1
|
Jin SG, Johnson J, Huang Z, Cui W, Dunwell T, Pfeifer GP. CXXC5 stabilizes DNA methylation patterns in mouse embryonic stem cells. Epigenomics 2024; 16:1351-1363. [PMID: 39585161 PMCID: PMC11622772 DOI: 10.1080/17501911.2024.2426450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
AIMS Mammalian genomes encode 12 proteins that contain a CXXC zinc finger domain. Most members of this family are large multi-domain proteins that function in the control of DNA methylation and histone methylation patterns. CXXC5 is a smaller member of the family, along with its closest homologue CXXC4. These two proteins lack known catalytic domains. Here, we have characterized CXXC5 in mouse embryonic stem (ES) cells. MATERIALS & METHODS We used gene knockouts, RNA sequencing, and DNA methylation analysis by whole-genome bisulfite sequencing. RESULTS & CONCLUSIONS We show that CXXC5 is a nuclear protein that interacts with 5-methylcytosine oxidases (TET proteins). Removal of CXXC5 from ES cells leads to very few changes in gene expression. CXXC5 extensively colocalizes with TET1 and TET2 at CpG islands. CXXC5 inactivation leads to a substantial reduction of DNA methylation levels that affects all genomic compartments including genic and intergenic regions and CpG island shores. We propose a model in which CXXC5 serves as an anchor for TET proteins at CpG islands. In the absence of CXXC5, the 5-methylcytosine oxidases become dislodged from CpG islands and are enabled to induce genome-scale DNA demethylation. Thus, CXXC5 serves as a stabilizer of DNA methylation patterns.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Zhijun Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei Cui
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Gerd P. Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
2
|
Nguyen JH, Curtis MA, Imami AS, Ryan WG, Alganem K, Neifer KL, Saferin N, Nawor CN, Kistler BP, Miller GW, Shukla R, McCullumsmith RE, Burkett JP. Developmental pyrethroid exposure disrupts molecular pathways for MAP kinase and circadian rhythms in mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555113. [PMID: 37745438 PMCID: PMC10515776 DOI: 10.1101/2023.08.28.555113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a category of pervasive disorders of the developing nervous system with few or no recognized biomarkers. A significant portion of the risk for NDDs, including attention deficit hyperactivity disorder (ADHD), is contributed by the environment, and exposure to pyrethroid pesticides during pregnancy has been identified as a potential risk factor for NDD in the unborn child. We recently showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice causes male-biased changes to ADHD- and NDD-relevant behaviors as well as the striatal dopamine system. Here, we used an integrated multiomics approach to determine the broadest possible set of biological changes in the mouse brain caused by developmental pyrethroid exposure (DPE). Using a litter-based, split-sample design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood, euthanized them, and pulverized and divided whole brain samples for split-sample transcriptomics, kinomics and multiomics integration. Transcriptome analysis revealed alterations to multiple canonical clock genes, and kinome analysis revealed changes in the activity of multiple kinases involved in synaptic plasticity, including the mitogen-activated protein (MAP) kinase ERK. Multiomics integration revealed a dysregulated protein-protein interaction network containing primary clusters for MAP kinase cascades, regulation of apoptosis, and synaptic function. These results demonstrate that DPE causes a multi-modal biophenotype in the brain relevant to ADHD and identifies new potential mechanisms of action.
Collapse
Affiliation(s)
- Jennifer H. Nguyen
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Melissa A. Curtis
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Ali S. Imami
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - William G. Ryan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- The Medical Cities at the Ministry of Interior, Riyadh, Saudi Arabia (current)
| | - Kari L. Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Nilanjana Saferin
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Charlotte N. Nawor
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Brian P. Kistler
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Gary W. Miller
- Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA 30322
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032 (current)
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071 (current)
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
- Neurosciences Institute, Promedica, Toledo, OH 43606
| | - James P. Burkett
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| |
Collapse
|
3
|
Pappas MP, Kawakami H, Corcoran D, Chen KQ, Scott EP, Wong J, Gearhart MD, Nishinakamura R, Nakagawa Y, Kawakami Y. Sall4 regulates posterior trunk mesoderm development by promoting mesodermal gene expression and repressing neural genes in the mesoderm. Development 2024; 151:dev202649. [PMID: 38345319 PMCID: PMC10946440 DOI: 10.1242/dev.202649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.
Collapse
Affiliation(s)
- Matthew P. Pappas
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine Q. Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Parker Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D. Gearhart
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasushi Nakagawa
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Kaplánek R, Kejík Z, Hajduch J, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hosnedlová B, Hromádka R, Dytrych P, Novotný P, Abramenko N, Antonyová V, Hoskovec D, Babula P, Masařík M, Martásek P, Jakubek M. TET protein inhibitors: Potential and limitations. Biomed Pharmacother 2023; 166:115324. [PMID: 37598475 DOI: 10.1016/j.biopha.2023.115324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
Collapse
Affiliation(s)
- Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Novotný
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
5
|
Sasamoto Y, Wu S, Lee CAA, Jiang JY, Ksander BR, Frank MH, Frank NY. Epigenetic Regulation of Corneal Epithelial Differentiation by TET2. Int J Mol Sci 2023; 24:2841. [PMID: 36769164 PMCID: PMC9917645 DOI: 10.3390/ijms24032841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
Epigenetic DNA modification by 5-hydroxymethylcytosine (5hmC), generated by the Ten-eleven translocation (TET) dioxygenases, regulates diverse biological functions in many organ tissues, including the mammalian eye. For example, 5hmC has been shown to be involved in epigenetic regulation of retinal gene expression. However, a functional role of 5hmC in corneal differentiation has not been investigated to date. Here, we examined 5hmC and TET function in the human cornea. We found 5hmC highly expressed in MUC16-positive terminally differentiated cells that also co-expressed the 5hmC-generating enzyme TET2. TET2 knockdown (KD) in cultured corneal epithelial cells led to significant reductions of 5hmC peak distributions and resulted in transcriptional repression of molecular pathways involved in corneal differentiation, as evidenced by downregulation of MUC4, MUC16, and Keratin 12. Additionally, integrated TET2 KD RNA-seq and genome-wide Reduced Representation Hydroxymethylation Profiling revealed novel epigenetically regulated genes expressed by terminally differentiated cells, including KRT78, MYEOV, and MAL. In aggregate, our findings reveal a novel function of TET2 in the epigenetic regulation of corneal epithelial gene expression and identify novel TET2-controlled genes expressed in differentiated corneal epithelial cells. These results point to potential roles for TET2 induction strategies to enhance treatment of corneal diseases associated with abnormal epithelial maturation.
Collapse
Affiliation(s)
- Yuzuru Sasamoto
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Siyuan Wu
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Jason Y. Jiang
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Bruce R. Ksander
- Massachusetts Eye & Ear Infirmary, Schepens Eye Research Institute, Boston, MA 02114, USA
| | - Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, WA, Australia
| | - Natasha Y. Frank
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| |
Collapse
|
6
|
Wang W, Zhang Z, Zhao M, Wang Y, Ge Y, Shan L. Zinc-finger protein CXXC5 promotes breast carcinogenesis by regulating the TSC1/mTOR signaling pathway. J Biol Chem 2023; 299:102812. [PMID: 36539038 PMCID: PMC9860500 DOI: 10.1016/j.jbc.2022.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
CXXC5, a member of the CXXC family of zinc-finger proteins, is associated with numerous pathological processes. However, the pathophysiological function of CXXC5 has not been clearly established. Herein, we found that CXXC5 interacts with the CRL4B and NuRD complexes. Screening of transcriptional targets downstream of the CXXC5-CRL4B-NuRD complex by next-generation sequencing (chromatin immunoprecipitation sequencing) revealed that the complex regulates the transcriptional repression process of a cohort of genes, including TSC1 (tuberous sclerosis complex subunit 1), which play important roles in cell growth and mammalian target of rapamycin signaling pathway regulation, and whose abnormal regulation results in the activation of programmed cell death-ligand protein 1 (PD-L1). Intriguingly, CXXC5 expression increased after stimulation with vitamin B2 but decreased after vitamin D treatment. We also found that the CXXC5-CRL4B-NuRD complex promotes the proliferation of tumor cells in vitro and accelerates the growth of breast cancer in vivo. The expression of CXXC5, CUL4B, and MTA1 increased during the occurrence and development of breast cancer, and correspondingly, TSC1 expression decreased. Meanwhile, a high expression of CXXC5 was positively correlated with the histological grade of high malignancy and poor survival of patients. In conclusion, our study revealed that CXXC5-mediated TSC1 suppression activates the mammalian target of rapamycin pathway, reduces autophagic cell death, induces PD-L1-mediated immune suppression, and results in tumor development, shedding light on the mechanism of the pathophysiological function of CXXC5.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
The role of the WNT signaling pathway in the maxillary sinus squamous cell carcinoma. Med Oncol 2022; 39:42. [PMID: 35092507 DOI: 10.1007/s12032-021-01640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Paranasal sinus tumors are a rare type of cancer. Most of these tumors are of epithelial origin and 80% of them are maxillary sinus squamous cell carcinoma. The WNT signaling pathway is an essential embryonic regulatory pathway known to play an important role in many cancers, including head and neck cancers. However, the effect of this pathway in maxillary sinus tumors has not been studied before. The aim of the study was to determine the changes in the regulatory genes of the WNT signaling pathway in maxillary sinus tumors. For this purpose, total RNA was isolated from the pathological preparations of 85 patients who had previously been operated on for squamous cell maxillary sinus tumor, and gene expression changes were evaluated by real-time RT-qPCR. The interactions among proteins encoded by genes, whose expression levels were found to be decreased and increased, were determined by protein-protein interaction (PPI) network analysis using string database, and signaling pathways that they are involved in were examined by Reactome database. A significant decrease in the expression of 28 genes compared to the control (fold change < 2.00 and p-value < 0.05) and a significant increase in the expression of 23 genes (fold change < 2.00 and p-value < 0.05) were detected. According to in silico analysis results, Signal Transduction (REACTOME:R-HSA-162582) and Signaling by WNT (REACTOME:R-HSA-195721) pathways were determined as most regulated pathways and FZD4-LRP5 and BCL9-CTNNB1 were determined as the strongest interactions. The current study contributes to illuminating the genetic regulation of maxillary sinus carcinoma in which genetic knowledge is limited. Our findings take attention to the dysregulations of the WNT signaling pathway that may support maxillary sinus carcinogenesis. The results will pave the way for further studies that investigate the therapy target potential of the WNT signaling pathway in this rare cancer.
Collapse
|
8
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain‐containing proteins*. Immunol Rev 2022. [DOI: 10.1111/imr.13056
expr 964170082 + 969516512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Atsushi Onodera
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- Institute for Global Prominent Research Chiba University Chiba Japan
| | - Masahiro Kiuchi
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Kota Kokubo
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Toshinori Nakayama
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- AMED‐CREST, AMED Chiba Japan
| |
Collapse
|
9
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain-containing proteins. Immunol Rev 2021; 305:137-151. [PMID: 34935162 DOI: 10.1111/imr.13056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Epigenetic regulation of gene transcription in the immune system is important for proper control of protective and pathogenic inflammation. Aberrant epigenetic modifications are often associated with dysregulation of the immune cells, including lymphocytes and macrophages, leading to pathogenic inflammation and autoimmune diseases. Two classical epigenetic markers-histone modifications and DNA cytosine methylation, the latter is the 5 position of the cytosine base in the context of CpG dinucleotides-play multiple roles in the immune system. CxxC domain-containing proteins, which basically bind to the non-methylated CpG (i.e., epigenetic "readers"), often function as "writers" of the epigenetic markers via their catalytic domain within the proteins or by interacting with other epigenetic modifiers. We herein report the most recent advances in our understanding of the functions of CxxC domain-containing proteins in the immune system and inflammation, mainly focusing on T cells and macrophages.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
10
|
Kim SI, Yoon JH, Hur SY. Functional profiles of Müllerian inhibiting substance/anti-Müllerian hormone (MIS/AMH) in primarily cultured endometrial cancer cells. J Cancer 2021; 12:6289-6300. [PMID: 34539902 PMCID: PMC8425195 DOI: 10.7150/jca.60700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/19/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Müllerian inhibiting substance/anti-Müllerian hormone (MIS/AMH) inhibits proliferation of MIS/AMH receptor-expressing gynecologic tumors in vivo and in vitro, but the underlying mechanisms have not been fully defined. This study aimed to investigate the expression of MIS/AMH type II receptor (MIS/AMHRII) in endometrial cancer, to identify the mechanism of growth inhibition in MIS/AMH-treated endometrial cancer cells, and to evaluate the clinical significance of MIS/AMH as an effective targeted therapy for MIS/AMH receptor-expressing tumors. Methods: We used tissue samples from 10 patients with total hysterectomy for endometrial cancer. To identify involved signaling pathways, we performed western blotting on apoptosis-, cell cycle-, Wnt signaling-, and autophagy-related proteins. Results: MIS/AMHRII was highly expressed on the cell membrane of endometrial cancer tissues and primarily cultured endometrial cancer cells. We also found that MIS/AMH treatment reduced cell viability, induced cell cycle arrest, and increased apoptosis. MIS/AMH treatment induced upregulation of β-catenin-interacting protein (ICAT) and inhibition of the Dvl and Axin complex (IDAX) but downregulation of phospho-c-Jun in the Wnt signaling pathway. Conclusions: MIS/AMH inhibits the growth of MIS/AMH receptor-expressing endometrial cancer cells through regulation of autophagy, apoptosis, and cell cycle pathways, as well as inhibition of Wnt signaling pathways. These data suggest that MIS/AMH functions as a tumor suppressor and may be an effective therapeutic agent in endometrial cancer.
Collapse
Affiliation(s)
- Sang Il Kim
- Department of Obstetrics and Gynecology, St. Vincent's hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo Hee Yoon
- Department of Obstetrics and Gynecology, St. Vincent's hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, Seoul St. Mary's hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Micka M, Bryja V. Can We Pharmacologically Target Dishevelled: The Key Signal Transducer in the Wnt Pathways? Handb Exp Pharmacol 2021; 269:117-135. [PMID: 34382124 DOI: 10.1007/164_2021_527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dishevelled (DVL) is the central signal transducer in both Wnt/β-catenin-dependent and independent signalling pathways. DVL is required to connect receptor complexes and downstream effectors. Since proximal Wnt pathway components and DVL itself are upregulated in many types of cancer, DVL represents an attractive therapeutic target in the Wnt-addicted cancers and other disorders caused by aberrant Wnt signalling. Here, we discuss progress in several approaches for the modulation of DVL function and hence inhibition of the Wnt signalling. Namely, we sum up the potential of modulation of enzymes that control post-translational modification of DVL - such as inhibition of DVL kinases or promotion of DVL ubiquitination and degradation. In addition, we discuss research directions that can take advantage of direct interaction with the protein domains essential for DVL function: the inhibition of DIX- and DEP-domain mediated polymerization and interaction of DVL PDZ domain with its ligands.
Collapse
Affiliation(s)
- Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
12
|
Shi Q, Zhou C, Xie R, Li M, Shen P, Lu Y, Ma S. CircCNIH4 inhibits gastric cancer progression via regulating DKK2 and FRZB expression and Wnt/β-catenin pathway. ACTA ACUST UNITED AC 2021; 28:19. [PMID: 34364402 PMCID: PMC8349030 DOI: 10.1186/s40709-021-00140-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Background Circular RNAs (circRNAs) have been reported to play an important role in tumor progression in various cancer types, including gastric cancer. The aim of this study was to investigate the role of circCNIH4 (hsa_circ_0000190) in gastric cancer and the underlying mechanism. Methods The expression levels of circCNIH4 and Wnt antagonist genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of β-catenin, Ki67, Dickkopf 2 (DKK2) and Frizzled related protein (FRZB) were measured by western blot. Ectopic overexpression or knockdown of circCNIH4, proliferation, apoptosis, migration and invasion by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry and transwell assay in vitro, and in vivo experiment, were employed to assess the role of circCNIH4 in gastric cancer. Results CircCNIH4 was downregulated in gastric cancer tissues and cells. Overexpression of circCNIH4 inhibited gastric cancer cell proliferation, migration and invasion and promoted apoptosis by inactivating Wnt/β-catenin pathway in vitro. CircCNIH4 induced the expression of DKK2 and FRZB in gastric cancer cells. Moreover, silencing of DKK2 or FRZB reversed circCNIH4 overexpression-mediated effects on gastric cancer cells. Additionally, circCNIH4 suppressed tumor growth via regulating DKK2 and FRZB expression in gastric cancer in vivo. Conclusion Our study demonstrated that circCNIH4 played a tumor-inhibiting role through upregulating DKK2 and FRZB expression and suppressing Wnt/β-catenin pathway in gastric cancer, which might provide a potential biomarker for the diagnosis and treatment of gastric cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00140-x.
Collapse
Affiliation(s)
- Qi Shi
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, West Huanghe Road, Huaian, 223300, Jiangsu, China
| | - Chuanwen Zhou
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, West Huanghe Road, Huaian, 223300, Jiangsu, China
| | - Rui Xie
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, West Huanghe Road, Huaian, 223300, Jiangsu, China
| | - Miaomiao Li
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, West Huanghe Road, Huaian, 223300, Jiangsu, China
| | - Peng Shen
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, West Huanghe Road, Huaian, 223300, Jiangsu, China
| | - Yining Lu
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, West Huanghe Road, Huaian, 223300, Jiangsu, China
| | - Shijie Ma
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, West Huanghe Road, Huaian, 223300, Jiangsu, China.
| |
Collapse
|
13
|
Liu S, Qiu J, He G, Geng C, He W, Liu C, Cai D, Pan H, Tian Q. Dermatopontin inhibits WNT signaling pathway via CXXC finger protein 4 in hepatocellular carcinoma. J Cancer 2020; 11:6288-6298. [PMID: 33033513 PMCID: PMC7532498 DOI: 10.7150/jca.47157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of tumor associated deaths globally. Annually, the prevalence of HCC is increasing and the lack of early prognostic indicators manifests a dismal prognosis for HCC patients. A deep understanding of the molecular events that promote HCC progression are required for the design of new diagnostics and therapeutics. Dermatopontin (DPT) is an extracellular matrix protein that regulates the metastatic phenotypes of many cancers. However, the effects of DPT on HCC cell growth remain undefined. In this study, we demonstrate that the exogenous expression of DPT inhibits HCC cell growth both in vitro and in vivo. Furthermore, we show that DPT regulates CXXC4, which in turn targets c-Myc, EZH2, SOX2 and β-catenin, through its ability to impact Wnt signaling pathway. These data suggest that DPT regulates CXXC4, c-Myc, EZH2, SOX2 and β-catenin, through Wnt signaling to repress HCC proliferation. This highlights DPT as promising target for future HCC diagnostics and therapeutic targets.
Collapse
Affiliation(s)
- Shihai Liu
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jing Qiu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Guifang He
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Geng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Weitai He
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Changchang Liu
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Duo Cai
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
14
|
Dong M, Hou Y, Ding X. Structure identification, antitumor activity and mechanisms of a novel polysaccharide from Ramaria flaccida (Fr.) Quél. Oncol Lett 2020; 20:2169-2182. [PMID: 32782534 PMCID: PMC7400858 DOI: 10.3892/ol.2020.11761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/13/2020] [Indexed: 11/05/2022] Open
Abstract
It is an important aspect of current cancer research to search for effective and low-toxicity anticancer drugs and adjuvants. Polysaccharides, as immunomodulators, can improve the immune function of the body, kill tumor cells directly and prevent tumor development by increasing the resistance of the body to carcinogenic factors. The aim of the present study was to identify natural polysaccharide compounds with novel structure and antitumor activity via the separation and analysis of polysaccharide components from Ramaria flaccida (Fr.) Quél. (RF-1). In the present study, high-performance gel permeation chromatography, gas chromatography-mass spectrometry and nuclear magnetic resonance were used to identify the structure of polysaccharides from RF-1. Subsequently, the antitumor activity and mechanism of RF-1 were studied by establishing an in vivo S180 tumor model, and by using Illumina sequencing technology and enzyme-linked immunosorbent assay (ELISA). The present results revealed that the average molecular weight of RF-1 was 17,093 Da and that RF-1 was composed of the monosaccharides glucose and galactose, with a 2:1 ratio. The main chain of RF-1 consisted of (1→6, 2)-α-D-galactopyranose and (1→6, 4)- α-D-glucopyranose. One of the branched chains was linked to 4-O of the main glucose chain by (1→6)-α-D-glucopyranose and next linked by one (→4)-β-D-glucopyranose. The other two branched chains were both linked to 2-O of the main glucose chain by one (→4)-β-D-glucopyranose. In addition, RF-1 inhibited the growth of S180 tumors in vivo. When the concentration of RF-1 was 20 mg/kg, the inhibition rate of S180 tumors in mice was 48.4%. Compared with the blank control group, 1,971 differentially expressed genes were identified, of which 818 were upregulated and 1,153 were downregulated in the RF-1 group. A Gene Ontology enrichment analysis generated 47,091 assignments to biological processes, 5,250 assignments to cellular components, and 6,466 assignments to molecular functions. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the Wnt and MAPK signaling pathways were significantly enriched. The number of differentially annotated genes in these two pathways was 19 and 33, respectively. Additionally, ELISA results revealed that the protein levels of interleukin (IL)-1β, IL-6, vascular endothelial growth factor (VEGF) and VEGF receptor in the RF-1 group were significantly downregulated compared with the S180 blank control group (P<0.01).
Collapse
Affiliation(s)
- Mingming Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
15
|
Guan B, Zhan Z, Wang L, Wang L, Liu L. CXXC4 mediates glucose-induced β-cell proliferation. Acta Diabetol 2020; 57:1101-1109. [PMID: 32280999 DOI: 10.1007/s00592-020-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
AIMS CXXC finger protein 4 (CXXC4) is an identified negative regulator of the Wnt/β-catenin pathway, and it is involved in cancer cell proliferation. In this study, we sought to clarify whether CXXC4 is involved in glucose-stimulated β-cell proliferation. MATERIALS AND METHODS We investigated the biological function of CXXC4 in glucose-induced β-cell proliferation, and we investigated the underlying mechanism of this activity. First, we analyzed CXXC4 expression in established rat models treated for 24 h with a high glucose infusion and in INS-1 cells and primary rat islets treated with different concentrations of glucose. Subsequently, we used an adenovirus to overexpress CXXC4 in INS-1 cells and primary islets. The proliferation rate of β-cells was evaluated by CCK-8 and EdU incorporation methods. Cell cycle analysis was performed by flow cytometry. Finally, the Wnt signaling pathway and its downstream genes were assessed by Western blot. RESULTS CXXC4 mRNA levels were significantly lower in islets isolated from glucose-infused rats than they were in those isolated from saline-infused rats. Decreased expression of CXXC4 also correlated with high glucose treatment of INS-1 cells and primary rat β-cells. Furthermore, adenovirus-mediated overexpression of CXXC4 inhibited cell proliferation induced by the high glucose treatment in vitro, which was mechanistically mediated by Wnt signaling and a decrease in cyclin D2 expression. CONCLUSIONS Glucose inhibits CXXC4 expression and hence promotes pancreatic β-cell proliferation. Our findings may provide a new potential target for the treatment of diabetes.
Collapse
Affiliation(s)
- Binbin Guan
- Department of Endocrinology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
| | - Zhidong Zhan
- Department of Endocrinology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Linxi Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| |
Collapse
|
16
|
Olofsen PA, Fatrai S, van Strien PMH, Obenauer JC, de Looper HWJ, Hoogenboezem RM, Erpelinck-Verschueren CAJ, Vermeulen MPWM, Roovers O, Haferlach T, Jansen JH, Ghazvini M, Bindels EMJ, Schneider RK, de Pater EM, Touw IP. Malignant Transformation Involving CXXC4 Mutations Identified in a Leukemic Progression Model of Severe Congenital Neutropenia. CELL REPORTS MEDICINE 2020; 1:100074. [PMID: 33205068 PMCID: PMC7659587 DOI: 10.1016/j.xcrm.2020.100074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Severe congenital neutropenia (SCN) patients treated with CSF3/G-CSF to alleviate neutropenia frequently develop acute myeloid leukemia (AML). A common pattern of leukemic transformation involves the appearance of hematopoietic clones with CSF3 receptor (CSF3R) mutations in the neutropenic phase, followed by mutations in RUNX1 before AML becomes overt. To investigate how the combination of CSF3 therapy and CSF3R and RUNX1 mutations contributes to AML development, we make use of mouse models, SCN-derived induced pluripotent stem cells (iPSCs), and SCN and SCN-AML patient samples. CSF3 provokes a hyper-proliferative state in CSF3R/RUNX1 mutant hematopoietic progenitors but does not cause overt AML. Intriguingly, an additional acquired driver mutation in Cxxc4 causes elevated CXXC4 and reduced TET2 protein levels in murine AML samples. Expression of multiple pro-inflammatory pathways is elevated in mouse AML and human SCN-AML, suggesting that inflammation driven by downregulation of TET2 activity is a critical step in the malignant transformation of SCN. Combinatorial CSF3R and RUNX1 mutations seen in SCN-AML do not result in AML in mice An additional mutation in Cxxc4 causes AML development in CSF3R/RUNX1 mutant mice Mutant CXXC4 protein is more stable than wild-type and reduces TET2 protein levels CXXC4 mutations are also found in de novo AML patients
Collapse
Affiliation(s)
- Patricia A Olofsen
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Szabolcs Fatrai
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Paulina M H van Strien
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Julia C Obenauer
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Hans W J de Looper
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | | | - Michael P W M Vermeulen
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Onno Roovers
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | | | - Joop H Jansen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Mehrnaz Ghazvini
- Department of Developmental Biology, iPS Core Facility, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Rebekka K Schneider
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Emma M de Pater
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| |
Collapse
|
17
|
Reay WR, Cairns MJ. Pairwise common variant meta-analyses of schizophrenia with other psychiatric disorders reveals shared and distinct gene and gene-set associations. Transl Psychiatry 2020; 10:134. [PMID: 32398653 PMCID: PMC7217970 DOI: 10.1038/s41398-020-0817-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023] Open
Abstract
The complex aetiology of schizophrenia is postulated to share components with other psychiatric disorders. We investigated pleiotropy amongst the common variant genomics of schizophrenia and seven other psychiatric disorders using a multimarker association test. Transcriptomic imputation was then leveraged to investigate the functional significance of variation mapped to these genes, prioritising several interesting functional candidates. Gene-based analysis of common variation revealed 67 schizophrenia-associated genes shared with other psychiatric phenotypes, including bipolar disorder, major depressive disorder, ADHD and autism-spectrum disorder. In addition, we uncovered 78 genes significantly enriched with common variant associations for schizophrenia that were not linked to any of these seven disorders (P > 0.05). Multivariable gene-set association suggested that common variation enrichment within biologically constrained genes observed for schizophrenia also occurs across several psychiatric phenotypes. Pairwise meta-analysis of schizophrenia and each psychiatric phenotype was implemented and identified 330 significantly associated genes (PMeta < 2.7 × 10-6) that were only nominally associated with each disorder individually (P < 0.05). These analyses consolidate the overlap between the genomic architecture of schizophrenia and other psychiatric disorders, uncovering several candidate pleiotropic genes which warrant further investigation.
Collapse
Affiliation(s)
- William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
18
|
Liu K, Min J. Structural Basis for the Recognition of Non-methylated DNA by the CXXC Domain. J Mol Biol 2020:S0022-2836(19)30591-1. [DOI: 10.1016/j.jmb.2019.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
|
19
|
Olofsen PA, Touw IP. RUNX1 Mutations in the Leukemic Progression of Severe Congenital Neutropenia. Mol Cells 2020; 43:139-144. [PMID: 32041395 PMCID: PMC7057833 DOI: 10.14348/molcells.2020.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
Somatic RUNX1 mutations are found in approximately 10% of patients with de novo acute myeloid leukemia (AML), but are more common in secondary forms of myelodysplastic syndrome (MDS) or AML. Particularly, this applies to MDS/AML developing from certain types of leukemia-prone inherited bone marrow failure syndromes. How these RUNX1 mutations contribute to the pathobiology of secondary MDS/AML is still unknown. This mini-review focusses on the role of RUNX1 mutations as the most common secondary leukemogenic hit in MDS/AML evolving from severe congenital neutropenia (SCN).
Collapse
Affiliation(s)
| | - Ivo P. Touw
- Department of Hematology, Erasmus MC, Rotterdam 3015 CN, The Netherlands
| |
Collapse
|
20
|
Fu Y, Wang Z, Luo C, Wang Y, Wang Y, Zhong X, Zheng H. Downregulation of CXXC Finger Protein 4 Leads to a Tamoxifen-resistant Phenotype in Breast Cancer Cells Through Activation of the Wnt/β-catenin Pathway. Transl Oncol 2020; 13:423-440. [PMID: 31911277 PMCID: PMC6948370 DOI: 10.1016/j.tranon.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
Tamoxifen is a successful endocrine therapy drug for estrogen receptor-positive (ER+) breast cancer. However, resistance to tamoxifen compromises the efficacy of endocrine treatment. In the present study, we identified potential tamoxifen resistance-related gene markers and investigated their mechanistic details. First, we established two ER + breast cancer cell lines resistant to tamoxifen, named MCF-7/TMR and BT474/TMR. Gene expression profiling showed that CXXC finger protein 4 (CXXC4) expression is lower in MCF-7/TMR cells than in MCF-7 cells. Furthermore, CXXC4 mRNA and protein expression are lower in the resistant cell lines than in the corresponding parental cell lines. We also investigated the correlation between CXXC4 and endocrine resistance in ER + breast cancer cells. CXXC4 knockdown accelerates cell proliferation in vitro and in vivo and renders breast cancer cells insensitive to tamoxifen, whereas CXXC4 overexpression inhibits cancer cell growth and increases tamoxifen sensitivity of resistant cells. In addition, we demonstrated that CXXC4 inhibits Wnt/β-catenin signaling in cancer cells by modulating the phosphorylation of GSK-3β, influencing the integrity of the β-catenin degradation complex. Silencing the CXXC4 gene upregulates expression of cyclinD1 and c-myc (the downstream targets of Wnt signaling) and promotes cell cycle progression. Conversely, ectopic expression of CXXC4 downregulates the expression of these proteins and arrests the cell cycle in the G0/G1 phase. Finally, the small-molecule inhibitor XAV939 suppresses Wnt signaling and sensitizes resistant cells to tamoxifen. These results indicate that components of Wnt pathway that are early in response to tamoxifen could be involved as an intrinsic factor of the transition to endocrine resistance, and inhibition of Wnt signaling may be an effective therapeutic strategy to overcome tamoxifen resistance.
Collapse
Affiliation(s)
- Yijie Fu
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, PR China; Departments of Head and Neck and Mammary Gland Oncology, and Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; School of Medicine, Chengdu University, Chengdu 610106, China
| | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chuanxu Luo
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, PR China; Departments of Head and Neck and Mammary Gland Oncology, and Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yu Wang
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanping Wang
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaorong Zhong
- Departments of Head and Neck and Mammary Gland Oncology, and Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong Zheng
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, PR China; Departments of Head and Neck and Mammary Gland Oncology, and Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
21
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
22
|
Choi S, Kim HY, Cha PH, Seo SH, Lee C, Choi Y, Shin W, Heo Y, Han G, Lee W, Choi KY. CXXC5 mediates growth plate senescence and is a target for enhancement of longitudinal bone growth. Life Sci Alliance 2019; 2:2/2/e201800254. [PMID: 30971423 PMCID: PMC6458850 DOI: 10.26508/lsa.201800254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Longitudinal bone growth ceases with growth plate senescence during puberty. However, the molecular mechanisms of this phenomenon are largely unexplored. Here, we examined Wnt-responsive genes before and after growth plate senescence and found that CXXC finger protein 5 (CXXC5), a negative regulator of the Wnt/β-catenin pathway, was gradually elevated with reduction of Wnt/β-catenin signaling during senescent changes of rodent growth plate. Cxxc5 -/- mice demonstrated delayed growth plate senescence and tibial elongation. As CXXC5 functions by interacting with dishevelled (DVL), we sought to identify small molecules capable of disrupting this interaction. In vitro screening assay monitoring CXXC5-DVL interaction revealed that several indirubin analogs were effective antagonists of this interaction. A functionally improved indirubin derivative, KY19382, elongated tibial length through delayed senescence and further activation of the growth plate in adolescent mice. Collectively, our findings reveal an important role for CXXC5 as a suppressor of longitudinal bone growth involving growth plate activity.
Collapse
Affiliation(s)
- Sehee Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyun-Yi Kim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seol Hwa Seo
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Chulho Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yejoo Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Wookjin Shin
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yunseok Heo
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Gyoonhee Han
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Weontae Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea .,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,CK Biotechnology Inc, Seoul, Korea
| |
Collapse
|
23
|
Xiong X, Tu S, Wang J, Luo S, Yan X. CXXC5: A novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 2018; 23:740-749. [PMID: 30479059 PMCID: PMC6349197 DOI: 10.1111/jcmm.14046] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc-finger protein family. Proteins in this family play a pivotal role in epigenetic regulation by binding to unmethylated CpG islands in gene promoters through their characteristic CXXC domain. CXXC5 is a short protein (322 amino acids in length) that does not have any catalytic domain, but is able to bind to DNA and act as a transcription factor and epigenetic factor through protein-protein interactions. Intriguingly, increasing evidence indicates that expression of the CXXC5 gene is controlled by multiple signaling pathways and a variety of transcription factors, positioning CXXC5 as an important signal integrator. In addition, CXXC5 is capable of regulating various signal transduction processes, including the TGF-β, Wnt and ATM-p53 pathways, thereby acting as a novel and crucial signaling coordinator. CXXC5 plays an important role in embryonic development and adult tissue homeostasis by regulating cell proliferation, differentiation and apoptosis. In keeping with these functions, aberrant expression or altered activity of CXXC5 has been shown to be involved in several human diseases including tumourigenesis. This review summarizes the current understanding of CXXC5 as a transcription factor and signaling regulator and coordinator.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Zhou H, Wang B, Sun H, Xu X, Wang Y. Epigenetic Regulations in Neural Stem Cells and Neurological Diseases. Stem Cells Int 2018; 2018:6087143. [PMID: 29743892 PMCID: PMC5878882 DOI: 10.1155/2018/6087143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Among the regulatory mechanisms of the renewal and differentiation of neural stem cells, recent evidences support that epigenetic modifications such as DNA methylation, histone modification, and noncoding RNAs play critical roles in the regulation on the proliferation and differentiation of neural stem cells. In this review, we discussed recent advances of DNA modifications on the regulative mechanisms of neural stem cells. Among these epigenetic modifications, DNA 5-hydroxymethylcytosine (5hmC) modification is emerging as an important modulator on the proliferation and differentiation of neural stem cells. At the same time, Ten-eleven translocation (Tet) methylcytosine dioxygenases, the rate-limiting enzyme for the 5-hydroxymethylation reaction from 5-methylcytosine to 5-hydroxymethylcytosine, play a critical role in the tumorigenesis and the proliferation and differentiation of stem cells. The functions of 5hmC and TET proteins on neural stem cells and their roles in neurological diseases are discussed.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Sun
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| |
Collapse
|
25
|
Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal 2018; 47:52-64. [PMID: 29559363 DOI: 10.1016/j.cellsig.2018.03.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Biomedical Sciences, University of Minnesota, School of Medicine, Duluth, MN, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
26
|
Blocking EZH2 methylation transferase activity by GSK126 decreases stem cell-like myeloma cells. Oncotarget 2018; 8:3396-3411. [PMID: 27926488 PMCID: PMC5356890 DOI: 10.18632/oncotarget.13773] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/21/2016] [Indexed: 01/14/2023] Open
Abstract
EZH2 is a critical epigenetic regulator that is deregulated in various types of cancers including multiple myeloma (MM). In the present study, we hypothesized that targeting EZH2 might induce apoptosis in myeloma cells including stem cell-like cells (CSCs). We investigated the effect of EZH2 inhibition on MM cells using a potent inhibitor (GSK126). The results showed that GSK126 effectively abrogated the methylated histone 3 (H3K27me3) level in MM.1S and LP1 cells, and inhibited the number of live cells and colony formation in soft agar of six MM cell lines. GSK126 induced massive apoptosis in MM.1S, LP1 and RPMI8226 cells. Progressive release of mitochondrial cytochrome c and AIF into the cytosol was detected in GSK126-treated MM cells. GSK126 treatment elicited caspase-3-dependent MCL-1 cleavage with accumulation of proapoptotic truncated MCL-1. These results suggested that GSK126 triggers the intrinsic mitochondrial apoptosis pathway. Enhanced apoptosis was observed in the combination of GSK126 with bortezomib. Using ALDH and side population (SP) assays to characterize CSCs, we found that GSK126 eliminated the stem-like myeloma cells by blocking the Wnt/β-catenin pathway. The in vivo anti-tumor effect of GSK126 was confirmed by using RPMI8226 cells in a xenograft mouse model. In conclusion, our findings suggest that EZH2 inactivation by GSK126 is effective in killing MM cells and CSCs as a single agent or in combination with bortezomib. Clinical trial of GSK126 in patients with MM may be warranted.
Collapse
|
27
|
Epigenetic upregulation of ARL4C, due to DNA hypomethylation in the 3'-untranslated region, promotes tumorigenesis of lung squamous cell carcinoma. Oncotarget 2018; 7:81571-81587. [PMID: 27835592 PMCID: PMC5348413 DOI: 10.18632/oncotarget.13147] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
ADP-ribosylation factor (ARF)-like 4c (ARL4C) expression, induced by a combination of Wnt/β-catenin and EGF/Ras signaling, has been demonstrated to form epithelial morphogenesis. ARL4C overexpression, due to Wnt/β-catenin and EGF/Ras signaling alterations, was involved in tumorigenesis. It was also reported that ARL4C expression correlates with DNA hypomethylation in the 3’-untranslated region (UTR) of ARL4C gene during lymphogenesis. The current study was conducted to investigate the expression and functions of ARL4C due to DNA hypomethylation in lung and tongue cancers. Immunohistochemical analyses of tissue specimens obtained from lung and tongue squamous cell carcinoma (SCC) patients revealed that ARL4C is not observed in non-tumor regions, but is strongly expressed at high frequencies in tumor lesions. Although inhibition of Wnt/β-catenin or Ras/MAP kinase signaling did not decrease ARL4C expression in NCI-H520 lung SCC cells, ARL4C DNA was clearly hypomethylated in the 3’-UTR. Ten-eleven translocation methylcytosine dioxygenase (TET) enzyme, which mediates DNA demethylation, was highly expressed in NCI-H520 cells. Knockout of TET family proteins (TET1-3) in NCI-H520 cells reduced 5-hydroxymethylcytosine (5hmC) levels and promoted DNA methylation in the 3’-UTR, leading to the decrease in ARL4C expression and ARL4C-mediated cellular migration. In tumor lesions of ARL4C-positive lung SCC, 5hmC was frequently detected and DNA methylation in the 3’-UTR of ARL4C gene was lower than in non-tumor regions, which were consistent with the Cancer Genome Atlas dataset. These results suggest that ARL4C is expressed due to hypomethylation in the 3’-UTR for certain types of cancers and that ARL4C methylation status is involved in cancer cell function.
Collapse
|
28
|
The emerging insights into catalytic or non-catalytic roles of TET proteins in tumors and neural development. Oncotarget 2018; 7:64512-64525. [PMID: 27557497 PMCID: PMC5325459 DOI: 10.18632/oncotarget.11412] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/10/2016] [Indexed: 12/29/2022] Open
Abstract
The Ten-eleven translocation (TET) proteins have been recently identified as critical regulators in epigenetic modification, especially in the methylation of cytosine in DNA. TET-mediated DNA oxidation plays prominent roles in a wide variety of physiological and pathological processes, especially in tumor and neural development. TET proteins execute stepwise enzymatic conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). In addition to the more proverbial enzymatic role of TET proteins, TET proteins also possess non-enzymatic activity, through interacting with some epigenetic modifiers. In this review article, we focus on TET proteins dual activities (catalytic or non-catalytic) in tumor and neural development. Hence, the clarification of TET proteins dual activities will contribute to our further understanding of neural development and may open the possibility of new therapeutic avenues to human tumors.
Collapse
|
29
|
Han M, Dai D, Yousafzai NA, Wang F, Wang H, Zhou Q, Lu H, Xu W, Feng L, Jin H, Wang X. CXXC4 activates apoptosis through up-regulating GDF15 in gastric cancer. Oncotarget 2017; 8:103557-103567. [PMID: 29262584 PMCID: PMC5732750 DOI: 10.18632/oncotarget.21581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
Worldwide, gastric cancer is one of the most fatal cancers. Epigenetic alterations in gastric cancer play important roles in silencing of tumor suppressor genes. We previously found that CXXC finger protein 4 (CXXC4) was a novel tumor suppressor in gastric cancer. In this report, we demonstrated that CXXC4 inhibited growth of gastric cancer cells as a pro-apoptotic factor. This inhibition could be reversed by the pan-caspase inhibitor called Z-VAD-FMK. However, CXXC4 with mutations in its DNA binding domain failed to induce apoptosis. Growth differentiation factor 15 (GDF15) was identified as one of potential targets responsible for CXXC4-induced apoptosis. CXXC4 activated GDF15 transcription through enhancing the interaction of transcription factor Sp1 with GDF15 promoter. In summary, the nuclear protein CXXC4 activated apoptosis in gastric cancer through up-regulating its novel potential downstream target GDF15. GDF15 might be a promising target for clinical treatment of gastric cancer with CXXC4 deficiency.
Collapse
Affiliation(s)
- Mengjiao Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Dongjun Dai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Neelum Aziz Yousafzai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Faliang Wang
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Qiying Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Seritrakul P, Gross JM. Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet 2017; 13:e1006987. [PMID: 28926578 PMCID: PMC5621703 DOI: 10.1371/journal.pgen.1006987] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/29/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022] Open
Abstract
DNA hydroxymethylation has recently been shown to play critical roles in regulating gene expression and terminal differentiation events in a variety of developmental contexts. However, little is known about its function during eye development. Methylcytosine dioxygenases of the Tet family convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an epigenetic mark thought to serve as a precursor for DNA demethylation and as a stable mark in neurons. Here, we report a requirement for Tet activity during zebrafish retinal neurogenesis. In tet2-/-;tet3-/- mutants, retinal neurons are specified but most fail to terminally differentiate. While differentiation of the first born retinal neurons, the retinal ganglion cells (RGCs), is less affected in tet2-/-;tet3-/- mutants than other retinal cell types, the majority of RGCs do not undergo terminal morphogenesis and form axons. Moreover, the few photoreceptors that differentiate in tet2-/-;tet3-/- mutants fail to form outer segments, suggesting that Tet function is also required for terminal morphogenesis of differentiated retinal neurons. Mosaic analyses revealed a surprising cell non-autonomous requirement for tet2 and tet3 activity in facilitating retinal neurogenesis. Through a combination of candidate gene analysis, transcriptomics and pharmacological manipulations, we identified the Notch and Wnt pathways as cell-extrinsic pathways regulated by tet2 and tet3 activity during RGC differentiation and morphogenesis. Transcriptome analyses also revealed the ectopic expression of non-retinal genes in tet2-/-;tet3-/- mutant retinae, and this correlated with locus-specific reduction in 5hmC. These data provide the first evidence that Tet-dependent regulation of 5hmC formation is critical for retinal neurogenesis, and highlight an additional layer of complexity in the progression from retinal progenitor cell to differentiated retinal neuron during development of the vertebrate retina.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Jeffrey M. Gross
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
31
|
Bowman RL, Levine RL. TET2 in Normal and Malignant Hematopoiesis. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026518. [PMID: 28242787 DOI: 10.1101/cshperspect.a026518] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ten-eleven translocation (TET) family of enzymes were originally cloned from the translocation breakpoint of t(10;11) in infant acute myeloid leukemia (AML) with subsequent genomic analyses revealing somatic mutations and suppressed expression of TET family members across a range of malignancies, particularly enriched in hematological neoplasms. The TET family of enzymes is responsible for the hydroxylation of 5-methylcytosines (5-mC) to 5-hydroxymethylcytosine (5-hmC), followed by active and passive mechanisms leading to DNA demethylation. Given the complexity and importance of DNA methylation events in cellular proliferation and differentiation, it comes as no surprise that the TET family of enzymes is intricately regulated by both small molecules and regulatory cooperating proteins. Here, we review the structure and function of TET2, its interactions with cooperating mutations and small molecules, and its role in aberrant hematopoiesis.
Collapse
Affiliation(s)
- Robert L Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10021.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| |
Collapse
|
32
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
33
|
Karner CM, Long F. Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life Sci 2017; 74:1649-1657. [PMID: 27888287 PMCID: PMC5380548 DOI: 10.1007/s00018-016-2425-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
Abstract
The adult human skeleton is a multifunctional organ undergoing continuous remodeling. Homeostasis of bone mass in a healthy adult requires an exquisite balance between bone resorption by osteoclasts and bone formation by osteoblasts; disturbance of such balance is the root cause for various bone disorders including osteoporosis. To develop effective and safe therapeutics to modulate bone formation, it is essential to elucidate the molecular mechanisms governing osteoblast differentiation and activity. Due to their specialized function in collagen synthesis and secretion, osteoblasts are expected to consume large amounts of nutrients. However, studies of bioenergetics and building blocks in osteoblasts have been lagging behind those of growth factors and transcription factors. Genetic studies in both humans and mice over the past 15 years have established Wnt signaling as a critical mechanism for stimulating osteoblast differentiation and activity. Importantly, recent studies have uncovered that Wnt signaling directly reprograms cellular metabolism by stimulating aerobic glycolysis, glutamine catabolism as well as fatty acid oxidation in osteoblast-lineage cells. Such findings therefore reveal an important regulatory axis between bone anabolic signals and cellular bioenergetics. A comprehensive understanding of osteoblast metabolism and its regulation is likely to reveal molecular targets for novel bone therapies.
Collapse
Affiliation(s)
- Courtney M Karner
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63131, USA
- Department of Orthopaedic Surgery, Duke Orthopaedic, Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63131, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63131, USA.
| |
Collapse
|
34
|
Wadhwa B, Dumbre R. Achieving resistance specificity in prostate cancer. Chem Biol Interact 2016; 260:243-247. [PMID: 27720870 DOI: 10.1016/j.cbi.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/03/2016] [Indexed: 11/24/2022]
Abstract
Prostate (CaP) cancer is the second-leading cause of cancer-related mortality in men in Western societies. Androgen receptor (AR) signaling is a critical survival pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. Although a majority of patients initially respond to ADT, most will eventually develop castrate resistance. The recent discovery that AR signaling persists during systemic castration via intratumoral production of androgens led to the development of novel anti-androgen therapies. Although these therapies effectively palliate symptoms and prolong life, metastatic castration-resistant prostate cancer remains incurable. Recent studies suggest that epithelial plasticity, which covers a range of changes in differentiation and cell behavior, with full epithelial integrity at one end and epithelial-mesenchymal Transition (EMT) as the full realization of a plasticity is regulated by microRNAs (miRNAs). MicroRNAs are involved in human tumourigenesis and are aberrantly expressed in CaP cell lines, xenografts and clinical tissues and is associated with enhanced survival signaling, proliferation, migration, invasion, integrin-mediated adhesion, EMT, and drug resistance. Due to the oncogenic or tumor suppressive properties of CaP-related miRNAs, they are likely to be of clinical use as therapeutic targets for prostate cancer treatment in the near future. This review summarizes our current understanding of CaP and castration-recurrent CaP (CR-CaP) to earlier studies that characterized ADT and the molecular mechanisms that facilitate the transition from androgen-stimulated CaP to CR-CaP.
Collapse
Affiliation(s)
- Bhumika Wadhwa
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India; Cancer Pharmacology Division, Indian Institute of Integrative Medicine, CSIR, Jammu 180001, India.
| | - Rashmi Dumbre
- Centre for Biotechnology, Pravara Institute of Medical Sciences, Loni, India
| |
Collapse
|
35
|
Choi J, Ma S, Kim HY, Yun JH, Heo JN, Lee W, Choi KY, No KT. Identification of small-molecule compounds targeting the dishevelled PDZ domain by virtual screening and binding studies. Bioorg Med Chem 2016; 24:3259-66. [DOI: 10.1016/j.bmc.2016.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
36
|
Ordóñez-Morán P, Dafflon C, Imajo M, Nishida E, Huelsken J. HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer. Cancer Cell 2015; 28:815-829. [PMID: 26678341 DOI: 10.1016/j.ccell.2015.11.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/11/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Hierarchical organization of tissues relies on stem cells, which either self-renew or produce committed progenitors predestined for lineage differentiation. Here we identify HOXA5 as an important repressor of intestinal stem cell fate in vivo and identify a reciprocal feedback between HOXA5 and Wnt signaling. HOXA5 is suppressed by the Wnt pathway to maintain stemness and becomes active only outside the intestinal crypt where it inhibits Wnt signaling to enforce differentiation. In colon cancer, HOXA5 is downregulated, and its re-expression induces loss of the cancer stem cell phenotype, preventing tumor progression and metastasis. Tumor regression by HOXA5 induction can be triggered by retinoids, which represent tangible means to treat colon cancer by eliminating cancer stem cells.
Collapse
Affiliation(s)
- Paloma Ordóñez-Morán
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland
| | - Caroline Dafflon
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland
| | - Masamichi Imajo
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; JST, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; JST, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland.
| |
Collapse
|
37
|
Han JA, An J, Ko M. Functions of TET Proteins in Hematopoietic Transformation. Mol Cells 2015; 38:925-35. [PMID: 26552488 PMCID: PMC4673406 DOI: 10.14348/molcells.2015.0294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.
Collapse
Affiliation(s)
- Jae-A Han
- School of Life Sciences, Ulsan National Institute of Science and Technology
| | - Jungeun An
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 689-798,
Korea
| | - Myunggon Ko
- School of Life Sciences, Ulsan National Institute of Science and Technology
| |
Collapse
|
38
|
Lee SH, Kim MY, Kim HY, Lee YM, Kim H, Nam KA, Roh MR, Min DS, Chung KY, Choi KY. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing. ACTA ACUST UNITED AC 2015; 212:1061-80. [PMID: 26056233 PMCID: PMC4493411 DOI: 10.1084/jem.20141601] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/14/2015] [Indexed: 02/02/2023]
Abstract
In human melanoma biopsies and a murine cutaneous wound model, Lee et al. identify the Dishevelled-binding protein CXXC5 as a negative modulator of skin wound healing. CXXC5-deficient mice present accelerated wound healing as well as keratin and collagen synthesis. CXXC5, interacting with Dvl, operates as a negative feedback regulator of Wnt/β-catenin signaling and may represent a potential target for wound treatment. Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Mi-Yeon Kim
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Hyun-Yi Kim
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Young-Mi Lee
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Heesu Kim
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Kyoung Ae Nam
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Mi Ryung Roh
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, South Korea
| | - Kee Yang Chung
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| |
Collapse
|
39
|
Notas G, Pelekanou V, Kampa M, Alexakis K, Sfakianakis S, Laliotis A, Askoxilakis J, Tsentelierou E, Tzardi M, Tsapis A, Castanas E. Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors. Mol Oncol 2015; 9:1744-59. [PMID: 26115764 DOI: 10.1016/j.molonc.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
Tamoxifen is the treatment of choice in estrogen receptor alpha breast cancer patients that are eligible for adjuvant endocrine therapy. However, ∼50% of ERα-positive tumors exhibit intrinsic or rapidly acquire resistance to endocrine treatment. Unfortunately, prediction of de novo resistance to endocrine therapy and/or assessment of relapse likelihood remain difficult. While several mechanisms regulating the acquisition and the maintenance of endocrine resistance have been reported, there are several aspects of this phenomenon that need to be further elucidated. Altered metabolic fate of tamoxifen within patients and emergence of tamoxifen-resistant clones, driven by evolution of the disease phenotype during treatment, appear as the most compelling hypotheses so far. In addition, tamoxifen was reported to induce pluripotency in breast cancer cell lines, in vitro. In this context, we have performed a whole transcriptome analysis of an ERα-positive (T47D) and a triple-negative breast cancer cell line (MDA-MB-231), exposed to tamoxifen for a short time frame (hours), in order to identify how early pluripotency-related effects of tamoxifen may occur. Our ultimate goal was to identify whether the transcriptional actions of tamoxifen related to induction of pluripotency are mediated through specific ER-dependent or independent mechanisms. We report that even as early as 3 hours after the exposure of breast cancer cells to tamoxifen, a subset of ERα-dependent genes associated with developmental processes and pluripotency are induced and this is accompanied by specific phenotypic changes (expression of pluripotency-related proteins). Furthermore we report an association between the increased expression of pluripotency-related genes in ERα-positive breast cancer tissues samples and disease relapse after tamoxifen therapy. Finally we describe that in a small group of ERα-positive breast cancer patients, with disease relapse after surgery and tamoxifen treatment, ALDH1A1 (a marker of pluripotency in epithelial cancers which is absent in normal breast tissue) is increased in relapsing tumors, with a concurrent modification of its intra-cellular localization. Our data could be of value in the discrimination of patients susceptible to develop tamoxifen resistance and in the selection of optimized patient-tailored therapies.
Collapse
Affiliation(s)
- George Notas
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; Institute of Applied Computational Mathematics, Foundation of Research and Technology (FORTH), Heraklion, Greece.
| | - Vassiliki Pelekanou
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; Laboratories of Pathology, University of Crete School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece
| | - Konstantinos Alexakis
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece
| | - Stelios Sfakianakis
- Institute of Computer Science, Foundation of Research and Technology (FORTH), Heraklion, Greece
| | - Aggelos Laliotis
- Department of Surgical Oncology, University Hospital, Heraklion, Greece
| | - John Askoxilakis
- Department of Surgical Oncology, University Hospital, Heraklion, Greece
| | | | - Maria Tzardi
- Laboratories of Pathology, University of Crete School of Medicine, Heraklion, Greece
| | - Andreas Tsapis
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; University Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece.
| |
Collapse
|
40
|
Chung YJ, Kim HJ, Park SH, Yoon JH, Kim MR, Nam SW, MacLaughlin DT, Donahoe PK, Kim JH. Transcriptome analysis reveals that Müllerian inhibiting substance regulates signaling pathways that contribute to endometrial carcinogenesis. Int J Oncol 2015; 46:2039-46. [PMID: 25760378 PMCID: PMC6903890 DOI: 10.3892/ijo.2015.2920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
Müllerian inhibiting substance (MIS) has been shown to inhibit growth of a number of tumors in vitro and/or in vivo, but the downstream pathways which it regulates are not fully understood. In the present study we show that MIS type II receptor was highly expressed in AN3CA cells, a cell line derived from human endometrial cancer cell in which MIS-treatment caused a reduction of cell viability, and induced cellular apoptosis and genes involved cell cycle arrest. To understand the genome-wide effects of MIS on gene regulation, we performed serial gene expression analyses from 0 to 96 h at 24 h intervals after treating AN3CA cells with MIS. Transcriptomic analysis of molecular changes induced by MIS identified 2,688 differentially expressed genes that were significantly up- or down-regulated during the 96 h study period. When the 2,688 differentially expressed genes were mapped to known biological processes, Wnt-, cancer-, proteolysis-, cytoskeleton-, cell cycle-, apoptosis-, and MAPK-signaling pathways emerged as the functions most significantly changed by MIS in AN3CA cells. Furthermore, western blot analysis validated that protein expression of cell cycle inhibitory genes, apoptotic protease activating factor-1 (APAF-1), β-catenin-interacting protein (ICAT), Rb related protein 130 (p130), and inhibitor of disheveled Dvl and Axin complex (IDAX), were gradually increased over the time of the study, whereas downstream cell cycle activating genes, cyclin-dependent kinase 2 (CDK2) and phospho-c-Jun were downregulated in MIS-treated AN3CA cells. These transcriptome analyses support previous observations that MIS functions as a tumor suppressor, potentially by regulating signaling pathways that could contribute to endometrial carcinogenesis, and indicating that MIS should be considered as a potential treatment for endometrial cancer.
Collapse
Affiliation(s)
- Youn Jee Chung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Hyun Jung Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Sang Ho Park
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Joo Hee Yoon
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Mee Ran Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - David T MacLaughlin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jang Heub Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|
41
|
Lu X, Zhao BS, He C. TET family proteins: oxidation activity, interacting molecules, and functions in diseases. Chem Rev 2015; 115:2225-39. [PMID: 25675246 DOI: 10.1021/cr500470n] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xingyu Lu
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Boxuan Simen Zhao
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Chuan He
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
42
|
CXXC5 is a negative-feedback regulator of the Wnt/β-catenin pathway involved in osteoblast differentiation. Cell Death Differ 2015; 22:912-20. [PMID: 25633194 DOI: 10.1038/cdd.2014.238] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/09/2022] Open
Abstract
The positive roles of the Wnt/β-catenin pathway in osteoblast differentiation and bone mineral density (BMD) maintenance have been clearly demonstrated in both animal experiments and clinical investigations. CXXC finger protein 5 (CXXC5), a recently identified negative regulator of the Wnt/β-catenin pathway, showed altered cellular localization and function, which were dependent on the cell type in previous studies. However, the in vivo function of CXXC5 has not been clearly investigated yet. Here, we characterized CXXC5 as a negative regulator of osteoblast differentiation and bone formation. Deficiency of CXXC5 resulted in elevated BMD in mice without any severe gross developmental abnormalities. CXXC5 exerted a negative-feedback effect on the Wnt/β-catenin pathway via Wnt-dependent binding to Dishevelled (Dvl) during osteoblast differentiation. Suppression of the Dvl-CXXC5 interaction using a competitor peptide resulted in the activation of the Wnt/β-catenin pathway and osteoblast differentiation, and accelerated thickness growth of ex vivo-cultured calvariae. Overall, CXXC5 is a negative-feedback regulator induced by Wnt/β-catenin signaling that inhibits osteoblast differentiation and bone formation via interaction with Dvl.
Collapse
|
43
|
Bertrand D, Chng KR, Sherbaf FG, Kiesel A, Chia BKH, Sia YY, Huang SK, Hoon DSB, Liu ET, Hillmer A, Nagarajan N. Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res 2015; 43:e44. [PMID: 25572314 PMCID: PMC4402507 DOI: 10.1093/nar/gku1393] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/24/2014] [Indexed: 12/11/2022] Open
Abstract
Extensive and multi-dimensional data sets generated from recent cancer omics profiling projects have presented new challenges and opportunities for unraveling the complexity of cancer genome landscapes. In particular, distinguishing the unique complement of genes that drive tumorigenesis in each patient from a sea of passenger mutations is necessary for translating the full benefit of cancer genome sequencing into the clinic. We address this need by presenting a data integration framework (OncoIMPACT) to nominate patient-specific driver genes based on their phenotypic impact. Extensive in silico and in vitro validation helped establish OncoIMPACT's robustness, improved precision over competing approaches and verifiable patient and cell line specific predictions (2/2 and 6/7 true positives and negatives, respectively). In particular, we computationally predicted and experimentally validated the gene TRIM24 as a putative novel amplified driver in a melanoma patient. Applying OncoIMPACT to more than 1000 tumor samples, we generated patient-specific driver gene lists in five different cancer types to identify modes of synergistic action. We also provide the first demonstration that computationally derived driver mutation signatures can be overall superior to single gene and gene expression based signatures in enabling patient stratification and prognostication. Source code and executables for OncoIMPACT are freely available from http://sourceforge.net/projects/oncoimpact.
Collapse
Affiliation(s)
- Denis Bertrand
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Kern Rei Chng
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Faranak Ghazi Sherbaf
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Anja Kiesel
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Burton K H Chia
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Yee Yen Sia
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Sharon K Huang
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA 90404, USA
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA 90404, USA
| | - Edison T Liu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Axel Hillmer
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Niranjan Nagarajan
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| |
Collapse
|
44
|
Huang Y, Rao A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet 2014; 30:464-74. [PMID: 25132561 PMCID: PMC4337960 DOI: 10.1016/j.tig.2014.07.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 02/07/2023]
Abstract
DNA methylation has been linked to aberrant silencing of tumor suppressor genes in cancer, and an imbalance in DNA methylation-demethylation cycles is intimately implicated in the onset and progression of tumors. Ten-eleven translocation (TET) proteins are Fe(II)- and 2-oxoglutarate (2OG)-dependent dioxygenases that successively oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), thereby mediating active DNA demethylation. In this review, we focus on the pathophysiological role of TET proteins and 5hmC in cancer. We present an overview of loss-of-function mutations and abnormal expression and regulation of TET proteins in hematological malignancies and solid tumors, and discuss the potential prognostic value of assessing TET mutations and 5hmC levels in cancer patients. We also address the crosstalk between TET and two critical enzymes involved in cell metabolism: O-linked β-N-acetylglucosamine transferase (OGT) and isocitrate dehydrogenase (IDH). Lastly, we discuss the therapeutic potential of targeting TET proteins and aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Yun Huang
- La Jolla Institute, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| | - Anjana Rao
- La Jolla Institute, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Lu H, Jin W, Sun J, Feng L, Lan H, Shen Q, Ma Y, Li J, Yue Y, Jin H, Wang X. New tumor suppressor CXXC finger protein 4 inactivates mitogen activated protein kinase signaling. FEBS Lett 2014; 588:3322-6. [PMID: 25064842 DOI: 10.1016/j.febslet.2014.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/28/2023]
Abstract
As a well-characterized master player in epigenetic regulatory network, EZH2 is widely implicated in the development of many malignancies. We previously found that EZH2 promoted Wnt/β-catenin activation through downregulation of CXXC4 expression. In this report, we demonstrated that CXXC4 inhibited MAPK signaling through binding to ERK-1/2 and abrogating the interaction of ERK 1/2 with MEK1/2. L183, the critical residue in CXXC4 ERK D domain, was found to be essential for CXXC4-ERK 1/2 interaction and the growth inhibitory effect of CXXC4 in human cancer cells. In summary, CXXC4 directly disrupted MEK1/2-ERK 1/2 interaction to inactivate MAPK signaling. L183 site is indispensable for the binding of CXXC4 to ERK1/2 and growth inhibitory effect of CXXC4. Therefore, EZH2 can activate MAPK signaling by inhibiting CXXC4 expression.
Collapse
Affiliation(s)
- Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Sun
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiyin Lan
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanning Ma
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaqiu Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongfang Yue
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Li S, Fan R, Zhao XL, Wang XQ. CXXC4 mRNA levels are associated with clinicopathological parameters and survival of myelodysplastic syndrome patients. Leuk Res 2014; 38:1072-8. [PMID: 25085016 DOI: 10.1016/j.leukres.2014.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/23/2014] [Accepted: 07/04/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The CXXC domain protein 4 (CXXC4) functions as a negative regulator of Wnt signaling and also regulates expression of the ten-eleven translocation 2 (TET2) protein for DNA methylation. This study detected levels of CXXC4 and TET2 mRNA to determine their association with survival of patients with myelodysplastic syndrome (MDS). METHODS Levels of TET2 and CXXC4 mRNA were analyzed in bone marrow samples from 154 MDS patients and 50 control subjects using qRT-PCR and subsequently associated these levels with clinicopathological characteristics and survival of MDS patients. RESULTS Levels of TET2 and CXXC4 mRNA were significantly lower in MDS patients than that in controls (P=0.009 and P<0.001, respectively). Patients with advanced WHO subtypes (e.g., RAEB-1 and RAEB-2) exhibited a higher level of CXXC4 mRNA (P=0.020) compared to those with early stage subtypes (i.e., RA, RARS, RCMD, RCMD-RS, 5q-syndrome, and MDS-U). Moreover, levels of CXXC4 mRNA were associated with marrow blast levels (P=0.014) and neutrophil counts (P=0.039). Levels of CXXC4 mRNA and hemoglobin and IPSS cytopenias were associated with the overall survival (P=0.025) but not with the leukemia-free survival of MDS patients. The multivariate analysis demonstrated that the age of patients and levels of hemoglobin and marrow blast were independent risk factors for survival of MDS patients. CONCLUSION This study demonstrated that the age of patients and levels of CXXC4 mRNA, hemoglobin, and marrow blast associated with survival of MDS patients.
Collapse
Affiliation(s)
- Shuang Li
- Department of Hematology, Huashan Hospital of Fudan University, Shanghai, China; Evidence-Based Medicine Center of Fudan University, Shanghai, China
| | - Rong Fan
- Department of Hematology, Changzheng Hospital of The Second Military Medical University, Shanghai, China
| | - Xiao-Li Zhao
- Department of Hematology, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiao-Qin Wang
- Department of Hematology, Huashan Hospital of Fudan University, Shanghai, China; Evidence-Based Medicine Center of Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Bian EB, Zong G, Xie YS, Meng XM, Huang C, Li J, Zhao B. TET family proteins: new players in gliomas. J Neurooncol 2014; 116:429-35. [PMID: 24395347 DOI: 10.1007/s11060-013-1328-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022]
Abstract
DNA methylation at the 5-position of cytosine (5mC) in the mammalian genome has emerged as a pivotal epigenetic event that plays important roles in development, aging and disease. The three members of the TET protein family, which convert 5mC to 5-hydroxymethylcytosine, has provided a potential mechanism resulting in DNA demethylation and maintaining cellular identity. Recent studies have shown that epigenetic modifications play a key role in the regulation of the molecular pathogenesis of gliomas. In this review we focus on demonstrating the TET proteins in DNA demethylation and transcriptional regulation of different target genes. In addition, we address the role of TET proteins in gliomas. This review will provide valuable insights into the potential targets of gliomas, and may open the possibility of novel therapeutic approaches to this fatal disease.
Collapse
Affiliation(s)
- Er-Bao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Itzykson R, Fenaux P. Epigenetics of myelodysplastic syndromes. Leukemia 2013; 28:497-506. [DOI: 10.1038/leu.2013.343] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
|
49
|
Kong Y, Zhang H, Chen X, Zhang W, Zhao C, Wang N, Wu N, He Y, Nan G, Zhang H, Wen S, Deng F, Liao Z, Wu D, Zhang J, Qin X, Haydon RC, Luu HH, He TC, Zhou L. Destabilization of heterologous proteins mediated by the GSK3β phosphorylation domain of the β-catenin protein. Cell Physiol Biochem 2013; 32:1187-99. [PMID: 24335169 PMCID: PMC4064945 DOI: 10.1159/000354518] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND AIMS Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal degradation domain. Aberrant activation of β-catenin signaling has been implicated in the development of human cancers. It has been recently suggested that GSK3βmay play an essential role in regulating global protein turnover. Here, we investigate if the GSK3β phosphorylation site-containing degradation domain of β-catenin is sufficient to destabilize heterologous proteins. METHODS AND RESULTS We engineer chimeric proteins by fusing β-catenin degradation domain at the N- and/or C-termini of the enhanced green fluorescent protein (eGFP). In both transient and stable expression experiments, the chimeric GFP proteins exhibit a significantly decreased stability, which can be effectively antagonized by lithium and Wnt1. An activating mutation in the destruction domain significantly stabilizes the fusion protein. Furthermore, GSK3 inhibitor SB-216763 effectively increases the GFP signal of the fusion protein. Conversely, the inhibition of Wnt signaling with tankyrase inhibitor XAV939 results in a decrease in GFP signal of the fusion proteins, while these small molecules have no significant effects on the mutant destruction domain-GFP fusion protein. CONCLUSION Our findings strongly suggest that the β-catenin degradation domain may be sufficient to destabilize heterologous proteins in Wnt signaling-dependent manner. It is conceivable that the chimeric GFP proteins may be used as a functional reporter to measure the dynamic status of β-catenin signaling, and to identify potential anticancer drugs that target β-catenin signaling.
Collapse
Affiliation(s)
- Yuhan Kong
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 2013; 28:485-96. [PMID: 24220273 DOI: 10.1038/leu.2013.337] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
Ten-Eleven Translocation-2 (TET2) inactivation through loss-of-function mutation, deletion and IDH1/2 (Isocitrate Dehydrogenase 1 and 2) gene mutation is a common event in myeloid and lymphoid malignancies. TET2 gene mutations similar to those observed in myeloid and lymphoid malignancies also accumulate with age in otherwise healthy subjects with clonal hematopoiesis. TET2 is one of the three proteins of the TET (Ten-Eleven Translocation) family, which are evolutionarily conserved dioxygenases that catalyze the conversion of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC) and promote DNA demethylation. TET dioxygenases require 2-oxoglutarate, oxygen and Fe(II) for their activity, which is enhanced in the presence of ascorbic acid. TET2 is the most expressed TET gene in the hematopoietic tissue, especially in hematopoietic stem cells. In addition to their hydroxylase activity, TET proteins recruit the O-linked β-D-N-acetylglucosamine (O-GlcNAc) transferase (OGT) enzyme to chromatin, which promotes post-transcriptional modifications of histones and facilitates gene expression. The TET2 level is regulated by interaction with IDAX, originating from TET2 gene fission during evolution, and by the microRNA miR-22. TET2 has pleiotropic roles during hematopoiesis, including stem-cell self-renewal, lineage commitment and terminal differentiation of monocytes. Analysis of Tet2 knockout mice, which are viable and fertile, demonstrated that Tet2 functions as a tumor suppressor whose haploinsufficiency initiates myeloid and lymphoid transformations. This review summarizes the recently identified TET2 physiological and pathological functions and discusses how this knowledge influences our therapeutic approaches in hematological malignancies and possibly other tumor types.
Collapse
Affiliation(s)
- E Solary
- 1] Hematology Department, Gustave Roussy, Villejuif, France [2] Inserm UMR1009, Gustave Roussy, Villejuif cedex, France [3] Faculty of Medicine, University Paris-Sud, Le Kremlin-Bicêtre, France
| | - O A Bernard
- 1] Hematology Department, Gustave Roussy, Villejuif, France [2] Faculty of Medicine, University Paris-Sud, Le Kremlin-Bicêtre, France [3] Inserm UMR985, Gustave Roussy, Villejuif, France
| | - A Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - F Fuks
- Faculty of Medicine, Laboratory of Cancer Epigenetics, Université Libre de Bruxelles, Brussels, Belgium
| | - W Vainchenker
- 1] Hematology Department, Gustave Roussy, Villejuif, France [2] Inserm UMR1009, Gustave Roussy, Villejuif cedex, France [3] Faculty of Medicine, University Paris-Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|