1
|
Nguyen LH, Cho YE, Kim S, Kim Y, Kwak J, Suh JS, Lee J, Son K, Kim M, Jang ES, Song N, Choi B, Kim J, Tak Y, Hwang T, Jo J, Lee EW, Kim SB, Kim S, Kwon OB, Kim S, Lee SR, Lee H, Kim TJ, Hwang S, Yun H. Discovery of N-Aryl- N'-[4-(aryloxy)cyclohexyl]squaramide-Based Inhibitors of LXR/SREBP-1c Signaling Pathway Ameliorating Steatotic Liver Disease: Navigating the Role of SIRT6 Activation. J Med Chem 2024; 67:17608-17628. [PMID: 39259827 DOI: 10.1021/acs.jmedchem.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily attributed to the abnormal upregulation of hepatic lipogenesis, which is especially caused by the overactivation of the liver X receptor/sterol regulatory element-binding protein-1c (LXR/SREBP-1c) pathway in hepatocytes. In this study, we report the rational design and synthesis of a novel series of squaramides via bioisosteric replacement, which was evaluated for its inhibitory activity on the LXR/SREBP-1c pathway using dual cell-based assays. Compound 31 was found to significantly downregulate LXR, SREBP-1c, and their target genes associated with lipogenesis. Further investigation revealed that compound 31 may indirectly inhibit the LXR/SREBP-1c pathway by activating the upstream regulator sirtuin 6 (SIRT6). Encouragingly, compound 31 substantially attenuated lipid accumulation in HepG2 cells and in the liver of high-fat-diet-fed mice. These findings suggest that compound 31 holds promise as a candidate for the development of treatments for MASLD and other lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Long Huu Nguyen
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soyeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jinsook Kwak
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Jinyoung Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyuwon Son
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Minseong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Seo Jang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Naghyun Song
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - BuChul Choi
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jiah Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yealin Tak
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Taeyeon Hwang
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Bum Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sanghyun Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sangok Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
3
|
Steinbauer S, König A, Neuhauser C, Schwarzinger B, Stangl H, Iken M, Weghuber J, Röhrl C. Elder (Sambucus nigra), identified by high-content screening, counteracts foam cell formation without promoting hepatic lipogenesis. Sci Rep 2024; 14:3547. [PMID: 38347122 PMCID: PMC10861454 DOI: 10.1038/s41598-024-54108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/08/2024] [Indexed: 02/15/2024] Open
Abstract
Cholesterol deposition in intimal macrophages leads to foam cell formation and atherosclerosis. Reverse cholesterol transport (RCT), initiated by efflux of excess cholesterol from foam cells, counteracts atherosclerosis. However, targeting RCT by enhancing cholesterol efflux was so far accompanied by adverse hepatic lipogenesis. Here, we aimed to identify novel natural enhancers of macrophage cholesterol efflux suitable for the prevention of atherosclerosis. Plant extracts of an open-access library were screened for their capacity to increase cholesterol efflux in RAW264.7 macrophages trace-labeled with fluorescent BODIPY-cholesterol. Incremental functional validation of hits yielded two final extracts, elder (Sambucus nigra) and bitter orange (Citrus aurantium L.) that induced ATP binding cassette transporter A1 (ABCA1) expression and reduced cholesteryl ester accumulation in aggregated LDL-induced foam cells. Aqueous elder extracts were subsequently prepared in-house and both, flower and leaf extracts increased ABCA1 mRNA and protein expression in human THP-1 macrophages, while lipogenic gene expression in hepatocyte-derived cells was not induced. Chlorogenic acid isomers and the quercetin glycoside rutin were identified as the main polyphenols in elder extracts with putative biological action. In summary, elder flower and leaf extracts increase macrophage ABCA1 expression and reduce foam cell formation without adversely affecting hepatic lipogenesis.
Collapse
Affiliation(s)
- Stefanie Steinbauer
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Alice König
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Cathrina Neuhauser
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Bettina Schwarzinger
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | | | - Julian Weghuber
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria.
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria.
| | - Clemens Röhrl
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria.
| |
Collapse
|
4
|
Lopes LO, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Cabral-Marques O, Fernandez GJ, Hirata MH, Wang DZ, Dal-Pai-Silva M, Carvalho RF, Freire PP. The Impact of miR-155-5p on Myotube Differentiation: Elucidating Molecular Targets in Skeletal Muscle Disorders. Int J Mol Sci 2024; 25:1777. [PMID: 38339055 PMCID: PMC10855706 DOI: 10.3390/ijms25031777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.
Collapse
Affiliation(s)
- Letícia Oliveira Lopes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo 05403-010, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo 05403-010, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo 05508-090, Brazil
| | - Geysson Javier Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- College of Medicine, University of Antioquia, UdeA, Medellín 53-108, Colombia
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
| | - Da-Zhi Wang
- Health Heart Institute, Center for Regenerative Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Zhang H, Lianto P, Li W, Xu M, Moore JB, Thorne JL. Associations between liver X receptor polymorphisms and blood lipids: A systematic review and meta-analysis. Steroids 2022; 185:109057. [PMID: 35679909 DOI: 10.1016/j.steroids.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/07/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022]
Abstract
Genetic susceptibility to dyslipidaemia remains incompletely understood. The liver X receptors (LXRs), members of the nuclear receptor superfamily of ligand dependent transcription factors, are homeostatic regulators of lipid metabolism. Multiple single nucleotide polymorphisms (SNPs)have been identified previously in the coding and regulatory regions of the LXRs. The aim of this systematic review and meta-analysis was to summarise associations between SNPs of LXRs (α and β isoforms) with blood lipid and lipoprotein traits. Five databases (PubMed, Ovid Embase, Scopus, Web of Science, and the Cochrane Library) were systematically searched for population-based studies that assessed associations between one or more blood lipid/lipoprotein traits and LXR SNPs. Of seventeen articles included in the qualitative synthesis, ten were eligible for meta-analysis. Nine LXRα SNPs and five LXRβ SNPs were identified, and the three most studied LXRα SNPs were quantitatively summarised. Carriers of the minor allele A of LXRα rs12221497 (-115G>A) had higher triglyceride levels than GG homozygotes (0.13 mmol/L; 95%CI: [0.03, 0.23], P = 0.01). Heterozygote carriers of LXRα rs2279238 (297C/T) had higher total cholesterol levels (0.12 mmol/L; (95%CI: [0.01, 0.23], P = 0.04) than either CC or TT homozygotes. For LXRα rs11039155 (-6G>A), no significant differences in blood levels of either triglyceride (P = 0.39) or HDL-C (P = 0.98) were detected between genotypes in meta-analyses. In addition, there were no strong associations for other SNPs of LXRα and LXRβ. This study provides the evidence of an association between LXRα, but not LXRβ, SNPs and blood-lipid traits. Systematic review registration: PROSPERO No. CRD42021246158.
Collapse
Affiliation(s)
- Huifeng Zhang
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; Clinical Nutrition Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Priscilia Lianto
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Weiming Li
- Clinical Nutrition Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Mengfan Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - J Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
El-Ashmawy NE, Khedr NF, Sallam M, Nossier AI. Effect of activation of liver X receptor alpha on cardiac & hepatic ABCC10 and SLC17A5 drug transporters in hypercholesterolemic rat model. Biochem Biophys Res Commun 2022; 610:133-139. [DOI: 10.1016/j.bbrc.2022.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
|
7
|
Mogilenko DA, Danko K, Larionova EE, Shavva VS, Kudriavtsev IV, Nekrasova EV, Burnusuz AV, Gorbunov NP, Trofimov AV, Zhakhov AV, Ivanov IA, Orlov SV. Differentiation of human macrophages with anaphylatoxin C3a impairs alternative M2 polarization and decreases lipopolysaccharide‐induced cytokine secretion. Immunol Cell Biol 2022; 100:186-204. [DOI: 10.1111/imcb.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Denis A Mogilenko
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
- Department of Embryology St. Petersburg State University St. Petersburg Russia
| | - Katerina Danko
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
- Department of Cytology and Histology St. Petersburg State University St. Petersburg Russia
| | | | - Vladimir S Shavva
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
| | - Igor V Kudriavtsev
- Department of Cytology and Histology St. Petersburg State University St. Petersburg Russia
- Department of Immunology Institute of Experimental Medicine St. Petersburg Russia
| | | | - Alexandra V Burnusuz
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
- Department of Cytology and Histology St. Petersburg State University St. Petersburg Russia
- Department of Immunology Institute of Experimental Medicine St. Petersburg Russia
| | - Nikolay P Gorbunov
- The Research Institute of Highly Pure Biopreparations St. Petersburg Russia
| | | | | | | | - Sergey V Orlov
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
- Department of Embryology St. Petersburg State University St. Petersburg Russia
| |
Collapse
|
8
|
González de la Aleja A, Herrero C, Torres-Torresano M, de la Rosa JV, Alonso B, Capa-Sardón E, Muller IB, Jansen G, Puig-Kröger A, Vega MA, Castrillo A, Corbí ÁL. Activation of LXR Nuclear Receptors Impairs the Anti-Inflammatory Gene and Functional Profile of M-CSF-Dependent Human Monocyte-Derived Macrophages. Front Immunol 2022; 13:835478. [PMID: 35280993 PMCID: PMC8907538 DOI: 10.3389/fimmu.2022.835478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Liver X Receptors (LXR) control cholesterol metabolism and exert anti-inflammatory actions but their contribution to human macrophage polarization remains unclear. The LXR pathway is enriched in pro-inflammatory macrophages from rheumatoid arthritis as well as in tumors-associated macrophages from human tumors. We now report that LXR activation inhibits the anti-inflammatory gene and functional profile of M-CSF-dependent human macrophages, and prompts the acquisition of a pro-inflammatory gene signature, with both effects being blocked by an LXR inverse agonist. Mechanistically, the LXR-stimulated macrophage polarization shift correlates with diminished expression of MAFB and MAF, which govern the macrophage anti-inflammatory profile, and with enhanced release of activin A. Indeed, LXR activation impaired macrophage polarization in response to tumor-derived ascitic fluids, as well as the expression of MAF- and MAFB-dependent genes. Our results demonstrate that LXR activation limits the anti-inflammatory human macrophage polarization and prompts the acquisition of an inflammatory transcriptional and functional profile.
Collapse
Affiliation(s)
- Arturo González de la Aleja
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mónica Torres-Torresano
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan Vladimir de la Rosa
- Unidad de Biomedicina (Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC)), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Capa-Sardón
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ittai B. Muller
- Department of Clinical Chemistry, Amsterdam University Medical Center, Location VUmc, Amsterdam, Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Location VUmc, Amsterdam, Netherlands
| | - Amaya Puig-Kröger
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Miguel A. Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC)), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Instituto Investigaciones Biomédicas “Alberto Sols” (IIBM), and Centro Mixto Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (Consejo Superior de Investigaciones Científicas (ICSIC)-UAM), Madrid, Spain
| | - Ángel L. Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
9
|
Thiel W, Esposito EJ, Findley AP, Blume ZI, Mitchell DM. Modulation of retinoid-X-receptors differentially regulates expression of apolipoprotein genes apoc1 and apoeb by zebrafish microglia. Biol Open 2021; 11:273656. [PMID: 34878094 PMCID: PMC8822359 DOI: 10.1242/bio.058990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS. Summary: Here we investigate expression of two apolipoprotein genes by microglia in the zebrafish model during normal development, and in contexts of pharmacological manipulations that target candidate regulatory receptors.
Collapse
Affiliation(s)
- Whitney Thiel
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Emma J Esposito
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Anna P Findley
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Diana M Mitchell
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| |
Collapse
|
10
|
Lianto P, Hutchinson SA, Moore JB, Hughes TA, Thorne JL. Characterization and prognostic value of LXR splice variants in triple-negative breast cancer. iScience 2021; 24:103212. [PMID: 34755086 PMCID: PMC8560626 DOI: 10.1016/j.isci.2021.103212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023] Open
Abstract
Activity of liver x receptor (LXR), the homeostatic regulator of cholesterol metabolism, is elevated in triple-negative breast cancer (BCa) relative to other BCa subtypes, driving drug resistance and metastatic gene signatures. The loci encoding LXRα and LXRβ produce multiple alternatively spliced proteins, but the true range of variants and their relevance to cancer remain poorly defined. Here, we report seven LXR splice variants, three of which have not previously been reported and five that were prognostic for disease-free survival. Expression of full-length LXRα splice variants was associated with poor prognosis, consistent with a role as an oncogenic driver of triple-negative tumor pathophysiology. Contrary to this was the observation that high expression of truncated LXRα splice variants or any LXRβ splice variant was associated with longer survival. These findings indicate that LXR isoform abundance is an important aspect of understanding the link between dysregulated cholesterol metabolism and cancer pathophysiology.
Collapse
Affiliation(s)
- Priscilia Lianto
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | | | - J. Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | | | - James L. Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Morroniside Promotes PGC-1 α-Mediated Cholesterol Efflux in Sodium Palmitate or High Glucose-Induced Mouse Renal Tubular Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9942152. [PMID: 34485530 PMCID: PMC8410408 DOI: 10.1155/2021/9942152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022]
Abstract
Lipid deposition is an etiology of renal damage caused by lipid metabolism disorder in diabetic nephropathy (DN). Thus, reducing lipid deposition is a feasible strategy for the treatment of DN. Morroniside (MOR), an iridoid glycoside isolated from the Chinese herb Cornus officinalis Sieb. et Zucc., is considered to be an effective drug in inhibiting oxidative stress, reducing inflammatory response, and countering apoptosis. To explore the protective mechanism of MOR in attenuating renal lipotoxicity in DN, we investigated the effect of MOR on an in vitro model of lipid metabolism disorder of DN established by stimulating mouse renal tubular epithelial cells (mRTECs) with sodium palmitate (PA) or high glucose (HG). Oil Red O and filipin cholesterol staining assays were used to determine intracellular lipid accumulation status. Results revealed that PA or HG stimulation inhibited the expressions of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), liver X receptors (LXR), ATP-binding cassette subfamily A member 1 (ABCA1), ABCG1, and apolipoprotein E (ApoE) in mRTECs as evidenced by western blot and quantitative real-time PCR, resulting in increased intracellular lipid deposition. Interestingly, MOR upregulated expressions of PGC-1α, LXR, ABCA1, ABCG1, and ApoE, thus reducing cholesterol accumulation in mRTECs, suggesting that MOR might promote cholesterol efflux from mRTECs via the PGC-1α/LXR pathway. Of note, silencing PGC-1α reversed the promotive effect of MOR on PA- or HG-induced cellular cholesterol accumulation. In conclusion, our results suggest that MOR has a protective effect on mRTECs under high lipid or high glucose conditions, which may be related to the promotion of intracellular cholesterol efflux mediated by PGC-1α.
Collapse
|
12
|
Li B, Lian M, Li Y, Qian Q, Zhang J, Liu Q, Tang R, Ma X. Myeloid-Derived Suppressive Cells Deficient in Liver X Receptor α Protected From Autoimmune Hepatitis. Front Immunol 2021; 12:732102. [PMID: 34512667 PMCID: PMC8427166 DOI: 10.3389/fimmu.2021.732102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) emerge as a promising candidate for the immunotherapy of autoimmune hepatitis (AIH). However, targets for modulating MDSC in AIH are still being searched. Liver X receptors (LXRs) are important nuclear receptors linking lipid metabolism and immune responses. Despite the extensive studies of LXR in myeloid compartment, its role in MDSCs is currently less understood. Herein, expression of LXRα was found to be upregulated in AIH patients and colocalized with hepatic MDSCs. In ConA-induced hepatitis, deletion of LXRα led to increased expansion of MDSCs in the liver and alleviated the hepatic injury. MDSCs in LXRα-/- mice exhibited enhanced proliferation and survival comparing with WT mice. T-cell proliferation assay and adoptive cell transfer experiment validated the potent immunoregulatory role of MDSCs in vitro and in vivo. Mechanistically, MDSCs from LXRα-/- mice possessed significantly lower expression of interferon regulatory factor 8 (IRF-8), a key negative regulator of MDSC differentiation. Transcriptional activation of IRF-8 by LXRα was further demonstrated. Conclusion We reported that abrogation of LXRα facilitated the expansion of MDSCs via downregulating IRF-8, and thereby ameliorated hepatic immune injury profoundly. Our work highlights the therapeutic potential of targeting LXRα in AIH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiong Ma
- *Correspondence: Xiong Ma, ; Ruqi Tang,
| |
Collapse
|
13
|
LXR directly regulates glycosphingolipid synthesis and affects human CD4+ T cell function. Proc Natl Acad Sci U S A 2021; 118:2017394118. [PMID: 34006637 DOI: 10.1073/pnas.2017394118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The liver X receptor (LXR) is a key transcriptional regulator of cholesterol, fatty acid, and phospholipid metabolism. Dynamic remodeling of immunometabolic pathways, including lipid metabolism, is a crucial step in T cell activation. Here, we explored the role of LXR-regulated metabolic processes in primary human CD4+ T cells and their role in controlling plasma membrane lipids (glycosphingolipids and cholesterol), which strongly influence T cell immune signaling and function. Crucially, we identified the glycosphingolipid biosynthesis enzyme glucosylceramide synthase as a direct transcriptional LXR target. LXR activation by agonist GW3965 or endogenous oxysterol ligands significantly altered the glycosphingolipid:cholesterol balance in the plasma membrane by increasing glycosphingolipid levels and reducing cholesterol. Consequently, LXR activation lowered plasma membrane lipid order (stability), and an LXR antagonist could block this effect. LXR stimulation also reduced lipid order at the immune synapse and accelerated activation of proximal T cell signaling molecules. Ultimately, LXR activation dampened proinflammatory T cell function. Finally, compared with responder T cells, regulatory T cells had a distinct pattern of LXR target gene expression corresponding to reduced lipid order. This suggests LXR-driven lipid metabolism could contribute to functional specialization of these T cell subsets. Overall, we report a mode of action for LXR in T cells involving the regulation of glycosphingolipid and cholesterol metabolism and demonstrate its relevance in modulating T cell function.
Collapse
|
14
|
Wu D, Hu Y, Song M, Li G. Dichlorodiphenyltrichloroethane Impairs Amyloid Beta Clearance by Decreasing Liver X Receptor α Expression. Front Aging Neurosci 2021; 13:634948. [PMID: 34045954 PMCID: PMC8144330 DOI: 10.3389/fnagi.2021.634948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Abnormal amyloid beta (Aβ) clearance is a distinctive pathological mechanism for Alzheimer’s disease (AD). ATP-binding cassette transporter A1 (ABCA1), which mediates the lipidation of apolipoprotein E, plays a critical role in Aβ clearance. As an environmental factor for AD, dichlorodiphenyltrichloroethane (DDT) can decrease ATP-binding cassette transporter A1 (ABCA1) expression and disrupt Aβ clearance. Liver X receptor α (LXRα) is an autoregulatory transcription factor for ABCA1 and a target of some environmental pollutants, such as organophosphate pesticides. In this study, we aimed to investigate whether DDT could affect Aβ clearance by targeting LXRα. The DDT-pretreated H4 human neuroglioma cells and immortalized astrocytes were incubated with exogenous Aβ to evaluate Aβ consumption. Meanwhile, cytotoxicity and LXRα expression were determined in the DDT-treated cells. Subsequently, the antagonism of DDT on LXRα agonist T0901317 was determined in vitro. The interaction between DDT and LXRα was predicted by molecular docking and molecular dynamics simulation technology. We observed that DDT could inhibit Aβ clearance and decrease the levels of LXRα mRNA and LXRα protein. Moreover, DDT is supposed to strongly bind to LXRα and exert antagonistic effects on LXRα. In conclusion, this study firstly presented that DDT could inhibit LXRα expression, which would contribute to Aβ clearance decline in vitro. It provides an experimental basis to search for potential therapeutic targets of AD.
Collapse
Affiliation(s)
- Dongmei Wu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Hu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Song
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gongbo Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
16
|
Dixon ED, Nardo AD, Claudel T, Trauner M. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Genes (Basel) 2021; 12:genes12050645. [PMID: 33926085 PMCID: PMC8145571 DOI: 10.3390/genes12050645] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic disorders characterized by metabolic inflexibility with multiple pathological organ manifestations, including non-alcoholic fatty liver disease (NAFLD). Nuclear receptors are ligand-dependent transcription factors with a multifaceted role in controlling many metabolic activities, such as regulation of genes involved in lipid and glucose metabolism and modulation of inflammatory genes. The activity of nuclear receptors is key in maintaining metabolic flexibility. Their activity depends on the availability of endogenous ligands, like fatty acids or oxysterols, and their derivatives produced by the catabolic action of metabolic lipases, most of which are under the control of nuclear receptors. For example, adipose triglyceride lipase (ATGL) is activated by peroxisome proliferator-activated receptor γ (PPARγ) and conversely releases fatty acids as ligands for PPARα, therefore, demonstrating the interdependency of nuclear receptors and lipases. The diverse biological functions and importance of nuclear receptors in metabolic syndrome and NAFLD has led to substantial effort to target them therapeutically. This review summarizes recent findings on the roles of lipases and selected nuclear receptors, PPARs, and liver X receptor (LXR) in obesity, diabetes, and NAFLD.
Collapse
Affiliation(s)
| | | | | | - Michael Trauner
- Correspondence: ; Tel.: +43-140-4004-7410; Fax: +43-14-0400-4735
| |
Collapse
|
17
|
Sun Y, Zhou L, Chen W, Zhang L, Zeng H, Sun Y, Long J, Yuan D. Immune metabolism: a bridge of dendritic cells function. Int Rev Immunol 2021; 41:313-325. [PMID: 33792460 DOI: 10.1080/08830185.2021.1897124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing number of researches have shown that cell metabolism regulates cell function. Dendritic cells (DCs), a professional antigen presenting cells, connect innate and adaptive immune responses. The preference of DCs for sugar or lipid affects its phenotypes and functions. In many diseases such as atherosclerosis (AS), diabetes mellitus and tumor, altered glucose or lipid level in microenvironment makes DCs exert ineffective or opposite immune roles, which accelerates the development of these diseases. In this article, we review the metabolism pathways of glucose and cholesterol in DCs, and the effects of metabolic changes on the phenotype and function of DCs. In addition, we discuss the effects of changes in glucose and lipid levels on DCs in the context of different diseases for better understanding the relationship between DCs and diseases. The immune metabolism of DCs may be a potential intervention link to treat metabolic-related immune diseases.
Collapse
Affiliation(s)
- Yuting Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Weikai Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hongbo Zeng
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yunxia Sun
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Uekita H, Yamamoto H, Niinaga R, Yamane N, Yoshii M, Yamauchi-Takihara K, Kihara S. Reciprocal association of serum Mac-2 binding protein and HDL-cholesterol concentrations. Clin Chim Acta 2021; 516:142-148. [PMID: 33571485 DOI: 10.1016/j.cca.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Mac-2 binding protein (Mac-2BP) is used as a serum biomarker of nonalcoholic steatohepatitis, considered to be a liver phenotype of metabolic syndrome (MetS). In this study, we investigated the serum Mac-2BP concentrations-correlated MetS-related clinical parameters in vivo, and the underlying mechanism in vitro. MATERIALS & METHODS We enrolled 54 healthy Japanese men who underwent health examination at Osaka University Health Care Center in this study. Physical and serum biochemical parameters were obtained from all the subjects. In the cultured HepG2 cells, the effects of interferon (IFN)-γ on the expression of Mac-2BP, apolipoprotein (apo) A-I, and ATP binding cassette transporter A1 (ABCA1) were studied. RESULTS Serum Mac-2BP concentrations correlated negatively with HDL-C, and positively with body mass index and systolic blood pressure in univariate analysis. These results suggested the association between Mac-2BP and MetS, although none of these 3 parameters had significant correlation with serum Mac-2BP concentrations in multivariate analysis. In HepG2 cells, IFN-γ stimulation resulted in the increased Mac-2BP and the decreased ABCA1 and apo A-I mRNA concentrations, while Mac-2BP had no effects on ABCA1 and apo A-I concentrations. CONCLUSIONS The serum Mac-2BP concentrations are negatively correlated with HDL-C concentrations in healthy subjects, as a result of chronic inflammation.
Collapse
Affiliation(s)
- Hiromi Uekita
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Medical Technology, Faculty of Health Sciences, Kansai University of Health Sciences, Osaka, Japan
| | - Hiroyasu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Ryu Niinaga
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriko Yamane
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manami Yoshii
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Bennett H, Troutman TD, Sakai M, Glass CK. Epigenetic Regulation of Kupffer Cell Function in Health and Disease. Front Immunol 2021; 11:609618. [PMID: 33574817 PMCID: PMC7870864 DOI: 10.3389/fimmu.2020.609618] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Kupffer cells, the resident macrophages of the liver, comprise the largest pool of tissue macrophages in the body. Within the liver sinusoids Kupffer cells perform functions common across many tissue macrophages including response to tissue damage and antigen presentation. They also engage in specialized activities including iron scavenging and the uptake of opsonized particles from the portal blood. Here, we review recent studies of the epigenetic pathways that establish Kupffer cell identity and function. We describe a model by which liver-environment specific signals induce lineage determining transcription factors necessary for differentiation of Kupffer cells from bone-marrow derived monocytes. We conclude by discussing how these lineage determining transcription factors (LDTFs) drive Kupffer cell behavior during both homeostasis and disease, with particular focus on the relevance of Kupffer cell LDTF pathways in the setting of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Hunter Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ty D Troutman
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
20
|
Nicotinamide Prevents Apolipoprotein B-Containing Lipoprotein Oxidation, Inflammation and Atherosclerosis in Apolipoprotein E-Deficient Mice. Antioxidants (Basel) 2020; 9:antiox9111162. [PMID: 33233455 PMCID: PMC7700561 DOI: 10.3390/antiox9111162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
The potential of nicotinamide (NAM) to prevent atherosclerosis has not yet been examined. This study investigated the effect of NAM supplementation on the development of atherosclerosis in a mouse model of the disease. The development of aortic atherosclerosis was significantly reduced (NAM low dose: 45%; NAM high dose: 55%) in NAM-treated, apolipoprotein (Apo)E-deficient mice challenged with a Western diet for 4 weeks. NAM administration significantly increased (1.8-fold) the plasma concentration of proatherogenic ApoB-containing lipoproteins in NAM high-dose (HD)-treated mice compared with untreated mice. However, isolated ApoB-containing lipoproteins from NAM HD mice were less prone to oxidation than those of untreated mice. This result was consistent with the decreased (1.5-fold) concentration of oxidized low-density lipoproteins in this group. Immunohistochemical staining of aortas from NAM-treated mice showed significantly increased levels of IL-10 (NAM low-dose (LD): 1.3-fold; NAM HD: 1.2-fold), concomitant with a significant decrease in the relative expression of TNFα (NAM LD: −44%; NAM HD: −57%). An improved anti-inflammatory pattern was reproduced in macrophages cultured in the presence of NAM. Thus, dietary NAM supplementation in ApoE-deficient mice prevented the development of atherosclerosis and improved protection against ApoB-containing lipoprotein oxidation and aortic inflammation.
Collapse
|
21
|
Snodgrass RG, Benatzy Y, Schmid T, Namgaladze D, Mainka M, Schebb NH, Lütjohann D, Brüne B. Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death Differ 2020; 28:1301-1316. [PMID: 33177619 PMCID: PMC8027700 DOI: 10.1038/s41418-020-00652-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
22
|
Wang T, Zhao Y, You Z, Li X, Xiong M, Li H, Yan N. Endoplasmic Reticulum Stress Affects Cholesterol Homeostasis by Inhibiting LXRα Expression in Hepatocytes and Macrophages. Nutrients 2020; 12:nu12103088. [PMID: 33050595 PMCID: PMC7601278 DOI: 10.3390/nu12103088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is the most common cardiovascular disease, and reverse cholesterol transport (RCT) plays an important role in maintaining cholesterol homeostasis. Both endoplasmic reticulum (ER) stress and LXRα can affect the metabolism of cholesterol. However, whether ER stress can modulate cholesterol metabolism by LXRα in hepatocytes and macrophages remains unclear. Therefore, in this study, we aimed to explore the relationship between ER stress induced by tunicamycin and LXRα in hepatocytes and macrophages and clarify their possible mechanisms and roles in AS. C57BL/6 mice and Huh-7 and THP-1 cells were treated with tunicamycin and LXR-623 (an agonist of LXRα) alone or in combination. Tunicamycin-induced ER stress caused liver injury; promoted the accumulation of cholesterol and triglycerides; inhibited the expression of LXRα, ABCA1 and ABCG1 in the livers of mice, thus reducing serum high-density lipoprotein (HDL)-C, low-density lipoprotein (LDL)-C, total cholesterol and triglyceride levels; however, LXR-623 could attenuate ER stress and reverse these changes. We also obtained the same results in Huh-7 and THP-1 cells. ER stress induced by tunicamycin could clearly be reversed by activating LXRα because it promoted cholesterol efflux by enhancing the expression of ABCA1 and ABCG1 in hepatocytes and macrophages, contributing to attenuation of the development of AS.
Collapse
|
23
|
RORα autoregulates its transcription via MLL4-associated enhancer remodeling in the liver. Life Sci 2020; 256:118007. [DOI: 10.1016/j.lfs.2020.118007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
|
24
|
Vieira CP, Fortmann SD, Hossain M, Longhini AL, Hammer SS, Asare-Bediako B, Crossman DK, Sielski MS, Adu-Agyeiwaah Y, Dupont M, Floyd JL, Li Calzi S, Lydic T, Welner RS, Blanchard GJ, Busik JV, Grant MB. Selective LXR agonist DMHCA corrects retinal and bone marrow dysfunction in type 2 diabetes. JCI Insight 2020; 5:137230. [PMID: 32641586 DOI: 10.1172/jci.insight.137230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
In diabetic dyslipidemia, cholesterol accumulates in the plasma membrane, decreasing fluidity and thereby suppressing the ability of cells to transduce ligand-activated signaling pathways. Liver X receptors (LXRs) make up the main cellular mechanism by which intracellular cholesterol is regulated and play important roles in inflammation and disease pathogenesis. N, N-dimethyl-3β-hydroxy-cholenamide (DMHCA), a selective LXR agonist, specifically activates the cholesterol efflux arm of the LXR pathway without stimulating triglyceride synthesis. In this study, we use a multisystem approach to understand the effects and molecular mechanisms of DMHCA treatment in type 2 diabetic (db/db) mice and human circulating angiogenic cells (CACs), which are hematopoietic progenitor cells with vascular reparative capacity. We found that DMHCA is sufficient to correct retinal and BM dysfunction in diabetes, thereby restoring retinal structure, function, and cholesterol homeostasis; rejuvenating membrane fluidity in CACs; hampering systemic inflammation; and correcting BM pathology. Using single-cell RNA sequencing on lineage-sca1+c-Kit+ (LSK) hematopoietic stem cells (HSCs) from untreated and DMHCA-treated diabetic mice, we provide potentially novel insights into hematopoiesis and reveal DMHCA's mechanism of action in correcting diabetic HSCs by reducing myeloidosis and increasing CACs and erythrocyte progenitors. Taken together, these findings demonstrate the beneficial effects of DMHCA treatment on diabetes-induced retinal and BM pathology.
Collapse
Affiliation(s)
| | - Seth D Fortmann
- Department of Ophthalmology and Visual Sciences and.,Medical Scientist Training Program (MSTP), School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | | | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | - Todd Lydic
- Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, Michigan, USA
| | - Robert S Welner
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gary J Blanchard
- Medical Scientist Training Program (MSTP), School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
25
|
Sun MMG, Beier F. Liver X Receptor activation regulates genes involved in lipid homeostasis in developing chondrocytes. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100030. [DOI: 10.1016/j.ocarto.2020.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
|
26
|
Balasubramanian B, Kim HJ, Mothana RA, Kim YO, Siddiqui NA. Role of LXR alpha in regulating expression of glucose transporter 4 in adipocytes — Investigation on improvement of health of diabetic patients. J Infect Public Health 2020; 13:244-252. [DOI: 10.1016/j.jiph.2019.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 11/26/2022] Open
|
27
|
Mello T, Materozzi M, Zanieri F, Simeone I, Ceni E, Bereshchenko O, Polvani S, Tarocchi M, Marroncini G, Nerlov C, Guasti D, Bani D, Pinzani M, Galli A. Liver haploinsufficiency of RuvBL1 causes hepatic insulin resistance and enhances hepatocellular carcinoma progression. Int J Cancer 2019; 146:3410-3422. [PMID: 31721195 DOI: 10.1002/ijc.32787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
Abstract
RuvBL1 is an AAA+ ATPase whose expression in hepatocellular carcinoma (HCC) correlates with a poor prognosis. In vitro models suggest that targeting RuvBL1 could be an effective strategy against HCC. However, the role of RuvBL1 in the onset and progression of HCC remains unknown. To address this question, we developed a RuvBL1hep+/- mouse model and evaluated the outcome of DEN-induced liver carcinogenesis up to 12 months of progression. We found that RuvBL1 haploinsufficiency initially delayed the onset of liver cancer, due to a reduced hepatocyte turnover in RuvBL1hep+/- mice. However, RuvBL1hep+/- mice eventually developed HCC nodules that, with aging, grew larger than in the control mice. Moreover, RuvBL1hep+/- mice developed hepatic insulin resistance and impaired glucose homeostasis. We could determine that RuvBL1 regulates insulin signaling through the Akt/mTOR pathway in liver physiology in vivo as well as in normal hepatocytic and HCC cells in vitro. Whole transcriptome analysis of mice livers confirmed the major role of RuvBL1 in the regulation of hepatic glucose metabolism. Finally, RuvBL1 expression was found significantly correlated to glucose metabolism and mTOR signaling by bioinformatic analysis of human HCC sample from the publicly available TGCA database. These data uncover a role of RuvBL1 at the intersection of liver metabolism, hepatocyte proliferation and HCC development, providing a molecular rationale for its overexpression in liver cancer.
Collapse
Affiliation(s)
- Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria Materozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Zanieri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Irene Simeone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Ceni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Tarocchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Claus Nerlov
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, London, United Kingdom
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
28
|
Moore ES, Daugherity EK, Karambizi DI, Cummings BP, Behling-Kelly E, Schaefer DMW, Southard TL, McFadden JW, Weiss RS. Sex-specific hepatic lipid and bile acid metabolism alterations in Fancd2-deficient mice following dietary challenge. J Biol Chem 2019; 294:15623-15637. [PMID: 31434739 DOI: 10.1074/jbc.ra118.005729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in the Fanconi anemia (FA) DNA damage-response pathway result in genomic instability, developmental defects, hematopoietic failure, cancer predisposition, and metabolic disorders. The endogenous sources of damage contributing to FA phenotypes and the links between FA and metabolic disease remain poorly understood. Here, using mice lacking the Fancd2 gene, encoding a central FA pathway component, we investigated whether the FA pathway protects against metabolic challenges. Fancd2 -/- and wildtype (WT) mice were fed a standard diet (SD), a diet enriched in fat, cholesterol, and cholic acid (Paigen diet), or a diet enriched in lipid alone (high-fat diet (HFD)). Fancd2 -/- mice developed hepatobiliary disease and exhibited decreased survival when fed a Paigen diet but not a HFD. Male Paigen diet-fed mice lacking Fancd2 had significant biliary hyperplasia, increased serum bile acid concentration, and increased hepatic pathology. In contrast, female mice were similarly impacted by Paigen diet feeding regardless of Fancd2 status. Upon Paigen diet challenge, male Fancd2 -/- mice had altered expression of genes encoding hepatic bile acid transporters and cholesterol and fatty acid metabolism proteins, including Scp2/x, Abcg5/8, Abca1, Ldlr, Srebf1, and Scd-1 Untargeted lipidomic profiling in liver tissue revealed 132 lipid species, including sphingolipids, glycerophospholipids, and glycerolipids, that differed significantly in abundance depending on Fancd2 status in male mice. We conclude that the FA pathway has sex-specific impacts on hepatic lipid and bile acid metabolism, findings that expand the known functions of the FA pathway and may provide mechanistic insight into the metabolic disease predisposition in individuals with FA.
Collapse
Affiliation(s)
- Elizabeth S Moore
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Erin K Daugherity
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853.,Center for Animal Resources and Education, Cornell University, Ithaca, New York 14853
| | - David I Karambizi
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Bethany P Cummings
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Erica Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853
| | - Deanna M W Schaefer
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
29
|
Grinman DY, Careaga VP, Wellberg EA, Dansey MV, Kordon EC, Anderson SM, Maier MS, Burton G, MacLean PS, Rudolph MC, Pecci A. Liver X receptor-α activation enhances cholesterol secretion in lactating mammary epithelium. Am J Physiol Endocrinol Metab 2019; 316:E1136-E1145. [PMID: 30964702 PMCID: PMC6620573 DOI: 10.1152/ajpendo.00548.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/22/2022]
Abstract
Liver X receptors (LXRs) are ligand-dependent transcription factors activated by cholesterol metabolites. These receptors induce a suite of target genes required for de novo synthesis of triglycerides and cholesterol transport in many tissues. Two different isoforms, LXRα and LXRβ, have been well characterized in liver, adipocytes, macrophages, and intestinal epithelium among others, but their contribution to cholesterol and fatty acid efflux in the lactating mammary epithelium is poorly understood. We hypothesize that LXR regulates lipogenesis during milk fat production in lactation. Global mRNA analysis of mouse mammary epithelial cells (MECs) revealed multiple LXR/RXR targets upregulated sharply early in lactation compared with midpregnancy. LXRα is the primary isoform, and its protein levels increase throughout lactation in MECs. The LXR agonist GW3965 markedly induced several genes involved in cholesterol transport and lipogenesis and enhanced cytoplasmic lipid droplet accumulation in the HC11 MEC cell line. Importantly, in vivo pharmacological activation of LXR increased the milk cholesterol percentage and induced sterol regulatory element-binding protein 1c (Srebp1c) and ATP-binding cassette transporter a7 (Abca7) expression in MECs. Cumulatively, our findings identify LXRα as an important regulator of cholesterol incorporation into the milk through key nodes of de novo lipogenesis, suggesting a potential therapeutic target in women with difficulty initiating lactation.
Collapse
Affiliation(s)
- Diego Y Grinman
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Valeria P Careaga
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - María V Dansey
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Edith C Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Steven M Anderson
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Marta S Maier
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Gerardo Burton
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Paul S MacLean
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Adali Pecci
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
30
|
Xu Y, Hutchison SM, Hernández-Ledezma JJ, Bogan RL. Increased 27-hydroxycholesterol production during luteolysis may mediate the progressive decline in progesterone secretion. Mol Hum Reprod 2019; 24:2-13. [PMID: 29177442 DOI: 10.1093/molehr/gax061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Does 27-hydroxycholesterol (27OH) actively facilitate the progression of luteolysis? SUMMARY ANSWER There is increased mRNA expression of the enzyme that produces 27OH during luteolysis in vivo in rhesus macaques and sheep, and 27OH reduces progesterone secretion from human luteinized granulosa cells. WHAT IS KNOWN ALREADY There is an increase in mRNA expression of liver x receptor (LXR) and a decrease in sterol regulatory element binding protein 2 (SREBP2) target genes during spontaneous luteolysis in primates, which could result in reduced cholesterol availability for steroidogenesis. Concentrations of 27OH are also increased in primate corpora lutea (CL) during luteolysis, and 27OH is a dual LXR agonist and SREBP2 inhibitor. STUDY DESIGN SIZE, DURATION This was an in vitro study using primary human luteinized granulosa cells in a control versus treatment(s) design. Analyses of CL from sheep undergoing induced or spontaneous luteolysis were also performed, along with database mining of microarray data from rhesus macaque CL. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary luteinizing granulosa cells were obtained from 37 women aged 24-44 who were undergoing oocyte donation or IVF for male factor or idiopathic infertility, and cells were further luteinized in vitro using human chorionic gonadotropin. Three approaches to test the effect of 27OH produced via CYP27A1 (cytochrome p450, family 27, subfamily A, polypeptide 1) on luteinized granulosa cells were used: (i) direct 27OH supplementation, (ii) induction of endogenous CYP27A1 activity via pharmacologic inhibition of steroidogenesis, and (iii) siRNA-mediated knockdown to directly inhibit CYP27A1 as well as cholesterol transport into the mitochondria via the steroidogenic acute regulatory protein (STAR). Endpoints included: progesterone (P4) secretion into culture media determined by enzyme immunoassay, cholesterol efflux and uptake assays using fluorescent lipid analogs, and mRNA expression determined via semi-quantitative real-time PCR (QPCR). An additional experiment involved QPCR analysis of 40 CL collected from ewes undergoing induced or spontaneous luteolysis, as well as database mining of microarray data generated from 16 rhesus macaque CL collected during spontaneous luteolysis and 13 macaque CL collected during a luteinizing hormone ablation and replacement protocol. MAIN RESULTS AND THE ROLE OF CHANCE The mRNA expression of CYP27A1 was significantly increased during luteolysis in rhesus macaques and sheep in vivo, and CYP27A1 transcription was suppressed by luteinizing hormone and hCG. There was a significant decrease in hCG-stimulated P4 secretion from human luteinized granulosa cells caused by 27OH treatment, and a significant increase in basal and hCG-stimulated P4 synthesis when endogenous 27OH production was inhibited via CYP27A1 knockdown, indicating that 27OH inhibits steroidogenesis. Pharmacologic inhibition of steroidogenesis by aminoglutethimide significantly induced LXR and inhibited SREBP2 target gene mRNA expression, indicating that increased oxysterol production occurs when steroidogenesis is suppressed. Inhibiting cholesterol delivery into the mitochondria via knockdown of STAR resulted in reduced SREBP2 target gene mRNA expression, indicating that STAR function is necessary to maintain SREBP2-mediated transcription. The effects of 27OH treatment on markers of LXR and SREBP2 activity were moderate, and knockdown of CYP27A1 did not prevent aminoglutethimide-induced changes in LXR and SREBP2 target gene mRNA expression. These observations indicate that 27OH inhibits P4 secretion partially via mechanisms separate from its role as an LXR agonist and SREBP2 inhibitor, and also demonstrate that other oxysterols are involved in modulating LXR and SREBP2-mediated transcription when steroidogenesis is suppressed. LARGE SCALE DATA None. LIMITATIONS REASONS FOR CAUTION Luteinized granulosa cells may differ from luteal cells, and the effect on luteal function in vivo was not directly tested. The mechanisms that cause the initial rise in CYP27A1 mRNA expression during luteolysis are also not clear. WIDER IMPLICATIONS OF THE FINDINGS The factors causing luteolysis in primates have not yet been determined. This study provides functional evidence of a novel mechanism via increased 27OH synthesis during luteolysis, which subsequently represses progesterone secretion. Increased 27OH may also facilitate the progression of luteolysis in domestic animal species. STUDY FUNDING AND COMPETING INTEREST(S) The authors have nothing to disclose. Support was provided by the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) of the National Institutes of Health (NIH), award number R00HD067678 to R.L.B.
Collapse
Affiliation(s)
- Yafei Xu
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Scot M Hutchison
- Reproductive Health Center, Tucson, AZ 85712, USA.,Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - José J Hernández-Ledezma
- Reproductive Health Center, Tucson, AZ 85712, USA.,Fertilite ART Clinic Hospital, Angeles-Tijuana, BC 22010, Mexico
| | - Randy L Bogan
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
31
|
Matsuoka S, Bariuan JV, Nakagiri S, Abd Eldaim MA, Okamatsu-Ogura Y, Kimura K. Linking pathways and processes: Retinoic acid and glucose. MOLECULAR NUTRITION: CARBOHYDRATES 2019:247-264. [DOI: 10.1016/b978-0-12-849886-6.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
32
|
Xu Y, Hernández-Ledezma JJ, Hutchison SM, Bogan RL. The liver X receptors and sterol regulatory element binding proteins alter progesterone secretion and are regulated by human chorionic gonadotropin in human luteinized granulosa cells. Mol Cell Endocrinol 2018; 473:124-135. [PMID: 29366778 PMCID: PMC6045446 DOI: 10.1016/j.mce.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
There is increased expression of liver x receptor (LXR) target genes and reduced low density lipoprotein receptor (LDLR) during spontaneous luteolysis in primates. The LXRs are nuclear receptors that increase cholesterol efflux by inducing transcription of their target genes. Transcription of LDLR is regulated by sterol regulatory element binding proteins (SREBPs). Human chorionic gonadotropin (hCG) prevents luteolysis and stimulates progesterone synthesis via protein kinase A (PKA). Thus, our primary objectives are: 1) Determine the effects of LXR activation and SREBP inhibition on progesterone secretion and cholesterol metabolism, and 2) Determine whether hCG signaling via PKA regulates transcription of LXR and SREBP target genes in human luteinized granulosa cells. Basal and hCG-stimulated progesterone secretion was significantly decreased by the combined actions of the LXR agonist T0901317 and the SREBP inhibitor fatostatin, which was associated with reduced intracellular cholesterol storage. Expression of LXR target genes in the presence of T0901317 was significantly reduced by hCG, while hCG promoted transcriptional changes that favor LDL uptake. These effects of hCG were reversed by a specific PKA inhibitor. A third objective was to resolve a dilemma concerning LXR regulation of steroidogenic acute regulatory protein (STAR) expression in primate and non-primate steroidogenic cells. T0901317 induced STAR expression and progesterone synthesis in ovine, but not human cells, revealing a key difference between species in LXR regulation of luteal function. Collectively, these data support the hypothesis that LXR-induced cholesterol efflux and reduced LDL uptake via SREBP inhibition mediates luteolysis in primates, which is prevented by hCG.
Collapse
Affiliation(s)
- Yafei Xu
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - José J Hernández-Ledezma
- Reproductive Health Center, Tucson, AZ, USA; Fertilite ART Clinic Hospital, Angeles-Tijuana, BC, Mexico
| | - Scot M Hutchison
- Reproductive Health Center, Tucson, AZ, USA; Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Randy L Bogan
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
33
|
Snodgrass RG, Zezina E, Namgaladze D, Gupta S, Angioni C, Geisslinger G, Lütjohann D, Brüne B. A Novel Function for 15-Lipoxygenases in Cholesterol Homeostasis and CCL17 Production in Human Macrophages. Front Immunol 2018; 9:1906. [PMID: 30197642 PMCID: PMC6117383 DOI: 10.3389/fimmu.2018.01906] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 01/14/2023] Open
Abstract
Arachidonate 15-lipoxygenase (ALOX15) and arachidonate 15-lipoxygenase, type B (ALOX15B) catalyze the dioxygenation of polyunsaturated fatty acids and are upregulated in human alternatively activated macrophages (AAMs) induced by Th2 cytokine interleukin-4 (IL-4) and/or interleukin-13. Known primarily for roles in bioactive lipid mediator synthesis, 15-lipoxygenases (15-LOXs) have been implicated in various macrophage functions including efferocytosis and ferroptosis. Using a combination of inhibitors and siRNAs to suppress 15-LOX isoforms, we studied the role of 15-LOXs in cellular cholesterol homeostasis and immune function in naïve and AAMs. Silencing or inhibiting the 15-LOX isoforms impaired sterol regulatory element binding protein (SREBP)-2 signaling by inhibiting SREBP-2 processing into mature transcription factor and reduced SREBP-2 binding to sterol regulatory elements and subsequent target gene expression. Silencing ALOX15B reduced cellular cholesterol and the cholesterol intermediates desmosterol, lanosterol, 24,25-dihydrolanosterol, and lathosterol as well as oxysterols in IL-4-stimulated macrophages. In addition, attenuating both 15-LOX isoforms did not generally affect IL-4 gene expression but rather uniquely impacted IL-4-induced CCL17 production in an SREBP-2-dependent manner resulting in reduced T cell migration to macrophage conditioned media. In conclusion, we identified a novel role for ALOX15B, and to a lesser extent ALOX15, in cholesterol homeostasis and CCL17 production in human macrophages.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ekaterina Zezina
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sahil Gupta
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Carlo Angioni
- ZAFES/Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- ZAFES/Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
34
|
Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentially affect cholinergic expression and developmental parameters in transgenic mice. Food Chem Toxicol 2018; 118:42-52. [DOI: 10.1016/j.fct.2018.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
|
35
|
The CD36-PPARγ Pathway in Metabolic Disorders. Int J Mol Sci 2018; 19:ijms19051529. [PMID: 29883404 PMCID: PMC5983591 DOI: 10.3390/ijms19051529] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Uncovering the biological role of nuclear receptor peroxisome proliferator-activated receptors (PPARs) has greatly advanced our knowledge of the transcriptional control of glucose and energy metabolism. As such, pharmacological activation of PPARγ has emerged as an efficient approach for treating metabolic disorders with the current use of thiazolidinediones to improve insulin resistance in diabetic patients. The recent identification of growth hormone releasing peptides (GHRP) as potent inducers of PPARγ through activation of the scavenger receptor CD36 has defined a novel alternative to regulate essential aspects of lipid and energy metabolism. Recent advances on the emerging role of CD36 and GHRP hexarelin in regulating PPARγ downstream actions with benefits on atherosclerosis, hepatic cholesterol biosynthesis and fat mitochondrial biogenesis are summarized here. The response of PPARγ coactivator PGC-1 is also discussed in these effects. The identification of the GHRP-CD36-PPARγ pathway in controlling various tissue metabolic functions provides an interesting option for metabolic disorders.
Collapse
|
36
|
Damen MSMA, Dos Santos JC, Hermsen R, Adam van der Vliet J, Netea MG, Riksen NP, Dinarello CA, Joosten LAB, Heinhuis B. Interleukin-32 upregulates the expression of ABCA1 and ABCG1 resulting in reduced intracellular lipid concentrations in primary human hepatocytes. Atherosclerosis 2018. [PMID: 29524862 DOI: 10.1016/j.atherosclerosis.2018.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS The role of interleukin (IL-)32 in inflammatory conditions is well-established, however, the mechanism behind its role in atherosclerosis remains unexplained. Our group reported a promoter single nucleotide polymorphism in IL-32 associated with higher high-density lipoprotein (HDL) concentrations. We hypothesize that endogenous IL-32 in liver cells, a human monocytic cell line and carotid plaque tissue, can affect atherosclerosis by regulating (HDL) cholesterol homeostasis via expression of cholesterol transporters/mediators. METHODS Human primary liver cells were stimulated with recombinant human (rh)TNFα and poly I:C to study the expression of IL-32 and mediators in cholesterol pathways. Additionally, IL-32 was overexpressed in HepG2 cells and overexpressed and silenced in THP-1 cells to study the direct effect of IL-32 on cholesterol transporters expression and function. RESULTS Stimulation of human primary liver cells resulted in induction of IL-32α, IL-32β and IL-32γ mRNA expression (p < 0.01). A strong correlation between the expression of IL-32γ and ABCA1, ABCG1, LXRα and apoA1 was observed (p < 0.01), and intracellular lipid concentrations were reduced in the presence of endogenous IL-32 (p < 0.05). Finally, IL32γ and ABCA1 mRNA expression was upregulated in carotid plaque tissue and when IL-32 was silenced in THP-1 cells, mRNA expression of ABCA1 was strongly reduced. CONCLUSIONS Regulation of IL-32 in human primary liver cells, HepG2 and THP-1 cells strongly influences the mRNA expression of ABCA1, ABCG1, LXRα and apoA1 and affects intracellular lipid concentrations in the presence of endogenous IL-32. These data, for the first time, show an important role for IL32 in cholesterol homeostasis.
Collapse
Affiliation(s)
- Michelle S M A Damen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rob Hermsen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Adam van der Vliet
- Division of Vascular and Transplant Surgery, Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Charles A Dinarello
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands; School of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands.
| | - Bas Heinhuis
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| |
Collapse
|
37
|
Time-dependent alterations in mRNA, protein and microRNA during in vitro adipogenesis. Mol Cell Biochem 2018; 448:1-8. [DOI: 10.1007/s11010-018-3307-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022]
|
38
|
Ahsan F, Maertzdorf J, Guhlich-Bornhof U, Kaufmann SHE, Moura-Alves P. IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis. Sci Rep 2018; 8:1520. [PMID: 29367626 PMCID: PMC5784124 DOI: 10.1038/s41598-018-19476-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a life-threatening pathogen in humans. Bacterial infection of macrophages usually triggers strong innate immune mechanisms, including IL-1 cytokine secretion. The newer member of the IL-1 family, IL-36, was recently shown to be involved in cellular defense against Mtb. To unveil the underlying mechanism of IL-36 induced antibacterial activity, we analyzed its role in the regulation of cholesterol metabolism, together with the involvement of Liver X Receptor (LXR) in this process. We report that, in Mtb-infected macrophages, IL-36 signaling modulates cholesterol biosynthesis and efflux via LXR. Moreover, IL-36 induces the expression of cholesterol-converting enzymes and the accumulation of LXR ligands, such as oxysterols. Ultimately, both IL-36 and LXR signaling play a role in the regulation of antimicrobial peptides expression and in Mtb growth restriction. These data provide novel evidence for the importance of IL-36 and cholesterol metabolism mediated by LXR in cellular host defense against Mtb.
Collapse
Affiliation(s)
- Fadhil Ahsan
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany
| | - Ute Guhlich-Bornhof
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany.
| | - Pedro Moura-Alves
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
39
|
Bakiri L, Hamacher R, Graña O, Guío-Carrión A, Campos-Olivas R, Martinez L, Dienes HP, Thomsen MK, Hasenfuss SC, Wagner EF. Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. J Exp Med 2017; 214:1387-1409. [PMID: 28356389 PMCID: PMC5413325 DOI: 10.1084/jem.20160935] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular cancers arise in a background of liver damage and inflammation. Bakiri et al. describe the function of the transcription factor c-Fos/AP-1 using mouse models and human data. c-Fos affects cholesterol and bile acid metabolism and induces DNA damage and inflammation, thus promoting liver cancer. Human hepatocellular carcinomas (HCCs), which arise on a background of chronic liver damage and inflammation, express c-Fos, a component of the AP-1 transcription factor. Using mouse models, we show that hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced HCCs, whereas liver-specific c-Fos expression leads to reversible premalignant hepatocyte transformation and enhanced DEN-carcinogenesis. c-Fos–expressing livers display necrotic foci, immune cell infiltration, and altered hepatocyte morphology. Furthermore, increased proliferation, dedifferentiation, activation of the DNA damage response, and gene signatures of aggressive HCCs are observed. Mechanistically, c-Fos decreases expression and activity of the nuclear receptor LXRα, leading to increased hepatic cholesterol and accumulation of toxic oxysterols and bile acids. The phenotypic consequences of c-Fos expression are partially ameliorated by the anti-inflammatory drug sulindac and largely prevented by statin treatment. An inverse correlation between c-FOS and the LXRα pathway was also observed in human HCC cell lines and datasets. These findings provide a novel link between chronic inflammation and metabolic pathways important in liver cancer.
Collapse
Affiliation(s)
- Latifa Bakiri
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Rainer Hamacher
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Osvaldo Graña
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Ana Guío-Carrión
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Spectroscopy Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Lola Martinez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Hans P Dienes
- Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin K Thomsen
- Department of Clinical Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Sebastian C Hasenfuss
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain
| |
Collapse
|
40
|
Takei K, Nakagawa Y, Wang Y, Han SI, Satoh A, Sekiya M, Matsuzaka T, Shimano H. Effects of K-877, a novel selective PPARα modulator, on small intestine contribute to the amelioration of hyperlipidemia in low-density lipoprotein receptor knockout mice. J Pharmacol Sci 2017; 133:214-222. [PMID: 28366492 DOI: 10.1016/j.jphs.2017.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a well-known therapeutic target for treating hyperlipidemia. K-877 is a novel selective PPARα modulator (SPPARMα) that enhances PPARα transcriptional activity with high selectivity and potency, resulting in reduced plasma lipid levels. This study aimed to evaluate the effects of K-877 on hyperlipidemia in low-density lipoprotein receptor knockout (Ldlr-/-) mice, a mouse model of atherosclerosis. We revealed that K-877 administration significantly decreased plasma triglyceride (TG) and total cholesterol (TC) levels and increased plasma high-density lipoprotein cholesterol (HDL-C) levels in Ldlr-/- mice. K-877 administration to Ldlr-/- mice efficiently increased the gene expression of PPARα and its target genes related to fatty acid oxidation in the liver and small intestine. The same treatment significantly increased ATP-binding cassette a1 gene expression in the liver and small intestine and reduced Niemann Pick C1-like 1 gene expression in the small intestine, suggesting that K-877 administration induced HDL-C production in the liver and small intestine and reduced cholesterol absorption in the small intestine. In conclusion, K-877 administration had pronounced effects on the liver and small intestine in Ldlr-/- mice. K-877 is an attractive PPARα-modulating drug for treating hyperlipidemia that works equally well in both the liver and small intestine.
Collapse
Affiliation(s)
- Kenta Takei
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yunong Wang
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Aoi Satoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
41
|
Kruse MS, Suarez LG, Coirini H. Regulation of the expression of LXR in rat hypothalamic and hippocampal explants. Neurosci Lett 2017; 639:53-58. [DOI: 10.1016/j.neulet.2016.12.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
|
42
|
Nelson JK, Koenis DS, Scheij S, Cook ECL, Moeton M, Santos A, Lobaccaro JMA, Baron S, Zelcer N. EEPD1 Is a Novel LXR Target Gene in Macrophages Which Regulates ABCA1 Abundance and Cholesterol Efflux. Arterioscler Thromb Vasc Biol 2017; 37:423-432. [PMID: 28082258 PMCID: PMC5321112 DOI: 10.1161/atvbaha.116.308434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— The sterol-responsive nuclear receptors, liver X receptors α (LXRα, NR1H3) and β (LXRβ, NR1H2), are key determinants of cellular cholesterol homeostasis. LXRs are activated under conditions of high cellular sterol load and induce expression of the cholesterol efflux transporters ABCA1 and ABCG1 to promote efflux of excess cellular cholesterol. However, the full set of genes that contribute to LXR-stimulated cholesterol efflux is unknown, and their identification is the objective of this study. Approach and Results— We systematically compared the global transcriptional response of macrophages to distinct classes of LXR ligands. This allowed us to identify both common and ligand-specific transcriptional responses in macrophages. Among these, we identified endonuclease–exonuclease–phosphatase family domain containing 1 (EEPD1/KIAA1706) as a direct transcriptional target of LXRs in human and murine macrophages. EEPD1 specifically localizes to the plasma membrane owing to the presence of a myristoylation site in its N terminus. Accordingly, the first 10 amino acids of EEPD1 are sufficient to confer plasma membrane localization in the context of a chimeric protein with GFP. Functionally, we report that silencing expression of EEPD1 blunts maximal LXR-stimulated Apo AI-dependent efflux and demonstrate that this is the result of reduced abundance of ABCA1 protein in human and murine macrophages. Conclusions— In this study, we identify EEPD1 as a novel LXR-regulated gene in macrophages and propose that it promotes cellular cholesterol efflux by controlling cellular levels and activity of ABCA1.
Collapse
Affiliation(s)
- Jessica Kristine Nelson
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.)
| | - Duco Steven Koenis
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.)
| | - Saskia Scheij
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.)
| | - Emma Clare Laura Cook
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.)
| | - Martina Moeton
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.)
| | - Ana Santos
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.)
| | - Jean-Marc Adolphe Lobaccaro
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.)
| | - Silvere Baron
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.)
| | - Noam Zelcer
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (J.K.N., D.S.K., S.S., E.C.L.C., M.M., A.S., N.Z.); and Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France (J.-M.A.L., S.B.).
| |
Collapse
|
43
|
Downing LE, Edgar D, Ellison PA, Ricketts ML. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem Funct 2017; 35:12-32. [DOI: 10.1002/cbf.3247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Laura E. Downing
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| | - Daniel Edgar
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Patricia A. Ellison
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| |
Collapse
|
44
|
Bijsmans ITGW, Milona A, Ijssennagger N, Willemsen ECL, Ramos Pittol JM, Jonker JW, Lange K, Hooiveld GJEJ, van Mil SWC. Characterization of stem cell-derived liver and intestinal organoids as a model system to study nuclear receptor biology. Biochim Biophys Acta Mol Basis Dis 2016; 1863:687-700. [PMID: 27956139 DOI: 10.1016/j.bbadis.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/31/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors regulating a large variety of processes involved in reproduction, development, and metabolism. NRs are ideal drug targets because they are activated by lipophilic ligands that easily pass cell membranes. Immortalized cell lines recapitulate NR biology poorly and generating primary cultures is laborious and requires a constant need for donor material. There is a clear need for development of novel preclinical model systems that better resemble human physiology. Uncertainty due to technical limitations early in drug development is often the cause of preclinical drugs not reaching the clinic. Here, we studied whether organoids, mini-organs derived from the respective mouse tissue's stem cells, can serve as a novel model system to study NR biology and targetability. We characterized mRNA expression profiles of the NR superfamily in mouse liver, ileum, and colon organoids. Tissue-specific expression patterns were largely maintained in the organoids, indicating their suitability for NR research. Metabolic NRs Fxrα, Lxrα, Lxrβ, Pparα, and Pparγ induced expression of and binding to endogenous target genes. Transcriptome analyses of wildtype colon organoids stimulated with Rosiglitazone showed that lipid metabolism was the highest significant changed function, greatly mimicking the PPARs and Rosiglitazone function in vivo. Finally, using organoids we identify Trpm6, Slc26a3, Ang1, and Rnase4, as novel Fxr target genes. Our results demonstrate that organoids represent a framework to study NR biology that can be further expanded to human organoids to improve preclinical testing of novel drugs that target this pharmacologically important class of ligand activated transcription factors.
Collapse
Affiliation(s)
- Ingrid T G W Bijsmans
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Noortje Ijssennagger
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen C L Willemsen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - José M Ramos Pittol
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan W Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Katja Lange
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Kurowska-Stolarska M, Hasoo MK, Welsh DJ, Stewart L, McIntyre D, Morton BE, Johnstone S, Miller AM, Asquith DL, Millar NL, Millar AB, Feghali-Bostwick CA, Hirani N, Crick PJ, Wang Y, Griffiths WJ, McInnes IB, McSharry C. The role of microRNA-155/liver X receptor pathway in experimental and idiopathic pulmonary fibrosis. J Allergy Clin Immunol 2016; 139:1946-1956. [PMID: 27746237 PMCID: PMC5457127 DOI: 10.1016/j.jaci.2016.09.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is progressive and rapidly fatal. Improved understanding of pathogenesis is required to prosper novel therapeutics. Epigenetic changes contribute to IPF; therefore, microRNAs may reveal novel pathogenic pathways. Objectives We sought to determine the regulatory role of microRNA (miR)-155 in the profibrotic function of murine lung macrophages and fibroblasts, IPF lung fibroblasts, and its contribution to experimental pulmonary fibrosis. Methods Bleomycin-induced lung fibrosis in wild-type and miR-155−/− mice was analyzed by histology, collagen, and profibrotic gene expression. Mechanisms were identified by in silico and molecular approaches and validated in mouse lung fibroblasts and macrophages, and in IPF lung fibroblasts, using loss-and-gain of function assays, and in vivo using specific inhibitors. Results miR-155−/− mice developed exacerbated lung fibrosis, increased collagen deposition, collagen 1 and 3 mRNA expression, TGF-β production, and activation of alternatively activated macrophages, contributed by deregulation of the miR-155 target gene the liver X receptor (LXR)α in lung fibroblasts and macrophages. Inhibition of LXRα in experimental lung fibrosis and in IPF lung fibroblasts reduced the exacerbated fibrotic response. Similarly, enforced expression of miR-155 reduced the profibrotic phenotype of IPF and miR-155−/− fibroblasts. Conclusions We describe herein a molecular pathway comprising miR-155 and its epigenetic LXRα target that when deregulated enables pathogenic pulmonary fibrosis. Manipulation of the miR-155/LXR pathway may have therapeutic potential for IPF.
Collapse
Affiliation(s)
| | - Manhl K Hasoo
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David J Welsh
- Scottish Pulmonary Vascular Unit, University of Glasgow, Glasgow, United Kingdom
| | - Lynn Stewart
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Donna McIntyre
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Brian E Morton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Steven Johnstone
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ashley M Miller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren L Asquith
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ann B Millar
- Academic Respiratory Unit, Learning and Research, University of Bristol, Bristol, United Kingdom
| | | | - Nikhil Hirani
- University of Edinburgh/MRC Centre for Inflammation Research, the Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Peter J Crick
- College of Medicine, Swansea University, Swansea, United Kingdom
| | - Yuqin Wang
- College of Medicine, Swansea University, Swansea, United Kingdom
| | | | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom; Greater Glasgow and Clyde Clinical Research and Development, Yorkhill Hospital, Glasgow, United Kingdom.
| |
Collapse
|
46
|
Xu X, Zhang A, Halquist MS, Yuan X, Henderson SC, Dewey WL, Li PL, Li N, Zhang F. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRα signalling pathway in oxLDL-loaded macrophages. J Cell Mol Med 2016; 21:364-374. [PMID: 27629819 PMCID: PMC5264135 DOI: 10.1111/jcmm.12970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023] Open
Abstract
Statins, 3‐hydroxyl‐3‐methylglutaryl coenzyme A reductase inhibitors, are the first‐line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol‐lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi‐photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low‐density lipoprotein but had little effect in reducing the sizes of cholesteryl ester‐containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome‐compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro‐inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up‐regulation of Niemann‐Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7‐hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up‐regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.,Department of Physiology, Guangzhou Medical University, Guangzhou, China
| | - Aolin Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew S Halquist
- Department of Pharmaceutics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Xinxu Yuan
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Scott C Henderson
- Department of Anatomy & Neurobiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - William L Dewey
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Fan Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
47
|
Kemmerer M, Wittig I, Richter F, Brüne B, Namgaladze D. AMPK activates LXRα and ABCA1 expression in human macrophages. Int J Biochem Cell Biol 2016; 78:1-9. [DOI: 10.1016/j.biocel.2016.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022]
|
48
|
Cloning and Characterization of Lxr and Srebp1, and Their Potential Roles in Regulation of LC-PUFA Biosynthesis in Rabbitfish Siganus canaliculatus. Lipids 2016; 51:1051-63. [DOI: 10.1007/s11745-016-4176-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
49
|
9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages. Nutrients 2016; 8:nu8070435. [PMID: 27447665 PMCID: PMC4963911 DOI: 10.3390/nu8070435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/29/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.
Collapse
|
50
|
Palermo FA, Cocci P, Mozzicafreddo M, Arukwe A, Angeletti M, Aretusi G, Mosconi G. Tri- m-cresyl phosphate and PPAR/LXR interactions in seabream hepatocytes: revealed by computational modeling (docking) and transcriptional regulation of signaling pathways. Toxicol Res (Camb) 2016; 5:471-481. [PMID: 30090361 PMCID: PMC6061042 DOI: 10.1039/c5tx00314h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
The interactions between tri-m-cresyl phosphate (TMCP; an organophosphate flame retardant) and peroxisome proliferator activated receptors (PPARs) or liver X receptor α (LXRα) were investigated in seabream hepatocytes. The study was designed to characterize the binding of TMCP to PPARα, PPARγ and LXRα by computational modeling (docking) and transcriptional regulation of signaling pathways. TMCP mainly established a non-polar interaction with each receptor. These findings reflect the hydrophobic nature of this binding site, with fish LXRα showing the highest binding efficiency. Further, we have investigated the ability of TMCP to activate PPAR and LXR controlled transcriptional processes involved in lipid/cholesterol metabolism. TMCP induced the expression of all the target genes measured. All target genes were up-regulated at all exposure doses, except for fatty acid binding protein 7 (FABP7) and carnitine palmitoyltransferase 1B. Collectively, our data indicate that TMCP can affect fatty acid synthesis/uptake and cholesterol metabolism through LXRα and PPARs, together with interactions between these transcription factors in seabream liver.
Collapse
Affiliation(s)
- Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Augustine Arukwe
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Høgskoleringen 5 , 7491 Trondheim , Norway
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Graziano Aretusi
- Controllo Statistico , Pescara , Italy . http://www.controllostatistico.com
- Marine Protected Area Torre del Cerrano , 64025 Pineto , TE , Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| |
Collapse
|