1
|
Baker PJ, Bohrer AC, Castro E, Amaral EP, Snow-Smith M, Torres-Juárez F, Gould ST, Queiroz ATL, Fukutani ER, Jordan CM, Khillan JS, Cho K, Barber DL, Andrade BB, Johnson RF, Hilligan KL, Mayer-Barber KD. The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586885. [PMID: 38585846 PMCID: PMC10996686 DOI: 10.1101/2024.03.27.586885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SARS-CoV-2 infection leads to vastly divergent clinical outcomes ranging from asymptomatic infection to fatal disease. Co-morbidities, sex, age, host genetics and vaccine status are known to affect disease severity. Yet, how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure impacts the control of viral replication remains poorly understood. We demonstrate here that immune events in the mouse lung closely preceding SARS-CoV-2 infection significantly impact viral control and we identify key innate immune pathways required to limit viral replication. A diverse set of pulmonary inflammatory stimuli, including resolved antecedent respiratory infections with S. aureus or influenza, ongoing pulmonary M. tuberculosis infection, ovalbumin/alum-induced asthma or airway administration of defined TLR ligands and recombinant cytokines, all establish an antiviral state in the lung that restricts SARS-CoV-2 replication upon infection. In addition to antiviral type I interferons, the broadly inducible inflammatory cytokines TNFα and IL-1 precondition the lung for enhanced viral control. Collectively, our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation that precedes or accompanies SARS-CoV-2 exposure may be a significant factor contributing to the population-wide variability in COVID-19 disease outcomes.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Current Address: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Eduardo P. Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maryonne Snow-Smith
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Flor Torres-Juárez
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sydnee T. Gould
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
- Current Address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artur T. L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Eduardo R. Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Cassandra M. Jordan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Reed F. Johnson
- SCV2 Virology Core, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Kerry L. Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
2
|
Abstract
CONTEXT Thyroid eye disease (TED), a vision-threatening and disfiguring autoimmune process, has thwarted our efforts to understand its pathogenesis and develop effective and safe treatments. Recent scientific advances have facilitated improved treatment options. OBJECTIVE Review historically remote and recent advances in understanding TED. DESIGN/SETTING/PARTICIPANTS PubMed was scanned using search terms including thyroid-associated ophthalmopathy, thyroid eye disease, Graves' orbitopathy, autoimmune thyroid disease, and orbital inflammation. MAIN OUTCOME MEASURES Strength of scientific evidence, size, scope, and controls of clinical trials/observations. RESULTS Glucocorticoid steroids are widely prescribed systemic medical therapy. They can lessen inflammation-related manifestations of TED but fail to reliably reduce proptosis and diplopia, 2 major causes of morbidity. Other current therapies include mycophenolate, rituximab (anti-CD20 B cell-depleting monoclonal antibody), tocilizumab (interleukin-6 receptor antagonist), and teprotumumab (IGF-I receptor inhibitor). Several new therapeutic approaches have been proposed including targeting prostaglandin receptors, vascular endothelial growth factor, mTOR, and cholesterol pathways. Of potentially greater long-term importance are attempts to restore immune tolerance. CONCLUSION Despite their current wide use, steroids may no longer enjoy first-tier status for TED as more effective and better tolerated medical options become available. Multiple current and emerging therapies, the rationales for which are rooted in theoretical and experimental science, promise better options. These include teprotumumab, rituximab, and tocilizumab. Restoration of immune tolerance could ultimately become the most effective and safe medical management for TED.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Wang L, Astone M, Alam SK, Zhu Z, Pei W, Frank DA, Burgess SM, Hoeppner LH. Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability. Dis Model Mech 2021; 14:272222. [PMID: 34542605 PMCID: PMC8592016 DOI: 10.1242/dmm.049029] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, including cancer, stroke, cardiovascular disease, retinal conditions and COVID-19-associated pulmonary edema, sepsis and acute lung injury. Understanding temporal molecular regulation of VEGF-induced vascular permeability will facilitate developing therapeutics to inhibit vascular permeability, while preserving tissue-restorative angiogenesis. Here, we demonstrate that VEGF signals through signal transducer and activator of transcription 3 (STAT3) to promote vascular permeability. We show that genetic STAT3 ablation reduces vascular permeability in STAT3-deficient endothelium of mice and VEGF-inducible zebrafish crossed with CRISPR/Cas9-generated Stat3 knockout zebrafish. Intercellular adhesion molecule 1 (ICAM-1) expression is transcriptionally regulated by STAT3, and VEGF-dependent STAT3 activation is regulated by JAK2. Pyrimethamine, an FDA-approved antimicrobial agent that inhibits STAT3-dependent transcription, substantially reduces VEGF-induced vascular permeability in zebrafish, mouse and human endothelium. Collectively, our findings suggest that VEGF/VEGFR-2/JAK2/STAT3 signaling regulates vascular barrier integrity, and inhibition of STAT3-dependent activity reduces VEGF-induced vascular permeability. This article has an associated First Person interview with the first author of the paper. Summary: Genetic STAT3 ablation in mice and VEGF-inducible zebrafish reveals that VEGF signals through STAT3 to promote vascular permeability. Pyrimethamine reduces VEGF-induced permeability in animal models.
Collapse
Affiliation(s)
- Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Matteo Astone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zhu Zhu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Xie Y, Li X, Ge J. STAT3-CyPA signaling pathway in endothelial cell apoptosis. Cell Signal 2019; 65:109413. [PMID: 31494257 DOI: 10.1016/j.cellsig.2019.109413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023]
Abstract
Cyclophilin A (CyPA), which is encoded by PPIA, is a ubiquitously expressed intracellular protein and is secreted in response to inflammatory stimuli. CyPA stimulates proinflammatory and apoptosis signaling pathways in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), promotes VSMC migration and proliferation, EC adhesion molecules expression, and inflammatory cell chemotaxis and apoptosis. Therefore, we sought to study the transcriptional regulation of CyPA, we hypothesized that transcription factor STAT3 regulated CyPA expression and activated vascular ECs in vitro in a CyPA-dependent manner. Using RT-qPCR, immunostaining, luciferase and ChIP assays, we found that STAT3 induced CyPA expression depended on its transcriptional activation by binding to a specific region containing the STAT3-responsive element (SRE) in the CyPA promoter. Moreover, with cell viability and apoptosis assays, we identified STAT3 stimulated CyPA-dependent apoptosis of human umbilical vein ECs in vitro.
Collapse
Affiliation(s)
- Yifan Xie
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China; Department of Molecular and Cellular Biology, The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | - Junbo Ge
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
5
|
Tanner MR, Pennington MW, Chauhan SS, Laragione T, Gulko PS, Beeton C. KCa1.1 and Kv1.3 channels regulate the interactions between fibroblast-like synoviocytes and T lymphocytes during rheumatoid arthritis. Arthritis Res Ther 2019; 21:6. [PMID: 30612588 PMCID: PMC6322314 DOI: 10.1186/s13075-018-1783-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) and CCR7- effector memory T (TEM) cells are two of the major cell types implicated in the progression of rheumatoid arthritis (RA). In particular, FLS become highly invasive, whereas TEM cells proliferate and secrete proinflammatory cytokines, during RA. FLS and T cells may also interact and influence each other's phenotypes. Inhibition of the pathogenic phenotypes of both FLS and TEM cells can be accomplished by selectively blocking the predominant potassium channels that they upregulate during RA: KCa1.1 (BK, Slo1, MaxiK, KCNMA1) upregulated by FLS and Kv1.3 (KCNA3) upregulated by activated TEM cells. In this study, we investigated the roles of KCa1.1 and Kv1.3 in regulating the interactions between FLS and TEM cells and determined if combination therapies of KCa1.1- and Kv1.3-selective blockers are more efficacious than monotherapies in ameliorating disease in rat models of RA. METHODS We used in vitro functional assays to assess the effects of selective KCa1.1 and Kv1.3 channel inhibitors on the interactions of FLS isolated from rats with collagen-induced arthritis (CIA) with syngeneic TEM cells. We also used flow cytometric analyses to determine the effects of KCa1.1 blockers on the expression of proteins used for antigen presentation on CIA-FLS. Finally, we used the CIA and pristane-induced arthritis models to determine the efficacy of combinatorial therapies of KCa1.1 and Kv1.3 blockers in reducing disease severity compared with monotherapies. RESULTS We show that the interactions of FLS from rats with CIA and of rat TEM cells are regulated by KCa1.1 and Kv1.3. Inhibiting KCa1.1 on FLS reduces the ability of FLS to stimulate TEM cell proliferation and migration, and inhibiting Kv1.3 on TEM cells reduces TEM cells' ability to enhance FLS expression of KCa1.1 and major histocompatibility complex class II protein, as well as stimulates their invasion. Furthermore, we show that combination therapies of selective KCa1.1 and Kv1.3 blockers are more efficacious than monotherapies at reducing signs of disease in two rat models of RA. CONCLUSIONS Our results demonstrate the importance of KCa1.1 and Kv1.3 in regulating FLS and TEM cells during RA, as well as the value of combined therapies targeting both of these cell types to treat RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
| | - Michael W. Pennington
- Peptides International, Inc., Louisville, KY USA
- Present address: Ambiopharm, Inc., North Augusta, SC USA
| | | | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Pércio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Biology of Inflammation Center, Center for Drug Discovery, Cardiovascular Research Institute, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
6
|
Lubkowski J, Sonmez C, Smirnov SV, Anishkin A, Kotenko SV, Wlodawer A. Crystal Structure of the Labile Complex of IL-24 with the Extracellular Domains of IL-22R1 and IL-20R2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2082-2093. [PMID: 30111632 PMCID: PMC6143405 DOI: 10.4049/jimmunol.1800726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
Crystal structure of the ternary complex of human IL-24 with two receptors, IL-22R1 and IL-20R2, has been determined at 2.15 Å resolution. A crystallizable complex was created by a novel approach involving fusing the ligand with a flexible linker to the presumed low-affinity receptor, and coexpression of this construct in Drosophila S2 cells together with the presumed high-affinity receptor. This approach, which may be generally applicable to other multiprotein complexes with low-affinity components, was necessitated by the instability of IL-24 expressed by itself in either bacteria or insect cells. Although IL-24 expressed in Escherichia coli was unstable and precipitated almost immediately upon its refolding and purification, a small fraction of IL-24 remaining in the folded state was shown to be active in a cell-based assay. In the crystal structure presented here, we found that two cysteine residues in IL-24 do not form a predicted disulfide bond. Lack of structural restraint by disulfides, present in other related cytokines, is most likely reason for the low stability of IL-24. Although the contact area between IL-24 and IL-22R1 is larger than between the cytokine and IL-20R2, calculations show the latter interaction to be slightly more stable, suggesting that the shared receptor (IL-20R2) might be the higher-affinity receptor.
Collapse
Affiliation(s)
- Jacek Lubkowski
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702;
| | - Cem Sonmez
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Sergey V Smirnov
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Immunity and Inflammation, Rutgers Cancer Institute of New Jersey at University Hospital, New Jersey Medical School, Rutgers University, Newark, NJ 07103; and
| | - Andriy Anishkin
- Biology Department, University of Maryland, College Park, MD 20742
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Immunity and Inflammation, Rutgers Cancer Institute of New Jersey at University Hospital, New Jersey Medical School, Rutgers University, Newark, NJ 07103; and
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
7
|
Cardoso PRG, Matias KA, Dantas AT, Marques CDL, Pereira MC, Duarte ALBP, Rego MJBDM, Pitta IDR, Pitta MGDR. Losartan, but not Enalapril and Valsartan, Inhibits the Expression of IFN-γ, IL-6, IL-17F and IL-22 in PBMCs from Rheumatoid Arthritis Patients. Open Rheumatol J 2018; 12:160-170. [PMID: 30288187 PMCID: PMC6151964 DOI: 10.2174/1874312901812010160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Rheumatoid Arthritis (RA) is a chronic and inflammatory disease that affects about 1% of the world's population. Almost 70% of RA patients have a cardiovascular disease such as Systemic Arterial Hypertension (SAH). Inflammatory cytokines are clearly involved in the pathogenesis of RA and correlated with SAH. Objective: It is necessary to understand whether the antihypertensive drugs have a dual effect as immunomodulators and which one is the best choice for RA SAH patients. Methods: Peripheral Blood Mononuclear Cells (PBMCs) from 16 RA patients were purified and stimulated or not stimulated with anti-CD3 and anti-CD28 mAB and were treated with Enalapril, Losartan and Valsartan at 100μM. Patients were evaluated for clinical and laboratory variables including measures of disease activity by Clinical Disease Activity Index (CDAI) and Disease Activity Score (DAS28). Cytokines were quantified by ELISA sandwich. Results: Losartan was able to reduce levels of IFN-γ (p = 0.0181), IL-6 (p = 0.0056), IL-17F (0.0046) and IL-22 (p = 0.0234) in RA patients. In addition, patients in remission and mild score (DAS28<3.2 and CDAI<10) had a better response to treatment. On the other hand, patients in moderate and severe activity had poor response to Losartan in cytokine inhibition. Conclusion: PBMCs from RA patients are responsive in inhibiting proinflammatory cytokines using Losartan better than Enalapril and Valsartan and it could be a better antihypertensive choice for patients with RA and systemic arterial hypertension treatment.
Collapse
Affiliation(s)
- Pablo R G Cardoso
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Katherine A Matias
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Andrea T Dantas
- Rheumatology Service, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
| | - Claudia D L Marques
- Rheumatology Service, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
| | - Michelly C Pereira
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Angela L B P Duarte
- Rheumatology Service, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
| | - Moacyr Jesus Barreto de Melo Rego
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Ivan da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
8
|
Cauvi DM, Cauvi G, Toomey CB, Jacquinet E, Pollard KM. From the Cover: Interplay Between IFN-γ and IL-6 Impacts the Inflammatory Response and Expression of Interferon-Regulated Genes in Environmental-Induced Autoimmunity. Toxicol Sci 2018; 158:227-239. [PMID: 28453771 DOI: 10.1093/toxsci/kfx083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IFN-γ has been found to be robustly important to disease pathogenesis in both idiopathic and induced models of murine lupus. In transgenic mice, over production of IFN-γ in the skin results in an inflammatory response and autoimmunity. This suggests that localized exposure to environmental factors that induce autoimmunity may be associated with expression of an IFN-γ-dependent inflammatory response. Using murine mercury-induced autoimmunity (mHgIA), the severity of inflammation and proinflammatory cytokine expression, including the cellular source of IFN-γ, were assessed at the site of subcutaneous exposure and in secondary lymphoid organs. Exposure induced a localized chronic inflammation comprising both innate and adaptive immune cells but only CD8+ T and NK cells were reduced in the absence of IFN-γ. IFN-γ+ cells began to appear as early as day 1 and comprised both resident (γδ T) and infiltrating cells (CD8+ T, NKT, CD11c+). The requirements for inflammation were examined in mice deficient in genes required (Ifng, Il6) or not required (Casp1) for mHgIA. None of these genes were essential for induction of inflammation, however IFN-γ and IL-6 were required for exacerbation of other proinflammatory cytokines. Additionally, lack of IFN-γ or IL-6 impacted expression of genes regulated by either IFN-γ or type I IFN. Significantly, both IFN-γ and IL-6 were required for increased expression of IRF-1 which regulates IFN stimulated genes and is required for mHgIA. Thus IRF-1 may be at the nexus of the interplay between IFN-γ and IL-6 in exacerbating a xenobiotic-induced inflammatory response, regulation of interferon responsive genes and autoimmunity.
Collapse
Affiliation(s)
- David M Cauvi
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, California 92037
| | - Gabrielle Cauvi
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92037
| | - Christopher B Toomey
- Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California 92037
| | | | - Kenneth Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
9
|
Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 2018; 7:48788-48812. [PMID: 27166190 PMCID: PMC5217051 DOI: 10.18632/oncotarget.9195] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors. This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs.
Collapse
|
10
|
PIPINO: A Software Package to Facilitate the Identification of Protein-Protein Interactions from Affinity Purification Mass Spectrometry Data. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2891918. [PMID: 26966684 PMCID: PMC4761381 DOI: 10.1155/2016/2891918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/28/2015] [Accepted: 11/29/2015] [Indexed: 11/17/2022]
Abstract
The functionality of most proteins is regulated by protein-protein interactions. Hence, the comprehensive characterization of the interactome is the next milestone on the path to understand the biochemistry of the cell. A powerful method to detect protein-protein interactions is a combination of coimmunoprecipitation or affinity purification with quantitative mass spectrometry. Nevertheless, both methods tend to precipitate a high number of background proteins due to nonspecific interactions. To address this challenge the software Protein-Protein-Interaction-Optimizer (PIPINO) was developed to perform an automated data analysis, to facilitate the selection of bona fide binding partners, and to compare the dynamic of interaction networks. In this study we investigated the STAT1 interaction network and its activation dependent dynamics. Stable isotope labeling by amino acids in cell culture (SILAC) was applied to analyze the STAT1 interactome after streptavidin pull-down of biotagged STAT1 from human embryonic kidney 293T cells with and without activation. Starting from more than 2,000 captured proteins 30 potential STAT1 interaction partners were extracted. Interestingly, more than 50% of these were already reported or predicted to bind STAT1. Furthermore, 16 proteins were found to affect the binding behavior depending on STAT1 phosphorylation such as STAT3 or the importin subunits alpha 1 and alpha 6.
Collapse
|
11
|
Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood 2016; 127:1687-700. [PMID: 26796361 DOI: 10.1182/blood-2015-08-665604] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/16/2016] [Indexed: 02/08/2023] Open
Abstract
Targeting oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) in acute myeloid leukemia (AML) can reduce blast survival and tumor immune evasion. Decoy oligodeoxynucleotides (dODNs), which comprise STAT3-specific DNA sequences are competitive inhibition of STAT3 transcriptional activity. To deliver STAT3dODN specifically to myeloid cells, we linked STAT3dODN to the Toll-like receptor 9 (TLR9) ligand, cytosine guanine dinucleotide (CpG). The CpG-STAT3dODN conjugates are quickly internalized by human and mouse TLR9(+)immune cells (dendritic cells, B cells) and the majority of patients' derived AML blasts, including leukemia stem/progenitor cells. Following uptake, CpG-STAT3dODNs are released from endosomes, and bind and sequester cytoplasmic STAT3, thereby inhibiting downstream gene expression in target cells. STAT3 inhibition in patients' AML cells limits their immunosuppressive potential by reduced arginase expression, thereby partly restoring T-cell proliferation. Partly chemically modified CpG-STAT3dODNs have >60 hours serum half-life which allows for IV administration to leukemia-bearing mice (50% effective dose ∼ 2.5 mg/kg). Repeated administration of CpG-STAT3dODN resulted in regression of human MV4-11 AML in mice. The antitumor efficacy of this strategy is further enhanced in immunocompetent mice by combining direct leukemia-specific cytotoxicity with immunogenic effects of STAT3 blocking/TLR9 triggering. CpG-STAT3dODN effectively reducedCbfb/MYH11/MplAML burden in various organs and eliminated leukemia stem/progenitor cells, mainly through CD8/CD4 T-cell-mediated immune responses. In contrast, small-molecule Janus kinase 2/STAT3 inhibitor failed to reproduce therapeutic effects of cell-selective CpG-STAT3dODN strategy. These results demonstrate therapeutic potential of CpG-STAT3dODN inhibitors with broad implications for treatment of AML and potentially other hematologic malignancies.
Collapse
|
12
|
Rybka J, Korte SM, Czajkowska-Malinowska M, Wiese M, Kędziora-Kornatowska K, Kędziora J. The links between chronic obstructive pulmonary disease and comorbid depressive symptoms: role of IL-2 and IFN-γ. Clin Exp Med 2015; 16:493-502. [PMID: 26403459 PMCID: PMC5063895 DOI: 10.1007/s10238-015-0391-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
Abstract
Depression is highly prevalent in COPD patients, and both diseases are believed to be associated with inflammation. The aim of this study was to elucidate the role of the immune system alterations in pathogenesis of depression in COPD patients. Blood was collected from patients diagnosed with chronic obstructive pulmonary disease and comorbid depressive symptoms [COPD + DS, (N = 13)], from individuals with either COPD (N = 16) or recurrent depressive disorder (rDD) alone (N = 15), and from healthy controls (N = 19). Surface phenotype expression of T regulatory and T effector cells was analyzed with a flow cytometry, and IL-2, IL-6, IL-8, IFN-γ, IL-17, and neopterin were detected with ELISA. We demonstrated that COPD, depression, and COPD with comorbid depression are associated with increased IL-6 levels when compared with healthy controls 42.2 ± 1.87, 40.9 ± 2.12, 41.7 ± 1.31, and 33.2 ± 1.23 pg/ml, respectively (p < 0.05). A significant increase in neopterin levels was observed both in rDD and COPD patients when compared with controls (15.69 ± 0.095, 13.98 ± 0.887 vs. 9.22 ± 0.466 nmol/l, p < 0.001 and p < 0.05, respectively). Concentrations of IFN-γ were significantly increased in COPD + DS patients when compared with controls (24.3 ± 1.49 and 17.8 ± 0.70 pg/ml, respectively, p < 0.05). IL-2 levels were highest in COPD + DS (3.20 ± 0.389 pg/ml) and differed significantly when this group was compared with controls (2.20 ± 0.184 pg/ml), p ≤ 0.05). In this study, we demonstrated for the first time that depressive symptoms in COPD patients may be related to inflammatory state as confirmed by increased levels of IL-6 both in COPD and depression and also in COPD with comorbid depressive symptoms, despite the fact that the patients were treated with anti-inflammatory drugs and/or antidepressants. We also identified IFN-γ and IL-2 as putative inflammatory agents associated with depressive symptoms in COPD patients. Prospective studies will need to confirm whether measuring IL-2 and IFN-γ can identify COPD patients at risk of depression. These findings suggest that T helper cell 1-derived cellular immune activation may play significant role in developing depressive symptoms in COPD patients.
Collapse
Affiliation(s)
- Joanna Rybka
- Department and Clinic of Geriatrics, Collegium Medicum UMK in Bydgoszcz, M. Curie Skłodowska St. 9, 85-094, Bydgoszcz, Poland.
| | - S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | | | - Małgorzata Wiese
- Department of Immunology (Faculty of Pharmacy), Collegium Medicum UMK in Bydgoszcz, Bydgoszcz, Poland
| | - Kornelia Kędziora-Kornatowska
- Department and Clinic of Geriatrics, Collegium Medicum UMK in Bydgoszcz, M. Curie Skłodowska St. 9, 85-094, Bydgoszcz, Poland
| | | |
Collapse
|
13
|
Ovsyannikova IG, Salk HM, Larrabee BR, Pankratz VS, Poland GA. Single nucleotide polymorphisms/haplotypes associated with multiple rubella-specific immune response outcomes post-MMR immunization in healthy children. Immunogenetics 2015; 67:547-61. [PMID: 26329766 DOI: 10.1007/s00251-015-0864-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The observed heterogeneity in rubella-specific immune response phenotypes post-MMR vaccination is thought to be explained, in part, by inter-individual genetic variation. In this study, single nucleotide polymorphisms (SNPs) and multiple haplotypes in several candidate genes were analyzed for associations with more than one rubella-specific immune response outcome, including secreted IFN-γ, secreted IL-6, and neutralizing antibody titers. Overall, we identified 23 SNPs in 10 different genes that were significantly associated with at least two rubella-specific immune responses. Of these SNPs, we detected eight in the PVRL3 gene, five in the PVRL1 gene, one in the TRIM22 gene, two in the IL10RB gene, two in the TLR4 gene, and five in other genes (PVR, ADAR, ZFP57, MX1, and BTN2A1/BTN3A3). The PVRL3 gene haplotype GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA was significantly associated with both higher IFN-γ secretion (t-statistic 4.43, p < 0.0001) and higher neutralizing antibody titers (t-statistic 3.14, p = 0.002). Our results suggest that there is evidence of multigenic associations among identified gene SNPs and that polymorphisms in these candidate genes contribute to the overall observed differences between individuals in response to live rubella virus vaccine. These results will aid our understanding of mechanisms behind rubella-specific immune response to MMR vaccine and influence the development of vaccines in the future.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Hannah M Salk
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA.
| |
Collapse
|
14
|
Lin YH, Wu MH, Liao CJ, Huang YH, Chi HC, Wu SM, Chen CY, Tseng YH, Tsai CY, Chung IH, Tsai MM, Chen CY, Lin TP, Yeh YH, Chen WJ, Lin KH. Repression of microRNA-130b by thyroid hormone enhances cell motility. J Hepatol 2015; 62:1328-40. [PMID: 25617495 DOI: 10.1016/j.jhep.2014.12.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 12/02/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Thyroid hormone (T3) and its receptor (TR) are involved in cell growth and cancer progression. Although deregulation of microRNA (miRNA) expression has been detected in many tumor types, the mechanisms underlying functional impairment and specific involvement of miRNAs in tumor metastasis remain unclear. In the current study, we aimed to elucidate the involvement of deregulated miRNA-130b (miR-130b) and its target genes mediated by T3/TR in cancer progression. METHODS Quantitative reverse transcription-PCR, luciferase and chromatin immunoprecipitation assays were performed to identify the miR-130b transcript and the mechanisms implicated in its regulation. The effects of miR-130b on hepatocellular carcinoma (HCC) invasion were further examined in vitro and in vivo. Clinical correlations among miR-130b, TRs and interferon regulatory factor 1 (IRF1) were examined in HCC samples using Spearman correlation analysis. RESULTS Our experiments disclosed negative regulation of miR-130b expression by T3/TR. Overexpression of miR-130b led to marked inhibition of cell migration and invasion, which was mediated via suppression of IRF1. Cell migration ability was promoted by T3, but partially suppressed upon miR-130b overexpression. Furthermore, miR-130b suppressed expression of epithelial-mesenchymal transition (EMT)-related genes, matrix metalloproteinase-9, phosphorylated mammalian target of rapamycin (mTOR), p-ERK1/2, p-AKT and p-signal transducer and activator of transcription (STAT)-3. Notably, miR-130b was downregulated in hepatoma samples and its expression patterns were inversely correlated with those of TRα1 and IRF1. CONCLUSIONS Our data collectively highlight a novel pathway interlinking T3/TR, miR-130b, IRF1, the EMT-related genes, p-mTOR, p-STAT3 and the p-AKT cascade, which regulates the motility and invasion of hepatoma cells.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Meng-Han Wu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Sheng-Ming Wu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Cheng-Yi Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei 251, Taiwan
| | - Yi-Hsin Tseng
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chung-Ying Tsai
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - I-Hsiao Chung
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ching-Ying Chen
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Tina P Lin
- Pre-med Program, Pacific Union College, Angwin 94508, USA
| | - Yung-Hsin Yeh
- Division of Cardiology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Wei-Jan Chen
- Division of Cardiology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
15
|
Blumert C, Kalkhof S, Brocke-Heidrich K, Kohajda T, von Bergen M, Horn F. Analysis of the STAT3 interactome using in-situ biotinylation and SILAC. J Proteomics 2013; 94:370-86. [PMID: 24013128 DOI: 10.1016/j.jprot.2013.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/01/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED Signal transducer and activator of transcription 3 (STAT3) is activated by a variety of cytokines and growth factors. To generate a comprehensive data set of proteins interacting specifically with STAT3, we applied stable isotope labeling with amino acids in cell culture (SILAC). For high-affinity pull-down using streptavidin, we fused STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag), which did not affect STAT3 functions. By this approach, 3642 coprecipitated proteins were detected in human embryonic kidney-293 cells. Filtering using statistical and functional criteria finally extracted 136 proteins as putative interaction partners of STAT3. Both, a physical interaction network analysis and the enrichment of known and predicted interaction partners suggested that our filtering criteria successfully enriched true STAT3 interactors. Our approach identified numerous novel interactors, including ones previously predicted to associate with STAT3. By reciprocal coprecipitation, we were able to verify the physical association between STAT3 and selected interactors, including the novel interaction with TOX4, a member of the TOX high mobility group box family. Applying the same method, we next investigated the activation-dependency of the STAT3 interactome. Again, we identified both known and novel interactions. Thus, our approach allows to study protein-protein interaction effectively and comprehensively. BIOLOGICAL SIGNIFICANCE The location, activity, function, degradation, and synthesis of proteins are significantly regulated by interactions of proteins with other proteins, biopolymers and small molecules. Thus, the comprehensive characterization of interactions of proteins in a given proteome is the next milestone on the path to understanding the biochemistry of the cell. In order to generate a comprehensive interactome dataset of proteins specifically interacting with a selected bait protein, we fused our bait protein STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag). This bio-tag allows an affinity pull-down using streptavidin but affected neither the activation of STAT3 by tyrosine phosphorylation nor its transactivating potential. We combined SILAC for accurate relative protein quantification, subcellular fractionation to increase the coverage of interacting proteins, high-affinity pull-down and a stringent filtering method to successfully analyze the interactome of STAT3. With our approach we confirmed several already known and identified numerous novel STAT3 interactors. The approach applied provides a rapid and effective method, which is broadly applicable for studying protein-protein interactions and their dependency on post-translational modifications.
Collapse
Affiliation(s)
- Conny Blumert
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Sjöstrand M, Ambrosi A, Brauner S, Sullivan J, Malin S, Kuchroo VK, Espinosa A, Wahren-Herlenius M. Expression of the Immune Regulator Tripartite-Motif 21 Is Controlled by IFN Regulatory Factors. THE JOURNAL OF IMMUNOLOGY 2013; 191:3753-63. [DOI: 10.4049/jimmunol.1202341] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Park KH, Lee TH, Kim CW, Kim J. Enhancement of CCL15 expression and monocyte adhesion to endothelial cells (ECs) after hypoxia/reoxygenation and induction of ICAM-1 expression by CCL15 via the JAK2/STAT3 pathway in ECs. THE JOURNAL OF IMMUNOLOGY 2013; 190:6550-8. [PMID: 23690481 DOI: 10.4049/jimmunol.1202284] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CCL15, a member of the CC chemokine family, is a potent chemoattractant for leukocytes and endothelial cells (ECs). Given that chemokines play key roles in vascular inflammation, we investigated the effects of hypoxia/reoxygenation (H/R) on expression of human CCL15 and a role of CCL15 in upregulating ICAM-1 in ECs. We found that exposure of ECs to H/R increased expression of CCL15 and ICAM-1, which resulted in an increase in monocyte adhesivity to the ECs. Further studies revealed that knockdown of CCL15 or CCR1 attenuated expression of ICAM-1 in ECs after H/R, suggesting that expression of ICAM-1 is upregulated by CCL15. Stimulation of ECs with CCL15 significantly increased expression of ICAM-1 predominantly via the CCR1 receptor. We observed that phosphorylation of JAK2 and STAT3 was stimulated by CCL15 treatment of ECs. Results from reporter and chromatin immunoprecipitation assays revealed that CCL15 activates transcription from the IFN-γ activation site promoter and stimulates binding of STAT3 to the ICAM-1 promoter. Our data also showed that CCL15 increased cell adhesion of human monocytes to ECs under static and shear-stress conditions. Pretreatment of these cells with inhibitors for JAK, PI3K, and AKT prevented the CCL15-induced expression of ICAM-1 and monocyte adhesion to ECs, suggesting the involvement of those signaling molecules in ICAM-1 gene activation by CCL15. The results suggest that CCR1 and its ligands may be a potential target for treating inflammatory diseases involving upregulation of cell adhesion molecules.
Collapse
Affiliation(s)
- Keun Hyung Park
- Graduate School of Biotechnology, Kyung Hee University,Yongin 446-701, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Qiu R, Yang Y, Zhao H, Li J, Xin Q, Shan S, Liu Y, Dang J, Yu X, Gong Y, Liu Q. Signal transducer and activator of transcription 6 directly regulates human ORMDL3 expression. FEBS J 2013; 280:2014-26. [PMID: 23461825 DOI: 10.1111/febs.12225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/23/2013] [Accepted: 02/28/2013] [Indexed: 12/23/2022]
Abstract
Orosomucoid-like 3 (ORMDL3) has been associated with asthma and a series of autoimmune disorders, and is involved in endoplasmic reticulum-mediated inflammatory responses. However, its clinical significance and the molecular mechanism underlying its expression are still largely unclear. To elucidate the mechanisms of human ORMDL3 transcriptional regulation, we cloned a 1.5 kb genomic DNA fragment containing the putative promoter region and evaluated its transcriptional activity in a luciferase reporter system by deletion analysis. We identified a 68 bp region that functions as a minimal promoter. Bioinformatics analysis predicted that the -64 to -56 bp region contained a signal transducer and activator of transcription 6 (STAT6) binding site. Electrophoretic mobility shift assay and chromatin immunoprecipitation demonstrated that STAT6 bound to its binding site within the ORMDL3 promoter. STAT6 over-expression or knockdown trans-activated or trans-inhibited, respectively, the ORMDL3 promoter containing the STAT6-binding motif. Treatment with interleukins 4 or 13 increased ORMDL3 promoter activity as well as endogenous ORMDL3 expression. Immunoprecipitation and ChIP/Re-ChIP assays revealed that STAT6 and p300 exist in the same protein complex that binds to the ORMDL3 promoter. Our study confirmed that STAT6 plays important roles in regulating the expression of human ORMDL3 by directly binding to the promoter region, which may shed light on a possible role in various human diseases.
Collapse
Affiliation(s)
- Rongfang Qiu
- Department of Medical Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
STAT1 as a novel therapeutical target in pro-atherogenic signal integration of IFNγ, TLR4 and IL-6 in vascular disease. Cytokine Growth Factor Rev 2011; 22:211-9. [PMID: 21752694 DOI: 10.1016/j.cytogfr.2011.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation participates importantly in host defenses against infectious agents and injury, but it also contributes to the pathophysiology of atherosclerosis. Recruitment of blood leukocytes to the injured vascular endothelium characterizes the initiation and progression of atherosclerosis and involves many inflammatory mediators, modulated by cells of both innate and adaptive immunity. The pro-inflammatory cytokine, interferon (IFN)-γ derived from T cells, is vital for both innate and adaptive immunity and is also expressed at high levels in atherosclerotic lesions. As such IFN-γ plays a crucial role in the pathology of atherosclerosis through activation of signal transducer and activator of transcription (STAT) 1. Toll-like receptors (TLRs) are innate immune pattern recognition receptors (PRRs) expressed on a variety of cells, and thus initiate and sustain the inflammatory response in atherosclerosis. More recent studies have revealed that STAT1 is involved in the signaling events mediated by TLR4, leading to increased expression of several pro-inflammatory and pro-atherogenic mediators. By upregulating members of the Suppressors Of Cytokine Signaling (SOCS) family that regulate cellular responsiveness to immune signals, IFNγ and TLR4-activated pathways have also shown to inhibit IL-6 STAT3-dependent anti-inflammatory signaling and potentially shift IL-6 to a STAT1 activating pro-inflammatory cytokine. Consequently, STAT1 has been identified as a point of convergence for the cross-talk between the pro-atherogenic IFN-γ, TLR4 and IL-6 activated pathways in immune as well as vascular cells, as such amplifying pro-inflammatory signals. This results in augmented smooth muscle cell (SMC) and leukocyte migration, leukocyte to endothelial cell (EC) adhesion and foam cell formation, and could encompass a novel mechanism involved in the initiation and progression of atherosclerosis. Therefore, application of small inhibitory compounds that specifically interact with the SH2-phosphotyrosine pocket of STAT1, proposed here as a novel working mechanism for the known STAT1 inhibitor fludarabine, could be a promising tool in the development of a therapeutical strategy for atherosclerosis.
Collapse
|
20
|
Abstract
IL-20 was discovered 10 years ago as a new member of the IL-10 family of cytokines. IL-20 shares the highest amino-acid sequence identity with IL-10, IL-24 and IL-19. IL-20 is secreted by immune cells and activated epithelial cells like keratinocytes. A high expression of the corresponding IL-20 receptor chains is detected on epithelial cells. In terms of function, IL-20 might therefore mediate a crosstalk between epithelial cells and tissue-infiltrating immune cells under inflammatory conditions. Transgenic and knockout mouse models for some cytokines and receptors of the IL-10-type cytokines have provided new insights into the biology of this family. This review will focus on the biological functions of IL-20 and its receptors within the IL-10 cytokine network.
Collapse
|
21
|
Tang JZ, Kong XJ, Banerjee A, Muniraj N, Pandey V, Steiner M, Perry JK, Zhu T, Liu DX, Lobie PE. STAT3alpha is oncogenic for endometrial carcinoma cells and mediates the oncogenic effects of autocrine human growth hormone. Endocrinology 2010; 151:4133-45. [PMID: 20668024 DOI: 10.1210/en.2010-0273] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We herein demonstrate an oncogenic role for signal transducer and activator of transcription (STAT)-3alpha (the full length STAT3 isoform), which also mediates autocrine human GH (hGH)-stimulated oncogenicity, in human endometrial carcinoma (EC) cells. Autocrine hGH stimulated Y705 phosphorylation of STAT3 and STAT3-mediated transcriptional activity in a SRC and Janus-2 Kinase dependent manner in human EC cell lines. Forced expression of a constitutively active variant of STAT3alpha increased proliferation, anchorage-independent, three-dimensional (3D) Matrigel, and xenograft growth and promoted epithelial-mesenchymal transition, migration, and invasion of EC cells. Conversely, the oncogenic capacity of EC cells was significantly impaired by treatment with JSI-124, an inhibitor of STAT3 phosphorylation and activity, small interfering RNA-mediated depletion of STAT3alpha, or a dominant-negative variant of STAT3alpha. Furthermore, the enhanced EC cell oncogenicity stimulated by autocrine hGH, was also abrogated by functional inhibition or small interfering RNA-mediated depletion of STAT3alpha. STAT3alpha may therefore be a common mediator of oncogenic signaling pathways stimulating progression of EC.
Collapse
Affiliation(s)
- Jian-Zhong Tang
- Liggins Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bluyssen HAR, Rastmanesh MM, Tilburgs C, Jie K, Wesseling S, Goumans MJ, Boer P, Joles JA, Braam B. IFNγ-dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. Am J Physiol Cell Physiol 2010; 299:C354-62. [DOI: 10.1152/ajpcell.00513.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IL-6 has pro- and anti-inflammatory effects and is involved in endothelial cell (EC) dysfunction. The anti-inflammatory effects of IL-6 are mediated by signal transducer and activator of transcription-3 (STAT3), which is importantly controlled by suppressor of cytokine signaling 3 (SOCS3). Therefore, cytokines that modulate SOCS3 expression might inhibit the anti-inflammatory effects of IL-6. We hypothesized that in EC, interferon-γ (IFNγ)-induced SOCS3 expression leads to inhibition of IL-6-induced STAT3 activation and IL-6-dependent expression of anti-, but not pro-inflammatory, target genes. IFNγ activated STAT1 and STAT3 and increased SOCS3 expression in EC. IL-6 only activated STAT3 and induced SOCS3 expression. IFNγ pretreatment of EC inhibited IL-6-induced STAT3 activation accompanied by increased SOCS3 protein. Inhibition of SOCS3 expression, using costimulation, Act-D, and small interfering RNA (siRNA), subsequently implicated the importance of IFNγ-induced SOCS3 in this phenomenon. Pretreatment of EC with IFNγ also affected the transcriptional program induced by IL-6. We identified 1) IL-6 anti-inflammatory target genes that were inhibited by IFNγ, 2) IFNγ-target genes of pro-inflammatory nature that were increased in response to IL-6 in the presence of IFNγ, and 3) a set of target genes that were increased upon IL-6 or IFNγ alone, or combined IFNγ and IL-6. In summary, by increasing SOCS3 expression in EC, IFNγ can selectively inhibit STAT3-dependent IL-6 signaling. This in turn leads to decreased expression of some EC protective genes. In contrast, other genes of pro-inflammatory nature are not inhibited or even increased. This IFNγ-induced shift in IL-6 signaling to a pro-inflammatory phenotype could represent a novel mechanism involved in EC dysfunction.
Collapse
Affiliation(s)
- Hans A. R. Bluyssen
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | | | | - Kim Jie
- Department of Nephrology and Hypertension and
| | | | - Marie-Jose Goumans
- Department of Experimental Cardiology, University Medical Center, Utrecht, The Netherlands
| | - Peter Boer
- Department of Nephrology and Hypertension and
| | | | - Branko Braam
- Department of Nephrology and Hypertension and
- Division of Nephrology and Immunology, Department of Medicine and
- Department of Physiology, University of Alberta, Edmonton, Canada; and
| |
Collapse
|
23
|
Bauer K, Kretzschmar AK, Cvijic H, Blumert C, Löffler D, Brocke-Heidrich K, Schiene-Fischer C, Fischer G, Sinz A, Clevenger CV, Horn F. Cyclophilins contribute to Stat3 signaling and survival of multiple myeloma cells. Oncogene 2009; 28:2784-95. [PMID: 19503092 DOI: 10.1038/onc.2009.142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signal transducer and activator of transcription 3 (Stat3) is the major mediator of interleukin-6 (IL-6) family cytokines. In addition, Stat3 is known to be involved in the pathophysiology of many malignancies. Here, we show that the cis-trans peptidyl-prolyl isomerase cyclophilin (Cyp) B specifically interacts with Stat3, whereas the highly related CypA does not. CypB knockdown inhibited the IL-6-induced transactivation potential but not the tyrosine phosphorylation of Stat3. Binding of CypB to Stat3 target promoters and alteration of the intranuclear localization of Stat3 on CypB depletion suggested a nuclear function of Stat3/CypB interaction. By contrast, CypA knockdown inhibited Stat3 IL-6-induced tyrosine phosphorylation and nuclear translocation. The Cyp inhibitor cyclosporine A (CsA) caused similar effects. However, Stat1 activation in response to IL-6 or interferon-gamma was not affected by Cyp silencing or CsA treatment. As a result, Cyp knockdown shifted IL-6 signaling to a Stat1-dominated pathway. Furthermore, Cyp depletion or treatment with CsA induced apoptosis in IL-6-dependent multiple myeloma cells, whereas an IL-6-independent line was not affected. Thus, Cyps support the anti-apoptotic action of Stat3. Taken together, CypA and CypB both play pivotal roles, yet at different signaling levels, for Stat3 activation and function. These data also suggest a novel mechanism of CsA action.
Collapse
Affiliation(s)
- K Bauer
- Institute of Clinical Immunology and Transfusion Medicine, University of Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
SRC (steroid receptor co-activator)-1 has been reported to interact with and to be an essential co-activator for several members of the STAT (signal transducer and activator of transcription) family, including STAT3, the major signal transducer of IL (interleukin)-6. We addressed the question of whether SRC-1 is crucial for IL-6- and STAT3-mediated physiological responses such as myeloma cell survival and acute-phase protein induction. In fact, silencing of SRC-1 by RNA interference rapidly induced apoptosis in IL-6-dependent INA-6 human myeloma cells, comparable with what was observed upon silencing of STAT3. Using chromatin immunoprecipitation at STAT3 target regions of various genes, however, we observed constitutive binding of SRC-1 that decreased when INA-6 cells were treated with IL-6. The same held true for STAT3 target genes analysed in HepG2 human hepatocellular carcinoma cells. SRC-1-knockdown studies demonstrated that STAT3-controlled promoters require neither SRC-1 nor the other p160 family members SRC-2 or SRC-3 in HepG2 cells. Furthermore, microarray expression profiling demonstrated that the responsiveness of IL-6 target genes is not affected by SRC-1 silencing. In contrast, co-activators of the CBP [CREB (cAMP-response element-binding protein)-binding protein]/p300 family proved functionally important for the transactivation potential of STAT3 and bound inducibly to STAT3 target regions. This recruitment did not depend on the presence of SRC-1. Altogether, this suggests that functional impairment of STAT3 is not involved in the induction of myeloma cell apoptosis by SRC-1 silencing. We therefore conclude that STAT3 transactivates its target genes by the recruitment of CBP/p300 co-activators and that this process generally does not require the contribution of SRC-1.
Collapse
|
25
|
Río A, Gassull MA, Aldeguer X, Ojanguren I, Cabré E, Fernández E. Reduced liver injury in the interleukin-6 knockout mice by chronic carbon tetrachloride administration. Eur J Clin Invest 2008; 38:306-16. [PMID: 18371088 DOI: 10.1111/j.1365-2362.2008.01939.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Interleukin-6 has been involved in restoration of liver function after partial hepatectomy and toxic liver injury. However, normal liver regeneration in interleukin-6 knockout mice has also been reported. The aim of this work was to investigate the effect of interleukin-6 deficiency on liver injury and its regeneration in a model of long term carbon tetrachloride (CCl4) administration. DESIGN Serum and whole livers from wild type and interleukin-6 knockout mice treated with carbon tetrachloride (0.25 mL kg(-1)) twice a week were obtained after 4, 6 and 8 weeks (n = 4-6). Sections were assessed for liver regeneration, liver injury and hepatocyte apoptosis whereas sera were assayed for aminotransferase levels. Nuclear extracts and total liver lysates were assayed for transcription factor activation and apoptosis related proteins, respectively. RESULTS When compared to wild type, interleukin-6 knockout mice showed reduced liver damage scores, lower aminotransferase levels and diminished apoptosis, as well as reduced nuclear factor kappa B activation. Although the level of active protein was lower, activation of signal transducer and activator of transcription 3 still takes place in knockout mice. Furthermore, liver regeneration measured by bromodeoxyuridine incorporation showed no differences between wild type and knockout animals after 6 and 8 weeks of treatment. CONCLUSIONS Compared to the wild type mice liver regeneration after chronic treatment with carbon tetrachloride proceeds at a slower rate in interleukin-6 deficient mice. However, this low recovery rate is accompanied by a reduction not only in hepatocyte apoptosis, but also in activation of nuclear factor kappa B and liver injury.
Collapse
Affiliation(s)
- A Río
- Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Gharavi NM, Alva JA, Mouillesseaux KP, Lai C, Yeh M, Yeung W, Johnson J, Szeto WL, Hong L, Fishbein M, Wei L, Pfeffer LM, Berliner JA. Role of the Jak/STAT pathway in the regulation of interleukin-8 transcription by oxidized phospholipids in vitro and in atherosclerosis in vivo. J Biol Chem 2007; 282:31460-8. [PMID: 17726017 DOI: 10.1074/jbc.m704267200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (Ox-PAPC) and its component phospholipid, 1-palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine, induce endothelial cells (EC) to synthesize chemotactic factors, such as interleukin 8 (IL-8). Previously, we demonstrated a role for c-Src kinase activation in Ox-PAPC-induced IL-8 transcription. In this study, we have examined the mechanism regulating IL-8 transcription by Ox-PAPC downstream of c-Src. Our findings demonstrate an important role for JAK2 in the regulation of IL-8 transcription by Ox-PAPC. Treatment of human aortic EC with Ox-PAPC and 1-palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine induced a rapid yet sustained activation of JAK2; activation of JAK2 by Ox-PAPC was dependent on c-Src kinase activity. Furthermore, pretreatment with selective JAK2 inhibitors significantly reduced Ox-PAPC-induced IL-8 transcription. In previous studies, we also demonstrated activation of STAT3 by Ox-PAPC. Here we provide evidence that STAT3 activation by Ox-PAPC is dependent on JAK2 activation and that STAT3 activation regulates IL-8 transcription by Ox-PAPC in human EC. Transfection with small interfering RNA against STAT3 significantly reduced Ox-PAPC-induced IL-8 transcription. Using chromatin immunoprecipitation assays, we demonstrated binding of activated STAT3 to the sequence flanking the consensus gamma-interferon activation sequence (GAS) in the IL-8 promoter; site-directed mutagenesis of GAS inhibited IL-8 transcription by Ox-PAPC. Finally, these studies demonstrate a role for STAT3 activation in atherosclerosis in vivo. We found increased staining for activated STAT3 in the inflammatory regions of human atherosclerotic lesions and reduced fatty streak formation in EC-specific STAT3 knock-out mice on the atherogenic diet. Taken together, these data demonstrate an important role for the JAK2/STAT3 pathway in Ox-PAPC-induced IL-8 transcription in vitro and in atherosclerosis in vivo.
Collapse
Affiliation(s)
- Nima M Gharavi
- Division of Cardiology, Department of Medicine, Department of Pathology, Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Do Carmo S, Levros LC, Rassart E. Modulation of apolipoprotein D expression and translocation under specific stress conditions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:954-69. [PMID: 17477983 DOI: 10.1016/j.bbamcr.2007.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/20/2022]
Abstract
Apolipoprotein D is a lipocalin, primarily associated with high density lipoproteins in human plasma. Its expression is induced in several pathological and stressful conditions including growth arrest suggesting that it could act as a nonspecific stress protein. A survey of cellular stresses shows those causing an extended growth arrest, as hydrogen peroxide and UV light increase apoD expression. Alternatively, lipopolysaccharide (LPS), a pro-inflammatory agonist showed a time- and dose-dependent effect on apoD expression that correlates with an increase in proliferation. At the promoter level, NF-kB, AP-1 and APRE-3 proved to be the elements implicated in the LPS response. Colocalization of apoDh-GFP fusion constructs with DNA and Golgi markers, immunocytochemistry of the endogenous protein and cell fractionation showed that both serum starvation and LPS treatment caused a displacement of apoD localization. In normal conditions, apoD is mainly perinuclear but it accumulates in cytoplasm and nucleus under these stress conditions. Since nuclear apoD appears derived from the secreted protein, it may act as an extracellular ligand transporter as well as a transcriptional regulator depending on its location. This role of apoD inside the cell is not only dependent of endogenous apoD but may also be provided by exogenous apoD entering the cell.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, and BioMed, centre de recherches biomédicales, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
28
|
Sutherland KD, Lindeman GJ, Visvader JE. The molecular culprits underlying precocious mammary gland involution. J Mammary Gland Biol Neoplasia 2007; 12:15-23. [PMID: 17323120 DOI: 10.1007/s10911-007-9034-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammary gland involution, characterized by extensive apoptosis and structural remodelling of the gland, is the process by which the gland is returned to the pre-pregnant state. A key advantage of the mammary gland is the ability to synchronize involution through forced weaning, thus allowing the dissection of biochemical pathways involved in the involution process. Over the past few years, significant advances have been made in understanding the signaling pathways and downstream effectors that regulate epithelial cell apoptosis in the first phase of involution, and the importance of matrix metalloproteinases and their inhibitors in both phases of involution. The precise nature of the triggers for apoptosis, however, and the ultimate perpetrators of cell death are not yet clear. This review focuses on genes whose perturbation, either by targeted deletion or overexpression in transgenic mouse models, leads to precocious involution. The accumulating data point to a complex network of signal transduction pathways that synergize to regulate apoptosis in the involuting mammary gland.
Collapse
Affiliation(s)
- Kate D Sutherland
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia
| | | | | |
Collapse
|
29
|
Kumari AL, Ali AM, Das S, Pardhasaradhi BVV, Varalakshmi C, Khar A. Role of STAT3 and NFκB signaling in the serum factor-induced apoptosis in AK-5 cells. Biochem Biophys Res Commun 2005; 336:860-7. [PMID: 16153599 DOI: 10.1016/j.bbrc.2005.08.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
AK-5, a rat histiocytoma, is rejected in about 70% of the syngeneic animals when injected subcutaneously. The sera from the tumor rejecting animals possess a potent factor, referred to as serum factor (SF) that induces apoptosis in AK-5 tumor cells. In the present study, we show that treatment with SF or JAK/STAT inhibitors AG490 and Piceatannol induces apoptosis to a similar extent in BC-8 (a single cell clone of AK-5) cells. Our results demonstrate downregulation of a transcription factor, STAT3, as a critical regulator of SF-induced apoptosis in BC-8 cells. SF treatment enhanced the activity of NFkappaB, another transcription factor that regulates both pro- and antiapoptotic genes. The enhanced NFkappaB activity resulted in the elevation of TRAIL and its receptor DR4, both known to induce apoptosis. Activation of death receptors in turn enhances caspase-8 activity and stimulates the downstream pathways regulating BC-8 cell apoptosis. SF induced apoptosis in BC-8 cells mediated through downregulation of STAT3 and elevated NFkappaB activity is abrogated by treatment with MAPK inhibitors-PD98059 and SB203580. Our studies therefore indicate that modulation of MAPK activity plays a central role in SF-induced death signaling pathways in BC-8 cells.
Collapse
Affiliation(s)
- A Leela Kumari
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
30
|
Mizutani T, Fukushi S, Murakami M, Hirano T, Saijo M, Kurane I, Morikawa S. Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells. FEBS Lett 2005; 577:187-92. [PMID: 15527783 PMCID: PMC7125663 DOI: 10.1016/j.febslet.2004.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/27/2004] [Accepted: 10/04/2004] [Indexed: 11/06/2022]
Abstract
Severe acute respiratory syndrome (SARS) has become a global public health emergency. p38 mitogen‐activated protein kinase (MAPK) and its downstream targets are activated in SARS coronavirus (SARS‐CoV)‐infected Vero E6 cells and activation of p38 MAPK enhances the cytopathic effects of SARS‐CoV infection. In addition, weak activation of Akt cannot prevent SARS‐CoV infection‐induced apoptosis in Vero E6 cells. In the present study, we demonstrated that signal transducer and activator of transcription (STAT) 3, which is constitutively phosphorylated at tyrosine (Tyr)‐705 and slightly phosphorylated at serine (Ser)‐727 in Vero E6 cells, was dephosphorylated at Tyr‐705 on SARS‐CoV infection. In addition to phosphorylation of p38 MAPK in virus‐infected cells, other MAPKs, i.e., extracellular signal‐regulated kinase (ERK) 1/2 and c‐Jun N‐terminal kinase (JNK), were phosphorylated. Although inhibitors of ERK1/2 and JNK (PD98059 and SP600125) had no effect on phosphorylation status of STAT3, inhibitors of p38 MAPK (SB203580 and SB202190) partially inhibited dephosphorylation of STAT3 at Tyr‐705. Tyr‐705‐phosphorylated STAT3 was localized mainly in the nucleus in mock infected cells, whereas STAT3 disappeared from the nucleus in virus‐infected cells. As STAT3 acts as an activator of transcription in the nucleus, these results suggest that STAT3 lacks its activity on transcription in SARS‐CoV‐infected Vero E6 cells.
Collapse
Affiliation(s)
- Tetsuya Mizutani
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhou G, Ono SJ. Induction of BCL-6 gene expression by interferon-gamma and identification of an IRE in exon I. Exp Mol Pathol 2005; 78:25-35. [PMID: 15596057 DOI: 10.1016/j.yexmp.2004.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/30/2022]
Abstract
BCL-6 is a POZ domain zinc-finger transcription factor that appears to play important roles in the development of the immune system and its regulation. Mutations within BCL-6 gene can therefore contribute to the genesis of a variety of lymphomas, and can also manifest as a classic Th2-type hyperimmune response. In addition to its roles in B- and T-cell development, and in germinal centre formation, the factor is also critical for the development of peripheral memory T cells. In this study, we report that BCL-6 expression is induced by IFN-gamma in Jurkat cells and in nontransformed T cells polarized toward the Th1 phenotype. The IFN-gamma-responsive region has been mapped within the first exon between nucleotide +180 and +200. In vivo footprinting of the first exon reveals that a stretch of DNA between nucleotide +180 to +195 (which we term the X-box) is constitutively occupied in vivo in the presence or absence of IFN-gamma. A guanine at +195 residing at the boundary of the X-box and a downstream IFN-gamma-activated sequence (GAS 1; between nucleotides +192 to +200) is occupied in IFN-gamma-treated cells, indicating the interaction of an IFN-gamma-inducible/modified factor to this region. Consistent with this, electrophoretic mobility shift assays detect STAT-1alpha interactions with the downstream GAS1 motif. The cumulative data suggest that the X-box-binding protein facilitate the binding of STAT-1alpha to the GAS 1 site. The discovery that the BCL-6 transcription factor is inducible by IFN-gamma may help explain some of the postulated biological roles of BCL-6 in T cell development and differentiation, and help explain the Th2-biased phenotype of BCL-6-deficient mice.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Immunology, University College London, University of London Institutes of Ophthalmology and Child Health, London, United Kingdom
| | | |
Collapse
|
32
|
Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, Henze C, Löffler D, Koczan D, Thiesen HJ, Burger R, Gramatzki M, Horn F. Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood 2004; 103:242-51. [PMID: 12969979 DOI: 10.1182/blood-2003-04-1048] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin 6 (IL-6) is a growth and survival factor for multiple myeloma cells. As we report here, the IL-6-dependent human myeloma cell line INA-6 responds with a remarkably rapid and complete apoptosis to cytokine withdrawal. Among the antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of apoptosis regulators, only myeloid cell factor-1 (Mcl-1) was slightly induced by IL-6. Overexpression studies demonstrated, however, that IL-6 does not exert its survival effect primarily through this pathway. The IL-6 signal transduction pathways required for survival and the target genes controlled by them were analyzed by using mutated receptor chimeras. The activation of signal transducer and activator of transcription 3 (Stat3) turned out to be obligatory for the survival of INA-6 cells. The same held true for survival and growth of XG-1 myeloma cells. Gene expression profiling of INA-6 cells by using oligonucleotide microarrays revealed many novel IL-6 target genes, among them several genes coding for transcriptional regulators involved in B-lymphocyte differentiation as well as for growth factors and receptors potentially implicated in autocrine or paracrine growth control. Regulation of most IL-6 target genes required the activation of Stat3, underscoring its central role for IL-6 signal transduction. Taken together, our data provide evidence for the existence of an as yet unknown Stat3-dependent survival pathway in myeloma cells.
Collapse
Affiliation(s)
- Katja Brocke-Heidrich
- Institute of Clinical Immunology and Transfusion Medicine, University Hospital Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kaur N, Kim IJ, Higgins D, Halvorsen SW. Induction of an interferon-γ Stat3 response in nerve cells by pre-treatment with gp130 cytokines. J Neurochem 2003; 87:437-47. [PMID: 14511121 DOI: 10.1046/j.1471-4159.2003.02012.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many cytokines mediate their effects through Jak/STAT signaling pathways providing many opportunities for cross-talk between different cytokines. We examined the interaction between two cytokine families, gp130-related cytokines and interferon-gamma (IFN-gamma), which are coexpressed in the nervous system during acute trauma and pathological conditions. Typical nerve cells show an IFN-gamma response that is restricted to activating STAT1, with minor activation of STAT3. IFN-gamma elicited a pronounced STAT3 response in cells pre-treated for 5-7 h with ciliary neurotrophic factor (CNTF), leukemia inhibitory factor or interleukin-6. CNTF or interleukin-6 induced an IFN-gamma STAT3 response in a variety of cells including SH-SY5Y human neuroblastoma, HMN-1 murine motor neuron hybrid cells, rat sympathetic neurons and human hepatoma HepG2 cells. The enhancement was measured as an increase in tyrosine phosphorylated STAT3, in STAT3-DNA binding and in STAT-luciferase reporter gene activity. The enhanced STAT3 response was not due to an increase in overall STAT3 levels but was dependent upon ongoing protein synthesis. The induction by CNTF was inhibited by the protein kinase C inhibitor, BIM, and the MAPK-kinase inhibitor, U0126. Further, H-35 hepatoma cells expressing gp130 receptor chimeras lacking either the SHP-2 docking site or the Box 3 STAT binding sites failed to enhance the IFN-gamma STAT3 response. These results provide evidence for an interaction between gp130 and IFN-gamma cytokines that can significantly alter the final cellular response to IFN-gamma.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
34
|
Navarro A, Anand-Apte B, Tanabe Y, Feldman G, Larner AC. A PI-3 kinase-dependent, Stat1-independent signaling pathway regulates interferon-stimulated monocyte adhesion. J Leukoc Biol 2003; 73:540-5. [PMID: 12660229 DOI: 10.1189/jlb.1002508] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Type I interferon (IFN)-alpha/beta and type II IFN-gamma induce the expression of early response genes through activation of the Janus tyrosine kinase/signal transducer and activator of transcription (Stat) pathway. Although IFNs regulate a variety of other signaling cascades, little is known about how they contribute to the biological activities of these cytokines. In this study, we demonstrate that IFN-beta or IFN-gamma induces the phosphorylation of the serine/threonine kinase Akt in primary human peripheral blood monocytes. Abrogation of the IFN-stimulated Akt activation by phosphatidylinositol-3 kinase (PI-3K) inhibitors prevents IFN-induced adhesion in these cells, and IFN activation of the Stat1-dependent guanylate-binding protein (GBP) gene is not affected. Importantly, Stat1-deficient bone marrow macrophages displayed a similar level of IFN-gamma-stimulated adhesion compared with macrophages derived from wild-type littermates. These findings demonstrate for the first time that IFN stimulation of a PI-3K signaling cascade modulates the ability of these cytokines to regulate monocyte adhesion, and this process does not require the expression of Stat1, a primary mediator of IFN-gamma signaling.
Collapse
Affiliation(s)
- Angels Navarro
- Department of Immunology, Lerner Research Institute, Ohio, USA
| | | | | | | | | |
Collapse
|
35
|
Aoki Y, Feldman GM, Tosato G. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 2003; 101:1535-42. [PMID: 12393476 DOI: 10.1182/blood-2002-07-2130] [Citation(s) in RCA: 370] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite some exciting new leads in molecular pathogenesis, AIDS-defining primary effusion lymphoma (PEL) remains a fatal malignancy. The lack of substantial progress in the management of PEL demands innovative treatment approaches. Targeting intracellular molecules critical to cell survival is one unexplored strategy for treating PEL. Here we show that inhibition of signal transducer and activator of transcription-3 (STAT3) leads to apoptosis in PEL cells. STAT3 is constitutively phosphorylated in PEL cell lines BC-1, BCBL-1, and VG-1. Transduction of dominant-negative STAT3 and pharmacological STAT3 inhibition caused caspase-dependent cell death. Although STAT3 activation is known to induce expression of Bcl-2 family proteins, PEL cell apoptosis was independent of Bcl-2, Bcl-X(L), or Mcl-1 protein expression. Instead, STAT3 inhibition induced transcriptional repression of survivin, a recently identified inhibitor of apoptosis. Forced overexpression of survivin rescued VG-1 cells from apoptosis induced by STAT3 inhibition. Our findings suggest that activated STAT3 signaling directly contributes to malignant progression of PEL by preventing apoptosis, acting through the prosurvival protein survivin. Since constitutive STAT3 activation and survivin expression have been widely documented in different types of cancers, their linkage may extend to many malignancies and be critical to their pathogenesis.
Collapse
Affiliation(s)
- Yoshiyasu Aoki
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
36
|
Kortylewski M, Feld F, Krüger KD, Bahrenberg G, Roth RA, Joost HG, Heinrich PC, Behrmann I, Barthel A. Akt modulates STAT3-mediated gene expression through a FKHR (FOXO1a)-dependent mechanism. J Biol Chem 2003; 278:5242-9. [PMID: 12456685 DOI: 10.1074/jbc.m205403200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase/Akt pathway plays an important role in the signaling of insulin and other growth factors, which reportedly attenuate the interleukin-6 (IL-6)-mediated stimulation of acute phase plasma protein genes. We investigated the effect of the protein kinase Akt on IL-6-mediated transcriptional activation. The transient expression of constitutively active Akt inhibited the IL-6-dependent activity of the alpha(2)-macroglobulin promoter in HepG2 cells, whereas expression of an inactive mutant of phosphatidylinositol-dependent kinase 1 had the opposite effect. Since Akt is known to regulate gene expression through inactivation of the transcription factor FKHR (forkhead in rhabdomyosarcoma), we examined the effect of FKHR on STAT3-mediated transcriptional regulation. Indeed, the overexpression of FKHR specifically enhanced the activity of STAT3-dependent promoters but not that of a STAT5-responsive promoter. The effect of FKHR required the presence of functional STAT3 and was abrogated by the expression of dominant negative STAT3 mutants. Furthermore, FKHR and STAT3 were shown to coimmunoprecipitate and to colocalize in the nuclear regions of IL-6-treated HepG2 cells. Our results indicate that FKHR can modulate the IL-6-induced transcriptional activity by acting as a coactivator of STAT3.
Collapse
|
37
|
Lehmann U, Schmitz J, Weissenbach M, Sobota RM, Hortner M, Friederichs K, Behrmann I, Tsiaris W, Sasaki A, Schneider-Mergener J, Yoshimura A, Neel BG, Heinrich PC, Schaper F. SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. J Biol Chem 2003; 278:661-71. [PMID: 12403768 DOI: 10.1074/jbc.m210552200] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interleukin-6 (IL-6) activates the Jak/STAT pathway as well as the mitogen-activated protein kinase cascade. Tyrosine 759 of the IL-6 signal-transducing receptor subunit gp130 has been identified as being involved in negative regulation of IL-6-induced gene induction and activation of the Jak/STAT pathway. Because this site is known to be a recruitment motif for the protein-tyrosine phosphatase SHP2, it has been suggested that SHP2 is the mediator of tyrosine 759-dependent signal attenuation. We recently observed that the suppressor of cytokine-signaling SOCS3 also acts through the tyrosine motif 759 of gp130. However, the relative contributions of SHP2 and SOCS3 to the repression of IL-6 signaling are not understood. Therefore, we designed experiments allowing the independent recruitment of each of these proteins to the IL-6-receptor complex. We show that receptor- and membrane-targeted SHP2 counteracts IL-6 signaling independent of SOCS3 binding to gp130. On the other hand, SOCS3 inhibits signaling in cells expressing a truncated SHP2 protein, which is not recruited to gp130. These data suggest, that there are two, largely distinct modes of negative regulation of gp130 activity, despite the fact that both SOCS3 and SHP2 are recruited to the same site within gp130.
Collapse
Affiliation(s)
- Ute Lehmann
- Department of Biochemistry, Rheinisch-Westfälische Technische Hochschule Aachen, Pauwelsstrasse 30, Aachen D-52074, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wolber EM, Haase B, Jelkmann W. Thrombopoietin production in human hepatic cell cultures (HepG2) is resistant to IFN-alpha, IFN-beta, and IFN-gamma treatment. J Interferon Cytokine Res 2002; 22:1185-9. [PMID: 12581491 DOI: 10.1089/10799900260475704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Thrombocytopenia is an important complication of interferon (IFN) therapy for chronic viral hepatitis. To study whether IFN interferes with hepatic thrombopoietin (TPO) synthesis, we used the human hepatoma cell line HepG2. Our results show that IFN-alpha, IFN-beta, or IFN-gamma did not impair TPO mRNA expression, as determined by quantitative RT-PCR, even when high IFN doses (up to 5000 U/ml) or long-term incubations (up to 14 days) were applied. Neither was the rate of secretion of immunoreactive TPO reduced on IFN treatment. These findings support the concept that IFNs primarily mediate effects on megakaryocytic cells and platelets rather than on TPO-producing hepatocytes.
Collapse
Affiliation(s)
- Eva-Maria Wolber
- Division of Hematology and Oncology, Harvard Institutes of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | |
Collapse
|
39
|
Nakayama K, Kim KW, Miyajima A. A novel nuclear zinc finger protein EZI enhances nuclear retention and transactivation of STAT3. EMBO J 2002; 21:6174-84. [PMID: 12426389 PMCID: PMC137188 DOI: 10.1093/emboj/cdf596] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel cDNA EZI isolated as an oncostatin M- inducible gene encoded a protein containing 12 C2H2-type zinc fingers. EZI was found to transactivate the promoters that are also responsive to STAT3 and activated the acute phase response element (APRE) synergistically with STAT3. Co-immunoprecipitation demonstrated the association of EZI with STAT3, which was mediated by the N-terminal region (1-183) of EZI. The EZI mutant lacking this region showed reduced transcriptional activity, indicating that EZI and STAT3 function cooperatively through physical interaction. While EZI predominantly localized in the nucleus and enhanced the nuclear localization of STAT3, the EZI mutant lacking 11 zinc finger motifs failed to translocate into the nucleus and also inhibited nuclear localization of STAT3 as well as STAT3-mediated transactivation. These results indicate that EZI is a novel nuclear zinc finger protein that augments STAT3 activity by keeping it in the nucleus.
Collapse
Affiliation(s)
| | | | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
Corresponding author e-mail:
| |
Collapse
|
40
|
Greiser JS, Stross C, Heinrich PC, Behrmann I, Hermanns HM. Orientational constraints of the gp130 intracellular juxtamembrane domain for signaling. J Biol Chem 2002; 277:26959-65. [PMID: 12011064 DOI: 10.1074/jbc.m204113200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The glycoprotein 130 (gp130) is the common signal transducing receptor chain of the interleukin-6 family of cytokines. Here we investigated the requirements for transfer of the information given by ligand binding to the cytoplasmic domain of gp130. It is demonstrated that the box 1/2 region has to be located membrane-proximally in order to bind and activate Janus kinases. To test the possible requirement of an alpha-helical orientation, we inserted 1-4 alanine residues into this juxtamembrane intracellular region. The insertion of one alanine results in a strongly reduced activation of STAT1 and STAT3, whereas insertion of three alanine residues leads to a stronger STAT activation. These results suggest that gp130-mediated activation of STATs is sensitive to rotational changes around the receptor axis perpendicular to the membrane. Surprisingly, insertion of 1, 2, 3, or 4 alanine residues into this juxtamembrane region leads to successive impairment but not abolishment of Janus kinase and receptor phosphorylation, supporting the finding of sensitivity of Janus kinases toward changes in distance of box 1/2 from the plasma membrane. We suggest a new model concerning the gp130 activation mode in which the relative orientation of the cytoplasmic regions seems to be critical for further signal transduction.
Collapse
Affiliation(s)
- Jens S Greiser
- Institut für Biochemie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | | | | | | | | |
Collapse
|
41
|
Abstract
Organisms on our planet have evolved in an oxidizing environment that is intrinsically inimical to life, and cells have been forced to devise means of protecting themselves. One of the defenses used most widely in nature is the enzyme heme oxygenase-1 (HO-1). This enzyme performs the seemingly lackluster function of catabolizing heme to generate bilirubin, carbon monoxide, and free iron. Remarkably, however, the activity of this enzyme results in profound changes in cells' abilities to protect themselves against oxidative injury. HO-1 has been shown to have anti-inflammatory, antiapoptotic, and antiproliferative effects, and it is now known to have salutary effects in diseases as diverse as atherosclerosis and sepsis. The mechanism by which HO-1 confers its protective effect is as yet poorly understood, but this area of invetsigation is active and rapidly evolving. This review highlights current information on the function of HO-1 and its relevance to specific pulmonary and cardiovascular diseases.
Collapse
Affiliation(s)
- Danielle Morse
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | |
Collapse
|
42
|
Bito T, Roy S, Sen CK, Shirakawa T, Gotoh A, Ueda M, Ichihashi M, Packer L. Flavonoids differentially regulate IFN gamma-induced ICAM-1 expression in human keratinocytes: molecular mechanisms of action. FEBS Lett 2002; 520:145-52. [PMID: 12044887 DOI: 10.1016/s0014-5793(02)02810-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of plant flavonoids on intercellular adhesion molecule-1 (ICAM-1) expression in human keratinocyte was investigated. ICAM-1 is known to mediate skin inflammation. Among the flavonoids tested, taxifolin was the most potent in inhibiting interferon gamma (IFN gamma)-induced ICAM-1 protein as well as mRNA expression in human keratinocytes. Much smaller dosages of taxifolin were required in primary keratinocytes compared to HaCaT (immortalized cell) to achieve similar levels of inhibition in the inducible ICAM-1 expression. Regulation of inducible ICAM-1 expression by taxifolin was at transcriptional level by inhibiting the activation of signal transducers and activators of transcription (STAT)1 and protein tyrosine phosphorylation of Janus kinase (JAK)1 suggesting that the JAK-STAT pathway may be the molecular site of action of taxifolin. Finally, taxifolin pre-treatment also potently inhibited IFN gamma-induced ICAM-1 expression in a reconstructed human skin equivalent suggesting therapeutic potential of taxifolin in skin pathological conditions related to increased cell adhesion and inflammation.
Collapse
Affiliation(s)
- Toshinori Bito
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Matsumiya T, Imaizumi T, Itaya H, Shibata T, Yoshida H, Sakaki H, Kimura H, Satoh K. Production of growth related oncogene protein-alpha in human umbilical vein endothelial cells stimulated with soluble interleukin-6 receptor-alpha: role of signal transducers, janus kinase 2 and mitogen-activated kinase kinase. Life Sci 2002; 70:3179-90. [PMID: 12008100 DOI: 10.1016/s0024-3205(02)01560-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Growth-related oncogene protein-alpha (GRO-alpha) is a member of the C-X-C chemokine family with a wide variety of biological activities. We studied the production of GRO-alpha by human umbilical vein endothelial cells (HUVEC) in response to the stimulation with soluble form of interleukin-6 receptor alpha (sIL-6R). sIL-6R stimulated HUVEC to express GRO-alpha mRNA and secrete GRO-alpha protein in concentration-and time-dependent manners. The sIL-6R-induced GRO-alpha expression was inhibited by the pretreatment of the cells with AG490, a janus kinase 2 (JAK2) inhibitor, or with U0126, a MAP kinase-ERK kinase (MEK) inhibitor. sIL-6R also induced the phosphorylation of both Src homology 2-protein tyrosine phosphatase-2 (SHP-2), signal transducer and activator of transcription 3 (STAT3) and MEK. AG490 pretreatment inhibited the MEK phosphorylation but did not affect the STAT3 phosphorylation. We conclude that sIL-6R induces GRO-alpha expression in HUVEC through the activation of JAK2 and MEK.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Dentistry and Oral Surgery, Hirosaki University School of Medicine,Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Friederichs K, Schmitz J, Weissenbach M, Heinrich PC, Schaper F. Interleukin-6-induced proliferation of pre-B cells mediated by receptor complexes lacking the SHP2/SOCS3 recruitment sites revisited. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6401-7. [PMID: 11737194 DOI: 10.1046/j.0014-2956.2001.02586.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin-6 (IL-6) induces B-cell proliferation by binding to receptor complexes composed of a specific alpha-receptor (gp80; CD126) and the signal transducing receptor subunit gp130 (CD130). Immediately after receptor complex activation, signal transducers and activators of transcription (STATs) 1 and 3 and the Src-homology domain-containing protein tyrosine phosphatase 2 (SHP2) are recruited to gp130 and subsequently tyrosine phosphorylated. The activated dimerized STATs translocate to the nucleus and bind to enhancer elements of IL-6-inducible genes. SHP2 acts as an adapter and links the Jak/STAT pathway to the Ras/Raf/MAPK cascade but it is also involved in signal attenuation. Whereas STAT3 activation appears to be crucial for all biological activities of IL-6, the requirement of SHP2-activation depends on the individual biological response analyzed. The requirement of SHP2 activation for the pre-B cell (Ba/F3) proliferation has been reported previously [Fukada, T., Hibi, M., Yamanaka, Y., Takahashi-Tezuka, M., Fujitani, Y., Yamaguchi, T., Nakajima, K. & Hirano, T. (1996) Immunity 5, 449-460]. In contrast, we have recently demonstrated that the presence of a single STAT-recruitment site within gp130 is sufficient for IL-6- induced proliferation of Ba/F3 cells [Schmitz, J., Dahmen, H., Grimm, C., Gendo, C., Müller-Newen, G., Heinrich, P.C. & Schaper, F. (2000) J. Immunol. 164, 848-854]. To unravel this discrepancy we analyzed the IL-6-induced dose-dependent proliferation of Ba/F3 cells mediated by receptor complexes lacking SHP2/SOCS3 recruitment sites. Surprisingly, pre-B cells, after stimulation with low amounts of IL-6, proliferate much more efficiently in the absence of the activated SHP2 than in the presence of the tyrosine phosphatase. Therefore, SHP2 activation appears to be relevant for IL-6-induced proliferation only after stimulation with very large amounts of IL-6.
Collapse
Affiliation(s)
- K Friederichs
- Department of Biochemistry, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | | | | | | | | |
Collapse
|
46
|
Gunaje JJ, Bhat GJ. Involvement of tyrosine phosphatase PTP1D in the inhibition of interleukin-6-induced Stat3 signaling by alpha-thrombin. Biochem Biophys Res Commun 2001; 288:252-7. [PMID: 11594781 DOI: 10.1006/bbrc.2001.5759] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that exposure of CCL39 lung fibroblasts to alpha-thrombin inhibits interleukin-6 (IL-6)-induced tyrosine phosphorylation of Stat3 (signal transducers and activators of transcription 3) via activation of mitogen-activated protein (MAP) kinase kinase 1 [Bhat et al. (1998) Arch. Biochem. Biophys. 350, 307-314]. In this study, using CCL39/MRC-5 cells, we investigated if additional signaling intermediates are involved in alpha-thrombin's inhibitory effects on IL-6-induced Stat3 signaling. We also determined if alpha-thrombin inhibits oncostatin M (OSM)-induced Stat3/Stat1, and interferon-gamma (IFN-gamma)-induced Stat1 tyrosine phosphorylation. We demonstrate that, although both IL-6 and OSM belong to the same cytokine family, alpha-thrombin inhibited only the IL-6-induced Stat3 tyrosine phosphorylation. The tyrosine phosphatase PTP1D coprecipitated with Stat3 from alpha-thrombin + IL-6, but not from alpha-thrombin + OSM-treated cells. Pretreatment of cells with a phosphatase inhibitor reversed the inhibitory actions of alpha-thrombin, suggesting a role for PTP1D in alpha-thrombin-mediated inhibition of IL-6-induced Stat3 signaling. Interestingly, alpha-thrombin failed to inhibit OSM- and IFN-gamma-induced Stat1 tyrosine phosphorylation. Cytokine-specific inhibition of the Stat3 signaling involving MAP kinase kinase 1 and PTP1D by alpha-thrombin may play an important role in regulation of gene expression.
Collapse
Affiliation(s)
- J J Gunaje
- Icogen Corporation, 454 North 34th Street, Seattle, WA 98103, USA.
| | | |
Collapse
|
47
|
Matsumiya T, Imaizumi T, Fujimoto K, Cui X, Shibata T, Tamo W, Kumagai M, Tanji K, Yoshida H, Kimura H, Satoh K. Soluble interleukin-6 receptor alpha inhibits the cytokine-Induced fractalkine/CX3CL1 expression in human vascular endothelial cells in culture. Exp Cell Res 2001; 269:35-41. [PMID: 11525637 DOI: 10.1006/excr.2001.5300] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soluble form of IL-6 receptor alpha (sIL-6R) is known to serve as an agonist, without exogenous IL-6, on endothelial cells which do not express IL-6R but have only IL-6 receptor beta chain, gp130. We investigated the effect of sIL-6R on fractalkine expression in human umbilical vein endothelial cells (HUVECs) in culture. sIL-6R markedly inhibited HUVEC fractalkine/CX3CL1 expression induced by interleukin (IL)-1alpha, tumor necrosis factor (TNF)-alpha, or interferon (IFN)-gamma. IL-1alpha-induced fractalkine expression was inhibited by sIL-6R in time- and concentration-dependent manners. The experiment using actinomycin D indicated that sIL-6R lowered the stability of fractalkine mRNA. The inhibitory effect of sIL-6R was reversed by anti-gp130 neutralizing antibody. sIL-6R inhibited adhesion of mononuclear cells (MNCs) to HUVEC monolayers stimulated with IFN-gamma, but it did not inhibit the adhesion to monolayers stimulated with IL-1alpha. MNC chemotactic activity of conditioned medium of HUVEC stimulated with IL-1alpha or IFN-gamma was inhibited by co-treatment with sIL-6R. sIL-6R may play a regulatory role in immune responses by modulating the interaction between leukocytes and the vascular endothelium.
Collapse
MESH Headings
- Cell Adhesion/drug effects
- Cell Adhesion/immunology
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Cells, Cultured/metabolism
- Chemokine CX3CL1
- Chemokines, CX3C/genetics
- Chemotaxis/drug effects
- Chemotaxis/immunology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Contactins
- Culture Media, Conditioned/pharmacology
- Cytokines/immunology
- Cytokines/metabolism
- Cytokines/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Humans
- Inflammation/immunology
- Inflammation/metabolism
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Membrane Proteins/genetics
- Neural Cell Adhesion Molecules/antagonists & inhibitors
- Neural Cell Adhesion Molecules/immunology
- Neural Cell Adhesion Molecules/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Interleukin-6/metabolism
Collapse
Affiliation(s)
- T Matsumiya
- Department of Dentistry and Oral Surgery, Hirosaki University School of Medicine, Hirosaki, 036-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abe K, Hirai M, Mizuno K, Higashi N, Sekimoto T, Miki T, Hirano T, Nakajima K. The YXXQ motif in gp 130 is crucial for STAT3 phosphorylation at Ser727 through an H7-sensitive kinase pathway. Oncogene 2001; 20:3464-74. [PMID: 11429693 DOI: 10.1038/sj.onc.1204461] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Revised: 03/02/2001] [Accepted: 03/14/2001] [Indexed: 01/19/2023]
Abstract
The signal transducer and activator of transcription (STAT) 3 is essential for mediating signals from the receptors for a variety of cytokines and growth factors, including IL-6 and EGF, and from cytoplasmic tyrosine kinases. Upon stimulation, STAT3 is phosphorylated at Ser727 and Tyr705. However, the role of phosphorylation at Ser727, and the kinase pathways responsible for this phosphorylation in IL-6 signaling remain obscure. Here we show that IL-6 activates at least two distinct STAT3 serine kinase pathways and that an H7-sensitive pathway is dominant over a PD98059-sensitive one in HepG2 cells stimulated with a low concentration of IL-6. The analysis, using a series of chimeric receptors containing the extracellular domain of the G-CSF receptor, the truncated form of gp 130, and additional short peptides at the gp 130 carboxy-terminus, showed that the YXXQ motif of gp 130 was sufficient for the H7-sensitive STAT3 Ser727 phosphorylation. This YXXQ-mediated pathway does not involve Erk, p38, JNK, or PKCdelta, and requires a site in the region from 533 to 711 of STAT3 for phosphorylation in vivo. Moreover, we show that Ser727 is required for full transcriptional activity of STAT3 for two different response elements. Thus, the YXXQ motif regulates STAT3 activities in two ways in response to even a low concentration of IL-6: it recruits STAT3 to the receptor for tyrosine phosphorylation, and activates an unidentified H7-sensitive pathway leading to the serine phosphorylation of STAT3.
Collapse
Affiliation(s)
- K Abe
- Department of Immunology, Osaka City University Graduate School of Medicine, Osaka, 545-8585 Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 2001; 90:105-56. [PMID: 11578655 DOI: 10.1016/s0163-7258(01)00132-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current cancer therapies are highly toxic and often nonspecific. A potentially less toxic approach to treating this prevalent disease employs agents that modify cancer cell differentiation, termed 'differentiation therapy.' This approach is based on the tacit assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment, results in tumor reprogramming and a concomitant loss in proliferative capacity and induction of terminal differentiation or apoptosis (programmed cell death). Laboratory studies that focus on elucidating mechanisms of action are demonstrating the effectiveness of 'differentiation therapy,' which is now beginning to show translational promise in the clinical setting.
Collapse
Affiliation(s)
- M Leszczyniecka
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
50
|
Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, Nabholz M, Bucher P. DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J Biol Chem 2001; 276:6675-88. [PMID: 11053426 DOI: 10.1074/jbc.m001748200] [Citation(s) in RCA: 301] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STAT transcription factors are expressed in many cell types and bind to similar sequences. However, different STAT gene knock-outs show very distinct phenotypes. To determine whether differences between the binding specificities of STAT proteins account for these effects, we compared the sequences bound by STAT1, STAT5A, STAT5B, and STAT6. One sequence set was selected from random oligonucleotides by recombinant STAT1, STAT5A, or STAT6. For another set including many weak binding sites, we quantified the relative affinities to STAT1, STAT5A, STAT5B, and STAT6. We compared the results to the binding sites in natural STAT target genes identified by others. The experiments confirmed the similar specificity of different STAT proteins. Detailed analysis indicated that STAT5A specificity is more similar to that of STAT6 than that of STAT1, as expected from the evolutionary relationships. The preference of STAT6 for sites in which the half-palindromes (TTC) are separated by four nucleotides (N(4)) was confirmed, but analysis of weak binding sites showed that STAT6 binds fairly well to N(3) sites. As previously reported, STAT1 and STAT5 prefer N(3) sites; however, STAT5A, but not STAT1, weakly binds N(4) sites. None of the STATs bound to half-palindromes. There were no specificity differences between STAT5A and STAT5B.
Collapse
Affiliation(s)
- G B Ehret
- Swiss Institute for Experimental Cancer Research (ISREC) 1066 Epalinges, Switzerland.
| | | | | | | | | | | | | |
Collapse
|