1
|
Salimi K, Alvandi M, Saberi Pirouz M, Rakhshan K, Howatson G. Regulating eEF2 and eEF2K in skeletal muscle by exercise. Arch Physiol Biochem 2024; 130:503-514. [PMID: 36633938 DOI: 10.1080/13813455.2023.2164898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
Skeletal muscle is a flexible and adaptable tissue that strongly responds to exercise training. The skeletal muscle responds to exercise by increasing muscle protein synthesis (MPS) when energy is available. One of protein synthesis's major rate-limiting and critical regulatory steps is the translation elongation pathway. The process of translation elongation in skeletal muscle is highly regulated. It requires elongation factors that are intensely affected by various physiological stimuli such as exercise and the total available energy of cells. Studies have shown that exercise involves the elongation pathway by numerous signalling pathways. Since the elongation pathway, has been far less studied than the other translation steps, its comprehensive prospect and quantitative understanding remain in the dark. This study highlights the current understanding of the effect of exercise training on the translation elongation pathway focussing on the molecular factors affecting the pathway, including Ca2+, AMPK, PKA, mTORC1/P70S6K, MAPKs, and myostatin. We further discussed the mode and volume of exercise training intervention on the translation elongation pathway.What is the topic of this review? This review summarises the impacts of exercise training on the translation elongation pathway in skeletal muscle focussing on eEF2 and eEF2K.What advances does it highlight? This review highlights mechanisms and factors that profoundly influence the translation elongation pathway and argues that exercise might modulate the response. This review also combines the experimental observations focussing on the regulation of translation elongation during and after exercise. The findings widen our horizon to the notion of mechanisms involved in muscle protein synthesis (MPS) through translation elongation response to exercise training.
Collapse
Affiliation(s)
- Kia Salimi
- Department of Exercise Physiology, Faculty of Sport and Exercise Sciences, University of Tehran, Tehran, Iran
| | - Masoomeh Alvandi
- Department of Biological Science in Sport and Health, University of Shahid Beheshti, Tehran, Iran
| | - Mahdi Saberi Pirouz
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Rakhshan
- Department of Medical Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Martinez-Canton M, Galvan-Alvarez V, Gallego-Selles A, Gelabert-Rebato M, Garcia-Gonzalez E, Gonzalez-Henriquez JJ, Martin-Rincon M, Calbet JAL. Activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle by high-intensity exercise in normoxia and hypoxia and after recovery with or without post-exercise ischemia. Free Radic Biol Med 2024; 222:607-624. [PMID: 39009244 DOI: 10.1016/j.freeradbiomed.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Autophagy is essential for the adaptive response to exercise and physiological skeletal muscle functionality. However, the mechanisms leading to the activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle in response to high-intensity exercise remain elusive. Our findings demonstrate that macroautophagy and chaperone-mediated autophagy are stimulated by high-intensity exercise in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg) in healthy humans. High-intensity exercise induces macroautophagy initiation through AMPKα phosphorylation, which phosphorylates and activates ULK1. ULK1 phosphorylates BECN1 at Ser15, eliciting the dissociation of BECN1-BCL2 crucial for phagophore formation. Besides, high-intensity exercise elevates the LC3B-II:LC3B-I ratio, reduces total SQSTM1/p62 levels, and induces p-Ser349 SQSTM1/p62 phosphorylation, suggesting heightened autophagosome degradation. PHAF1/MYTHO, a novel macroautophagy biomarker, is highly upregulated in response to high-intensity exercise. The latter is accompanied by elevated LAMP2A expression, indicating chaperone-mediated autophagy activation regardless of post-exercise HSPA8/HSC70 downregulation. Despite increased glycolytic metabolism, severe acute hypoxia does not exacerbate the autophagy signaling response. Signaling changes revert within 1 min of recovery with free circulation, while the application of immediate post-exercise ischemia impedes recovery. Our study concludes that macroautophagy and chaperone-mediated autophagy pathways are strongly activated by high-intensity exercise, regardless of PO2, and that oxygenation is necessary to revert these signals to pre-exercise values. PHAF1/MYTHO emerges as a pivotal exercise-responsive autophagy marker positively associated with the LC3B-II:LC3B-I ratio.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Mathematics, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| |
Collapse
|
3
|
Lim JKM, Samiei A, Delaidelli A, de Santis JO, Brinkmann V, Carnie CJ, Radiloff D, Hruby L, Kahler A, Cran J, Leprivier G, Sorensen PH. The eEF2 kinase coordinates the DNA damage response to cisplatin by supporting p53 activation. Cell Death Dis 2024; 15:501. [PMID: 39003251 PMCID: PMC11246425 DOI: 10.1038/s41419-024-06891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a stress-responsive hub that inhibits the translation elongation factor eEF2, and consequently mRNA translation elongation, in response to hypoxia and nutrient deprivation. EEF2K is also involved in the response to DNA damage but its role in response to DNA crosslinks, as induced by cisplatin, is not known. Here we found that eEF2K is critical to mediate the cellular response to cisplatin. We uncovered that eEF2K deficient cells are more resistant to cisplatin treatment. Mechanistically, eEF2K deficiency blunts the activation of the DNA damage response associated ATM and ATR pathways, in turn preventing p53 activation and therefore compromising induction of cisplatin-induced apoptosis. We also report that loss of eEF2K delays the resolution of DNA damage triggered by cisplatin, suggesting that eEF2K contributes to DNA damage repair in response to cisplatin. In support of this, our data shows that eEF2K promotes the expression of the DNA repair protein ERCC1, critical for the repair of cisplatin-caused DNA damage. Finally, using Caenorhabditis elegans as an in vivo model, we find that deletion of efk-1, the worm eEF2K ortholog, mitigates the induction of germ cell death in response to cisplatin. Together, our data highlight that eEF2K represents an evolutionary conserved mediator of the DNA damage response to cisplatin which promotes p53 activation to induce cell death, or alternatively facilitates DNA repair, depending on the extent of DNA damage.
Collapse
Affiliation(s)
- Jonathan K M Lim
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Arash Samiei
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Jessica Oliveira de Santis
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanessa Brinkmann
- Institute of Toxicology, Heinrich Heine University, Düsseldorf, Germany
| | - Christopher J Carnie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Daniel Radiloff
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Laura Hruby
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alisa Kahler
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jordan Cran
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gabriel Leprivier
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Piserchio A, Dalby KN, Ghose R. Revealing eEF-2 kinase: recent structural insights into function. Trends Biochem Sci 2024; 49:169-182. [PMID: 38103971 PMCID: PMC10950556 DOI: 10.1016/j.tibs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas, Austin, TX 78712, USA.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; The Graduate Center of The City University of New York (CUNY), New York, NY 10016, USA.
| |
Collapse
|
5
|
Lis A, Baptista CG, Dahlgren K, Corvi MM, Blader IJ. Identification of Toxoplasma calcium-dependent protein kinase 3 as a stress-activated elongation factor 2 kinase. mSphere 2023; 8:e0015623. [PMID: 37272703 PMCID: PMC10449493 DOI: 10.1128/msphere.00156-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite whose tachyzoite form causes disease via a lytic growth cycle. Its metabolic and cellular pathways are primarily designed to ensure parasite survival within a host cell. But during its lytic cycle, tachyzoites are exposed to the extracellular milieu and prolonged exposure requires activation of stress response pathways that include reprogramming the parasite proteome. Regulation of protein synthesis is therefore important for extracellular survival. We previously reported that in extracellularly stressed parasites, the elongation phase of protein synthesis is regulated by the Toxoplasma oxygen-sensing protein, PHYb. PHYb acts by promoting the activity of elongation factor eEF2, which is a GTPase that catalyzes the transfer of the peptidyl-tRNA from the A site to the P site of the ribosome. In the absence of PHYb, eEF2 is hyper-phosphorylated, which inhibits eEF2 from interacting with the ribosome. eEF2 kinases are atypical calcium-dependent kinases and BLAST analyses revealed the parasite kinase, CDPK3, as the most highly homologous to the Saccharomyces cerevisiae eEF2 kinase, RCK2. In parasites exposed to extracellular stress, loss of CDPK3 leads to decreased eEF2 phosphorylation and enhanced rates of elongation. Furthermore, co-immunoprecipitation studies revealed that CDPK3 and eEF2 interact in stressed parasites. Since CDPK3 and eEF2 normally localize to the plasma membrane and cytosol, respectively, we investigated how the two can interact. We report that under stress conditions, CDPK3 is not N-myristoylated likely leading to its cytoplasmic localization. In summary, we have identified a novel function for CDPK3 as the first protozoan extracellular stress-induced eEF2 kinase.IMPORTANCEAlthough it is an obligate intracellular parasite, Toxoplasma must be able to survive in the extracellular environment. Our previous work indicated that ensuring that elongation continues during protein synthesis is part of this stress response and that this is due to preventing phosphorylation of elongation factor 2. But the identity of the eEF2 kinase has remained unknown in Toxoplasma and other protozoan parasites. Here, we identify CDPK3 as the first protozoan eEF2 kinase and demonstrate that it is part of a stress response initiated when parasites are exposed to extracellular stress. We also demonstrate that CDPK3 engages eEF2 as a result of its relocalization from the plasma membrane to the cytosol.
Collapse
Affiliation(s)
- Agnieszka Lis
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Kelsey Dahlgren
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Maria M. Corvi
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina
| | - Ira J. Blader
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
6
|
Ma T. Roles of eukaryotic elongation factor 2 kinase (eEF2K) in neuronal plasticity, cognition, and Alzheimer disease. J Neurochem 2023; 166:47-57. [PMID: 34796967 PMCID: PMC9117558 DOI: 10.1111/jnc.15541] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Understanding the molecular signaling mechanisms underlying cognition and neuronal plasticity would provide insights into the pathogenesis of neuronal disorders characterized by cognitive syndromes such as Alzheimer disease (AD). Phosphorylation of the mRNA translational factor eukaryotic elongation factor 2 (eEF2) by its specific kinase eEF2K is critically involved in protein synthesis regulation. In this review, we discussed recent studies on the roles of eEF2K/eEF2 signaling in the context of regulation/dysregulation of cognitive function and synaptic plasticity. We specifically focus on the discussion of recent evidence indicating suppression of eEF2K signaling as a potential novel therapeutic avenue for AD and related dementias (ADRDs).
Collapse
Affiliation(s)
- Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine
| |
Collapse
|
7
|
Piserchio A, Isiorho EA, Long K, Bohanon AL, Kumar EA, Will N, Jeruzalmi D, Dalby KN, Ghose R. Structural basis for the calmodulin-mediated activation of eukaryotic elongation factor 2 kinase. SCIENCE ADVANCES 2022; 8:eabo2039. [PMID: 35857468 PMCID: PMC9258954 DOI: 10.1126/sciadv.abo2039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/20/2022] [Indexed: 05/27/2023]
Abstract
Translation is a tightly regulated process that ensures optimal protein quality and enables adaptation to energy/nutrient availability. The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K), a key regulator of translation, specifically phosphorylates the guanosine triphosphatase eEF-2, thereby reducing its affinity for the ribosome and suppressing the elongation phase of protein synthesis. eEF-2K activation requires calmodulin binding and autophosphorylation at the primary stimulatory site, T348. Biochemical studies predict a calmodulin-mediated activation mechanism for eEF-2K distinct from other calmodulin-dependent kinases. Here, we resolve the atomic details of this mechanism through a 2.3-Å crystal structure of the heterodimeric complex of calmodulin and the functional core of eEF-2K (eEF-2KTR). This structure, which represents the activated T348-phosphorylated state of eEF-2KTR, highlights an intimate association of the kinase with the calmodulin C-lobe, creating an "activation spine" that connects its amino-terminal calmodulin-targeting motif to its active site through a conserved regulatory element.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Eta A. Isiorho
- Macromolecular Crystallization Facility, CUNY ASRC, New York, NY 10031, USA
| | - Kimberly Long
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Amanda L. Bohanon
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Eric A. Kumar
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Nathan Will
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
8
|
Coleman DN, Vailati-Riboni M, Pate RT, Aboragah A, Luchini D, Cardoso FC, Loor JJ. Increased Supply of Methionine During a Heat-Stress Challenge in Lactating Holstein Cows Alters Mammary Tissue mTOR Signaling and its Response to Lipopolysaccharide. J Anim Sci 2022; 100:6585298. [PMID: 35553680 PMCID: PMC9387603 DOI: 10.1093/jas/skac175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The first objective was to investigate the effects of feeding rumen-protected methionine (RPM) during a heat stress (HS) challenge on abundance and phosphorylation of mechanistic target of rapamycin (mTOR)-related signaling proteins in mammary gland. The second objective was to investigate how HS and RPM may modulate the response of mammary gland explants to lipopolysaccharide (LPS) stimulation. Thirty-two multiparous, lactating Holstein cows (184 ± 59 DIM) were randomly assigned to 1 of 2 environmental treatment groups, and 1 of 2 dietary treatments [TMR with RPM (Smartamine M; Adisseo Inc.; 0.105% DM as top dress) or TMR without RPM (CON)] in a crossover design. There were 2 periods with 2 phases per period. In phase 1 (9 d), all cows were in thermoneutral conditions (TN) and fed ad libitum. During phase 2 (9 d), group 1 (n = 16) was exposed to HS using electric heat blankets while group 2 (n = 16) remained in TN but were pair-fed to HS counterparts to control for DMI decreases associated with HS. After a washout period (14 d), the study was repeated (period 2). Environmental treatments were inverted in period 2 (sequence), while dietary treatments remained the same. Mammary tissue was harvested via biopsy at the end of both periods. Tissue was used for protein abundance analysis and also for incubation with 0 or 3 μg/mL of LPS for 2 h and subsequently used for mRNA abundance. Data were analyzed using PROC MIXED in SAS. Analysis of protein abundance data included the effects of diet, environment and their interaction, and period and sequence to account for the crossover design. The explant data model also included the effect of LPS and its interaction with environment and diet. Abundance of phosphorylated mTOR and ratio of phosphorylated eukaryotic translation elongation factor 2 (p-EEF2) to total EEF2 in non-challenged tissue was greater with RPM supplementation (P = 0.04 for both) and in both cases tended to be greater with HS (P = 0.08 for both). Regardless of RPM supplementation, incubation with LPS upregulated mRNA abundance of IL8, IL6, IL1B, CXCL2, TNF, NFKB1 and TLR2 (P < 0.05). An environment × LPS interaction was observed for NFKB1 (P = 0.03); abundance was greater in LPS-treated explants from non-HS compared with HS cows. Abundance of CXCL2, NFKB1, NOS2, NOS1, and SOD2 was lower with HS (P < 0.05). While LPS did not alter abundance of mRNA associated with the antioxidant transcription factor NFE2L2 signaling (P = 0.59), explants from HS cows had lower abundance of NFE2L2 (P < 0.001) and CUL3 (P = 0.04). Overall, RPM supplementation may alter mTOR activation. Additionally, while HS reduced explant immune and antioxidant responses, RPM did not attenuate the inflammatory response induced by LPS in vitro.
Collapse
Affiliation(s)
- D N Coleman
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | - M Vailati-Riboni
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | - R T Pate
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | - A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | | | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801 USA
| |
Collapse
|
9
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
10
|
Therapeutic Potential of Thymoquinone in Triple-Negative Breast Cancer Prevention and Progression through the Modulation of the Tumor Microenvironment. Nutrients 2021; 14:nu14010079. [PMID: 35010954 PMCID: PMC8746460 DOI: 10.3390/nu14010079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.
Collapse
|
11
|
Vasconcelos-Lima JL, Oikawa-Cardoso VL, Heinrichs-Caldas W, Almeida-Val VMF. Influence of hypoxia on biochemical aspects and on expression of genes related to oxygen-homeostasis of the Amazonian cichlid Astronotus ocellatus (Agassiz, 1831). Genet Mol Biol 2021; 44:e20210127. [PMID: 34807223 PMCID: PMC8607528 DOI: 10.1590/1678-4685-gmb-2021-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Variations in dissolved oxygen levels are common in the Amazonian aquatic environments and the aquatic organisms that inhabit these environments developed a variety of adaptive responses to deal with such conditions. Some Amazonian fish species are tolerant to low oxygen levels and the cichlid Astronotus ocellatus is one of the most hypoxia-tolerant species. Herein, we aimed to unveil the biochemical and molecular responses that A. ocellatus presents when submitted to hypoxia. Hypoxia indicators were measured, such as plasma glucose, plasma lactate, hepatic glycogen and relative transcript levels of prolyl hydroxylase 2 (phd2) and hypoxia-inducible factor-1α (hif-1α) in juveniles of approximately 50 g exposed to 1, 3, and 5 hours of hypoxia (0.7 mg O2.L-1), followed by 3 hours of recovery in normoxia (6 mg O2.L-1). Fish exposed to hypoxia reduced liver glycogen levels within 3 hours of hypoxia, when comparing with 1 hour, and increased plasma glucose and lactate. Under the same condition, phd2 transcripts levels increased in gills, but decreased in liver. In contrast, hypoxia did not affect relative gene expression of hif-1α in both tissues. Based on the transcription pattern of phd2, these results showed that liver and gills of A. ocellatus have different molecular strategies to cope with environmental hypoxia.
Collapse
Affiliation(s)
- José L Vasconcelos-Lima
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular (LEEM), Manaus, AM, Brazil
| | - Vanessa L Oikawa-Cardoso
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular (LEEM), Manaus, AM, Brazil
| | - Waldir Heinrichs-Caldas
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular (LEEM), Manaus, AM, Brazil
| | - Vera M F Almeida-Val
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular (LEEM), Manaus, AM, Brazil
| |
Collapse
|
12
|
Ballard DJ, Peng HY, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Ren X, Yang JM, Song J. Insights Into the Pathologic Roles and Regulation of Eukaryotic Elongation Factor-2 Kinase. Front Mol Biosci 2021; 8:727863. [PMID: 34532346 PMCID: PMC8438118 DOI: 10.3389/fmolb.2021.727863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.
Collapse
Affiliation(s)
- Darby J. Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
13
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|
14
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
15
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
16
|
Yu M, Lun J, Zhang H, Zhu L, Zhang G, Fang J. The non-canonical functions of HIF prolyl hydroxylases and their dual roles in cancer. Int J Biochem Cell Biol 2021; 135:105982. [PMID: 33894356 DOI: 10.1016/j.biocel.2021.105982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are dioxygenases using oxygen and 2-oxoglutarate as co-substrates. Under normoxia, PHDs hydroxylate the conserved prolyl residues of HIFα, leading to HIFα degradation. In hypoxia PHDs are inactivated, which results in HIFα accumulation. The accumulated HIFα enters nucleus and initiates gene transcription. Many studies have shown that PHDs have substrates other than HIFα, implying that they have HIF-independent non-canonical functions. Besides modulating protein stability, the PHDs-mediated prolyl hydroxylation affects protein-protein interaction and protein activity for alternative substrates. Increasing evidence indicates that PHDs also have hydroxylase-independent functions. They influence protein stability, enzyme activity, and protein-protein interaction in a hydroxylase-independent manner. These findings highlight the functional diversity and complexity of PHDs. Due to having inhibitory activity on HIFα, PHDs are proposed to act as tumor suppressors. However, research shows that PHDs exert either tumor-promoting or tumor-suppressing features. Here, we try to summarize the current understanding of PHDs hydroxylase-dependent and -independent functions and their roles in cancer.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China
| | - Lei Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| |
Collapse
|
17
|
Xie J, De Poi SP, Humphrey SJ, Hein LK, Bruning JB, Pan W, Selth LA, Sargeant TJ, Proud CG. TSC-insensitive Rheb mutations induce oncogenic transformation through a combination of constitutively active mTORC1 signalling and proteome remodelling. Cell Mol Life Sci 2021; 78:4035-4052. [PMID: 33834258 PMCID: PMC11072378 DOI: 10.1007/s00018-021-03825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/02/2021] [Accepted: 03/27/2021] [Indexed: 01/18/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex. We show that two activated mutants, Rheb-T23M and E40K, strongly drive increased cell growth, proliferation and anchorage-independent growth resulting in enhanced tumour growth in vivo. Proteomic analysis of cells expressing the mutations revealed, surprisingly, that these two mutants promote distinct oncogenic pathways with Rheb-T23M driving an increased rate of anaerobic glycolysis, while Rheb-E40K regulates the translation factor eEF2 and autophagy, likely through differential interactions with 5' AMP-activated protein kinase (AMPK) which modulate its activity. Our findings suggest that unique, personalized, combination therapies may be utilised to treat cancers according to which Rheb mutant they harbour.
Collapse
Affiliation(s)
- Jianling Xie
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stuart P De Poi
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Leanne K Hein
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wenru Pan
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
18
|
eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochem J 2021; 477:4367-4381. [PMID: 33094805 DOI: 10.1042/bcj20200697] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Emerging advances in cancer therapy have transformed the landscape towards cancer immunotherapy regimens. Recent discoveries have resulted in the development of clinical immune checkpoint inhibitors that are 'game-changers' for cancer immunotherapy. Here we show that eEF2K, an atypical protein kinase that negatively modulates the elongation stage of protein synthesis, promotes the synthesis of PD-L1, an immune checkpoint protein which helps cancer cells to escape from immunosurveillance. Ablation of eEF2K in prostate and lung cancer cells markedly reduced the expression levels of the PD-L1 protein. We show that eEF2K promotes the association of PD-L1 mRNAs with translationally active polyribosomes and that translation of the PD-L1 mRNA is regulated by a uORF (upstream open reading-frame) within its 5'-UTR (5'-untranslated region) which starts with a non-canonical CUG as the initiation codon. This inhibitory effect is attenuated by eEF2K thereby allowing higher levels of translation of the PD-L1 coding region and enhanced expression of the PD-L1 protein. Moreover, eEF2K-depleted cancer cells are more vulnerable to immune attack by natural killer cells. Therefore, control of translation elongation can modulate the translation of this specific mRNA, one which contains an uORF that starts with CUG, and perhaps others that contain a similar feature. Taken together, our data reveal that eEF2K regulates PD-L1 expression at the level of the translation of its mRNA by virtue of a uORF in its 5'-region. This, and other roles of eEF2K in cancer cell biology (e.g. in cell survival and migration), may be exploited for the design of future therapeutic strategies.
Collapse
|
19
|
Chen Y, Gaber T. Hypoxia/HIF Modulates Immune Responses. Biomedicines 2021; 9:biomedicines9030260. [PMID: 33808042 PMCID: PMC8000289 DOI: 10.3390/biomedicines9030260] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Yuling Chen
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513364
| |
Collapse
|
20
|
Progress in the Development of Eukaryotic Elongation Factor 2 Kinase (eEF2K) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy. Int J Mol Sci 2021; 22:ijms22052408. [PMID: 33673713 PMCID: PMC7957638 DOI: 10.3390/ijms22052408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K or Ca2+/calmodulin-dependent protein kinase, CAMKIII) is a new member of an atypical α-kinase family different from conventional protein kinases that is now considered as a potential target for the treatment of cancer. This protein regulates the phosphorylation of eukaryotic elongation factor 2 (eEF2) to restrain activity and inhibit the elongation stage of protein synthesis. Mounting evidence shows that eEF2K regulates the cell cycle, autophagy, apoptosis, angiogenesis, invasion, and metastasis in several types of cancers. The expression of eEF2K promotes survival of cancer cells, and the level of this protein is increased in many cancer cells to adapt them to the microenvironment conditions including hypoxia, nutrient depletion, and acidosis. The physiological function of eEF2K and its role in the development and progression of cancer are here reviewed in detail. In addition, a summary of progress for in vitro eEF2K inhibitors from anti-cancer drug discovery research in recent years, along with their structure-activity relationships (SARs) and synthetic routes or natural sources, is also described. Special attention is given to those inhibitors that have been already validated in vivo, with the overall aim to provide reference context for the further development of new first-in-class anti-cancer drugs that target eEF2K.
Collapse
|
21
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
22
|
Lee LJ, Papadopoli D, Jewer M, Del Rincon S, Topisirovic I, Lawrence MG, Postovit LM. Cancer Plasticity: The Role of mRNA Translation. Trends Cancer 2020; 7:134-145. [PMID: 33067172 PMCID: PMC8023421 DOI: 10.1016/j.trecan.2020.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Tumor progression is associated with dedifferentiated histopathologies concomitant with cancer cell survival within a changing, and often hostile, tumor microenvironment. These processes are enabled by cellular plasticity, whereby intracellular cues and extracellular signals are integrated to enable rapid shifts in cancer cell phenotypes. Cancer cell plasticity, at least in part, fuels tumor heterogeneity and facilitates metastasis and drug resistance. Protein synthesis is frequently dysregulated in cancer, and emerging data suggest that translational reprograming collaborates with epigenetic and metabolic programs to effectuate phenotypic plasticity of neoplasia. Herein, we discuss the potential role of mRNA translation in cancer cell plasticity, highlight emerging histopathological correlates, and deliberate on how this is related to efforts to improve understanding of the complex tumor ecology.
Collapse
Affiliation(s)
- Laura J Lee
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - David Papadopoli
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Jewer
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Sonia Del Rincon
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Mitchell G Lawrence
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Lynne-Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
23
|
Jin X, Xie J, Zabolocki M, Wang X, Jiang T, Wang D, Désaubry L, Bardy C, Proud CG. The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. J Biol Chem 2020; 295:9855-9867. [PMID: 32430400 DOI: 10.1074/jbc.ra120.012979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Indexed: 01/12/2023] Open
Abstract
Fluorizoline (FLZ) binds to prohibitin-1 and -2 (PHB1/2), which are pleiotropic scaffold proteins known to affect signaling pathways involved in several intracellular processes. However, it is not yet clear how FLZ exerts its effect. Here, we show that exposure of three different human cancer cell lines to FLZ increases the phosphorylation of key translation factors, particularly of initiation factor 2 (eIF2) and elongation factor 2 (eEF2), modifications that inhibit their activities. FLZ also impaired signaling through mTOR complex 1, which also regulates the translational machinery, e.g. through the eIF4E-binding protein 4E-BP1. In line with these findings, FLZ potently inhibited protein synthesis. We noted that the first phase of this inhibition involves very rapid eEF2 phosphorylation, which is catalyzed by a dedicated Ca2+-dependent protein kinase, eEF2 kinase (eEF2K). We also demonstrate that FLZ induces a swift and marked rise in intracellular Ca2+ levels, likely explaining the effects on eEF2. Disruption of normal Ca2+ homeostasis can also induce endoplasmic reticulum stress, and our results suggest that induction of this stress response contributes to the increased phosphorylation of eIF2, likely because of activation of the eIF2-modifying kinase PKR-like endoplasmic reticulum kinase (PERK). We show that FLZ induces cancer cell death and that this effect involves contributions from the phosphorylation of both eEF2 and eIF2. Our findings provide important new insights into the biological effects of FLZ and thus the roles of PHBs, specifically in regulating Ca2+ levels, cellular protein synthesis, and cell survival.
Collapse
Affiliation(s)
- Xin Jin
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Michael Zabolocki
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Human Neurophysiology and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Xuemin Wang
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Tao Jiang
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Laboratory of Medicinal Chemistry and Cardio-oncology, CNRS, Strasbourg, France
| | - Cedric Bardy
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Human Neurophysiology and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia .,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
24
|
Karakas D, Ozpolat B. Eukaryotic elongation factor-2 kinase (eEF2K) signaling in tumor and microenvironment as a novel molecular target. J Mol Med (Berl) 2020; 98:775-787. [PMID: 32377852 DOI: 10.1007/s00109-020-01917-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
Eukaryotic elongation factor-2 kinase (eEF2K), an atypical member of alpha-kinase family, is highly overexpressed in breast, pancreatic, brain, and lung cancers, and associated with poor survival in patients. eEF2K promotes cell proliferation, survival, and aggressive tumor characteristics, leading to tumor growth and progression. While initial studies indicated that eEF2K acts as a negative regulator of protein synthesis by suppressing peptide elongation phase, later studies demonstrated that it has multiple functions and promotes cell cycle, angiogenesis, migration, and invasion as well as induction of epithelial-mesenchymal transition through induction of integrin β1, SRC/FAK, PI3K/AKT, cyclin D1, VEGF, ZEB1, Snail, and MMP-2. Under stress conditions such as hypoxia and metabolic distress, eEF2K is activated by several signaling pathways and slows down protein synthesis and helping cells to save energy and survive. In vivo therapeutic targeting of eEF2K by genetic methods inhibits tumor growth in various tumor models, validating it as a potential molecular target. Recent studies suggest that eEF2K plays a role in tumor microenvironment cells by monocyte chemoattractant protein-1 (MCP-1) and accumulation of tumor-associated macrophages. Due to its clinical significance and the pivotal role in tumorigenesis and progression, eEF2K is considered as an important therapeutic target in solid tumors. However, currently, there is no specific and potent inhibitor for translation into clinical studies. Here, we aim to systematically review current knowledge regarding eEF2K in tumor biology, microenvironment, and development of eEF2K targeted inhibitors and therapeutics.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 2020; 21:268-283. [PMID: 32144406 PMCID: PMC7222024 DOI: 10.1038/s41580-020-0227-y] [Citation(s) in RCA: 622] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Molecular oxygen (O2) sustains intracellular bioenergetics and is consumed by numerous biochemical reactions, making it essential for most species on Earth. Accordingly, decreased oxygen concentration (hypoxia) is a major stressor that generally subverts life of aerobic species and is a prominent feature of pathological states encountered in bacterial infection, inflammation, wounds, cardiovascular defects and cancer. Therefore, key adaptive mechanisms to cope with hypoxia have evolved in mammals. Systemically, these adaptations include increased ventilation, cardiac output, blood vessel growth and circulating red blood cell numbers. On a cellular level, ATP-consuming reactions are suppressed, and metabolism is altered until oxygen homeostasis is restored. A critical question is how mammalian cells sense oxygen levels to coordinate diverse biological outputs during hypoxia. The best-studied mechanism of response to hypoxia involves hypoxia inducible factors (HIFs), which are stabilized by low oxygen availability and control the expression of a multitude of genes, including those involved in cell survival, angiogenesis, glycolysis and invasion/metastasis. Importantly, changes in oxygen can also be sensed via other stress pathways as well as changes in metabolite levels and the generation of reactive oxygen species by mitochondria. Collectively, this leads to cellular adaptations of protein synthesis, energy metabolism, mitochondrial respiration, lipid and carbon metabolism as well as nutrient acquisition. These mechanisms are integral inputs into fine-tuning the responses to hypoxic stress.
Collapse
Affiliation(s)
- Pearl Lee
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WD, Abboud MI, Heilig R, Fischer R, Myllyharju J, Schofield CJ, Ratcliffe PJ. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 2019; 8:e46490. [PMID: 31500697 PMCID: PMC6739866 DOI: 10.7554/elife.46490] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Collapse
Affiliation(s)
| | - Kerstin Lippl
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Ya-Min Tian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | - William D Figg
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Peter J Ratcliffe
- The Francis Crick InstituteLondonUnited Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
27
|
Asik E, Akpinar Y, Caner A, Kahraman N, Guray T, Volkan M, Albarracin C, Pataer A, Arun B, Ozpolat B. EF2-kinase targeted cobalt-ferrite siRNA-nanotherapy suppresses BRCA1-mutated breast cancer. Nanomedicine (Lond) 2019; 14:2315-2338. [DOI: 10.2217/nnm-2019-0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the role of EF2K in BRCA1-mutated breast cancer. Materials & methods: We developed silica coated cobalt-ferrite (CoFe) nanoparticles for in vivo delivery of small interfering RNAs (siRNAs) into BRCA1-mutated breast cancer. Results: Expression of EF2K is highly upregulated in the majority (78.5%) of BRCA1-mutated patients and significantly associated with poor patient survival and metastasis. Silencing of EF2K reduced cell proliferation, migration and invasion of the cancer cells. In vivo therapeutic targeting of EF2K by CoFe-siRNA-nanoparticles leads to sustained EF2K gene knockdown and suppressed tumor growth in orthotopic xenograft models of BRCA1-mutated breast cancer. Conclusion: EF2K is a potential novel molecular target in BRCA1-mutated tumors and CoFe-based siRNA nanotherapy may be used as a novel approach to target EF2K.
Collapse
Affiliation(s)
- Elif Asik
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Yeliz Akpinar
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Chemistry, Kırsehir Ahi Evran University, Kırsehir 40100, Turkey
| | - Ayse Caner
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Murvet Volkan
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Constance Albarracin
- Department of Pathology, Division of Pathology/Lab Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Apar Pataer
- Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Banu Arun
- Departments of Breast Medical Oncology & Breast Cancer Genetics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference & Non-Coding RNA, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
28
|
Zhou Y, Li Y, Xu S, Lu J, Zhu Z, Chen S, Tan Y, He P, Xu J, Proud CG, Xie J, Shen K. Eukaryotic elongation factor 2 kinase promotes angiogenesis in hepatocellular carcinoma via PI3K/Akt and STAT3. Int J Cancer 2019; 146:1383-1395. [PMID: 31286509 DOI: 10.1002/ijc.32560] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Angiogenesis is crucial for tumor formation, development and metastasis in HCC. Previous studies indicated that high expression levels of elongation factor 2 kinase (eEF2K), a protein kinase that negatively regulates the elongation stage of translation, were associated with poor prognosis of HCC. Here, we show that pharmacological inhibition or knockdown of eEF2K in highly metastatic liver cancer cells inhibits their colony forming and migratory capacities, as well as reducing their invasiveness. Importantly, knocking down eEF2K by lentiviral directed shRNA prevented tumor growth and angiogenesis of HCC in mice. Silencing of eEF2K in endothelial cells (HUVECs) led to a reduction in vascularization, evidenced by a decrease in capillary-like structures in the matrigel. Notably, knocking down eEF2K reduced the expression of angiogenesis-related growth factors in liver cancer cells and the expression of growth factor receptors on HUVECs, and thus restricted signaling crosstalk that promotes angiogenesis between HCC cells and endothelial cells. We also showed that silencing of eEF2K effectively reduced protein levels of SP1/KLF5 transcription factors and hence decreased the levels of bound SP1/KLF5 to the VEGF promoter, resulted in a decrease in VEGF mRNA expression. Knocking down eEF2K also led to a striking decrease in the phosphorylation of PI3K/Akt and STAT3, indicating inactivation of these tumorigenic pathways. Taken together, our data suggest that eEF2K contributes to angiogenesis and tumor progression in HCC via SP1/KLF5-mediated VEGF expression, as well as the subsequent stimulation of PI3K/Akt and STAT3 signaling.
Collapse
Affiliation(s)
- Ying Zhou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaoting Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shihao Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyi Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoli Chen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Tan
- Department of Integrated TCM & Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Peng He
- Department of Nephrology, Huabeishiyou Hospital of Traditional Chinese Medicine, Hebei, China
| | - Jin Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
| | - Kaikai Shen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Medical Research Council Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| |
Collapse
|
29
|
Proud CG. Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033050. [PMID: 29959191 DOI: 10.1101/cshperspect.a033050] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein synthesis, including the translation of specific messenger RNAs (mRNAs), is regulated by extracellular stimuli such as hormones and by the levels of certain nutrients within cells. This control involves several well-understood signaling pathways and protein kinases, which regulate the phosphorylation of proteins that control the translational machinery. These pathways include the mechanistic target of rapamycin complex 1 (mTORC1), its downstream effectors, and the mitogen-activated protein (MAP) kinase (extracellular ligand-regulated kinase [ERK]) signaling pathway. This review describes the regulatory mechanisms that control translation initiation and elongation factors, in particular the effects of phosphorylation on their interactions or activities. It also discusses current knowledge concerning the impact of these control systems on the translation of specific mRNAs or subsets of mRNAs, both in physiological processes and in diseases such as cancer.
Collapse
Affiliation(s)
- Christopher G Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide SA5000, Australia; and School of Biological Sciences, University of Adelaide, Adelaide SA5000, Australia
| |
Collapse
|
30
|
Abstract
Cells respond to hypoxia by shifting cellular processes from general housekeeping functions to activating specialized hypoxia-response pathways. Oxygen plays an important role in generating ATP to maintain a productive rate of protein synthesis in normoxia. In hypoxia, the rate of the canonical protein synthesis pathway is significantly slowed and impaired due to limited ATP availability, necessitating an alternative mechanism to mediate protein synthesis and facilitate adaptation. Hypoxia adaptation is largely mediated by hypoxia-inducible factors (HIFs). While HIFs are well known for their transcriptional functions, they also play imperative roles in translation to mediate hypoxic protein synthesis. Such adaptations to hypoxia are often hyperactive in solid tumors, contributing to the expression of cancer hallmarks, including treatment resistance. The current literature on protein synthesis in hypoxia is reviewed here, inclusive of hypoxia-specific mRNA selection to translation termination. Current HIF targeting therapies are also discussed as are the opportunities involved with targeting hypoxia specific protein synthesis pathways.
Collapse
Affiliation(s)
- Nancy T Chee
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Ines Lohse
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
31
|
Florimond C, Cordonnier C, Taujale R, van der Wel H, Kannan N, West CM, Blader IJ. A Toxoplasma Prolyl Hydroxylase Mediates Oxygen Stress Responses by Regulating Translation Elongation. mBio 2019; 10:e00234-19. [PMID: 30914506 PMCID: PMC6437050 DOI: 10.1128/mbio.00234-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023] Open
Abstract
As the protozoan parasite Toxoplasma gondii disseminates through its host, it responds to environmental changes by altering its gene expression, metabolism, and other processes. Oxygen is one variable environmental factor, and properly adapting to changes in oxygen levels is critical to prevent the accumulation of reactive oxygen species and other cytotoxic factors. Thus, oxygen-sensing proteins are important, and among these, 2-oxoglutarate-dependent prolyl hydroxylases are highly conserved throughout evolution. Toxoplasma expresses two such enzymes, TgPHYa, which regulates the SCF-ubiquitin ligase complex, and TgPHYb. To characterize TgPHYb, we created a Toxoplasma strain that conditionally expresses TgPHYb and report that TgPHYb is required for optimal parasite growth under normal growth conditions. However, exposing TgPHYb-depleted parasites to extracellular stress leads to severe decreases in parasite invasion, which is likely due to decreased abundance of parasite adhesins. Adhesin protein abundance is reduced in TgPHYb-depleted parasites as a result of inactivation of the protein synthesis elongation factor eEF2 that is accompanied by decreased rates of translational elongation. In contrast to most other oxygen-sensing proteins that mediate cellular responses to low O2, TgPHYb is specifically required for parasite growth and protein synthesis at high, but not low, O2 tensions as well as resistance to reactive oxygen species. In vivo, reduced TgPHYb expression leads to lower parasite burdens in oxygen-rich tissues. Taken together, these data identify TgPHYb as a sensor of high O2 levels, in contrast to TgPHYa, which supports the parasite at low O2IMPORTANCE Because oxygen plays a key role in the growth of many organisms, cells must know how much oxygen is available. O2-sensing proteins are therefore critical cellular factors, and prolyl hydroxylases are the best-studied type of O2-sensing proteins. In general, prolyl hydroxylases trigger cellular responses to decreased oxygen availability. But, how does a cell react to high levels of oxygen? Using the protozoan parasite Toxoplasma gondii, we discovered a prolyl hydroxylase that allows the parasite to grow at elevated oxygen levels and does so by regulating protein synthesis. Loss of this enzyme also reduces parasite burden in oxygen-rich tissues, indicating that sensing both high and low levels of oxygen impacts the growth and physiology of Toxoplasma.
Collapse
Affiliation(s)
- Celia Florimond
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Charlotte Cordonnier
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
32
|
Xie J, Van Damme P, Fang D, Proud CG. Ablation of elongation factor 2 kinase enhances heat-shock protein 90 chaperone expression and protects cells under proteotoxic stress. J Biol Chem 2019; 294:7169-7176. [PMID: 30890561 DOI: 10.1074/jbc.ac119.008036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) negatively regulates the elongation stage of mRNA translation and is activated under different stress conditions to slow down protein synthesis. One effect of eEF2K is to alter the repertoire of expressed proteins, perhaps to aid survival of stressed cells. Here, we applied pulsed stable isotope labeling with amino acids in cell culture (SILAC) to study changes in the synthesis of specific proteins in human lung adenocarcinoma (A549) cells in which eEF2K had been depleted by an inducible shRNA. We discovered that levels of heat-shock protein 90 (HSP90) are increased in eEF2K-depleted human cells as well as in eEF2K-knockout (eEF2K-/-) mouse embryonic fibroblasts (MEFs). This rise in HSP90 coincided with an increase in the fraction of HSP90 mRNAs associated with translationally active polysomes, irrespective of unchanged total HSP90 levels. These results indicate that blocking eEF2K function can enhance expression of HSP90 chaperones. In eEF2K-/- mouse embryonic fibroblasts (MEFs), inhibition of HSP90 by its specific inhibitor AUY922 promoted the accumulation of ubiquitinated proteins. Notably, HSP90 inhibition promoted apoptosis of eEF2K-/- MEFs under proteostatic stress induced by the proteasome inhibitor MG132. Up-regulation of HSP90 likely protects cells from protein folding stress, arising, for example, from faster rates of polypeptide synthesis due to the lack of eEF2K. Our findings indicate that eEF2K and HSPs closely cooperate to maintain proper proteostasis and suggest that concomitant inhibition of HSP90 and eEF2K could be a strategy to decrease cancer cell survival.
Collapse
Affiliation(s)
- Jianling Xie
- From the Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide SA5000, Australia
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium, and
| | - Danielle Fang
- From the Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide SA5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| | - Christopher G Proud
- From the Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide SA5000, Australia, .,School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| |
Collapse
|
33
|
Xie J, de Souza Alves V, von der Haar T, O’Keefe L, Lenchine RV, Jensen KB, Liu R, Coldwell MJ, Wang X, Proud CG. Regulation of the Elongation Phase of Protein Synthesis Enhances Translation Accuracy and Modulates Lifespan. Curr Biol 2019; 29:737-749.e5. [DOI: 10.1016/j.cub.2019.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
|
34
|
Hydroxylation of protein constituents of the human translation system: structural aspects and functional assignments. Future Med Chem 2019; 11:357-369. [PMID: 30802140 DOI: 10.4155/fmc-2018-0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the current decade, data on the post-translational hydroxylation of specific amino acid residues of some ribosomal proteins and translation factors in both eukaryotes and eubacteria have accumulated. The reaction is catalyzed by dedicated oxygenases (so-called ribosomal oxygenases), whose action is impaired under hypoxia conditions. The modification occurs at amino acid residues directly involved in the formation of the main functional sites of ribosomes and factors. This review summarizes currently available data on the specific hydroxylation of protein constituents of eukaryotic and eubacterial translation systems with a special emphasis on the human system, as well as on the links between hypoxia impacts on the operation of ribosomal oxygenases, the functioning of the translational apparatus and human health problems.
Collapse
|
35
|
Li A, Zhang Y, Wang Z, Dong H, Fu N, Han X. The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chem Biol Interact 2019; 303:40-49. [PMID: 30817904 DOI: 10.1016/j.cbi.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. Proline hydroxylases (PHDs), a small protein family, belong to an evolutionarily conserved superfamily of dioxygenases, considered the central regulator of the molecular hypoxia response. Prolyl-4-hydroxylase 2 (PHD2), one member of PHDs family, regulates the stability of the hypoxia-inducible factor-1 alpha (HIF-1α) in response to oxygen availability. During hypoxia, the inhibition of PHD2 permits the accumulation of HIF-1α, allowing the cellular adaptation to oxygen limitation, causing activation of numerous genes, which enhances the angiogenesis, metastasis and invasiveness. Accurate regulation of oxygen homeostasis is essential, and which implies PHD2 may have a regulatory role in the pathogenesis of cancer. Although ample evidence exists for a positive correlation between HIFs and tumor formation, metastasis and poor prognosis, the function of the PHD2 in carcinogenesis is less well understood. Despite their original role as the oxygen sensors of the cell and many of the its functions are clearly conveyed through the HIF system, PHD2 is currently known to display HIF-independent and hydroxylase-independent functions in cancer cells and stroma in the control of different cellular pathways. In this review, we summarize the recent advances in the structure, regulation and functions of PHD2 in cancer microenvironment.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Zuojun Wang
- Department of Pharmacy, Linqu Country People's Hospital, 438 Shanwang Road, Linqu, 262600, China
| | - Hailing Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nange Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
36
|
Adaikkan C, Taha E, Barrera I, David O, Rosenblum K. Calcium/Calmodulin-Dependent Protein Kinase II and Eukaryotic Elongation Factor 2 Kinase Pathways Mediate the Antidepressant Action of Ketamine. Biol Psychiatry 2018; 84:65-75. [PMID: 29395043 DOI: 10.1016/j.biopsych.2017.11.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ketamine is an N-methyl-D-aspartate receptor antagonist, which on administration produces fast-acting antidepressant responses in patients with major depressive disorder. Yet, the mechanism underlying the antidepressant action of ketamine remains unclear. METHODS To unravel the mechanism of action of ketamine, we treated wild-type C57BL/6 mice with calcium/calmodulin-dependent protein kinase II (CaMKII) specific inhibitor tatCN21 peptide. We also used eukaryotic elongation factor 2 kinase (eEF2K) (also known as CaMKIII) knockout mice. We analyzed the effects biochemically and behaviorally, using the forced swim, tail suspension, and novelty suppressed feeding tests. RESULTS Consistent with the literature, one of the major pathways mediating the antidepressant action of ketamine was reduction of phosphorylation of eEF2 via eEF2K. Specifically, knocking out eEF2K in mice eliminated phosphorylation of eEF2 at threonine at position 56, resulting in increased protein synthesis, and made mice resistant both biochemically and behaviorally to the antidepressant effects of ketamine. In addition, administration of ketamine led to differential regulation of CaMKII function, manifested as autoinhibition (pT305 phosphorylation) followed by autoactivation (pT286) of CaMKIIα in the hippocampus and cortex. The inhibition phase of CaMKII, which lasted 10 to 20 minutes after administration of ketamine, occurred concurrently with eEF2K-dependent increased protein synthesis. Moreover, ketamine administration-dependent delayed induction of GluA1 (24 hours) was regulated by the activation of CaMKII. Importantly, systemic administration of the CaMKII inhibitor tatCN21 increased global protein synthesis and induced behavioral resistance to ketamine. CONCLUSIONS Our data suggest that drugs that selectively target CaMKs and regulate protein synthesis offer novel strategies for treatment of major depressive disorder.
Collapse
Affiliation(s)
| | - Elham Taha
- Sagol Department of Neurobiology, University of Haifa, Mount Carmel, Haifa, Israel
| | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa, Mount Carmel, Haifa, Israel
| | - Orit David
- Sagol Department of Neurobiology, University of Haifa, Mount Carmel, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Mount Carmel, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Mount Carmel, Haifa, Israel.
| |
Collapse
|
37
|
Argüello RJ, Reverendo M, Mendes A, Camosseto V, Torres AG, Ribas de Pouplana L, van de Pavert SA, Gatti E, Pierre P. SunRiSE - measuring translation elongation at single-cell resolution by means of flow cytometry. J Cell Sci 2018; 131:jcs.214346. [PMID: 29700204 DOI: 10.1242/jcs.214346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
The rate at which ribosomes translate mRNAs regulates protein expression by controlling co-translational protein folding and mRNA stability. Many factors regulate translation elongation, including tRNA levels, codon usage and phosphorylation of eukaryotic elongation factor 2 (eEF2). Current methods to measure translation elongation lack single-cell resolution, require expression of multiple transgenes and have never been successfully applied ex vivo Here, we show, by using a combination of puromycilation detection and flow cytometry (a method we call 'SunRiSE'), that translation elongation can be measured accurately in primary cells in pure or heterogenous populations isolated from blood or tissues. This method allows for the simultaneous monitoring of multiple parameters, such as mTOR or S6K1/2 signaling activity, the cell cycle stage and phosphorylation of translation factors in single cells, without elaborated, costly and lengthy purification procedures. We took advantage of SunRiSE to demonstrate that, in mouse embryonic fibroblasts, eEF2 phosphorylation by eEF2 kinase (eEF2K) mostly affects translation engagement, but has a surprisingly small effect on elongation, except after proteotoxic stress induction.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rafael J Argüello
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Marisa Reverendo
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Andreia Mendes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Voahirana Camosseto
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Adrian G Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), P/Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France.,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France .,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
38
|
Xie J, Shen K, Lenchine RV, Gethings LA, Trim PJ, Snel MF, Zhou Y, Kenney JW, Kamei M, Kochetkova M, Wang X, Proud CG. Eukaryotic elongation factor 2 kinase upregulates the expression of proteins implicated in cell migration and cancer cell metastasis. Int J Cancer 2017; 142:1865-1877. [PMID: 29235102 DOI: 10.1002/ijc.31210] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) negatively regulates the elongation phase of mRNA translation and hence protein synthesis. Increasing evidence indicates that eEF2K plays an important role in the survival and migration of cancer cells and in tumor progression. As demonstrated by two-dimensional wound-healing and three-dimensional transwell invasion assays, knocking down or inhibiting eEF2K in cancer cells impairs migration and invasion of cancer cells. Conversely, exogenous expression of eEF2K or knocking down eEF2 (the substrate of eEF2K) accelerates wound healing and invasion. Importantly, using LC-HDMSE analysis, we identify 150 proteins whose expression is decreased and 73 proteins which are increased upon knocking down eEF2K in human lung carcinoma cells. Of interest, 34 downregulated proteins are integrins and other proteins implicated in cell migration, suggesting that inhibiting eEF2K may help prevent cancer cell mobility and metastasis. Interestingly, eEF2K promotes the association of integrin mRNAs with polysomes, providing a mechanism by which eEF2K may enhance their cellular levels. Consistent with this, genetic knock down or pharmacological inhibition of eEF2K reduces the protein expression levels of integrins. Notably, pharmacological or genetic inhibition of eEF2K almost completely blocked tumor growth and effectively prevented the spread of tumor cells in vivo. High levels of eEF2K expression were associated with invasive carcinoma and metastatic tumors. These data provide the evidence that eEF2K is a new potential therapeutic target for preventing tumor metastasis.
Collapse
Affiliation(s)
- Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Kaikai Shen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Roman V Lenchine
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, United Kingdom
| | - Paul J Trim
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Marten F Snel
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Ying Zhou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Justin W Kenney
- Program in Neurosciences and Mental Health, the Hospital for Sick Children, Toronto, Canada
| | - Makoto Kamei
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Marina Kochetkova
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Xuemin Wang
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Christopher G Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.,Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
39
|
Eukaryotic Elongation Factor 2 Kinase (eEF2K) in Cancer. Cancers (Basel) 2017; 9:cancers9120162. [PMID: 29186827 PMCID: PMC5742810 DOI: 10.3390/cancers9120162] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a highly unusual protein kinase that negatively regulates the elongation step of protein synthesis. This step uses the vast majority of the large amount of energy and amino acids required for protein synthesis. eEF2K activity is controlled by an array of regulatory inputs, including inhibition by signalling through mammalian target of rapamycin complex 1 (mTORC1). eEF2K is activated under conditions of stress, such as energy depletion or nutrient deprivation, which can arise in poorly-vascularised tumours. In many such stress conditions, eEF2K exerts cytoprotective effects. A growing body of data indicates eEF2K aids the growth of solid tumours in vivo. Since eEF2K is not essential (in mice) under ‘normal’ conditions, eEF2K may be a useful target in the treatment of solid tumours. However, some reports suggest that eEF2K may actually impair tumorigenesis in some situations. Such a dual role of eEF2K in cancer would be analogous to the situation for other pathways involved in cell metabolism, such as autophagy and mTORC1. Further studies are needed to define the role of eEF2K in different tumour types and at differing stages in tumorigenesis, and to assess its utility as a therapeutic target in oncology.
Collapse
|
40
|
Lindqvist LM, Tandoc K, Topisirovic I, Furic L. Cross-talk between protein synthesis, energy metabolism and autophagy in cancer. Curr Opin Genet Dev 2017; 48:104-111. [PMID: 29179096 DOI: 10.1016/j.gde.2017.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Translation is a pivotal step in the regulation of gene expression as well as one of the most energy consuming processes in the cell. Dysregulation of translation caused by the aberrant function of upstream signaling pathways and/or perturbations in the expression or function of components of the translation machinery is frequent in cancer. In this review, we discuss emerging findings that highlight hitherto unappreciated aspects of signaling to the translation apparatus with the particular focus on emerging connections between protein synthesis, autophagy and energy homeostasis in cancer.
Collapse
Affiliation(s)
- Lisa M Lindqvist
- Cell Signalling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kristofferson Tandoc
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada H3T 1E2; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada H3T 1E2; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3T2, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; Department of Biochemistry, McGill University, Montreal, QC H4A 3T2, Canada
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
41
|
Pott LL, Hagemann S, Reis H, Lorenz K, Bracht T, Herold T, Skryabin BV, Megger DA, Kälsch J, Weber F, Sitek B, Baba HA. Eukaryotic elongation factor 2 is a prognostic marker and its kinase a potential therapeutic target in HCC. Oncotarget 2017; 8:11950-11962. [PMID: 28060762 PMCID: PMC5355317 DOI: 10.18632/oncotarget.14447] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/18/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma is a cancer with increasing incidence and largely refractory to current anticancer drugs. Since Sorafenib, a multikinase inhibitor has shown modest efficacy in advanced hepatocellular carcinoma additional treatments are highly needed. Protein phosphorylation via kinases is an important post-translational modification to regulate cell homeostasis including proliferation and apoptosis. Therefore kinases are valuable targets in cancer therapy. To this end we performed 2D differential gel electrophoresis and mass spectrometry analysis of phosphoprotein-enriched lysates of tumor and corresponding non-tumorous liver samples to detect differentially abundant phosphoproteins to screen for novel kinases as potential drug targets. We identified 34 differentially abundant proteins in phosphoprotein enriched lysates. Expression and distribution of the candidate protein eEF2 and its phosphorylated isoform was validated immunohistochemically on 78 hepatocellular carcinoma and non-tumorous tissue samples. Validation showed that total eEF2 and phosphorylated eEF2 at threonine 56 are prognostic markers for overall survival of HCC-patients. The activity of the regulating eEF2 kinase, compared between tumor and non-tumorous tissue lysates by in vitro kinase assays, is more than four times higher in tumor tissues. Functional analyzes regarding eEF2 kinase were performed in JHH5 cells with CRISPR/Cas9 mediated eEF2 kinase knock out. Proliferation and growth is decreased in eEF2 kinase knock out cells.
Collapse
Affiliation(s)
- Leona L Pott
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany.,Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Sascha Hagemann
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany
| | - Kristina Lorenz
- Institute of Pharmacology, University of Wuerzburg, Wuerzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften -ISAS-e.V., Dortmund, Germany.,West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Herold
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany
| | - Boris V Skryabin
- Transgenic Animal and Genetic Engineering Models (TRAM), Westphalian Wilhelms University, Muenster, Germany
| | - Dominik A Megger
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Julia Kälsch
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology and Hepatology, University of Duisburg-Essen, Essen, Germany
| | - Frank Weber
- Department of General, Visceral and Transplantation Surgery, University of Duisburg-Essen, Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Hideo A Baba
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Johanns M, Pyr Dit Ruys S, Houddane A, Vertommen D, Herinckx G, Hue L, Proud CG, Rider MH. Direct and indirect activation of eukaryotic elongation factor 2 kinase by AMP-activated protein kinase. Cell Signal 2017; 36:212-221. [PMID: 28502587 DOI: 10.1016/j.cellsig.2017.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a key regulator of protein synthesis in mammalian cells. It phosphorylates and inhibits eEF2, the translation factor necessary for peptide translocation during the elongation phase of protein synthesis. When cellular energy demand outweighs energy supply, AMP-activated protein kinase (AMPK) and eEF2K become activated, leading to eEF2 phosphorylation, which reduces the rate of protein synthesis, a process that consumes a large proportion of cellular energy under optimal conditions. AIM The goal of the present study was to elucidate the mechanisms by which AMPK activation leads to increased eEF2 phosphorylation to decrease protein synthesis. METHODS Using genetically modified mouse embryo fibroblasts (MEFs), effects of treatments with commonly used AMPK activators to increase eEF2 phosphorylation were compared with that of the novel compound 991. Bacterially expressed recombinant eEF2K was phosphorylated in vitro by recombinant activated AMPK for phosphorylation site-identification by mass spectrometry followed by site-directed mutagenesis of the identified sites to alanine residues to study effects on the kinetic properties of eEF2K. Wild-type eEF2K and a Ser491/Ser492 mutant were retrovirally re-introduced in eEF2K-deficient MEFs and effects of 991 treatment on eEF2 phosphorylation and protein synthesis rates were studied in these cells. RESULTS & CONCLUSIONS AMPK activation leads to increased eEF2 phosphorylation in MEFs mainly by direct activation of eEF2K and partly by inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment of MEFs with AMPK activators can also lead to eEF2K activation independently of AMPK probably via a rise in intracellular Ca2+. AMPK activates eEF2K by multi-site phosphorylation and the newly identified Ser491/Ser492 is important for activation, leading to mTOR-independent inhibition of protein synthesis. Our study provides new insights into the control of eEF2K by AMPK, with implications for linking metabolic stress to decreased protein synthesis to conserve energy reserves, a pathway that is of major importance in cancer cell survival.
Collapse
Affiliation(s)
- M Johanns
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - S Pyr Dit Ruys
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - A Houddane
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - D Vertommen
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - G Herinckx
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - L Hue
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - C G Proud
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - M H Rider
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium.
| |
Collapse
|
43
|
Heise C, Taha E, Murru L, Ponzoni L, Cattaneo A, Guarnieri FC, Montani C, Mossa A, Vezzoli E, Ippolito G, Zapata J, Barrera I, Ryazanov AG, Cook J, Poe M, Stephen MR, Kopanitsa M, Benfante R, Rusconi F, Braida D, Francolini M, Proud CG, Valtorta F, Passafaro M, Sala M, Bachi A, Verpelli C, Rosenblum K, Sala C. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cereb Cortex 2017; 27:2226-2248. [PMID: 27005990 PMCID: PMC5963824 DOI: 10.1093/cercor/bhw075] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.
Collapse
Affiliation(s)
| | - Elham Taha
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Luca Murru
- CNR Neuroscience Institute, Milan, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | | - Elena Vezzoli
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | - Iliana Barrera
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Alexey G. Ryazanov
- The Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - James Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Maksym Kopanitsa
- Synome, Babraham Research Campus, Cambridge CB22 3AT, UK
- Charles River Discovery Research Services, 70210 Kuopio, Finland
| | - Roberta Benfante
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Maura Francolini
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Christopher G. Proud
- University of Southampton, Centre for Biological Sciences, Southampton SO17 1BJ, UK
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, Australia
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Maria Passafaro
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Kobi Rosenblum
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Kameshima S, Okada M, Yamawaki H. [Mechanisms of control of cardiovascular, tumorous and neuronal diseases by eEF2K/eEF2 signaling and suggestion of eEF2K/eEF2 as pharmacotherapeutic target]. Nihon Yakurigaku Zasshi 2017; 149:194-199. [PMID: 28484099 DOI: 10.1254/fpj.149.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
45
|
Tavares CDJ, Giles DH, Stancu G, Chitjian CA, Ferguson SB, Wellmann RM, Kaoud TS, Ghose R, Dalby KN. Signal Integration at Elongation Factor 2 Kinase: THE ROLES OF CALCIUM, CALMODULIN, AND SER-500 PHOSPHORYLATION. J Biol Chem 2016; 292:2032-2045. [PMID: 27956550 DOI: 10.1074/jbc.m116.753277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM)-dependent member of the unique α-kinase family, impedes protein synthesis by phosphorylating eEF-2. We recently identified Thr-348 and Ser-500 as two key autophosphorylation sites within eEF-2K that regulate its activity. eEF-2K is regulated by Ca2+ ions and multiple upstream signaling pathways, but how it integrates these signals into a coherent output, i.e. phosphorylation of eEF-2, is unclear. This study focuses on understanding how the post-translational phosphorylation of Ser-500 integrates with Ca2+ and CaM to regulate eEF-2K. CaM is shown to be absolutely necessary for efficient activity of eEF-2K, and Ca2+ is shown to enhance the affinity of CaM toward eEF-2K. Ser-500 is found to undergo autophosphorylation in cells treated with ionomycin and is likely also targeted by PKA. In vitro, autophosphorylation of Ser-500 is found to require Ca2+ and CaM and is inhibited by mutations that compromise binding of phosphorylated Thr-348 to an allosteric binding pocket on the kinase domain. A phosphomimetic Ser-500 to aspartic acid mutation (eEF-2K S500D) enhances the rate of activation (Thr-348 autophosphorylation) by 6-fold and lowers the EC50 for Ca2+/CaM binding to activated eEF-2K (Thr-348 phosphorylated) by 20-fold. This is predicted to result in an elevation of the cellular fraction of active eEF-2K. In support of this mechanism, eEF-2K knock-out MCF10A cells reconstituted with eEF-2K S500D display relatively high levels of phospho-eEF-2 under basal conditions. This study reports how phosphorylation of a regulatory site (Ser-500) integrates with Ca2+ and CaM to influence eEF-2K activity.
Collapse
Affiliation(s)
- Clint D J Tavares
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712.
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Gabriel Stancu
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Catrina A Chitjian
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Scarlett B Ferguson
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Rebecca M Wellmann
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Ranajeet Ghose
- the Department of Chemistry, City College of New York, New York, New York 10031; the Graduate Center, City University of New York, New York, New York 10016
| | - Kevin N Dalby
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712.
| |
Collapse
|
46
|
Prolyl hydroxylase domain enzymes and their role in cell signaling and cancer metabolism. Int J Biochem Cell Biol 2016; 80:71-80. [PMID: 27702652 DOI: 10.1016/j.biocel.2016.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
The prolyl hydroxylase domain (PHD) enzymes regulate the stability of the hypoxia-inducible factor (HIF) in response to oxygen availability. During oxygen limitation, the inhibition of PHD permits the stabilization of HIF, allowing the cellular adaptation to hypoxia. This adaptation is especially important for solid tumors, which are often exposed to a hypoxic environment. However, and despite their original role as the oxygen sensors of the cell, PHD are currently known to display HIF-independent and hydroxylase-independent functions in the control of different cellular pathways, including mTOR pathway, NF-kB pathway, apoptosis and cellular metabolism. In this review, we summarize the recent advances in the regulation and functions of PHD in cancer signaling and cell metabolism.
Collapse
|
47
|
Zurlo G, Guo J, Takada M, Wei W, Zhang Q. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochim Biophys Acta Rev Cancer 2016; 1866:208-220. [PMID: 27663420 DOI: 10.1016/j.bbcan.2016.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 12/26/2022]
Abstract
Protein hydroxylation is a post-translational modification catalyzed by 2-oxoglutarate-dependent dioxygenases. The hydroxylation modification can take place on various amino acids, including but not limited to proline, lysine, asparagine, aspartate and histidine. A classical example of this modification is hypoxia inducible factor alpha (HIF-α) prolyl hydroxylation, which affects HIF-α protein stability via the Von-Hippel Lindau (VHL) tumor suppressor pathway, a Cullin 2-based E3 ligase adaptor protein frequently mutated in kidney cancer. In addition to protein stability regulation, protein hydroxylation may influence other post-translational modifications or the kinase activity of the modified protein (such as Akt and DYRK1A/B). In other cases, protein hydroxylation may alter protein-protein interaction and its downstream signaling events in vivo (such as OTUB1, MAPK6 and eEF2K). In this review, we highlight the recently identified protein hydroxylation targets and their pathophysiological roles, especially in cancer settings. Better understanding of protein hydroxylation will help identify novel therapeutic targets and their regulation mechanisms to foster development of more effective treatment strategies for various human cancers.
Collapse
Affiliation(s)
- Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Mamoru Takada
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Lee K, Alphonse S, Piserchio A, Tavares CDJ, Giles DH, Wellmann RM, Dalby KN, Ghose R. Structural Basis for the Recognition of Eukaryotic Elongation Factor 2 Kinase by Calmodulin. Structure 2016; 24:1441-51. [PMID: 27499441 DOI: 10.1016/j.str.2016.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Binding of Ca(2+)-loaded calmodulin (CaM) activates eukaryotic elongation factor 2 kinase (eEF-2K) that phosphorylates eEF-2, its only known cellular target, leading to a decrease in global protein synthesis. Here, using an eEF-2K-derived peptide (eEF-2KCBD) that encodes the region necessary for its CaM-mediated activation, we provide a structural basis for their interaction. The striking feature of this association is the absence of Ca(2+) from the CaM C-lobe sites, even under high Ca(2+) conditions. eEF-2KCBD engages CaM largely through the C lobe of the latter in an anti-parallel 1-5-8 hydrophobic mode reinforced by a pair of unique electrostatic contacts. Sparse interactions of eEF-2KCBD with the CaM N lobe results in persisting inter-lobe mobility. A conserved eEF-2K residue (W85) anchors it to CaM by inserting into a deep hydrophobic cavity within the CaM C lobe. Mutation of this residue (W85S) substantially weakens interactions between full-length eEF-2K and CaM in vitro and reduces eEF-2 phosphorylation in cells.
Collapse
Affiliation(s)
- Kwangwoon Lee
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Clint D J Tavares
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Rebecca M Wellmann
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Kevin N Dalby
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA; Graduate Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA; Graduate Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA.
| |
Collapse
|
49
|
Cheng Y, Ren X, Yuan Y, Shan Y, Li L, Chen X, Zhang L, Takahashi Y, Yang JW, Han B, Liao J, Li Y, Harvey H, Ryazanov A, Robertson GP, Wan G, Liu D, Chen AF, Tao Y, Yang JM. eEF-2 kinase is a critical regulator of Warburg effect through controlling PP2A-A synthesis. Oncogene 2016; 35:6293-6308. [PMID: 27181208 DOI: 10.1038/onc.2016.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 12/15/2022]
Abstract
Cancer cells predominantly metabolize glucose by glycolysis to produce energy in order to meet their metabolic requirement, a phenomenon known as Warburg effect. Although Warburg effect is considered a peculiarity critical for survival and proliferation of cancer cells, the regulatory mechanisms behind this phenomenon remain incompletely understood. We report here that eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, has a critical role in promoting glycolysis in cancer cells. We showed that deficiency in eEF-2K significantly reduced the uptake of glucose and decreased the productions of lactate and adenosine triphosphate in tumor cells and in the Ras-transformed mouse embryonic fibroblasts. We further demonstrated that the promotive effect of eEF-2K on glycolysis resulted from the kinase-mediated restriction of synthesis of the protein phosphatase 2A-A (PP2A-A), a key factor that facilitates the ubiquitin-proteasomal degradation of c-Myc protein, as knockdown of eEF-2K expression led to a significant increase in PP2A-A protein synthesis and remarkable downregulation of c-Myc and pyruvate kinase M2 isoform, the key glycolytic enzyme transcriptionally activated by c-Myc. In addition, depletion of eEF-2K reduced the ability of the transformed cells to proliferate and enhanced the sensitivity of tumor cells to chemotherapy both in vitro and in vivo. These results, which uncover a role of the eEF-2K-mediated control of PP2A-A in tumor cell glycolysis, provide new insights into the regulation of the Warburg effect.
Collapse
Affiliation(s)
- Y Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - X Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - Y Yuan
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Y Shan
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - L Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - X Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - L Zhang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - Y Takahashi
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - J W Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - B Han
- Department of Pathology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - J Liao
- Division of Biostatistics and Bioinformatics, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - Y Li
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - H Harvey
- Department of Medicine, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - A Ryazanov
- Department of Pharmacology, Robert wood Jonson Medical School, Rutgers University, Piscataway, NJ, USA
| | - G P Robertson
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - G Wan
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - D Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - A F Chen
- Center for Vascular and Translational Medicine, College of Pharmacy, and The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Y Tao
- Cancer Research Institute, School of Basic Medicine, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Central South University, Changsha, China
| | - J-M Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
50
|
Abstract
Oxygen represents one of the major molecules required for the development and maintenance of life. An adequate response to hypoxia is therefore required for the functioning of the majority of living organisms and relies on the activation of the hypoxia-inducible factor (HIF) pathway. HIF prolyl hydroxylase domain-2 (PHD2) has long been recognized as the major regulator of this response, controlling a myriad of outcomes that range from cell death to proliferation. However, this enzyme has been associated with more pathways, making the role of this protein remarkably complex under distinct pathologies. While a protective role seems to exist in physiological conditions such as erythropoiesis; the picture is more complex during pathologies such as cancer. Since the regulation of this enzyme and its closest family members is currently considered as a possible therapy for various diseases, understanding the different particular roles of this protein is essential.
Collapse
Affiliation(s)
- Ana M Meneses
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ben Wielockx
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|