1
|
Takaya K, Okabe K, Sakai S, Aramaki-Hattori N, Asou T, Kishi K. Salicylate induces epithelial actin reorganization via activation of the AMP-activated protein kinase and promotes wound healing and contraction in mice. Sci Rep 2024; 14:16442. [PMID: 39013997 PMCID: PMC11252334 DOI: 10.1038/s41598-024-67266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Wounds that occur in adults form scars due to fibrosis, whereas those in embryos regenerate. If wound healing in embryos is mimicked in adults, scarring can be reduced. We found that mouse fetuses could regenerate tissues up to embryonic day (E) 13, but visible scars remained thereafter. This regeneration pattern requires actin cable formation at the epithelial wound margin via activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). Here, we investigated whether the AMPK-activating effect of salicylate, an anti-inflammatory drug, promotes regenerative wound healing. Salicylate administration resulted in actin cable formation and complete wound regeneration in E14 fetuses, in which scarring should have normally occurred, and promoted contraction of the panniculus carnosus muscle, resulting in complete wound regeneration. In vitro, salicylate further induced actin remodeling in mouse epidermal keratinocytes in a manner dependent on cell and substrate target-specific AMPK activation and subsequent regulation of Rac1 signaling. Furthermore, salicylate promoted epithelialization, enhanced panniculus carnosus muscle contraction, and inhibited scar formation in adult mice. Administration of salicylates to wounds immediately after injury may be a novel method for preventing scarring by promoting a wound healing pattern similar to that of embryonic wounds.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keisuke Okabe
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
2
|
Zhou J, Franceschini N, Townley-Tilson WHD, Maeda-Smithies N. Nutritional Strategies against Diabetic Nephropathy: Insights from Animal Studies and Human Trials. Nutrients 2024; 16:1918. [PMID: 38931271 PMCID: PMC11206721 DOI: 10.3390/nu16121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic nephropathy (DN), defined as continuously elevated urinary albumin and a diminished estimated glomerular filtration rate, is a serious complication of both type 1 diabetes and type 2 diabetes and is the main cause of end-stage kidney disease. Patients with end-stage renal disease require chronic kidney dialysis and/or a kidney transplantation. Research highlights the role of diet in modulating specific signaling pathways that are instrumental in the progression of DN. Nutrient-sensitive pathways, affected by nutritional compounds and dietary components, offer a novel perspective on the management of DN by influencing inflammation, oxidative stress, and nutrient metabolism. Animal models have identified signaling pathways related to glucose metabolism, inflammation responses, autophagy, and lipid metabolism, while human population studies have contributed to the clinical significance of designing medical and nutritional therapies to attenuate DN progression. Here, we will update recent progress in research into the renoprotective or therapeutic effects of nutritional compounds, and potential nutrition-modulated pathways.
Collapse
Affiliation(s)
- Jiayi Zhou
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - W. H. Davin Townley-Tilson
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Nobuyo Maeda-Smithies
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
3
|
Pozzi M, Vantaggiato C, Brivio F, Orso G, Bassi MT. Olanzapine, risperidone and ziprasidone differently affect lysosomal function and autophagy, reflecting their different metabolic risk in patients. Transl Psychiatry 2024; 14:13. [PMID: 38191558 PMCID: PMC10774340 DOI: 10.1038/s41398-023-02686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
The metabolic effects induced by antipsychotics in vitro depend on their action on the trafficking and biosynthesis of sterols and lipids. Previous research showed that antipsychotics with different adverse effects in patients cause similar alterations in vitro, suggesting the low clinical usefulness of cellular studies. Moreover, the inhibition of peripheral AMPK was suggested as potential aetiopathogenic mechanisms of olanzapine, and different effects on autophagy were reported for several antipsychotics. We thus assessed, in clinically-relevant culture conditions, the aetiopathogenic mechanisms of olanzapine, risperidone and ziprasidone, antipsychotics with respectively high, medium, low metabolic risk in patients, finding relevant differences among them. We highlighted that: olanzapine impairs lysosomal function affecting autophagy and autophagosome clearance, and increasing intracellular lipids and sterols; ziprasidone activates AMPK increasing the autophagic flux and reducing intracellular lipids; risperidone increases lipid accumulation, while it does not affect lysosomal function. These in vitro differences align with their different impact on patients. We also provided evidence that metformin add-on improved autophagy in olanzapine-treated cells and reduced lipid accumulation induced by both risperidone and olanzapine in an AMPK-dependent way; metformin also increased the production of bile acids to eliminate cholesterol accumulations caused by olanzapine. These results have different clinical implications. We demonstrated that antipsychotics with different metabolic impacts on patients actually have different mechanisms of action, thus supporting the possibility of a personalised antipsychotic treatment. Moreover, we found that metformin can fully revert the phenotype caused by risperidone but not the one caused by olanzapine, that still activates SREBP2.
Collapse
Affiliation(s)
- Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy.
| | - Chiara Vantaggiato
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Francesca Brivio
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Maria Teresa Bassi
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| |
Collapse
|
4
|
Wang W, Yang W, Dai Y, Liu J, Chen ZY. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027889 DOI: 10.1021/acs.jafc.2c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The prevalence of diabetes mellitus and obesity is increasing worldwide. Bioactive peptides are naturally present in foods or in food-derived proteins. Recent research has shown that these bioactive peptides have an array of possible health benefits in the management of diabetes and obesity. First, this review will summarize the top-down and bottom-up production methods of the bioactive peptides from different protein sources. Second, the digestibility, bioavailability, and metabolic fate of the bioactive peptides are discussed. Last, the present review will discuss and explore the mechanisms by which these bioactive peptides help against obesity and diabetes based on in vitro and in vivo studies. Although several clinical studies have demonstrated that bioactive peptides are beneficial in alleviating diabetes and obesity, more double-blind randomized controlled trials are needed in the future. This review has provided novel insights into the potential of food-derived bioactive peptides as functional foods or nutraceuticals to manage obesity and diabetes.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yi Dai
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
5
|
Bustamante-Barrientos FA, Méndez-Ruette M, Molina L, Koning T, Ehrenfeld P, González CB, Wyneken U, Henzi R, Bátiz LF. Alpha-SNAP (M105I) mutation promotes neuronal differentiation of neural stem/progenitor cells through overactivation of AMPK. Front Cell Dev Biol 2023; 11:1061777. [PMID: 37113766 PMCID: PMC10127105 DOI: 10.3389/fcell.2023.1061777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background: The M105I point mutation in α-SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein-alpha) leads in mice to a complex phenotype known as hyh (hydrocephalus with hop gait), characterized by cortical malformation and hydrocephalus, among other neuropathological features. Studies performed by our laboratory and others support that the hyh phenotype is triggered by a primary alteration in embryonic neural stem/progenitor cells (NSPCs) that leads to a disruption of the ventricular and subventricular zones (VZ/SVZ) during the neurogenic period. Besides the canonical role of α-SNAP in SNARE-mediated intracellular membrane fusion dynamics, it also negatively modulates AMP-activated protein kinase (AMPK) activity. AMPK is a conserved metabolic sensor associated with the proliferation/differentiation balance in NSPCs. Methods: Brain samples from hyh mutant mice (hydrocephalus with hop gait) (B6C3Fe-a/a-Napahyh/J) were analyzed by light microscopy, immunofluorescence, and Western blot at different developmental stages. In addition, NSPCs derived from WT and hyh mutant mice were cultured as neurospheres for in vitro characterization and pharmacological assays. BrdU labeling was used to assess proliferative activity in situ and in vitro. Pharmacological modulation of AMPK was performed using Compound C (AMPK inhibitor) and AICAR (AMPK activator). Results: α-SNAP was preferentially expressed in the brain, showing variations in the levels of α-SNAP protein in different brain regions and developmental stages. NSPCs from hyh mice (hyh-NSPCs) displayed reduced levels of α-SNAP and increased levels of phosphorylated AMPKα (pAMPKαThr172), which were associated with a reduction in their proliferative activity and a preferential commitment with the neuronal lineage. Interestingly, pharmacological inhibition of AMPK in hyh-NSPCs increased proliferative activity and completely abolished the increased generation of neurons. Conversely, AICAR-mediated activation of AMPK in WT-NSPCs reduced proliferation and boosted neuronal differentiation. Discussion: Our findings support that α-SNAP regulates AMPK signaling in NSPCs, further modulating their neurogenic capacity. The naturally occurring M105I mutation of α-SNAP provokes an AMPK overactivation in NSPCs, thus connecting the α-SNAP/AMPK axis with the etiopathogenesis and neuropathology of the hyh phenotype.
Collapse
Affiliation(s)
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- PhD Program in Biomedicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos B. González
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Ursula Wyneken
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Roberto Henzi
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Laboratorio de Reproducción Animal, Escuela de Medicina Veterinaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- *Correspondence: Luis Federico Bátiz, ; Roberto Henzi,
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- *Correspondence: Luis Federico Bátiz, ; Roberto Henzi,
| |
Collapse
|
6
|
Zhou S, Shi X, Song C, Wang Y, Lai M, Chen X, Zhang C, Chen H, Fang X. SNP discovery of PRKAB1 gene and their associations with growth traits in goats. Anim Biotechnol 2022; 33:1613-1619. [PMID: 34106801 DOI: 10.1080/10495398.2021.1920426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AMPK plays an important role in regulating the metabolism of carbohydrate, lipid and protein in an organism, and is considered to be a key regulator of cellular energy homeostasis. In recent years, attention has been drawn to AMPK subunit polymorphisms and their association with economical traits of domestic animals and fowls. PRKAB1 encodes the β1 regulatory subunit of AMPK, and it has been reported that PRKAB1 may be applied in breeding programs of meat-type chicken. To date, the polymorphism of goat PRKAB1 gene and its associations remain unknown. In this paper, the polymorphism of PRKAB1 gene was detected in 316 goats of three breeds. A total of four novel single nucleotide polymorphisms (SNPs) of PRKAB1 gene were revealed by sequence analysis. Among them, three were in the coding region (285 C > A, 297 C > A, 309 C > T), and they were all synonymous. One was in the intron (229 A > G). The associations between polymorphic loci and the growth traits of Xuhuai and Haimen goats were analyzed, and significant associations were found in body length index and trunk index (p < 0.05) for Xuhuai breed, while no significant associations in Haimen breed. Our results provide useful information for the improvement and breeding of Chinese native goats.
Collapse
Affiliation(s)
- Shengliang Zhou
- College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiuying Shi
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Min Lai
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
7
|
Belo do Nascimento I, Verfaillie M, Ates G, Beckers P, Joris V, Desmet N, Massie A, Hermans E. AMPK Modulates the Metabolic Adaptation of C6 Glioma Cells in Glucose-Deprived Conditions without Affecting Glutamate Transport. Cells 2022; 11:cells11111800. [PMID: 35681495 PMCID: PMC9180554 DOI: 10.3390/cells11111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Energy homeostasis in the central nervous system largely depends on astrocytes, which provide metabolic support and protection to neurons. Astrocytes also ensure the clearance of extracellular glutamate through high-affinity transporters, which indirectly consume ATP. Considering the role of the AMP-activated protein kinase (AMPK) in the control of cell metabolism, we have examined its implication in the adaptation of astrocyte functions in response to a metabolic stress triggered by glucose deprivation. We genetically modified the astrocyte-like C6 cell line to silence AMPK activity by overexpressing a dominant negative mutant of its catalytic subunit. Upon glucose deprivation, we found that C6 cells maintain stable ATP levels and glutamate uptake capacity, highlighting their resilience during metabolic stress. In the same conditions, cells with silenced AMPK activity showed a reduction in motility, metabolic activity, and ATP levels, indicating that their adaptation to stress is compromised. The rate of ATP production remained, however, unchanged by AMPK silencing, suggesting that AMPK mostly influences energy consumption during stress conditions in these cells. Neither AMPK modulation nor prolonged glucose deprivation impaired glutamate uptake. Together, these results indicate that AMPK contributes to the adaptation of astrocyte metabolism triggered by metabolic stress, but not to the regulation of glutamate transport.
Collapse
Affiliation(s)
- Inês Belo do Nascimento
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
| | - Marie Verfaillie
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
| | - Gamze Ates
- Center for Neurosciences, Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (G.A.); (A.M.)
| | - Pauline Beckers
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
| | - Virginie Joris
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Nathalie Desmet
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
| | - Ann Massie
- Center for Neurosciences, Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (G.A.); (A.M.)
| | - Emmanuel Hermans
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
- Correspondence: ; Tel.: +32-2764-9339
| |
Collapse
|
8
|
Inhibition of T-antigen expression promoting glycogen synthase kinase 3 impairs merkel cell carcinoma cell growth. Cancer Lett 2022; 524:259-267. [PMID: 34715251 DOI: 10.1016/j.canlet.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Merkel cell carcinoma is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV). Since proliferation of MCPyV-positive MCC tumor cells strictly depends on expression of the virus-encoded T antigens (TA), these proteins theoretically represent ideal targets for different kinds of therapeutic approaches. Here we developed a cell-based assay to identify compounds which specifically inhibit growth of MCC cells by repressing TA expression. Applying this technique we screened a kinase inhibitor library and identified six compounds targeting glycogen synthase kinase 3 (GSK3) such as CHIR99021 as suppressors of TA transcription in MCC cells. Involvement of GSK3α and -β in the regulation of TA-expression was confirmed by combining GSK3A knockout with inducible GSK3B shRNA knockdown since double knockouts could not be generated. Finally, we demonstrate that CHIR99021 exhibits in vivo antitumor activity in an MCC xenograft mouse model suggesting GSK3 inhibitors as potential therapeutics for the treatment of MCC in the future.
Collapse
|
9
|
Chung YC, Hyun CG. Inhibitory Effects of Pinostilbene on Adipogenesis in 3T3-L1 Adipocytes: A Study of Possible Mechanisms. Int J Mol Sci 2021; 22:ijms222413446. [PMID: 34948240 PMCID: PMC8704071 DOI: 10.3390/ijms222413446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a phytoalexin with multiple bioactive properties, including antioxidative, neuroprotective, cardioprotective, and anticancer effects. However, resveratrol exhibits structural instability in response to UV irradiation, alkaline pH, and oxygen exposure. Thus, resveratrol derivatives have attracted considerable research interest. In this study, we aimed to evaluate the anti-adipogenic effects of pinostilbene hydrate (PH), a methylated resveratrol derivative, in 3T3-L1 cells. We also evaluated the mechanisms underlying the effects of PH on adipogenesis in 3T3-L1 adipocytes. Oil Red O staining, lipid accumulation assay, and triglyceride (TG) content assay revealed that PH significantly inhibited lipid and TG accumulation without cytotoxicity. In addition, we determined that PH decreased the expression of adipogenesis-related transcription factors, such as PPARγ, C/EBPα, SREBP-1c, and FABP4, and the phosphorylation of MAPK and protein kinase B (AKT). Moreover, PH attenuated the expression of CREB and C/EBPβ, while increasing the phosphorylation of AMPK and ACC, and decreasing the expression of fatty acid synthase and FABP4. Based on these results, we suggest that PH suppresses adipogenesis in 3T3-L1 cells via the activation of the AMPK signaling pathway and the inhibition of the MAPK and AKT insulin-dependent signaling pathways.
Collapse
|
10
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
McKay LK, White JP. The AMPK/p27 Kip1 Pathway as a Novel Target to Promote Autophagy and Resilience in Aged Cells. Cells 2021; 10:cells10061430. [PMID: 34201101 PMCID: PMC8229180 DOI: 10.3390/cells10061430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Once believed to solely function as a cyclin-dependent kinase inhibitor, p27Kip1 is now emerging as a critical mediator of autophagy, cytoskeletal dynamics, cell migration and apoptosis. During periods of metabolic stress, the subcellular location of p27Kip1 largely dictates its function. Cytoplasmic p27Kip1 has been found to be promote cellular resilience through autophagy and anti-apoptotic mechanisms. Nuclear p27Kip1, however, inhibits cell cycle progression and makes the cell susceptible to quiescence, apoptosis, and/or senescence. Cellular location of p27Kip1 is regulated, in part, by phosphorylation by various kinases, including Akt and AMPK. Aging promotes nuclear localization of p27Kip1 and a predisposition to senescence or apoptosis. Here, we will review the role of p27Kip1 in healthy and aging cells with a particular emphasis on the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
- Lauren K. McKay
- Adams School of Dentistry, UNC Chapel Hill, Chapel Hill, NC 27599, USA;
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
| | - James P. White
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Correspondence:
| |
Collapse
|
12
|
Ammar HI, Shamseldeen AM, Shoukry HS, Ashour H, Kamar SS, Rashed LA, Fadel M, Srivastava A, Dhingra S. Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol Heart Circ Physiol 2021; 320:H1290-H1302. [PMID: 33513084 DOI: 10.1152/ajpheart.00317.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have demonstrated potential in treating diabetic cardiomyopathy. However, patients with diabetes are on multiple drugs and there is a lack of understanding of how transplanted stem cells would respond in presence of such drugs. Metformin is an AMP kinase (AMPK) activator, the widest used antidiabetic drug. In this study, we investigated the effect of metformin on the efficacy of stem cell therapy in a diabetic cardiomyopathy animal model using streptozotocin (STZ) in male Wistar rats. To comprehend the effect of metformin on the efficacy of BM-MSCs, we transplanted BM-MSCs (1 million cells/rat) with or without metformin. Our data demonstrate that transplantation of BM-MSCs prevented cardiac fibrosis and promoted angiogenesis in diabetic hearts. However, metformin supplementation downregulated BM-MSC-mediated cardioprotection. Interestingly, both BM-MSCs and metformin treatment individually improved cardiac function with no synergistic effect of metformin supplementation along with BM-MSCs. Investigating the mechanisms of loss of efficacy of BM-MSCs in the presence of metformin, we found that metformin treatment impairs homing of implanted BM-MSCs in the heart and leads to poor survival of transplanted cells. Furthermore, our data demonstrate that metformin-mediated activation of AMPK is responsible for poor homing and survival of BM-MSCs in the diabetic heart. Hence, the current study confirms that a conflict arises between metformin and BM-MSCs for treating diabetic cardiomyopathy. Approximately 10% of the world population is diabetic to which metformin is prescribed very commonly. Hence, future cell replacement therapies in combination with AMPK inhibitors may be more effective for patients with diabetes.NEW & NOTEWORTHY Metformin treatment reduces the efficacy of mesenchymal stem cell therapy for cardiac repair during diabetic cardiomyopathy. Stem cell therapy in diabetics may be more effective in combination with AMPK inhibitors.
Collapse
Affiliation(s)
- Hania Ibrahim Ammar
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Heba Samy Shoukry
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Ashour
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa Samir Kamar
- Department of Medical Histology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mostafa Fadel
- Diagnostic Imaging and Endoscopy Unit, Animal Reproduction Research Institute, Cairo, Egypt
| | - Abhay Srivastava
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Oringanje C, Delacruz LR, Han Y, Luckhart S, Riehle MA. Overexpression of Activated AMPK in the Anopheles stephensi Midgut Impacts Mosquito Metabolism, Reproduction and Plasmodium Resistance. Genes (Basel) 2021; 12:genes12010119. [PMID: 33478058 PMCID: PMC7835765 DOI: 10.3390/genes12010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial integrity and homeostasis in the midgut are key factors controlling mosquito fitness and anti-pathogen resistance. Targeting genes that regulate mitochondrial dynamics represents a potential strategy for limiting mosquito-borne diseases. AMP-activated protein kinase (AMPK) is a key cellular energy sensor found in nearly all eukaryotic cells. When activated, AMPK inhibits anabolic pathways that consume ATP and activates catabolic processes that synthesize ATP. In this study, we overexpressed a truncated and constitutively active α-subunit of AMPK under the control of the midgut-specific carboxypeptidase promotor in the midgut of female Anopheles stephensi. As expected, AMPK overexpression in homozygous transgenic mosquitoes was associated with changes in nutrient storage and metabolism, decreasing glycogen levels at 24 h post-blood feeding when transgene expression was maximal, and concurrently increasing circulating trehalose at the same time point. When transgenic lines were challenged with Plasmodium falciparum, we observed a significant decrease in the prevalence and intensity of infection relative to wild type controls. Surprisingly, we did not observe a significant difference in the survival of adult mosquitoes fed either sugar only or both sugar and bloodmeals throughout adult life. This may be due to the limited period that the transgene was activated before homeostasis was restored. However, we did observe a significant decrease in egg production, suggesting that manipulation of AMPK activity in the mosquito midgut resulted in the re-allocation of resources away from egg production. In summary, this work identifies midgut AMPK activity as an important regulator of metabolism, reproduction, and innate immunity in An. stephensi, a highly invasive and important malaria vector species.
Collapse
Affiliation(s)
| | | | - Yunan Han
- Department of Health Sciences, ECPI University, Virginia Beach, VA 23462, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
- Correspondence: ; Tel.: +1-520-626-8500
| |
Collapse
|
14
|
Rana U, Callan E, Entringer B, Michalkiewicz T, Joshi A, Parchur AK, Teng RJ, Konduri GG. AMP-Kinase Dysfunction Alters Notch Ligands to Impair Angiogenesis in Neonatal Pulmonary Hypertension. Am J Respir Cell Mol Biol 2020; 62:719-731. [PMID: 32048878 DOI: 10.1165/rcmb.2019-0275oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Decreased angiogenesis contributes to persistent pulmonary hypertension of the newborn (PPHN); mechanisms remain unclear. AMPK (5'AMP activated protein kinase) is a key regulator of cell metabolism. We investigated the hypothesis that a decrease in AMPK function leads to mitochondrial dysfunction and altered balance of notch ligands delta-like 4 (DLL4) and Jagged 1 (Jag1) to impair angiogenesis in PPHN. Studies were done in fetal lambs with PPHN induced by prenatal ductus arteriosus constriction and gestation-matched control lambs. PPHN lambs were treated with saline or AMPK agonist metformin. Angiogenesis was assessed in lungs with micro-computed tomography angiography and histology. AMPK function; expression of mitochondrial electron transport chain (ETC) complex proteins I-V, Dll4, and Jag1; mitochondrial number; and in vitro angiogenesis function were assessed in pulmonary artery endothelial cells (PAEC) from control and PPHN lambs. AMPK function was decreased in PPHN PAEC and lung sections. Expression of mitochondrial transcription factor, PGC-1α, ETC complex proteins I-V, and mitochondrial number were decreased in PPHN. In vitro angiogenesis of PAEC and capillary number and vessel volume fraction in the lung were decreased in PPHN. Expression of DLL4 was increased and Jag1 was decreased in PAEC from PPHN lambs. AMPK agonists A769662 and metformin increased the mitochondrial complex proteins and number, in vitro angiogenesis, and Jag1 levels and decreased DLL4 levels in PPHN PAEC. Infusion of metformin in vivo increased the vessel density in PPHN lungs. Decreased AMPK function contributes to impaired angiogenesis in PPHN by altered balance of notch ligands in PPHN.
Collapse
Affiliation(s)
- Ujala Rana
- Department of Pediatrics and Children's Research Institute, and
| | - Emily Callan
- Department of Pediatrics and Children's Research Institute, and
| | | | | | - Amit Joshi
- Department of Radiology and Center for Imaging, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Abdul K Parchur
- Department of Radiology and Center for Imaging, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ru-Jeng Teng
- Department of Pediatrics and Children's Research Institute, and
| | | |
Collapse
|
15
|
Xie G, Wang Y, Xu Q, Hu M, Zhu J, Bai W, Lin Y. Knockdown of adiponectin promotes the adipogenesis of goat intramuscular preadipocytes. Anim Biotechnol 2020; 33:408-416. [PMID: 32755436 DOI: 10.1080/10495398.2020.1800484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intramuscular fat (IMF) content determined by the intramuscular preadipocytes differentiation has a huge influence on the sensory quality traits of meats. It was reported that the adiponectin (ADIPOQ) gene could promote adipocytes differentiation, but the underlying molecular and functional characterization of the ADIPOQ for regulating goat IMF deposition remained unknown. Herein, the knockdown of ADIPOQ was mediated by siRNAs during goat intramuscular preadipocytes differentiation. Also, the qRT-PCR technique was performed to detect the mRNA levels of target genes in multiply experiment groups. These results showed that the ADIPOQ was expressed more than ∼400 folds in subcutaneous adipose tissue compared to that of heart tissue, and the mRNA level of ADIPOQ reached a peak at Hour 60 during the differentiation process, while at Hour 36 did ADIPOR1 and ADIPOR2. Moreover, the knockdown of ADIPOQ promoted the intramuscular preadipocytes differentiation and accelerated the lipid accumulation in the mature adipocytes with down-regulating the ADIPOR1 and preadipocyte factor 1 (Pref-1) mRNA levels and up-regulating the mRNA expression levels of the CAAT/enhancer-binding proteins (C/EBPs) and transcription factor peroxisomal proliferator-activated receptor γ (PPARγ), etc. Our study will provide a new opposite insight that the inhibition of ADIPOQ expression during intramuscular preadipocytes differentiation promotes goat IMF deposition.
Collapse
Affiliation(s)
- Guangjie Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Meng Hu
- College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| |
Collapse
|
16
|
Minokoshi Y, Nakajima KI, Okamoto S. Homeostatic versus hedonic control of carbohydrate selection. J Physiol 2020; 598:3831-3844. [PMID: 32643799 DOI: 10.1113/jp280066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 11/08/2022] Open
Abstract
Macronutrient intake is associated with cardiometabolic health, ageing and longevity, but the mechanisms underlying its regulation have remained unclear. Most rodents increase carbohydrate selection under certain physiological and pathological conditions such as fasting. When presented with a choice between a basally preferable high-fat diet (HFD) and a high-carbohydrate diet (HCD) such as a high-sucrose diet, fasted mice first eat the HFD and then switch to the HCD during the first few hours of refeeding and continue to eat the HCD up to 24 h in the two-diet choice approach. Such consumption of an HCD after fasting reverses the fasting-induced increase in the plasma concentration of ketone bodies more rapidly than does refeeding with an HFD alone. 5'-AMP-activated protein kinase (AMPK)-regulated neurons in the paraventricular nucleus of the hypothalamus (PVH) that express corticotropin-releasing hormone (CRH) are necessary and sufficient for the fasting-induced selection of carbohydrate over an HFD in mice. These neurons appear to contribute to a fasting-induced increase in the positive valence of carbohydrate without affecting the preference for more palatable and energy-dense diets such as an HFD. Identification of the neural circuits in which AMPK-regulated CRH neurons in the PVH of mice are embedded should shed new light on the physiological and molecular mechanisms responsible for macronutrient selection.
Collapse
Affiliation(s)
- Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,School of Life Science, The Graduate University for Advanced Studies SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Ken-Ichiro Nakajima
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,School of Life Science, The Graduate University for Advanced Studies SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shiki Okamoto
- Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| |
Collapse
|
17
|
Gutiérrez-Salmerón M, García-Martínez JM, Martínez-Useros J, Fernández-Aceñero MJ, Viollet B, Olivier S, Chauhan J, Lucena SR, De la Vieja A, Goding CR, Chocarro-Calvo A, García-Jiménez C. Paradoxical activation of AMPK by glucose drives selective EP300 activity in colorectal cancer. PLoS Biol 2020; 18:e3000732. [PMID: 32603375 PMCID: PMC7326158 DOI: 10.1371/journal.pbio.3000732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type–specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply–demand imbalances, critical for diabetes and cancer. Unexpectedly, we show here that, in gastrointestinal cancer cells, glucose activates AMPK to selectively induce EP300, but not CREB-binding protein (CBP). Consequently, EP300 is redirected away from nuclear receptors that promote differentiation towards β-catenin, a driver of proliferation and colorectal tumorigenesis. Importantly, blocking glycogen synthesis permits reactive oxygen species (ROS) accumulation and AMPK activation in response to glucose in previously nonresponsive cells. Notably, glycogen content and activity of the ROS/AMPK/EP300/β-catenin axis are opposite in healthy versus tumor sections. Glycogen content reduction from healthy to tumor tissue may explain AMPK switching from tumor suppressor to activator during tumor evolution. Metabolic context determines whether the key energy sensor AMPK is a tumor suppressor or tumor promoter. This paradoxical behavior is explained through glucose inhibition of AMPK in healthy tissue versus glucose induction of AMPK in cancer colon epithelial cells.
Collapse
Affiliation(s)
- María Gutiérrez-Salmerón
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | | | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Diaz-UAM, Madrid, Spain
| | | | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Severine Olivier
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia R. Lucena
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Antonio De la Vieja
- Unidad de Tumores Endocrinos (UFIEC), Instituto de Salud Carlos III and CiberOnc, Majadahonda, Madrid, Spain
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Chocarro-Calvo
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail: (ACC); (CGJ)
| | - Custodia García-Jiménez
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
- * E-mail: (ACC); (CGJ)
| |
Collapse
|
18
|
A phytoestrogen secoisolariciresinol diglucoside induces browning of white adipose tissue and activates non-shivering thermogenesis through AMPK pathway. Pharmacol Res 2020; 158:104852. [PMID: 32438038 DOI: 10.1016/j.phrs.2020.104852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Secoisolariciresinol diglucoside (SDG) is the main phytoestrogen component of flaxseed known as an antioxidant. Current study focused on the effect of SDG in white adipose tissue (WAT) browning. Browning of WAT is considered as a promising treatment strategy for metabolic diseases. To demonstrate the effect of SDG as an inducer of browning, brown adipocyte markers were investigated in inguinal WAT (iWAT) of high fat diet-fed obese mice and genetically obese db/db mice after SDG administration. SDG increased thermogenic factors such as uncoupling protein 1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha and PR domain containing 16 in iWAT and brown adipose tissue (BAT) of mice. Similar results were shown in beige-induced 3T3-L1 adipocytes and primary cultured brown adipocytes. Furthermore, SDG increased factors of mitochondrial biogenesis and activation. We also observed SDG-induced alteration of AMP-activated protein kinase α (AMPKα). As AMPKα is closely related in the regulation of adipogenesis and thermogenesis, we then evaluated the effect of SDG in AMPKα-inhibited conditions. Genetic or chemical inhibition of AMPKα demonstrated that the role of SDG on browning and thermogenesis was dependent on AMPKα signaling. In conclusion, our data suggest SDG as a potential candidate for improvement of obesity and other metabolic disorders.
Collapse
|
19
|
Evaluation of Stress-related Behavioral and Biological Activity of Ocimum sanctum Extract in Rats. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Park NH, Lee SJ, Mechesso AF, Boby N, Yixian Q, Yoon WK, Lee SP, Lee JS, Park SC. Hepatoprotective effects of gamma-aminobutyric acid-enriched fermented Hovenia dulcis extract on ethanol-induced liver injury in mice. BMC Complement Med Ther 2020; 20:75. [PMID: 32143613 PMCID: PMC7076742 DOI: 10.1186/s12906-020-2866-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Various extracts of Hovenia dulcis have been commonly used in Asia for cases of alcohol-related disorders. Fermentation is reported to enhance the level and biological activities of various bio-constituents of plant extracts. Therefore, this study was undertaken to evaluate the effects of fermented H. dulcis extract (FHDE) on ethanol-induced liver injury in mice. METHODS FHDE was prepared using Bacillus subtilis and Lactobacillus plantarum. The effects of FHDE on ethanol-induced liver injury were evaluated in C57BL/6 N CrSlc mice. A mixed feed preparation containing the fermented extract with and without ethanol was given to mice for 29 days, according to its group. At the end of the experiment, blood and liver samples were collected from all mice in the group. Plasma biochemical analysis and histopathological investigation were performed to evaluate the impacts of treatment on the biomarkers of hepatic damage and inflammatory changes. Besides, the expression of genes that regulate the activities of enzymes associated with alcohol metabolism, antioxidant activity, and fatty acid oxidation was assessed using a quantitative real-time polymerase chain reaction. Moreover, the amino acid contents and the active ingredients of the extract were evaluated before and after fermentation. RESULTS Fermentation resulted in a marked increase and decrease in the amount of Gamma-Amino-n-butyric acid (GABA) and glutamic acid, respectively. FHDE enhanced the body weight gain of mice compared to ethanol. Besides, plasma levels of triglyceride, low-density lipoprotein, the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were significantly (P < 0.05) reduced in the FHDE-treated groups relative to the ethanol-treated control. FHDE upregulated the expression of genes associated with enzymes involved in alcohol dehydrogenation (Adh1 and Aldh2), antioxidant activity (SOD and CAT), and fatty acid oxidation (PPAR-α and PGC-1α). However, the expressions of Cytochrome peroxidase Cyp2E1 and genes related to lipogenesis (SREBP-1c, FAS, SCD-1, and ACC) were significantly (P < 0.05) downregulated following treatment with the FHDE. Histopathological investigation demonstrated a slight degree of inflammatory cell infiltration and occasional fatty changes in the FHDE-treated groups. CONCLUSION The GABA-enriched fermented H. dulcis extract prevented ethanol-induced hepatic damage by enhancing the antioxidant defense system, fatty acid oxidation, and reducing lipogenesis.
Collapse
Affiliation(s)
- Na-Hye Park
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, 41566 Daegu, Republic of Korea
| | - Seung-Jin Lee
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, 41566 Daegu, Republic of Korea
| | - Abraham Fikru Mechesso
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, 41566 Daegu, Republic of Korea
| | - Naila Boby
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, 41566 Daegu, Republic of Korea
| | - Quah Yixian
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, 41566 Daegu, Republic of Korea
| | - Woong-Kyu Yoon
- Department of Food Science and Technology, Keimyung University, Daegu, 42601 Republic of Korea
| | - Sam-Pin Lee
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, 41566 Daegu, Republic of Korea
| | - Jong-Suk Lee
- Biocenter, Gyeonggido Business and Science Accelerator (GBSA), Suwon, Gyeonggi-do 16229 Republic of Korea
| | - Seung-Chun Park
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, 41566 Daegu, Republic of Korea
| |
Collapse
|
21
|
Bouras H, Roig SR, Kurstjens S, Tack CJJ, Kebieche M, de Baaij JHF, Hoenderop JGJ. Metformin regulates TRPM6, a potential explanation for magnesium imbalance in type 2 diabetes patients. Can J Physiol Pharmacol 2020; 98:400-411. [PMID: 32017603 DOI: 10.1139/cjpp-2019-0570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metformin therapy is associated with lower serum magnesium (Mg2+) levels in type 2 diabetes patients. The TRPM6 channel determines the fine-tuning of Mg2+ (re)absorption in intestine and kidney. Therefore, we aimed to investigate the short- and long-term effects of metformin on TRPM6. Patch clamp recordings and biotinylation assays were performed upon 1 h of incubation with metformin in TRPM6-transfected HEK293 cells. Additionally, 24 h of treatment of mDCT15 kidney and hCaco-2 colon cells with metformin was applied to measure the effects on endogenous TRPM6 expression by quantitative real-time PCR. To assess Mg2+ absorption, 25Mg2+ uptake measurements were performed using inductively coupled plasma mass spectrometry. Short-term effects of metformin significantly increased TRPM6 activity and its cell surface trafficking. In contrast, long-term effects significantly decreased TRPM6 mRNA expression and 25Mg2+ uptake. Metformin lowered TRPM6 mRNA levels independently of insulin- and AMPK-mediated pathways. Moreover, in type 2 diabetes patients, metformin therapy was associated with lower plasma Mg2+ concentrations and fractional excretion of Mg2+. Thereby, short-term metformin treatment increases TRPM6 activity explained by enhanced cell surface expression. Conversely, long-term metformin treatment results in downregulation of TRPM6 gene expression in intestine and kidney cells. This long-term effect translated in an inverse correlation between metformin and plasma Mg2+ concentration in type 2 diabetes patients.
Collapse
Affiliation(s)
- Hacene Bouras
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Faculty of Nature and Life Sciences, University of Mohamed Seddik Ben Yahia, Jijel, Algeria
| | - Sara R Roig
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Steef Kurstjens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cees J J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mohamed Kebieche
- Faculty of Nature and Life Sciences, University of Batna2, Algeria
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Chetina EV, Markova GA, Sharapova EP. [there any association of metabolic disturbances with joint destruction and pain?]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 65:441-456. [PMID: 31876515 DOI: 10.18097/pbmc20196506441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteoarthritis and type 2 diabetes mellitus represent two the most common chronic diseases. They possess many shared epidemiologic traits, have common risk factors, and embody heterogeneous multifactorial pathologies, which develop due to interaction of genetic an environmental factors. In addition, these diseases are often occurring in the same patient. In spite of the differences in clinical manifestation both diseases have similar disturbances of cellular metabolism, primarily associated with ATP production and utilization. The review discusses molecular mechanisms determining pathophysiological processes associated with glucose and lipid metabolism as well as the means aiming to alleviate the disturbances of energy metabolism as a new a therapeutic approach.
Collapse
Affiliation(s)
- E V Chetina
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - G A Markova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - E P Sharapova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
23
|
Noor HB, Mou NA, Salem L, Shimul MF, Biswas S, Akther R, Khan S, Raihan S, Mohib MM, Sagor MA. Anti-inflammatory Property of AMP-activated Protein Kinase. Antiinflamm Antiallergy Agents Med Chem 2020; 19:2-41. [PMID: 31530260 PMCID: PMC7460777 DOI: 10.2174/1871523018666190830100022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND One of the many debated topics in inflammation research is whether this scenario is really an accelerated form of human wound healing and immunityboosting or a push towards autoimmune diseases. The answer requires a better understanding of the normal inflammatory process, including the molecular pathology underlying the possible outcomes. Exciting recent investigations regarding severe human inflammatory disorders and autoimmune conditions have implicated molecular changes that are also linked to normal immunity, such as triggering factors, switching on and off, the influence of other diseases and faulty stem cell homeostasis, in disease progression and development. METHODS We gathered around and collected recent online researches on immunity, inflammation, inflammatory disorders and AMPK. We basically searched PubMed, Scopus and Google Scholar to assemble the studies which were published since 2010. RESULTS Our findings suggested that inflammation and related disorders are on the verge and interfere in the treatment of other diseases. AMPK serves as a key component that prevents various kinds of inflammatory signaling. In addition, our table and hypothetical figures may open a new door in inflammation research, which could be a greater therapeutic target for controlling diabetes, obesity, insulin resistance and preventing autoimmune diseases. CONCLUSION The relationship between immunity and inflammation becomes easily apparent. Yet, the essence of inflammation turns out to be so startling that the theory may not be instantly established and many possible arguments are raised for its clearance. However, this study might be able to reveal some possible approaches where AMPK can reduce or prevent inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Md A.T. Sagor
- Address correspondence to this author at the Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; Tel: +8801719130130; E-mail:
| |
Collapse
|
24
|
Kuwako KI, Okano H. The LKB1-SIK Pathway Controls Dendrite Self-Avoidance in Purkinje Cells. Cell Rep 2019; 24:2808-2818.e4. [PMID: 30208308 DOI: 10.1016/j.celrep.2018.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/12/2018] [Accepted: 08/08/2018] [Indexed: 02/08/2023] Open
Abstract
Strictly controlled dendrite patterning underlies precise neural connection. Dendrite self-avoidance is a crucial system preventing self-crossing and clumping of dendrites. Although many cell-surface molecules that regulate self-avoidance have been identified, the signaling pathway that orchestrates it remains poorly understood, particularly in mammals. Here, we demonstrate that the LKB1-SIK kinase pathway plays a pivotal role in the self-avoidance of Purkinje cell (PC) dendrites by ensuring dendritic localization of Robo2, a regulator of self-avoidance. LKB1 is activated in developing PCs, and PC-specific deletion of LKB1 severely disrupts the self-avoidance of PC dendrites without affecting gross morphology. SIK1 and SIK2, downstream kinases of LKB1, mediate LKB1-dependent dendrite self-avoidance. Furthermore, loss of LKB1 leads to significantly decreased Robo2 levels in the dendrite but not in the cell body. Finally, restoration of dendritic Robo2 level via overexpression largely rescues the self-avoidance defect in LKB1-deficient PCs. These findings reveal an LKB1-pathway-mediated developmental program that establishes dendrite self-avoidance.
Collapse
Affiliation(s)
- Ken-Ichiro Kuwako
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
25
|
Okamoto S, Sato T, Tateyama M, Kageyama H, Maejima Y, Nakata M, Hirako S, Matsuo T, Kyaw S, Shiuchi T, Toda C, Sedbazar U, Saito K, Asgar NF, Zhang B, Yokota S, Kobayashi K, Foufelle F, Ferré P, Nakazato M, Masuzaki H, Shioda S, Yada T, Kahn BB, Minokoshi Y. Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Rep 2019; 22:706-721. [PMID: 29346768 DOI: 10.1016/j.celrep.2017.11.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/28/2017] [Accepted: 11/29/2017] [Indexed: 12/28/2022] Open
Abstract
Food selection is essential for metabolic homeostasis and is influenced by nutritional state, food palatability, and social factors such as stress. However, the mechanism responsible for selection between a high-carbohydrate diet (HCD) and a high-fat diet (HFD) remains unknown. Here, we show that activation of a subset of corticotropin-releasing hormone (CRH)-positive neurons in the rostral region of the paraventricular hypothalamus (PVH) induces selection of an HCD over an HFD in mice during refeeding after fasting, resulting in a rapid recovery from the change in ketone metabolism. These neurons manifest activation of AMP-activated protein kinase (AMPK) during food deprivation, and this activation is necessary and sufficient for selection of an HCD over an HFD. Furthermore, this effect is mediated by carnitine palmitoyltransferase 1c (CPT1c). Thus, our results identify the specific neurons and intracellular signaling pathway responsible for regulation of the complex behavior of selection between an HCD and an HFD. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Shiki Okamoto
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami-gun, Okinawa 903-0215, Japan
| | - Tatsuya Sato
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Michihiro Tateyama
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Haruaki Kageyama
- Department of Nutrition, Faculty of Health Care, Kiryu University, 606-7 Kasakake-cho Azami, Midori, Gunma 379-2392, Japan
| | - Yuko Maejima
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Masanori Nakata
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, 1288 Magome, Iwatsuki-ku, Saitama-shi, Saitama 339-8539, Japan
| | - Takashi Matsuo
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Sanda Kyaw
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiology, University of Medicine 1, Yangon, Myanmar
| | - Tetsuya Shiuchi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Chitoku Toda
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Udval Sedbazar
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kumiko Saito
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Nur Farehan Asgar
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Boyang Zhang
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Shigefumi Yokota
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kenta Kobayashi
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Section of Viral Vector Development, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Fabienne Foufelle
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Pascal Ferré
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hiroaki Masuzaki
- Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami-gun, Okinawa 903-0215, Japan
| | - Seiji Shioda
- Division of Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
26
|
Abstract
The role of the energy sensor AMPK-activated protein kinase (AMPK) in the insulin-secreting β-cell remains unclear and a subject of intense research. With this chapter, we aim to provide a detailed description of the methods that our group routinely applies to the study of AMPK function in mouse and human pancreatic islets. Thus, we provide detailed protocols to isolate and/or culture mouse and human islets, to modulate and measure AMPK activity in isolated islets, and to evaluate its impact on islet function.
Collapse
|
27
|
Isoquercetin Improves Hepatic Lipid Accumulation by Activating AMPK Pathway and Suppressing TGF-β Signaling on an HFD-Induced Nonalcoholic Fatty Liver Disease Rat Model. Int J Mol Sci 2018; 19:ijms19124126. [PMID: 30572631 PMCID: PMC6321444 DOI: 10.3390/ijms19124126] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Isoquercetin (IQ), a glucoside derivative of quercetin, has been reported to have beneficial effects in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the potential improvement of IQ in liver lipid accumulation, inflammation, oxidative condition, and activation in Kupffer cells (KCs) on a high-fat diet (HFD) induced NAFLD models. Male Sprague-Dawley (SD) rats were induced by HFD, lipopolysaccharides/free fatty acids (LPS/FFA) induced co-culture cells model between primary hepatocytes and Kupffer cells was used to test the effects and the underlying mechanism of IQ. Molecular docking was performed to predict the potential target of IQ. Significant effects of IQ were found on reduced lipid accumulation, inflammation, and oxidative stress. In addition, AMP-activated protein kinase (AMPK) pathway was activated by IQ, and is plays an important role in lipid regulation. Meanwhile, IQ reversed the increase of activated KCs which caused by lipid overload, and also suppression of Transforming growth factor beta (TGF-β) signaling by TGF-β Recptor-1 and SMAD2/3 signaling. Finally, TGF-βR1 and TGF-βR2 were both found may involve in the mechanism of IQ. IQ can improve hepatic lipid accumulation and decrease inflammation and oxidative stress by its activating AMPK pathway and suppressing TGF-β signaling to alleviate NAFLD.
Collapse
|
28
|
Differential Role of Hypothalamic AMPKα Isoforms in Fish: an Evolutive Perspective. Mol Neurobiol 2018; 56:5051-5066. [PMID: 30460617 DOI: 10.1007/s12035-018-1434-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
In mammals, hypothalamic AMP-activated protein kinase (AMPK) α1 and α2 isoforms mainly relate to regulation of thermogenesis/liver metabolism and food intake, respectively. Since both isoforms are present in fish, which do not thermoregulate, we assessed their role(s) in hypothalamus regarding control of food intake and energy homeostasis. Since many fish species are carnivorous and mostly mammals are omnivorous, assessing if the role of hypothalamic AMPK is different is also an open question. Using the rainbow trout as a fish model, we first observed that food deprivation for 5 days did not significantly increase phosphorylation status of AMPKα in hypothalamus. Then, we administered adenoviral vectors that express dominant negative (DN) AMPKα1 or AMPKα2 isoforms. The inhibition of AMPKα2 (but not AMPKα1) led to decreased food intake. The central inhibition of AMPKα2 resulted in liver with decreased capacity of use and synthesis of glucose, lipids, and amino acids suggesting that a signal of nutrient abundance flows from hypothalamus to the liver, thus suggesting a role for central AMPKα2 in the regulation of peripheral metabolism in fishes. The central inhibition of AMPKα1 induced comparable changes in liver metabolism though at a lower extent. From an evolutionary point of view, it is of interest that the function of central AMPKα2 remained similar throughout the vertebrate lineage. In contrast, the function of central AMPKα1 in fish relates to modulation of liver metabolism whereas in mammals modulates not only liver metabolism but also brown adipose tissue and thermogenesis.
Collapse
|
29
|
Context-dependent AMPK activation distinctly regulates TAp73 stability and transcriptional activity. Signal Transduct Target Ther 2018; 3:20. [PMID: 30057793 PMCID: PMC6062496 DOI: 10.1038/s41392-018-0020-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
TAp73, the homologue of the tumour suppressor p53, has dual roles in tumourigenesis: both as a tumour suppressor and as a promoter of tumour growth. We have recently shown that hypoxia, a condition prevalent in tumours, results in the stabilisation of TAp73 through a mechanism involving HIF-1α-mediated repression of the E3 ligase Siah1. Elevated TAp73 in turn regulates the angiogenic transcriptional programme, exemplified by vegf-A activation, thereby promoting angiogenesis and tumour growth. To further understand hypoxia-mediated TAp73 regulation, we have focused on the Adenosine monophosphate (AMP)-dependent protein kinase (AMPK) signalling pathway induced by hypoxia. We show that hypoxia-mediated AMPK activation is required for efficient TAp73 stabilisation, through multiple means by using AMPK-deficient cells or inhibiting its activity and expression. Conversely, direct AMPK activation using its activator AICAR is also sufficient to induce TAp73 stabilisation but this is independent of putative AMPK phosphorylation sites on TAp73, HIF-1α activation, and transcriptional repression of Siah1. Furthermore, while vegf-A up-regulation upon hypoxia requires AMPK, direct activation of AMPK by AICAR does not activate vegf-A. Consistently, supernatant from cells exposed to hypoxia, but not AICAR, was able to induce tube formation in HUVECs. These data therefore highlight that the processes of TAp73 stabilisation and transcriptional activation of angiogenic target genes by AMPK activation can be decoupled. Collectively, these results suggest that the context of AMPK activation determines the effect on TAp73, and proposes a model in which hypoxia-induced TAp73 stabilisation occurs by parallel pathways converging to mediate its transactivation potential. The stabilisation of an important signalling protein can fuel tumour growth and progression—but only under the right environmental conditions. Paradoxically, the TAp73 protein can both suppress tumorigenesis and stimulate formation of tumour-feeding blood vessels. The latter effect appears to be linked with exposure to oxygen-poor conditions within solid tumours, and researchers led by Kanaga Sabapathy at Singapore’s National Cancer Centre recently explored the mechanisms regulating TAp73 activity. Sabapathy’s team showed that the action of a protein called AMPK helps to prevent TAp73 from being degraded. However, activation of AMPK in isolation is insufficient to promote TAp73-mediated blood vessel growth. Instead, the researchers only observed this effect when AMPK was specifically activated due to oxygen deprivation, revealing the existence of multiple TAp73-regulating pathways that could explain this protein’s seemingly contradictory effects on cell growth.
Collapse
|
30
|
Varjabedian L, Bourji M, Pourafkari L, Nader ND. Cardioprotection by Metformin: Beneficial Effects Beyond Glucose Reduction. Am J Cardiovasc Drugs 2018; 18:181-193. [PMID: 29478240 DOI: 10.1007/s40256-018-0266-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metformin is a biguanide that is widely used as an insulin-sparing agent to treat diabetes. When compared with the general population, diabetics are twice as likely to die from fatal myocardial infarction and congestive heart failure (CHF). There has been a significant concern regarding the use of metformin in patients with CHF because of their higher tendency to develop lactic acidosis. However, large epidemiological trials have reported better cardiovascular prognosis with metformin compared to other glucose-lowering agents among diabetics. Additionally, metformin has reduced the risk of reinfarction and all-cause mortality in patients with coronary artery disease and CHF, respectively. The protection against cardiovascular diseases appears to be independent of the anti-hyperglycemic effects of metformin. These effects are mediated through an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and by increased phosphorylation of endothelial nitric oxide synthase (eNOS) in cardiomyocytes with an increased production of nitric oxide (NO). Metformin preconditions the heart against ischemia-reperfusion injury and may improve myocardial remodeling after an ischemic insult. The preponderance of evidence currently suggests that metformin is safe in patients with CHF, prompting the Food and Drug Administration to remove CHF as a contraindication from the package insert of all generic metformin preparations. In this narrative, along with a limited meta-analysis of available studies, we have reviewed the pleiotropic (non-glucose-lowering) effects of metformin that potentially contribute to its cardioprotective properties. Additionally, we have reviewed issues surrounding the safety of metformin in patients with cardiac diseases.
Collapse
Affiliation(s)
| | - Mohammad Bourji
- Department of Medicine, University at Buffalo, Buffalo, NY, 14203, USA
| | - Leili Pourafkari
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street # 550, Buffalo, NY, 14203, USA
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street # 550, Buffalo, NY, 14203, USA.
| |
Collapse
|
31
|
Mancini SJ, Boyd D, Katwan OJ, Strembitska A, Almabrouk TA, Kennedy S, Palmer TM, Salt IP. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci Rep 2018; 8:5276. [PMID: 29588466 PMCID: PMC5869674 DOI: 10.1038/s41598-018-23420-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Recent clinical trials of the hypoglycaemic sodium-glucose co-transporter-2 (SGLT2) inhibitors, which inhibit renal glucose reabsorption, have reported beneficial cardiovascular outcomes. Whether SGLT2 inhibitors directly affect cardiovascular tissues, however, remains unclear. We have previously reported that the SGLT2 inhibitor canagliflozin activates AMP-activated protein kinase (AMPK) in immortalised cell lines and murine hepatocytes. As AMPK has anti-inflammatory actions in vascular cells, we examined whether SGLT2 inhibitors attenuated inflammatory signalling in cultured human endothelial cells. Incubation with clinically-relevant concentrations of canagliflozin, but not empagliflozin or dapagliflozin activated AMPK and inhibited IL-1β-stimulated adhesion of pro-monocytic U937 cells and secretion of IL-6 and monocyte chemoattractant protein-1 (MCP-1). Inhibition of MCP-1 secretion was attenuated by expression of dominant-negative AMPK and was mimicked by the direct AMPK activator, A769662. Stimulation of cells with either canagliflozin or A769662 had no effect on IL-1β-stimulated cell surface levels of adhesion molecules or nuclear factor-κB signalling. Despite these identical effects of canagliflozin and A769662, IL-1β-stimulated IL-6/MCP-1 mRNA was inhibited by canagliflozin, but not A769662, whereas IL-1β-stimulated c-jun N-terminal kinase phosphorylation was inhibited by A769662, but not canagliflozin. These data indicate that clinically-relevant canagliflozin concentrations directly inhibit endothelial pro-inflammatory chemokine/cytokine secretion by AMPK-dependent and -independent mechanisms without affecting early IL-1β signalling.
Collapse
Affiliation(s)
- Sarah J Mancini
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Daria Boyd
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Omar J Katwan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq
| | - Anastasiya Strembitska
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tarek A Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Medical School, University of Zawia, Zawia, Libya
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
32
|
Jang MH, Kim KY, Song PH, Baek SY, Seo HL, Lee EH, Lee SG, Park KI, Ahn SC, Kim SC, Kim YW. Moutan Cortex Protects Hepatocytes against Oxidative Injury through AMP-Activated Protein Kinase Pathway. Biol Pharm Bull 2018; 40:797-806. [PMID: 28566623 DOI: 10.1248/bpb.b16-00884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Moutan Cortex, the root bark of Paeonia suffruticosa ANDREWS in Ranunculaceae, has widely demonstrated analgesic, anti-spasmodic, and anti-inflammatory effects in various cancer and immune cell lines. Oxidative stress is associated with development of several diseases, including liver disease. We prepared the water extract of Moutan Cortex (MCE) to investigate the cytoprotective activities and its mechanism. MCE protected hepatocytes from arachidonic acid (AA)+iron induced oxidative stress, as indicated by reactive oxygen species (ROS) production and cell viability analysis. MCE also suppressed mitochondrial dysfunction in AA+iron-treated human hepatocyte-derived hepatocellular carcinoma cell line, HepG2 cells. In addition, MCE treatment induces AMP-activated protein kinase (AMPK) and liver kinase B1 phosphorylation, which play a role in inhibition of oxidative stress induced cell death. Moreover, one of the MCE compounds, chlorogenic acid, exerted protective effects against oxidative stress and apoptosis. Taken together, MCE protected hepatocytes against AA+iron-induced oxidative stress through AMPK activation, and may be a candidate for the treatment of liver disease.
Collapse
Affiliation(s)
- Mi Hee Jang
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Kwang-Youn Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Phil Hyun Song
- Department of Urology, Yeungnam University College of Medicine
| | - Su Youn Baek
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Hye Lim Seo
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Eun Hye Lee
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University.,Department of Clinical Laboratory Science, College of Health and Therapy, Daegu Haany University
| | - Suel-Gi Lee
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Kwang Il Park
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine
| | - Sang Chan Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| | - Young Woo Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University
| |
Collapse
|
33
|
Jung Y, Park J, Kim HL, Sim JE, Youn DH, Kang J, Lim S, Jeong MY, Yang WM, Lee SG, Ahn KS, Um JY. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J 2018; 32:1388-1402. [PMID: 29141998 DOI: 10.1096/fj.201700231rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Energy expenditure is a target gaining recent interest for obesity treatment. The antiobesity effect of vanillic acid (VA), a well-known flavoring agent, was investigated in vivo and in vitro. High-fat diet (HFD)-induced obese mice and genetically obese db/db mice showed significantly decreased body weights after VA administration. Two major adipogenic markers, peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), were reduced while the key factor of energy metabolism, AMPKα, was increased in the white adipose tissue and liver tissue of VA-treated mice. Furthermore, VA inhibited lipid accumulation and reduced hepatotoxic/inflammatory markers in liver tissues of mice and HepG2 hepatocytes. VA treatment also decreased differentiation of 3T3-L1 adipocytes by regulating adipogenic factors including PPARγ and C/EBPα. AMPKα small interfering RNA was used to examine whether AMPK was associated with the actions of VA. In AMPKα-nulled 3T3-L1 cells, the inhibitory action of VA on PPARγ and C/EBPα was attenuated. Furthermore, in brown adipose tissues of mice and primary cultured brown adipocytes, VA increased mitochondria- and thermogenesis-related factors such as uncoupling protein 1 and PPARγ-coactivator 1-α. Taken together, our results suggest that VA has potential as an AMPKα- and thermogenesis-activating antiobesity agent.-Jung, Y., Park, J., Kim, H.-L., Sim, J.-E., Youn, D.-H., Kang, J., Lim, S., Jeong, M.-Y., Yang, W. M., Lee, S.-G., Ahn, K. S., Um, J.-Y. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro.
Collapse
Affiliation(s)
- Yunu Jung
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Hye-Lin Kim
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Jung-Eun Sim
- Department of Biological Sciences in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Dong-Hyun Youn
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Mi-Young Jeong
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Woong Mo Yang
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Seok-Geun Lee
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- College of Korean Medicine and Basic Research Laboratory for Comorbidity Regulation, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
34
|
Kumar R, Maurya R, Saran S. Introducing a simple model system for binding studies of known and novel inhibitors of AMPK: a therapeutic target for prostate cancer. J Biomol Struct Dyn 2018; 37:781-795. [PMID: 29447108 DOI: 10.1080/07391102.2018.1441069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) is one of the leading cancers in men, raising a serious health issue worldwide. Due to lack of suitable biomarker, their inhibitors and the platform for testing those inhibitors result in poor prognosis of PC. AMP-activated protein kinase (AMPK) is a highly conserved protein kinase found in eukaryotes that is involved in growth and development, and also acts as a therapeutic target for PC. The aim of the present study is to identify novel potent inhibitors of AMPK and propose a simple cellular model system for understanding its biology. Structural modelling and MD simulations were performed to construct and refine the 3D models of Dictyostelium and human AMPK. Binding mechanisms of different drug compounds were studied by performing molecular docking, molecular dynamics and MM-PBSA methods. Two novel drugs were isolated having higher binding affinity over the known drugs and hydrophobic forces that played a key role during protein-ligand interactions. The study also explored the simple cellular model system for drug screening and understanding the biology of a therapeutic target by performing in vitro experiments.
Collapse
Affiliation(s)
- Rakesh Kumar
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Ranjana Maurya
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Shweta Saran
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
35
|
Marinangeli C, Kluza J, Marchetti P, Buée L, Vingtdeux V. Study of AMPK-Regulated Metabolic Fluxes in Neurons Using the Seahorse XFe Analyzer. Methods Mol Biol 2018; 1732:289-305. [PMID: 29480483 DOI: 10.1007/978-1-4939-7598-3_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
AMP-activated protein kinase (AMPK) is the intracellular master energy sensor and metabolic regulator. AMPK is involved in cell energy homeostasis through the regulation of glycolytic flux and mitochondrial biogenesis. Interestingly, metabolic dysfunctions and AMPK deregulations are observed in many neurodegenerative diseases, including Alzheimer's. While these deregulations could play a key role in the development of these diseases, the study of metabolic fluxes has remained quite challenging and time-consuming. In this chapter, we describe the Seahorse XFe respirometry assay as a fundamental experimental tool to investigate the role of AMPK in controlling and modulating cell metabolic fluxes in living and intact differentiated primary neurons. The Seahorse XFe respirometry assay allows the real-time monitoring of glycolytic flux and mitochondrial respiration from different kind of cells, tissues, and isolated mitochondria. Here, we specify a protocol optimized for primary neuronal cells using several energy substrates such as glucose, pyruvate, lactate, glutamine, and ketone bodies. Nevertheless, this protocol can easily be adapted to monitor metabolic fluxes from other types of cells, tissues, or isolated mitochondria by taking into account the notes proposed for each key step of this assay.
Collapse
Affiliation(s)
- Claudia Marinangeli
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France
| | - Jérome Kluza
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France
| | - Philippe Marchetti
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France
| | - Valérie Vingtdeux
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France.
| |
Collapse
|
36
|
Abstract
In addition to the well-characterized role of AMPK in the regulation of nutrient metabolism, it is increasingly clear that AMPK activation has multiple actions on inflammatory signalling. Here we describe methods to identify effects of AMPK activity on pro-inflammatory signalling, specifically (1) the nuclear localization of the key inflammatory mediators nuclear factor-κB (NFκB) and phosphorylated c-Jun N-terminal kinase (JNK), (2) preparation of conditioned medium to analyze the secretion of cytokines/chemokines, and (3) the pro-inflammatory adhesion of leukocytes to cultured cells.
Collapse
Affiliation(s)
- Sarah J Mancini
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ian P Salt
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
37
|
Woods A, Williams JR, Muckett PJ, Mayer FV, Liljevald M, Bohlooly-Y M, Carling D. Liver-Specific Activation of AMPK Prevents Steatosis on a High-Fructose Diet. Cell Rep 2017; 18:3043-3051. [PMID: 28355557 PMCID: PMC5382239 DOI: 10.1016/j.celrep.2017.03.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/02/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
AMP-activated protein kinase (AMPK) plays a key role in integrating metabolic pathways in response to energy demand. We identified a mutation in the γ1 subunit (γ1D316A) that leads to activation of AMPK. We generated mice with this mutation to study the effect of chronic liver-specific activation of AMPK in vivo. Primary hepatocytes isolated from these mice have reduced gluconeogenesis and fatty acid synthesis, but there is no effect on fatty acid oxidation compared to cells from wild-type mice. Liver-specific activation of AMPK decreases lipogenesis in vivo and completely protects against hepatic steatosis when mice are fed a high-fructose diet. Our findings demonstrate that liver-specific activation of AMPK is sufficient to protect against hepatic triglyceride accumulation, a hallmark of non-alcoholic fatty liver disease (NAFLD). These results emphasize the clinical relevance of activating AMPK in the liver to combat NAFLD and potentially other associated complications (e.g., cirrhosis and hepatocellular carcinoma).
Collapse
Affiliation(s)
- Angela Woods
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | - Jennet R Williams
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Phillip J Muckett
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Faith V Mayer
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Maria Liljevald
- Drug Safety and Metabolism, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Mohammad Bohlooly-Y
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| |
Collapse
|
38
|
Caffeoylquinic Acid-Rich Extract of Aster glehni F. Schmidt Ameliorates Nonalcoholic Fatty Liver through the Regulation of PPAR δ and Adiponectin in ApoE KO Mice. PPAR Res 2017; 2017:3912567. [PMID: 29201040 PMCID: PMC5672637 DOI: 10.1155/2017/3912567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/04/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022] Open
Abstract
Aster glehni is well known for its therapeutic properties. This study was performed to investigate the effects of A. glehni on nonalcoholic fatty liver disease (NAFLD) in atherosclerotic condition, by determining the levels of biomarkers related to lipid metabolism and inflammation in serum, liver, and adipose tissue. Body and abdominal adipose tissue weights and serum triglyceride level decreased in all groups treated with A. glehni. Serum adiponectin concentration and protein levels of peroxisome proliferator-activated receptor δ, 5′ adenosine monophosphate-activated protein kinase, acetyl-CoA carboxylase, superoxide dismutase, and PPARγ coactivator 1-alpha in liver tissues increased in the groups treated with A. glehni. Conversely, protein levels of ATP citrate lyase, fatty acid synthase, tumor necrosis factor α, and 3-hydroxy-3-methylglutaryl-CoA reductase and the concentrations of interleukin 6 and reactive oxygen species decreased upon A. glehni. Triglyceride concentration in the liver was lower in mice treated with A. glehni than in control mice. Lipid accumulation in HepG2 and 3T3-L1 cells decreased upon A. glehni treatment; this effect was suppressed in the presence of the PPARδ antagonist, GSK0660. Our findings suggest that A. glehni extracts may ameliorate NAFLD through regulation of PPARδ, adiponectin, and the related subgenes.
Collapse
|
39
|
Galasso A, Cameron CS, Frenguelli BG, Moffat KG. An AMPK-dependent regulatory pathway in tau-mediated toxicity. Biol Open 2017; 6:1434-1444. [PMID: 28808138 PMCID: PMC5665459 DOI: 10.1242/bio.022863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neurodegenerative tauopathies are characterised by accumulation of hyperphosphorylated tau aggregates primarily degraded by autophagy. The 5′AMP-activated protein kinase (AMPK) is expressed in most cells, including neurons. Alongside its metabolic functions, it is also known to be activated in Alzheimer's brains, phosphorylate tau, and be a critical autophagy activator. Whether it plays a neurotoxic or neuroprotective role remains unclear. In tauopathies stress conditions can result in AMPK activation, enhancing tau-mediated toxicity. Paradoxically, in these cases AMPK activation does not always lead to protective autophagic responses. Using a Drosophila in vivo quantitative approach, we have analysed the impact of AMPK and autophagy on tau-mediated toxicity, recapitulating the AMPK-mediated tauopathy condition: increased tau phosphorylation, without corresponding autophagy activation. We have demonstrated that AMPK binding to and phosphorylating tau at Ser-262, a site reported to facilitate soluble tau accumulation, affects its degradation. This phosphorylation results in exacerbation of tau toxicity and is ameliorated via rapamycin-induced autophagy stimulation. Our findings support the development of combinatorial therapies effective at reducing tau toxicity targeting tau phosphorylation and AMPK-independent autophagic induction. The proposed in vivo tool represents an ideal readout to perform preliminary screening for drugs promoting this process. Summary: Dissection of the impact of AMPK and autophagy on tau-mediated toxicity by using an in vivo Drosophila tool as readout to perform preliminary drug screening supported by quantitative analyses.
Collapse
Affiliation(s)
- Alessia Galasso
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Charles S Cameron
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
40
|
El-Gharbawy A, Goldstein A. Mitochondrial Fatty Acid Oxidation Disorders Associated with Cardiac Disease. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0148-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Anandhan A, Lei S, Levytskyy R, Pappa A, Panayiotidis MI, Cerny RL, Khalimonchuk O, Powers R, Franco R. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions. Mol Neurobiol 2017. [PMID: 27324791 DOI: 10.1007/s12035-016-9906-2-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na+-glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism/transport and the pentose phosphate pathway (6-aminonicotinamide). These results demonstrate that glucose metabolism and AMPK regulate dopaminergic cell death induced by gene (α-synuclein)-environment (PQ) interactions.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, N200 Beadle Center, Lincoln, NE, 68588-0662, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583-0905, USA
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, NE, 68588-0304, USA
| | - Roman Levytskyy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0662, USA
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | | | - Ronald L Cerny
- Department of Chemistry, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, NE, 68588-0304, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0662, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, NE, 68588-0304, USA.
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, N200 Beadle Center, Lincoln, NE, 68588-0662, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583-0905, USA.
| |
Collapse
|
42
|
Ha S, Jeong SH, Yi K, Chung KM, Hong CJ, Kim SW, Kim EK, Yu SW. Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. J Biol Chem 2017; 292:13795-13808. [PMID: 28655770 DOI: 10.1074/jbc.m117.780874] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
In the adult brain, programmed death of neural stem cells is considered to be critical for tissue homeostasis and cognitive function and is dysregulated in neurodegeneration. Previously, we have reported that adult rat hippocampal neural (HCN) stem cells undergo autophagic cell death (ACD) following insulin withdrawal. Because the apoptotic capability of the HCN cells was intact, our findings suggested activation of unique molecular mechanisms linking insulin withdrawal to ACD rather than apoptosis. Here, we report that phosphorylation of autophagy-associated protein p62 by AMP-activated protein kinase (AMPK) drives ACD and mitophagy in HCN cells. Pharmacological inhibition of AMPK or genetic ablation of the AMPK α2 subunit by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing suppressed ACD, whereas AMPK activation promoted ACD in insulin-deprived HCN cells. We found that following insulin withdrawal AMPK phosphorylated p62 at a novel site, Ser-293/Ser-294 (in rat and human p62, respectively). Phosphorylated p62 translocated to mitochondria and induced mitophagy and ACD. Interestingly, p62 phosphorylation at Ser-293 was not required for staurosporine-induced apoptosis in HCN cells. To the best of our knowledge, this is the first report on the direct phosphorylation of p62 by AMPK. Our data suggest that AMPK-mediated p62 phosphorylation is an ACD-specific signaling event and provide novel mechanistic insight into the molecular mechanisms in ACD.
Collapse
Affiliation(s)
- Shinwon Ha
- From the Department of Brain and Cognitive Sciences and
| | | | - Kyungrim Yi
- From the Department of Brain and Cognitive Sciences and
| | | | | | - Seong Who Kim
- the Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eun-Kyoung Kim
- From the Department of Brain and Cognitive Sciences and.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea and
| | - Seong-Woon Yu
- From the Department of Brain and Cognitive Sciences and .,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea and
| |
Collapse
|
43
|
da Rocha AL, Pinto AP, Teixeira GR, Pereira BC, Oliveira LC, Silva AC, Morais GP, Cintra DE, Pauli JR, da Silva ASR. Exhaustive Training Leads to Hepatic Fat Accumulation. J Cell Physiol 2017; 232:2094-2103. [DOI: 10.1002/jcp.25625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance; Ribeirão Preto Medical School; University of São Paulo (USP), Ribeirão Preto; São Paulo Brazil
| | - Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance; Ribeirão Preto Medical School; University of São Paulo (USP), Ribeirão Preto; São Paulo Brazil
| | - Giovana R. Teixeira
- Department of Physical Education; State University of São Paulo (UNESP), Presidente Prudente; São Paulo Brazil
| | - Bruno C. Pereira
- Postgraduate Program in Rehabilitation and Functional Performance; Ribeirão Preto Medical School; University of São Paulo (USP), Ribeirão Preto; São Paulo Brazil
| | - Luciana C. Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance; Ribeirão Preto Medical School; University of São Paulo (USP), Ribeirão Preto; São Paulo Brazil
| | - Adriana C. Silva
- Postgraduate Program in Rehabilitation and Functional Performance; Ribeirão Preto Medical School; University of São Paulo (USP), Ribeirão Preto; São Paulo Brazil
| | - Gustavo P. Morais
- School of Physical Education and Sport of Ribeirão Preto; USP, Ribeirão Preto; São Paulo Brazil
| | - Dennys E. Cintra
- Sport Sciences Course, Faculty of Applied Sciences; State University of Campinas (UNICAMP), Limeira; São Paulo Brazil
| | - José R. Pauli
- Sport Sciences Course, Faculty of Applied Sciences; State University of Campinas (UNICAMP), Limeira; São Paulo Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance; Ribeirão Preto Medical School; University of São Paulo (USP), Ribeirão Preto; São Paulo Brazil
- School of Physical Education and Sport of Ribeirão Preto; USP, Ribeirão Preto; São Paulo Brazil
| |
Collapse
|
44
|
Miki S, Inokuma KI, Takashima M, Nishida M, Sasaki Y, Ushijima M, Suzuki JI, Morihara N. Aged garlic extract suppresses the increase of plasma glycated albumin level and enhances the AMP-activated protein kinase in adipose tissue in TSOD mice. Mol Nutr Food Res 2017; 61. [PMID: 28074608 DOI: 10.1002/mnfr.201600797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/22/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
Abstract
SCOPE In this study, we investigated the effect of aged garlic extract (AGE) on the high level of blood glucose in Tsumura Suzuki Obese-Diabetes (TSOD) mice. METHODS AND RESULTS TSOD mice were fed standard diet with or without 2% AGE for 19 weeks. AGE treatment lowered the blood glucose level and significantly reduced the plasma level of glycated albumin in TSOD mice as compared with those without AGE treatment. In addition, AGE treatment increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the adipose tissue, liver and muscle that played an important role in the maintenance of insulin sensitivity. Moreover, AGE treatment also suppressed the mRNA expression of fatty acid synthase, a known factor regulated by AMPK, and monocyte chemoattractant protein 1, one of the representative inflammatory chemokines, in the adipose tissue but not in the liver. CONCLUSION AGE treatment suppresses the increase of plasma glycated albumin level in TSOD mice and this effect is accompanied by the activation of AMPK in adipose tissue, and suggests that AGE may play a potential role in the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Satomi Miki
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Ken-Ichi Inokuma
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Miyuki Takashima
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Mitsuho Nishida
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Yoko Sasaki
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Mitsuyasu Ushijima
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Jun-Ichiro Suzuki
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Naoaki Morihara
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| |
Collapse
|
45
|
Pan T, Zhang M, Zhang F, Yan G, Ru Y, Wang Q, Zhang Y, Wei X, Xu X, Shen L, Zhang J, Wu K, Yao L, Li X. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation. Biochem Biophys Res Commun 2017; 483:860-866. [DOI: 10.1016/j.bbrc.2017.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 01/30/2023]
|
46
|
Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández-Real JM, López M. Thyroid hormones induce browning of white fat. J Endocrinol 2017; 232:351-362. [PMID: 27913573 PMCID: PMC5292977 DOI: 10.1530/joe-16-0425] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
The canonical view about the effect of thyroid hormones (THs) on thermogenesis assumes that the hypothalamus acts merely as a modulator of the sympathetic outflow on brown adipose tissue (BAT). Recent data have challenged that vision by demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic program in BAT, leading to increased thermogenesis and weight loss. Current data have shown that in addition to activation of brown fat, the browning of white adipose tissue (WAT) might also be an important thermogenic mechanism. However, the possible central effects of THs on the browning of white fat remain unclear. Here, we show that 3,3',5,5' tetraiodothyroxyne (T4)-induced hyperthyroidism promotes a marked browning of WAT. Of note, central or VMH-specific administration of 3,3',5-triiodothyronine (T3) recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the VMH reversed the central effect of T3 on browning. Finally, we also showed that the expression of browning genes in human WAT correlates with serum T4 Overall, these data indicate that THs induce browning of WAT and that this mechanism is mediated via the central effects of THs on energy balance.
Collapse
Affiliation(s)
- Noelia Martínez-Sánchez
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - José M Moreno-Navarrete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
- Department of DiabetesEndocrinology and Nutrition, Hospital de Girona 'Dr Josep Trueta', Institut D'investigació Biomèdica de Girona (IdIBGi) and University of Girona, Girona, Spain
| | - Cristina Contreras
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Eva Rial-Pensado
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Johan Fernø
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Department of Clinical ScienceKG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Rubén Nogueiras
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - José-Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
- Department of DiabetesEndocrinology and Nutrition, Hospital de Girona 'Dr Josep Trueta', Institut D'investigació Biomèdica de Girona (IdIBGi) and University of Girona, Girona, Spain
| | - Miguel López
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| |
Collapse
|
47
|
GLUT4 Mobilization Supports Energetic Demands of Active Synapses. Neuron 2017; 93:606-615.e3. [PMID: 28111082 DOI: 10.1016/j.neuron.2016.12.020] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
Abstract
The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a glycolytic regulatory system to meet the activity-driven increase in energy demands. Activity at synapses triggers insertion of GLUT4 into the axonal plasma membrane driven by activation of the metabolic sensor AMP kinase. Furthermore, we show that genetic ablation of GLUT4 leads to an arrest of synaptic vesicle recycling during sustained AP firing, similar to what is observed during acute glucose deprivation. The reliance on this biochemical regulatory system for "exercising" synapses is reminiscent of that occurring in exercising muscle to sustain cellular function and identifies nerve terminals as critical sites of proper metabolic control.
Collapse
|
48
|
α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation. Proc Natl Acad Sci U S A 2017; 114:1183-1188. [PMID: 28096359 DOI: 10.1073/pnas.1618627114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson's disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L's neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.
Collapse
|
49
|
Mancini SJ, White AD, Bijland S, Rutherford C, Graham D, Richter EA, Viollet B, Touyz RM, Palmer TM, Salt IP. Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol Cell Endocrinol 2017; 440:44-56. [PMID: 27840174 PMCID: PMC5228585 DOI: 10.1016/j.mce.2016.11.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022]
Abstract
Inflammation of adipose tissue in obesity is associated with increased IL-1β, IL-6 and TNF-α secretion and proposed to contribute to insulin resistance. AMP-activated protein kinase (AMPK) regulates nutrient metabolism and is reported to have anti-inflammatory actions in adipose tissue, yet the mechanisms underlying this remain poorly characterised. The effect of AMPK activation on cytokine-stimulated proinflammatory signalling was therefore assessed in cultured adipocytes. AMPK activation inhibited IL-1β-stimulated CXCL10 secretion, associated with reduced interleukin-1 receptor associated kinase-4 (IRAK4) phosphorylation and downregulated MKK4/JNK and IKK/IκB/NFκB signalling. AMPK activation inhibited TNF-α-stimulated IKK/IκB/NFκB signalling but had no effect on JNK phosphorylation. The JAK/STAT3 pathway was also suppressed by AMPK after IL-6 stimulation and during adipogenesis. Adipose tissue from AMPKα1-/- mice exhibited increased JNK and STAT3 phosphorylation, supporting suppression of these distinct proinflammatory pathways by AMPK in vivo. The inhibition of multiple pro-inflammatory signalling pathways by AMPK may underlie the reported beneficial effects of AMPK activation in adipose tissue.
Collapse
Affiliation(s)
- Sarah J Mancini
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Anna D White
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Silvia Bijland
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Claire Rutherford
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Timothy M Palmer
- School of Pharmacy, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
50
|
Rutherford C, Speirs C, Williams JJL, Ewart MA, Mancini SJ, Hawley SA, Delles C, Viollet B, Costa-Pereira AP, Baillie GS, Salt IP, Palmer TM. Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci Signal 2016; 9:ra109. [DOI: 10.1126/scisignal.aaf8566] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|