. Wild-type, Thra1PV/+, Ncor1ΔID/ΔID, and Thra1PV/+Ncor1ΔID/ΔID double-mutant mice were also treated with SAHA to determine whether HDAC inhibition results in amelioration of skeletal abnormalities. Results:Thra1PV/+ mice had a severe skeletal dysplasia, characterized by short stature, abnormal bone morphology, and increased bone mineral content. Despite normal bone length, Ncor1ΔID/ΔID mice displayed increased cortical bone mass, mineralization, and strength. Thra1PV/+Ncor1ΔID/ΔID double-mutant mice displayed only a small improvement of skeletal abnormalities compared to Thra1PV/+ mice. Treatment with SAHA to inhibit histone deacetylation had no beneficial or detrimental effects on bone structure, mineralization, or strength in wild-type or mutant mice. Conclusions: These studies indicate treatment with SAHA is unlikely to improve the skeletal manifestations of RTHα. Nevertheless, the findings (i) confirm that TRα1 has a critical role in the regulation of skeletal development and adult bone mass, (ii) suggest a physiological role for alternative co-repressors that interact with TR in skeletal cells, and (iii) demonstrate a novel role for NCoR1 in the regulation of adult bone mass and strength.
Collapse
Affiliation(s)
- Bernard Freudenthal
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Samiksha Shetty
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Natalie C. Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - John G. Logan
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Cho Rong Han
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xuguang Zhu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Inna Astapova
- Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Anthony N. Hollenberg
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine and New York Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
- Address correspondence to: J.H. Duncan Bassett, BMBCh, PhD, Molecular Endocrinology Laboratory, Commonwealth Building, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
- Graham R. Williams, MBBS, PhD, Molecular Endocrinology Laboratory, Commonwealth Building, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom
| |
Collapse
|
23
|
Sommars MA, Ramachandran K, Senagolage MD, Futtner CR, Germain DM, Allred AL, Omura Y, Bederman IR, Barish GD. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. eLife 2019; 8:e43922. [PMID: 30983568 PMCID: PMC6464608 DOI: 10.7554/elife.43922] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Transcription is tightly regulated to maintain energy homeostasis during periods of feeding or fasting, but the molecular factors that control these alternating gene programs are incompletely understood. Here, we find that the B cell lymphoma 6 (BCL6) repressor is enriched in the fed state and converges genome-wide with PPARα to potently suppress the induction of fasting transcription. Deletion of hepatocyte Bcl6 enhances lipid catabolism and ameliorates high-fat-diet-induced steatosis. In Ppara-null mice, hepatocyte Bcl6 ablation restores enhancer activity at PPARα-dependent genes and overcomes defective fasting-induced fatty acid oxidation and lipid accumulation. Together, these findings identify BCL6 as a negative regulator of oxidative metabolism and reveal that alternating recruitment of repressive and activating transcription factors to shared cis-regulatory regions dictates hepatic lipid handling.
Collapse
Affiliation(s)
- Meredith A Sommars
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Krithika Ramachandran
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Madhavi D Senagolage
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Christopher R Futtner
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Derrik M Germain
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Amanda L Allred
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Yasuhiro Omura
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Ilya R Bederman
- Department of PediatricsCase Western Reserve UniversityClevelandUnited States
| | - Grant D Barish
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoUnited States
- Jesse Brown VA Medical CenterChicagoUnited States
| |
Collapse
|
24
|
Liang N, Damdimopoulos A, Goñi S, Huang Z, Vedin LL, Jakobsson T, Giudici M, Ahmed O, Pedrelli M, Barilla S, Alzaid F, Mendoza A, Schröder T, Kuiper R, Parini P, Hollenberg A, Lefebvre P, Francque S, Van Gaal L, Staels B, Venteclef N, Treuter E, Fan R. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat Commun 2019; 10:1684. [PMID: 30975991 PMCID: PMC6459876 DOI: 10.1038/s41467-019-09524-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity triggers the development of non-alcoholic fatty liver disease (NAFLD), which involves alterations of regulatory transcription networks and epigenomes in hepatocytes. Here we demonstrate that G protein pathway suppressor 2 (GPS2), a subunit of the nuclear receptor corepressor (NCOR) and histone deacetylase 3 (HDAC3) complex, has a central role in these alterations and accelerates the progression of NAFLD towards non-alcoholic steatohepatitis (NASH). Hepatocyte-specific Gps2 knockout in mice alleviates the development of diet-induced steatosis and fibrosis and causes activation of lipid catabolic genes. Integrative cistrome, epigenome and transcriptome analysis identifies the lipid-sensing peroxisome proliferator-activated receptor α (PPARα, NR1C1) as a direct GPS2 target. Liver gene expression data from human patients reveal that Gps2 expression positively correlates with a NASH/fibrosis gene signature. Collectively, our data suggest that the GPS2-PPARα partnership in hepatocytes coordinates the progression of NAFLD in mice and in humans and thus might be of therapeutic interest.
Collapse
Affiliation(s)
- Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | | | - Saioa Goñi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Lise-Lotte Vedin
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Tomas Jakobsson
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Marco Giudici
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Osman Ahmed
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Matteo Pedrelli
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Serena Barilla
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Fawaz Alzaid
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, 75013, France
| | - Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, 10021, USA
| | - Tarja Schröder
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Raoul Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Paolo Parini
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14157, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, 14157, Sweden
- Inflammation and Infection Theme, Karolinska University Hospital, Huddinge, 14157, Sweden
| | - Anthony Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, 10021, USA
| | - Philippe Lefebvre
- University Lille, INSERM, CHU Lillie, Institut Pasteur de Lille, U1011-EGID, Lille, F-59000, France
| | - Sven Francque
- Department of Gastroenterology and Hepatology, University of Antwerp, Antwerp, 2610, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, 2610, Belgium
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, 2610, Belgium
- Department of Endocrinology, Diabetology and Metabolism, University of Antwerp, Antwerp, 2610, Belgium
| | - Bart Staels
- University Lille, INSERM, CHU Lillie, Institut Pasteur de Lille, U1011-EGID, Lille, F-59000, France
| | - Nicolas Venteclef
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, 75013, France
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden.
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden.
| |
Collapse
|
25
|
Batista G, Hensch TK. Critical Period Regulation by Thyroid Hormones: Potential Mechanisms and Sex-Specific Aspects. Front Mol Neurosci 2019; 12:77. [PMID: 31024251 PMCID: PMC6461013 DOI: 10.3389/fnmol.2019.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Adequate perinatal levels of thyroid hormones (THs) are required for normal brain function and development. Studies in non-mammalian species suggest that TH might be involved in the regulation of critical periods (CPs) of heightened plasticity. Yet, it is largely unknown what mechanisms controlling such CPs might be under TH regulation. Here, we briefly review the influence of TH in early life across evolution. We discuss possible links between TH and known circuit and/or molecular mechanisms determining the timing of CPs of heightened brain plasticity. We focus on the role of parvalbumin-positive (PV) interneurons since their maturation defines CP onset and closure. Specifically, abnormal PV circuits are associated with low perinatal levels of TH, possibly because thyroid hypofunction may increase oxidative stress and/or dysregulate Otx2-mediated maturation of neuroprotective perineuronal nets. In addition, the level of cholinergic transmission is important for CP plasticity. Potentially, TH levels could affect gain changes in cholinergic transmission that can alter brain development. We believe that understanding how TH impacts CPs of circuit refinement will shed light onto the principles underlying normal developmental trajectories. Given that the thyroid gland expresses estrogen and androgen receptors, its activity can potentially be regulated differently between the sexes, contributing to sexually dimorphic behaviors.
Collapse
Affiliation(s)
- Gervasio Batista
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| |
Collapse
|
26
|
Sharma N, Pollina EA, Nagy MA, Yap EL, DiBiase FA, Hrvatin S, Hu L, Lin C, Greenberg ME. ARNT2 Tunes Activity-Dependent Gene Expression through NCoR2-Mediated Repression and NPAS4-Mediated Activation. Neuron 2019; 102:390-406.e9. [PMID: 30846309 DOI: 10.1016/j.neuron.2019.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/20/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
Neuronal activity-dependent transcription is tuned to ensure precise gene induction during periods of heightened synaptic activity, allowing for appropriate responses of activated neurons within neural circuits. The consequences of aberrant induction of activity-dependent genes on neuronal physiology are not yet clear. Here, we demonstrate that, in the absence of synaptic excitation, the basic-helix-loop-helix (bHLH)-PAS family transcription factor ARNT2 recruits the NCoR2 co-repressor complex to suppress neuronal activity-dependent regulatory elements and maintain low basal levels of inducible genes. This restricts inhibition of excitatory neurons, maintaining them in a state that is receptive to future sensory stimuli. By contrast, in response to heightened neuronal activity, ARNT2 recruits the neuronal-specific bHLH-PAS factor NPAS4 to activity-dependent regulatory elements to induce transcription and thereby increase somatic inhibitory input. Thus, the interplay of bHLH-PAS complexes at activity-dependent regulatory elements maintains temporal control of activity-dependent gene expression and scales somatic inhibition with circuit activity.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Florence A DiBiase
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda Hu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Forini F, Nicolini G, Pitto L, Iervasi G. Novel Insight Into the Epigenetic and Post-transcriptional Control of Cardiac Gene Expression by Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:601. [PMID: 31555215 PMCID: PMC6727178 DOI: 10.3389/fendo.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) signaling is critically involved in the regulation of cardiovascular physiology. Even mild reductions of myocardial TH levels, as occur in hypothyroidism or low T3 state conditions, are thought to play a role in the progression of cardiac disorders. Due to recent advances in molecular mechanisms underlying TH action, it is now accepted that TH-dependent modulation of gene expression is achieved at multiple transcriptional and post-transcriptional levels and involves the cooperation of many processes. Among them, the epigenetic remodeling of chromatin structure and the interplay with non-coding RNA have emerged as novel TH-dependent pathways that add further degrees of complexity and broaden the network of genes controlled by TH signaling. Increasing experimental and clinical findings indicate that aberrant function of these regulatory mechanisms promotes the evolution of cardiac disorders such as post-ischemic injury, pathological hypertrophy, and heart failure, which may be reversed by the correction of the underlying TH dyshomeostasis. To encourage the clinical implementation of a TH replacement strategy in cardiac disease, here we discuss the crucial effect of epigenetic modifications and control of non-coding RNA in TH-dependent regulation of biological processes relevant for cardiac disease evolution.
Collapse
|
28
|
Liang N, Jakobsson T, Fan R, Treuter E. The Nuclear Receptor-Co-repressor Complex in Control of Liver Metabolism and Disease. Front Endocrinol (Lausanne) 2019; 10:411. [PMID: 31293521 PMCID: PMC6606711 DOI: 10.3389/fendo.2019.00411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatocytes are the major cell-type in the liver responsible for the coordination of metabolism in response to multiple signaling inputs. Coordination occurs primarily at the level of gene expression via transcriptional networks composed of transcription factors, in particular nuclear receptors (NRs), and associated co-regulators, including chromatin-modifying complexes. Disturbance of these networks by genetic, environmental or nutritional factors can lead to metabolic dysregulation and has been linked to the progression of non-alcoholic fatty liver disease (NAFLD) toward steatohepatitis and even liver cancer. Since there are currently no approved therapies, major efforts are dedicated to identify the critical factors that can be employed for drug development. Amongst the identified factors with clinical significance are currently lipid-sensing NRs including PPARs, LXRs, and FXR. However, major obstacles of NR-targeting are the undesired side effects associated with the genome-wide NR activities in multiple cell-types. Thus, of particular interest are co-regulators that determine NR activities, context-selectivity, and associated chromatin states. Current research on the role of co-regulators in hepatocytes is still premature due to the large number of candidates, the limited number of available mouse models, and the technical challenges in studying their chromatin occupancy. As a result, how NR-co-regulator networks in hepatocytes are coordinated by extracellular signals, and how NR-pathway selectivity is achieved, remains currently poorly understood. We will here review a notable exception, namely a fundamental transcriptional co-repressor complex that during the past decade has become the probably most-studied and best-understood physiological relevant co-regulator in hepatocytes. This multiprotein complex contains the core subunits HDAC3, NCOR, SMRT, TBL1, TBLR1, and GPS2 and is referred to as the "NR-co-repressor complex." We will particularly discuss recent advances in characterizing hepatocyte-specific loss-of-function mouse models and in applying genome-wide sequencing approaches including ChIP-seq. Both have been instrumental to uncover the role of each of the subunits under physiological conditions and in disease models, but they also revealed insights into the NR target range and genomic mechanisms of action of the co-repressor complex. We will integrate a discussion of translational aspects about the role of the complex in NAFLD pathways and in particular about the hypothesis that patient-specific alterations of specific subunits may determine NAFLD susceptibility and the therapeutic outcomes of NR-directed treatments.
Collapse
Affiliation(s)
- Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tomas Jakobsson
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Eckardt Treuter
| |
Collapse
|
29
|
Gillis NE, Taber TH, Bolf EL, Beaudet CM, Tomczak JA, White JH, Stein JL, Stein GS, Lian JB, Frietze S, Carr FE. Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by Brahma-Related Gene 1-Dependent Chromatin Remodeling. Endocrinology 2018; 159:2484-2494. [PMID: 29750276 PMCID: PMC6692870 DOI: 10.1210/en.2018-00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Thyroid hormone receptor β (TRβ) suppresses tumor growth through regulation of gene expression, yet the associated TRβ-mediated changes in chromatin assembly are not known. The chromatin ATPase brahma-related gene 1 (BRG1; SMARCA4), a key component of chromatin-remodeling complexes, is altered in many cancers, but its role in thyroid tumorigenesis and TRβ-mediated gene expression is unknown. We previously identified the oncogene runt-related transcription factor 2 (RUNX2) as a repressive target of TRβ. Here, we report differential expression of BRG1 in nonmalignant and malignant thyroid cells concordant with TRβ. BRG1 and TRβ have similar nuclear distribution patterns and significant colocalization. BRG1 interacts with TRβ, and together, they are part of the regulatory complex at the RUNX2 promoter. Loss of BRG1 increases RUNX2 levels, whereas reintroduction of TRβ and BRG1 synergistically decreases RUNX2 expression. RUNX2 promoter accessibility corresponded to RUNX2 expression levels. Inhibition of BRG1 activity increased accessibility of the RUNX2 promoter and corresponding expression. Our results reveal a mechanism of TRβ repression of oncogenic gene expression: TRβ recruitment of BRG1 induces chromatin compaction and diminishes RUNX2 expression. Therefore, BRG1-mediated chromatin remodeling may be obligatory for TRβ transcriptional repression and tumor suppressor function in thyroid tumorigenesis.
Collapse
Affiliation(s)
- Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas H Taber
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Caitlin M Beaudet
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jeffrey H White
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Seth Frietze
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Medical Laboratory Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Correspondence: Frances E. Carr, PhD, Department of Pharmacology, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405. E-mail:
| |
Collapse
|
30
|
Abstract
It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease (NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid metabolism at the molecular level. In this Review, we describe and summarize the key features of direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid hormone mediates these effects at the transcriptional and post-translational levels and via autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases involving the liver, such as hypercholesterolaemia and NAFLD.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
- ;
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- ;
| |
Collapse
|
31
|
Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol 2018; 237:R19-R34. [PMID: 29440347 PMCID: PMC5843491 DOI: 10.1530/joe-17-0708] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1, TRβ1 and other subtypes, are members of the nuclear receptor superfamily that mediate the action of thyroid hormone signaling in numerous tissues to regulate important physiological and developmental processes. Their most well-characterized role is as ligand-dependent transcription factors; TRs bind thyroid hormone response elements in the presence or absence of thyroid hormone to facilitate the expression of target genes. Although primarily residing in the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. We have identified multiple nuclear localization signals and nuclear export signals within TRα1 and TRβ1 that interact with importins and exportins, respectively, to mediate translocation across the nuclear envelope. More recently, enigmatic cytoplasmic functions have been ascribed to other TR subtypes, expanding the diversity of the cellular response to thyroid hormone. By integrating data on localization signal motifs, this review provides an overview of the complex interplay between TR's dynamic transport pathways and thyroid hormone signaling activities. We examine the variation in TR subtype response to thyroid hormone signaling, and what is currently known about regulation of the variety of tissue-specific localization patterns, including targeting to the nucleus, the mitochondria and the inner surface of the plasma membrane.
Collapse
Affiliation(s)
| | - Vincent R Roggero
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| | - Lizabeth A Allison
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
32
|
Campos JLO, Doratioto TR, Videira NB, Ribeiro Filho HV, Batista FAH, Fattori J, Indolfo NDC, Nakahira M, Bajgelman MC, Cvoro A, Laurindo FRM, Webb P, Figueira ACM. Protein Disulfide Isomerase Modulates the Activation of Thyroid Hormone Receptors. Front Endocrinol (Lausanne) 2018; 9:784. [PMID: 30671024 PMCID: PMC6331412 DOI: 10.3389/fendo.2018.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone receptors (TRs) are responsible for mediating thyroid hormone (T3 and T4) actions at a cellular level. They belong to the nuclear receptor (NR) superfamily and execute their main functions inside the cell nuclei as hormone-regulated transcription factors. These receptors also exhibit so-called "non-classic" actions, for which other cellular proteins, apart from coregulators inside nuclei, regulate their activity. Aiming to find alternative pathways of TR modulation, we searched for interacting proteins and found that PDIA1 interacts with TRβ in a yeast two-hybrid screening assay. The functional implications of PDIA1-TR interactions are still unclear; however, our co-immunoprecipitation (co-IP) and fluorescence assay results showed that PDI was able to bind both TR isoforms in vitro. Moreover, T3 appears to have no important role in these interactions in cellular assays, where PDIA1 was able to regulate transcription of TRα and TRβ-mediated genes in different ways depending on the promoter region and on the TR isoform involved. Although PDIA1 appears to act as a coregulator, it binds to a TR surface that does not interfere with coactivator binding. However, the TR:PDIA1 complex affinity and activation are different depending on the TR isoform. Such differences may reflect the structural organization of the PDIA1:TR complex, as shown by models depicting an interaction interface with exposed cysteines from both proteins, suggesting that PDIA1 might modulate TR by its thiol reductase/isomerase activity.
Collapse
Affiliation(s)
- Jessica L. O. Campos
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Tabata R. Doratioto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Natalia B. Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Helder V. Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Fernanda A. H. Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Juliana Fattori
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Nathalia de C. Indolfo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcel Nakahira
- Institute of Chemistry (IQ), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcio C. Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Aleksandra Cvoro
- Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paul Webb
- California Institute for Regenerative Medicine, Oakland, CA, United States
| | - Ana Carolina M. Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- *Correspondence: Ana Carolina M. Figueira
| |
Collapse
|
33
|
Wirth EK, Meyer F. Neuronal effects of thyroid hormone metabolites. Mol Cell Endocrinol 2017; 458:136-142. [PMID: 28088465 DOI: 10.1016/j.mce.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 12/19/2022]
Abstract
Thyroid hormones and their metabolites are active regulators of gene expression, mitochondrial function and various other physiological actions in different organs and tissues. These actions are mediated by a spatio-temporal regulation of thyroid hormones and metabolites within a target cell. This spatio-temporal resolution as well as classical and non-classical actions of thyroid hormones and metabolites is accomplished and regulated on multiple levels as uptake, local activation and signaling of thyroid hormones. In this review, we will give an overview of the systems involved in regulating the presence and activity of thyroid hormones and their metabolites within the brain, specifically in neurons. While a wealth of data on thyroxin (T4) and 3,5,3'-triiodothyronine (T3) in the brain has been generated, research into the presence of action of other thyroid hormone metabolites is still sparse and requires further investigations.
Collapse
Affiliation(s)
- Eva K Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Franziska Meyer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Vella KR, Hollenberg AN. The actions of thyroid hormone signaling in the nucleus. Mol Cell Endocrinol 2017; 458:127-135. [PMID: 28286327 PMCID: PMC5592130 DOI: 10.1016/j.mce.2017.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
Thyroid hormones are a critical regulator of mammalian physiology. Much of their action is due to effects in the nucleus where T3 engages thyroid hormone receptor isoforms to mediate its effects. In order to function properly the TR isoforms must be recruited to regulatory sequences within genes that they up-regulate. On these positive regulated target genes the TR can activate or repress depending upon whether the receptor is bound to T3 or not and the type of co-regulatory proteins present in that cell type. In contrast to T3 mediated activation, the mechanism by which the TR represses transcription in the presence of T3 remains unclear. Herein we will review the components of the transcriptional response to T3 within the nucleus and attempt to highlight the outstanding questions in the field.
Collapse
Affiliation(s)
- Kristen R Vella
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
35
|
NCoR1-independent mechanism plays a role in the action of the unliganded thyroid hormone receptor. Proc Natl Acad Sci U S A 2017; 114:E8458-E8467. [PMID: 28923959 DOI: 10.1073/pnas.1706917114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nuclear receptor corepressor 1 (NCoR1) is considered to be the major corepressor that mediates ligand-independent actions of the thyroid hormone receptor (TR) during development and in hypothyroidism. We tested this by expressing a hypomorphic NCoR1 allele (NCoR1ΔID), which cannot interact with the TR, in Pax8-KO mice, which make no thyroid hormone. Surprisingly, abrogation of NCoR1 function did not reverse the ligand-independent action of the TR on many gene targets and did not fully rescue the high mortality rate due to congenital hypothyroidism in these mice. To further examine NCoR1's role in repression by the unliganded TR, we deleted NCoR1 in the livers of euthyroid and hypothyroid mice and examined the effects on gene expression and enhancer activity measured by histone 3 lysine 27 (H3K27) acetylation. Even in the absence of NCoR1 function, we observed strong repression of more than 43% of positive T3 (3,3',5-triiodothyronine) targets in hypothyroid mice. Regulation of approximately half of those genes correlated with decreased H3K27 acetylation, and nearly 80% of these regions with affected H3K27 acetylation contained a bona fide TRβ1-binding site. Moreover, using liver-specific TRβ1-KO mice, we demonstrate that hypothyroidism-associated changes in gene expression and histone acetylation require TRβ1. Thus, many of the genomic changes mediated by the TR in hypothyroidism are independent of NCoR1, suggesting a role for additional signaling modulators in hypothyroidism.
Collapse
|
36
|
Armour SM, Remsberg JR, Damle M, Sidoli S, Ho WY, Li Z, Garcia BA, Lazar MA. An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides. Nat Commun 2017; 8:549. [PMID: 28916805 PMCID: PMC5601916 DOI: 10.1038/s41467-017-00772-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/26/2017] [Indexed: 01/23/2023] Open
Abstract
The histone deacetylase HDAC3 is a critical mediator of hepatic lipid metabolism, and liver-specific deletion of HDAC3 leads to fatty liver. To elucidate the underlying mechanism, here we report a method of cross-linking followed by mass spectrometry to define a high-confidence HDAC3 interactome in vivo that includes the canonical NCoR-HDAC3 complex as well as Prospero-related homeobox 1 protein (PROX1). HDAC3 and PROX1 co-localize extensively on the mouse liver genome, and are co-recruited by hepatocyte nuclear factor 4α (HNF4α). The HDAC3-PROX1 module controls the expression of a gene program regulating lipid homeostasis, and hepatic-specific ablation of either component increases triglyceride content in liver. These findings underscore the importance of specific combinations of transcription factors and coregulators in the fine tuning of organismal metabolism.HDAC3 is a critical mediator of hepatic lipid metabolism and its loss leads to fatty liver. Here, the authors characterize the liver HDAC3 interactome in vivo, provide evidence that HDAC3 interacts with PROX1, and show that HDAC3 and PROX1 control expression of genes regulating lipid homeostasis.
Collapse
Affiliation(s)
- Sean M Armour
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Jarrett R Remsberg
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Manashree Damle
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Wesley Y Ho
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Zhenghui Li
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA. .,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.
| |
Collapse
|
37
|
Abstract
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) levels in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling.
Collapse
Affiliation(s)
- Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Goldfarb Y, Kadouri N, Levi B, Sela A, Herzig Y, Cohen RN, Hollenberg AN, Abramson J. HDAC3 Is a Master Regulator of mTEC Development. Cell Rep 2016; 15:651-665. [PMID: 27068467 DOI: 10.1016/j.celrep.2016.03.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/03/2016] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
Abstract
The thymus provides a unique microenvironment enabling development and selection of T lymphocytes. Medullary thymic epithelial cells (mTECs) play a pivotal role in this process by facilitating negative selection of self-reactive thymocytes and the generation of Foxp3(+) regulatory T cells. Although studies have highlighted the non-canonical nuclear factor κB (NF-κB) pathway as the key regulator of mTEC development, comprehensive understanding of the molecular pathways regulating this process still remains incomplete. Here, we demonstrate that the development of functionally competent mTECs is regulated by the histone deacetylase 3 (Hdac3). Although histone deacetylases are global transcriptional regulators, this effect is highly specific only to Hdac3, as neither Hdac1 nor Hdac2 inactivation caused mTEC ablation. Interestingly, Hdac3 induces an mTEC-specific transcriptional program independently of the previously recognized RANK-NFκB signaling pathway. Thus, our findings uncover yet another layer of complexity of TEC lineage divergence and highlight Hdac3 as a major and specific molecular switch crucial for mTEC differentiation.
Collapse
Affiliation(s)
- Yael Goldfarb
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ben Levi
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaf Sela
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yonatan Herzig
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronald N Cohen
- University of Chicago Medical Centre, Chicago, IL 60637, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Beth Israel Deaconess Medical Centre, Boston, MA 02215, USA
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
39
|
Astapova I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J Mol Endocrinol 2016; 56:73-97. [PMID: 26673411 DOI: 10.1530/jme-15-0246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3 binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3 target genes and hypothalamic-pituitary-thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis.
Collapse
Affiliation(s)
- Inna Astapova
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Kumar P, Mohan V, Sinha RA, Chagtoo M, Godbole MM. Histone deacetylase inhibition reduces hypothyroidism-induced neurodevelopmental defects in rats. J Endocrinol 2015; 227:83-92. [PMID: 26427529 DOI: 10.1530/joe-15-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid hormone (TH) through its receptor (TRα/β) influences spatio-temporal regulation of its target gene repertoire during brain development. Though hypothyroidism in WT rodent models of perinatal hypothyroidism severely impairs neurodevelopment, its effect on TRα/β knockout mice is less severe. An explanation to this paradox is attributed to a possible repressive action of unliganded TRs during development. Since unliganded TRs suppress gene expression through the recruitment of histone deacetylase (HDACs) via co-repressor complexes, we tested whether pharmacological inhibition of HDACs may prevent the effects of hypothyroidism on brain development. Using valproate, an HDAC inhibitor, we show that HDAC inhibition significantly blocks the deleterious effects of hypothyroidism on rat cerebellum, evident by recovery of TH target genes like Bdnf, Pcp2 and Mbp as well as improved dendritic structure of cerebellar Purkinje neurons. Together with this, HDAC inhibition also rescues hypothyroidism-induced motor and cognitive defects. This study therefore provides an insight into the role of HDACs in TH insufficiency during neurodevelopment and their inhibition as a possible therapeutics for treatment.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Vishwa Mohan
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Rohit Anthony Sinha
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Megha Chagtoo
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Madan M Godbole
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|