1
|
Miao J, Wu Y, Sun Z, Miao X, Lu T, Zhao J, Lu Q. Valid inference for machine learning-assisted genome-wide association studies. Nat Genet 2024; 56:2361-2369. [PMID: 39349818 DOI: 10.1038/s41588-024-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/29/2024] [Indexed: 11/10/2024]
Abstract
Machine learning (ML) has become increasingly popular in almost all scientific disciplines, including human genetics. Owing to challenges related to sample collection and precise phenotyping, ML-assisted genome-wide association study (GWAS), which uses sophisticated ML techniques to impute phenotypes and then performs GWAS on the imputed outcomes, have become increasingly common in complex trait genetics research. However, the validity of ML-assisted GWAS associations has not been carefully evaluated. Here, we report pervasive risks for false-positive associations in ML-assisted GWAS and introduce Post-Prediction GWAS (POP-GWAS), a statistical framework that redesigns GWAS on ML-imputed outcomes. POP-GWAS ensures valid and powerful statistical inference irrespective of imputation quality and choice of algorithm, requiring only GWAS summary statistics as input. We employed POP-GWAS to perform a GWAS of bone mineral density derived from dual-energy X-ray absorptiometry imaging at 14 skeletal sites, identifying 89 new loci and revealing skeletal site-specific genetic architecture. Our framework offers a robust analytic solution for future ML-assisted GWAS.
Collapse
Affiliation(s)
- Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yixuan Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongxuan Sun
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinran Miao
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jiwei Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Kawasaki M, Kawasaki K, Sari FT, Kudo T, Nihara J, Kitamura M, Nagai T, Utama V, Ishida Y, Meguro F, Kesuma A, Fujita A, Nishimura T, Kogure Y, Maruyama S, Tanuma JI, Kakihara Y, Maeda T, Ghafoor S, Khonsari RH, Corre P, Sharpe PT, Cobourne M, Franco B, Ohazama A. Cell-cell interaction determines cell fate of mesoderm-derived cell in tongue development through Hh signaling. eLife 2024; 13:e85042. [PMID: 39392396 PMCID: PMC11469673 DOI: 10.7554/elife.85042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Dysfunction of primary cilia leads to genetic disorder, ciliopathies, which shows various malformations in many vital organs such as brain. Multiple tongue deformities including cleft, hamartoma, and ankyloglossia are also seen in ciliopathies, which yield difficulties in fundamental functions such as mastication and vocalization. Here, we found these tongue anomalies in mice with mutation of ciliary protein. Abnormal cranial neural crest-derived cells (CNCC) failed to evoke Hh signal for differentiation of mesoderm-derived cells into myoblasts, which resulted in abnormal differentiation of mesoderm-derived cells into adipocytes. The ectopic adipose subsequently arrested tongue swelling formation. Ankyloglossia was caused by aberrant cell migration due to lack of non-canonical Wnt signaling. In addition to ciliopathies, these tongue anomalies are often observed as non-familial condition in human. We found that these tongue deformities could be reproduced in wild-type mice by simple mechanical manipulations to disturb cellular processes which were disrupted in mutant mice. Our results provide hints for possible future treatment in ciliopathies.
Collapse
Affiliation(s)
- Maiko Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Finsa Tisna Sari
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takehisa Kudo
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Jun Nihara
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Madoka Kitamura
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takahiro Nagai
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Vanessa Utama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yoko Ishida
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Fumiya Meguro
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Alex Kesuma
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Akira Fujita
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takayuki Nishimura
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yuan Kogure
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Satoshi Maruyama
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Jun-ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Sarah Ghafoor
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Roman H Khonsari
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Pierre Corre
- Service de Chirurgie Maxillofaciale et tomatology, Centre Hospitalier Universitaire de Nantes,1 place Alexis Ricordeau 44000NantesFrance
| | - Paul T Sharpe
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Martyn Cobourne
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics, Department of Translational Medical Sciences, Federico II University of Naples, ItalyNaplesItaly
- Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program,NaplesItaly
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| |
Collapse
|
3
|
Giri AK, Aavikko M, Wartiovaara L, Lemmetyinen T, Karjalainen J, Mehtonen J, Palin K, Välimäki N, Tamlander M, Saikkonen R, Karhu A, Morgunova E, Sun B, Runz H, Palta P, Luo S, Joensuu H, Mäkelä TP, Kostiainen I, Schalin-Jäntti C, FinnGen, Palotie A, Aaltonen LA, Ollila S, Daly MJ. Genome-Wide Association Study Identifies 4 Novel Risk Loci for Small Intestinal Neuroendocrine Tumors Including a Missense Mutation in LGR5. Gastroenterology 2023; 165:861-873. [PMID: 37453564 DOI: 10.1053/j.gastro.2023.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND & AIMS Small intestinal neuroendocrine tumor (SI-NET) is a rare disease, but its incidence has increased over the past 4 decades. Understanding the genetic risk factors underlying SI-NETs can help in disease prevention and may provide clinically beneficial markers for diagnosis. Here the results of the largest genome-wide association study of SI-NETs performed to date with 405 cases and 614,666 controls are reported. METHODS Samples from 307 patients with SI-NETs and 287,137 controls in the FinnGen study were used for the identification of SI-NET risk-associated genetic variants. The results were also meta-analyzed with summary statistics from the UK Biobank (n = 98 patients with SI-NET and n = 327,529 controls). RESULTS We identified 6 genome-wide significant (P < 5 × 10-8) loci associated with SI-NET risk, of which 4 (near SEMA6A, LGR5, CDKAL1, and FERMT2) are novel and 2 (near LTA4H-ELK and in KIF16B) have been reported previously. Interestingly, the top hit (rs200138614; P = 1.80 × 10-19) was a missense variant (p.Cys712Phe) in the LGR5 gene, a bona-fide marker of adult intestinal stem cells and a potentiator of canonical WNT signaling. The association was validated in an independent Finnish collection of 70 patients with SI-NETs, as well as in the UK Biobank exome sequence data (n = 92 cases and n = 392,814 controls). Overexpression of LGR5 p.Cys712Phe in intestinal organoids abolished the ability of R-Spondin1 to support organoid growth, indicating that the mutation perturbed R-Spondin-LGR5 signaling. CONCLUSIONS Our study is the largest genome-wide association study to date on SI-NETs and reported 4 new associated genome-wide association study loci, including a novel missense mutation (rs200138614, p.Cys712Phe) in LGR5, a canonical marker of adult intestinal stem cells.
Collapse
Affiliation(s)
- Anil K Giri
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Linnea Wartiovaara
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Toni Lemmetyinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka Saikkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ekaterina Morgunova
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Benjamin Sun
- Translational Biology, Research and Development, Biogen Inc, Cambridge, Massachusetts
| | - Heiko Runz
- Translational Biology, Research and Development, Biogen Inc, Cambridge, Massachusetts
| | - Priit Palta
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Shuang Luo
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tomi P Mäkelä
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Iiro Kostiainen
- Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - FinnGen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
4
|
Palomares-Aguilera M, Inostroza-Allende F, Álvarez Carvajal D, Villena Balcázar C, Goldschmied Aljaro K, Castellón Zirpel L, Mayorga Maldonado J, Fuenzalida Kakarieka C. Surgical and Speech Therapy Evaluation of Lingual Frenulum. J Craniofac Surg 2023; 34:1752-1755. [PMID: 37427922 DOI: 10.1097/scs.0000000000009523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Interdisciplinary evaluation is essential to diagnose and define clinical conduct for children and adults presenting with an altered lingual frenulum; however, there are few reports on the subject in the literature. In this context, the following study exemplifies a proposed protocol for the surgical and SLT treatment of a lingual frenulum based on a review of the literature and the experience of speech and language therapists and maxillofacial surgeons from hospitals in Santiago de Chile. After its application, a history of breastfeeding with difficulties and a maintained preference for soft foods was reported. Upon anatomic examination, the lingual apex was heart-shaped, and the lingual frenulum was fixed in the upper third of the ventral side of the tongue, with a pointed shape, submerged up to the apex, and of adequate thickness. Meanwhile, upon functional examination, the tongue was descended at rest, performed tongue protrusion with restrictions (raising and clicking), did not achieve attachment or vibration, and presented distortion of the sounds / r/ and /rr/. With this information, an altered lingual frenulum was diagnosed, with the indication for surgery and postoperative speech and language therapy. The constructed instrument allowed for the standardization of the evaluation in different teams but should be validated in future research.
Collapse
Affiliation(s)
- Mirta Palomares-Aguilera
- Fundación Gantz, Hospital del Niño con Fisura, Santiago, Chile
- Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
- Smile Train, South American Medical Advisory Council-SAMAC-Santiago, Chile
| | - Felipe Inostroza-Allende
- Fundación Gantz, Hospital del Niño con Fisura, Santiago, Chile
- Departamento de Fonoaudiología, Universidad de Chile, Santiago, Chile
| | | | | | - Karen Goldschmied Aljaro
- Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
- Smile Train, South American Medical Advisory Council-SAMAC-Santiago, Chile
| | - Loreto Castellón Zirpel
- Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
- Smile Train, South American Medical Advisory Council-SAMAC-Santiago, Chile
| | | | | |
Collapse
|
5
|
Watanabe K, Horie M, Hayatsu M, Mikami Y, Sato N. Spatiotemporal expression patterns of R-spondins and their receptors, Lgrs, in the developing mouse telencephalon. Gene Expr Patterns 2023; 49:119333. [PMID: 37651925 DOI: 10.1016/j.gep.2023.119333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Development of the mammalian telencephalon, which is the most complex region of the central nervous system, is precisely orchestrated by many signaling molecules. Wnt signaling derived from the cortical hem, a signaling center, is crucial for telencephalic development including cortical patterning and the induction of hippocampal development. Secreted protein R-spondin (Rspo) 1-4 and their receptors, leucine-rich repeat-containing G-protein-coupled receptor (Lgr) 4-6, act as activators of Wnt signaling. Although Rspo expression in the hem during the early stages of cortical development has been reported, comparative expression analysis of Rspos and Lgr4-6 has not been performed. In this study, we examined the detailed spatiotemporal expression patterns of Rspo1-4 and Lgr4-6 in the embryonic and postnatal telencephalon to elucidate their functions. In the embryonic day (E) 10.5-14.5 telencephalon, Rspo1-3 were prominently expressed in the cortical hem. Among their receptors, Lgr4 was observed in the ventral telencephalon, and Lgr6 was highly expressed throughout the telencephalon at the same stages. This suggests that Rspo1-3 and Lgr4 initially regulate telencephalic development in restricted regions, whereas Lgr6 functions broadly. From the late embryonic stage, the expression areas of Rspo1-3 and Lgr4-6 dramatically expanded; their expression was found in the neocortex and limbic system, such as the hippocampus, amygdala, and striatum. Increased Rspo and Lgr expression from the late embryonic stages suggests broad roles of Rspo signaling in telencephalic development. Furthermore, the Lgr+ regions were located far from the Rspo+ regions, especially in the E10.5-14.5 ventral telencephalon, suggesting that Lgrs act via a Rspo-independent pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Masao Horie
- Department of Nursing, Niigata College of Nursing, Jōetsu, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Toh Y, Wu L, Park S, Wang A, Tu J, Yu W, Zuo M, Carmon KS, Liu QJ. LGR4 and LGR5 form distinct homodimers that only LGR4 complexes with RNF43/ZNRF3 to provide high affinity binding of R-spondin ligands. Sci Rep 2023; 13:10796. [PMID: 37402772 DOI: 10.1038/s41598-023-37856-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
LGR4 and LGR5 are two homologous receptors that potentiate Wnt/β-catenin signaling in response to R-spondin (RSPO) ligands. The RSPO and LGR4 complex binds to and inhibits activities of two related E3 ubiquitin ligases, RNF43 and ZNRF3, and thus protects Wnt receptors from the E3 ligase-mediated degradation. The RSPO and LGR5 complex, however, does not interact with the E3 ligases, and the structural basis of this difference remained unknown. Here we examined the affinities of monovalent and bivalent RSPO ligands in binding to LGR4, RNF43/ZNRF3, and LGR5 in whole cells and found unique features among the receptors and E3 ligases. Monovalent RSPO2 furin domain had much lower affinity in binding to LGR4 or RNF43/ZNRF3 than the bivalent form. In contrast, monovalent and bivalent forms had nearly identical affinity in binding to LGR5. Co-expression of ZNRF3 with LGR4 led to much higher binding affinity of the monovalent form whereas co-expression of ZNRF3 with LGR5 had no effect on the affinity. These results suggest that LGR4 and RNF43/ZNRF3 form a 2:2 dimer that accommodates bivalent binding of RSPO whereas LGR5 forms a homodimer that does not. Structural models are proposed to illustrate how RSPOs bind to LGR4, RNF43/ZNRF3, and LGR5 in whole cells.
Collapse
Affiliation(s)
- Yukimatsu Toh
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA
| | - Ling Wu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA
| | - Soohyun Park
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA
| | - Allison Wang
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA
| | - Jianghua Tu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA
| | - Wangsheng Yu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA
| | - Mingxin Zuo
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA
| | - Kendra S Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA
| | - Qingyun J Liu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 330E, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Olbertová K, Hrčkulák D, Kříž V, Jesionek W, Kubovčiak J, Ešner M, Kořínek V, Buchtová M. Role of LGR5-positive mesenchymal cells in craniofacial development. Front Cell Dev Biol 2022; 10:810527. [PMID: 36133922 PMCID: PMC9484000 DOI: 10.3389/fcell.2022.810527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5), a Wnt pathway member, has been previously recognised as a stem cell marker in numerous epithelial tissues. In this study, we used Lgr5-EGFP-CreERT2 mice to analyse the distribution of LGR5-positive cells during craniofacial development. LGR5 expressing cells were primarily located in the mesenchyme adjacent to the craniofacial epithelial structures undergoing folding, such as the nasopharyngeal duct, lingual groove, and vomeronasal organ. To follow the fate of LGR5-positive cells, we performed lineage tracing using an inducible Cre knock-in allele in combination with Rosa26-tdTomato reporter mice. The slight expansion of LGR5-positive cells was found around the vomeronasal organ, in the nasal cavity, and around the epithelium in the lingual groove. However, most LGR5 expressing cells remained in their original location, possibly supporting their signalling function for adjacent epithelium rather than exerting their role as progenitor cells for the craniofacial structures. Moreover, Lgr5 knockout mice displayed distinct defects in LGR5-positive areas, especially in the reduction of the nasopharyngeal duct, the alteration of the palatal shelves shape, abnormal epithelial folding in the lingual groove area, and the disruption of salivary gland development. The latter defect manifested as an atypical number and localisation of the glandular ducts. The gene expression of several Wnt pathway members (Rspo1-3, Axin2) was altered in Lgr5-deficient animals. However, the difference was not found in sorted EGFP-positive cells obtained from Lgr5 +/+ and Lgr5 -/- animals. Expression profiling of LGR5-positive cells revealed the expression of several markers of mesenchymal cells, antagonists, as well as agonists, of Wnt signalling, and molecules associated with the basal membrane. Therefore, LGR5-positive cells in the craniofacial area represent a very specific population of mesenchymal cells adjacent to the epithelium undergoing folding or groove formation. Our results indicate a possible novel role of LGR5 in the regulation of morphogenetic processes during the formation of complex epithelial structures in the craniofacial areas, a role which is not related to the stem cell properties of LGR5-positive cells as was previously defined for various epithelial tissues.
Collapse
Affiliation(s)
- Kristýna Olbertová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Dušan Hrčkulák
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Vítězslav Kříž
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Wojciech Jesionek
- Cellular Imaging Core Facility, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Jan Kubovčiak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Milan Ešner
- Cellular Imaging Core Facility, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
9
|
Yang X, Sun C, Meng X, Chen G, Fan T, Zhang C, Chen Z. LGR5 regulates osteogenic differentiation of human thoracic ligamentum flavum cells by Wnt signalling pathway. J Cell Mol Med 2022; 26:3862-3872. [PMID: 35668632 PMCID: PMC9279595 DOI: 10.1111/jcmm.17420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 01/13/2023] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is ectopic ossification of the spinal ligaments. Histologically, the development of TOLF can be described as the process of endochondral ossification. However, the underlying aetiology has not been completely clarified. In this investigation, the gene expression profile associated with leucine‐rich repeat‐containing G‐protein‐coupled receptors (LGR) and Wnt signalling pathway in the thoracic ligamentum flavum cells (TLFCs) of different ossification stages was analysed via RNA sequencing. We further confirmed the significant differences in the related gene expression profile by Gene Ontology (GO) enrichment analysis. LGR5 was first identified in primary human TLFCs during osteogenic differentiation. To evaluate the effect of LGR5 on osteogenic differentiation, LGR5 has been knocked down and overexpressed in human TLFCs. We observed that the knockdown of LGR5 inhibited the activity of Wnt signalling and attenuated the potential osteogenic differentiation of TLFCs, while overexpression of LGR5 activated the Wnt signalling pathway and increased osteogenic differentiation. Our results provide important evidence for the potent positive mediatory effects of LGR5 on osteogenesis by enhancing the Wnt signalling pathway in TOLF.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xiangyu Meng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Chiang HY, Lu HH, Sudhakar JN, Chen YW, Shih NS, Weng YT, Shui JW. IL-22 initiates an IL-18-dependent epithelial response circuit to enforce intestinal host defence. Nat Commun 2022; 13:874. [PMID: 35169117 PMCID: PMC8847568 DOI: 10.1038/s41467-022-28478-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
IL-18 is emerging as an IL-22-induced and epithelium-derived cytokine which contributes to host defence against intestinal infection and inflammation. In contrast to its known role in Goblet cells, regulation of barrier function at the molecular level by IL-18 is much less explored. Here we show that IL-18 is a bona fide IL-22-regulated gate keeper for intestinal epithelial barrier. IL-22 promotes crypt immunity both via induction of phospho-Stat3 binding to the Il-18 gene promoter and via Il-18 independent mechanisms. In organoid culture, while IL-22 primarily increases organoid size and inhibits expression of stem cell genes, IL-18 preferentially promotes organoid budding and induces signature genes of Lgr5+ stem cells via Akt-Tcf4 signalling. During adherent-invasive E. coli (AIEC) infection, systemic administration of IL-18 corrects compromised T-cell IFNγ production and restores Lysozyme+ Paneth cells in Il-22-/- mice, but IL-22 administration fails to restore these parameters in Il-18-/- mice, thereby placing IL-22-Stat3 signalling upstream of the IL-18-mediated barrier defence function. IL-18 in return regulates Stat3-mediated anti-microbial response in Paneth cells, Akt-Tcf4-triggered expansion of Lgr5+ stem cells to facilitate tissue repair, and AIEC clearance by promoting IFNγ+ T cells.
Collapse
Affiliation(s)
- Hung-Yu Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Han Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Wen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Nien-Shin Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jr-Wen Shui
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
12
|
Inostroza-Allende F, Caviedes Ulloa C, González Jara M, Palomares-Aguilera M. Intervención logopédica posoperatoria del frenillo lingual en niños, adolescentes y adultos. Revisión integradora de literatura. REVISTA DE INVESTIGACIÓN EN LOGOPEDIA 2022. [DOI: 10.5209/rlog.74035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
En los últimos años ha existido un aumento significativo en el diagnóstico de la anquiloglosia, las cirugías del frenillo lingual y las publicaciones científicas. Al respecto, es necesario que los profesionales de la salud conozcan el tratamiento fonoaudiológico en estos casos. El objetivo del estudio fue describir la terapia fonoaudiológica implementada en niños, adolescentes y adultos luego de la frenotomía, frenectomía o frenuloplastia lingual, mediante una revisión integradora de literatura. Para esto, durante el segundo trimestre del 2020 las bases de datos electrónicas PUBMED, LILACS, SciELO y Cochrane, fueron consultadas utilizando las palabras claves en inglés: “Ankyloglossia”, “Tongue Tie”, “Lingual Frenulum”, “Lingual Frenum”, “Surgical Procedures”, “Frenuloplasty”, “Lingual Frenulectomy”, “Speech Therapy” y “Myofunctional Therapy”. Se seleccionaron artículos originales relacionados al tema, y fue creado un protocolo específico para la extracción de los datos. Fueron encontrados 798 artículos. 39 se incluyeron luego de la lectura de los títulos y la eliminación de duplicados, 13 luego de lectura de los resúmenes y 7 luego de la revisión de los textos completos. Finalmente, tras un análisis de referencias cruzadas 10 estudios fueron incluidos en esta revisión. Se concluye la importancia del tratamiento fonoaudiológico en el abordaje multidisciplinario del frenillo lingual, abordando aspectos de movilidad lingual, habla y otras funciones orofaciales alteradas luego del procedimiento quirúrgico.
Collapse
|
13
|
Bittenglova K, Habart D, Saudek F, Koblas T. The Potential of Pancreatic Organoids for Diabetes Research and Therapy. Islets 2021; 13:85-105. [PMID: 34523383 PMCID: PMC8528407 DOI: 10.1080/19382014.2021.1941555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/04/2021] [Indexed: 10/20/2022] Open
Abstract
The success of clinical transplantation of pancreas or isolated pancreatic islets supports the concept of cell-based cure for diabetes. One limitation is the shortage of cadaver human pancreata. The demand-supply gap could potentially be bridged by harnessing the self-renewal capacity of stem cells. Pluripotent stem cells and adult pancreatic stem cells have been explored as possible cell sources. Recently, a system for long-term culture of proposed adult pancreatic stem cells in a form of organoids was developed. Generated organoids partially mimic the architecture and cell-type composition of pancreatic tissue. Here, we review the attempts over the past decade, to utilize the organoid cell culture principles in order to identify, expand, and differentiate the adult pancreatic stem cells from different compartments of mouse and human pancreata. The development of the culture conditions, effects of specific growth factors and small molecules is discussed. The potential utility of the adult pancreatic stem cells is considered in the context of other cell sources.
Collapse
Affiliation(s)
- Katerina Bittenglova
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Habart
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frantisek Saudek
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Koblas
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
14
|
Jatko JT, Darling CL, Kellett MP, Bain LJ. Arsenic exposure in drinking water reduces Lgr5 and secretory cell marker gene expression in mouse intestines. Toxicol Appl Pharmacol 2021; 422:115561. [PMID: 33957193 DOI: 10.1016/j.taap.2021.115561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Arsenic is a global health concern that causes toxicity through ingestion of contaminated water and food. In vitro studies suggest that arsenic reduces stem and progenitor cell differentiation. Thus, this study determined if arsenic disrupted intestinal stem cell (ISC) differentiation, thereby altering the number, location, and/or function of intestinal epithelial cells. Adult male C57BL/6 mice were exposed to 0 or 100 ppb sodium arsenite (AsIII) through drinking water for 5 weeks. Duodenal sections were collected to assess changes in morphology, proliferation, and cell types. qPCR analysis revealed a 40% reduction in Lgr5 transcripts, an ISC marker, in the arsenic-exposed mice, although there were no changes in the protein expression of Olfm4. Secretory cell-specific transcript markers of Paneth (Defa1), Goblet (Tff3), and secretory transit amplifying (Math1) cells were reduced by 51%, 44%, and 30% respectively, in the arsenic-exposed mice, indicating significant impacts on the Wnt-dependent differentiation pathway. Further, protein levels of phosphorylated β-catenin were reduced in the arsenic-exposed mice, which increased the expression of Wnt-dependent transcripts CD44 and c-myc. PCA analysis, followed by MANOVA and regression analyses, revealed significant changes and correlations between Lgr5 and the transit amplifying (TA) cell markers Math1 and Hes1, which are in the secretory cell pathway. Similar comparisons between Math1 and Defa1 show that terminal differentiation into Paneth cells is also reduced in the arsenic-exposed mice. The data suggests that ISCs are not lost following arsenic exposure, but rather, specific Wnt-dependent progenitor cell formation and terminal differentiation in the small intestine is reduced.
Collapse
Affiliation(s)
- Jordan T Jatko
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Caitlin L Darling
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Michael P Kellett
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| |
Collapse
|
15
|
Yu W, Xie CR, Chen FC, Cheng P, Yang L, Pan XY. LGR5 enhances the osteoblastic differentiation of MC3T3-E1 cells through the Wnt/β-catenin pathway. Exp Ther Med 2021; 22:889. [PMID: 34194567 PMCID: PMC8237272 DOI: 10.3892/etm.2021.10321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is a Wnt-associated gene that contributes to cell proliferation and self-renewal in various organs. LGR5 is expressed in Ewing sarcoma, and LGR5-overexpressing mesenchymal stem cells promote fracture healing. However, the effects of LGR5 on osteoblastic differentiation remain unclear. The aim of the present study was to explore the function of LGR5 in osteoblastic differentiation. LGR5 was overexpressed or knocked down in the MC3T3-E1 pre-osteoblastic cell line via lentiviral transfection and its function in osteoblastic differentiation was investigated. The mRNA expression levels of the osteoblast differentiation markers alkaline phosphatase (ALP), osteocalcin and collagen type I a1 were determined, and ALP and Alizarin red staining were performed. In addition, the effects of LGR5 modulation on β-catenin and the expression of target genes in the Wnt pathway were investigated. The results revealed that the overexpression of LGR5 promoted osteoblastic differentiation. This was associated with enhancement of the stability of β-catenin and its levels in the cell nucleus, which enabled it to activate Wnt signaling. By contrast, the inhibition of LGR5 decreased the osteogenic capacity of MC3T3-E1 cells. These results indicate that LGR5 is a positive regulator of osteoblastic differentiation, whose effects are mediated through the Wnt/β-catenin signaling pathway. This suggests suggesting that the regulation of LGR5/Wnt/β-catenin signaling has potential as a therapy for osteoporosis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chao-Ran Xie
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fan-Cheng Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200433, P.R. China
| | - Pei Cheng
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiao-Yun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
16
|
Expression of R-spondins/Lgrs in development of movable craniofacial organs. Gene Expr Patterns 2021; 41:119195. [PMID: 34126267 DOI: 10.1016/j.gep.2021.119195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 01/26/2023]
Abstract
Wnt signaling plays a critical role in the development of many organs, including the major movable craniofacial organs tongue, lip, and eyelid. Four members of the R-spondin family (Rspo1-4) bind to Lgr4/5/6 to regulate the activation of Wnt signaling. However, it is not fully understood how Rspos/Lgrs regulate Wnt signaling during the development of movable craniofacial organs. To address this question, we examined the expression of Rspos, Lgrs, and Axin2 (major mediator of canonical Wnt signaling) during tongue, lip, and eyelid development. The expression of Axin2, Rspos and Lgrs was observed in many similar regions, suggesting that Rspos likely activate canonical Wnt signaling through the Lgr-dependent pathway in these regions. Lgr expression was not detected in regions where Axin2 and Rspos were expressed, suggesting that Rspos might activate canonical Wnt signaling through the Lgr-independent pathway in these regions. In addition, the expression of Rspos and Lgrs were observed in some other regions where Axin2 was not expressed, suggesting the possibility that Rspos and/or Lgrs are involved in non-canonical Wnt signaling or the Wnt-independent pathway. Thus, we identified a dynamic spatiotemporal expression pattern of Rspos and Lgrs during the development of the eyelid, tongue, and lip.
Collapse
|
17
|
Yue F, Jiang W, Ku AT, Young AIJ, Zhang W, Souto EP, Gao Y, Yu Z, Wang Y, Creighton CJ, Nagi C, Wang T, Hilsenbeck SG, Feng XH, Huang S, Coarfa C, Zhang XHF, Liu Q, Lin X, Li Y. A Wnt-Independent LGR4-EGFR Signaling Axis in Cancer Metastasis. Cancer Res 2021; 81:4441-4454. [PMID: 34099494 DOI: 10.1158/0008-5472.can-21-1112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023]
Abstract
Leucine-rich repeat-containing G protein-coupled receptors 4, 5, and 6 (LGR4/5/6) play critical roles in development and cancer. The widely accepted mechanism is that these proteins, together with their R-spondin ligands, stabilize Wnt receptors, thus potentiating Wnt signaling. Here we show that LGR4 enhanced breast cancer cell metastasis even when Wnt signaling was deactivated pharmacologically or genetically. Furthermore, LGR4 mutants that cannot potentiate Wnt signaling nevertheless promoted breast cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Multiomic screening identified EGFR as a crucial mediator of LGR4 activity in cancer progression. Mechanistically, LGR4 interacted with EGFR and blocked EGFR ubiquitination and degradation, resulting in persistent EGFR activation. Together, these data uncover a Wnt-independent LGR4-EGFR signaling axis with broad implications for cancer progression and targeted therapy. SIGNIFICANCE: This work demonstrates a Wnt-independent mechanism by which LGR4 promotes cancer metastasis.See related commentary by Stevens and Williams, p. 4397.
Collapse
Affiliation(s)
- Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Amy T Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Adelaide I J Young
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Yankun Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zihan Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Chandandeep Nagi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Tao Wang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shixia Huang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,McNair Medical Institute, Baylor College of Medicine, Houston, Texas
| | - Qingyun Liu
- Texas Therapeutics Institute and Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
18
|
Wang Y, Wang H, Guo J, Gao J, Wang M, Xia M, Wen Y, Su P, Yang M, Liu M, Shi L, Cheng T, Zhou W, Zhou J. LGR4, Not LGR5, Enhances hPSC Hematopoiesis by Facilitating Mesoderm Induction via TGF-Beta Signaling Activation. Cell Rep 2021; 31:107600. [PMID: 32375050 DOI: 10.1016/j.celrep.2020.107600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/12/2019] [Accepted: 04/10/2020] [Indexed: 10/24/2022] Open
Abstract
Attempts to generate functional blood cells from human pluripotent stem cells (hPSCs) remain largely unsuccessful, mainly due to the lack of understanding of the regulatory network of human hematopoiesis. In this study, we identified leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) as an essential regulator of early hematopoietic differentiation of hPSCs. The deletion of LGR4 severely impairs mesoderm development, thereby limiting hematopoietic differentiation both in vitro and in vivo. In contrast, LGR5 is dispensable for hPSC hematopoiesis. The four R-spondin proteins show differential activities and dependencies on LGR4 in hematopoietic differentiation. The deletion of LGR4 almost entirely abolishes the enhancement induced by R-spondin1 and R-spondin3, but not R-spondin2. In addition, ZNRF3 is required for the response of R-spondin1-R-spondin3. At the mechanistic level, LGR4 regulates transforming growth factor beta (TGF-beta) signaling to control hematopoietic differentiation. Together, our results reveal vital roles of LGR4 in hematopoietic development and uncover distinct functions and underlying mechanisms for R-spondins.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Jiaojiao Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Yuqi Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Wen Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
19
|
Akbari S, Kunter I, Azbazdar Y, Ozhan G, Atabey N, Firtina Karagonlar Z, Erdal E. LGR5/R-Spo1/Wnt3a axis promotes stemness and aggressive phenotype in hepatoblast-like hepatocellular carcinoma cell lines. Cell Signal 2021; 82:109972. [PMID: 33684507 DOI: 10.1016/j.cellsig.2021.109972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a newly defined stem cell marker in endoderm-derived organs such as the small intestine, colon and pancreas. Recently, LGR5 was demonstrated to be an important factor in liver regeneration and stem cell maintenance. Moreover, LGR5 expression is highly up-regulated in various cancers including hepatocellular carcinoma. Herein, we demonstrate that LGR5 expression is specifically observed in certain subset of HCC cell lines with "hepatoblast-like" appearance, characterized by the expression of liver fetal/progenitor markers. Notably, the activation of the canonical Wnt pathway significantly increases the expression of LGR5 in this subset of cell lines, whereas it does not cause any induction of LGR5 expression in mesenchymal like cell lines SNU-475 and SNU-449. Furthermore, we showed that treatment of the hepatoblast-like HCC cell lines HuH-7 and Hep3B with LGR5 ligand R-Spo1 significantly amplifies the induction of LGR5 expression, the phosphorylation of LRP6 and β-catenin resulting in enhanced TCF/LEF activity either alone or in combination with Wnt3a. Consistently, the silencing of the LGR5 gene attenuates the co-stimulatory effect of R-Spo1/Wnt3a on TCF/LEF activity while overexpression of LGR5 enhances it. On the contrary, overexpression of LGR5 does not change TCF/LEF activity induced by R-Spo1/Wnt3a in mesenchymal-like HCC line, SNU-449. Importantly, LGR5-overexpressing cells have increased expression of several Wnt target genes and stemness-related genes including EpCAM and CK19 upon R-Spo1/Wnt3a treatment. LGR5-overexpressing cells also have increased spheroid forming, migration and invasion abilities and stimulation with R-Spo1/Wnt3a augments these abilities of LGR5-overexpressing cells. In addition, ectopic overexpression of LGR5 significantly increases cell proliferation rate independent of R-Spo1/Wnt3a stimulation. Moreover, in vitro tubulogenesis assay demonstrates that treatment with R-Spo1/Wnt3a enhances the sprouting of capillary tubules in only LGR5-overexpressing cells. Finally, R-Spo1/Wnt3a significantly promotes dissemination of LGR5-overexpressing cells in vivo in a zebrafish xenograft model. Our study unravels a tumor-promoting role for LGR5 through activation of canonical Wnt/β-catenin signaling in the hepatoblast-like HCCs. In conclusion, our results suggest that LGR5/R-Spo1/Wnt3a generates an axis that mediates the acquisition of aggressive phenotype specifically in hepatoblast-like subset of HCCs and might represent a valuable target for treatment of HCC tumors with aberrant activation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Soheil Akbari
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, 35340 Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Imge Kunter
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, 35340 Izmir, Turkey; Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, 35340 Izmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, 35340 Izmir, Turkey; Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, 35340 Izmir, Turkey
| | - Nese Atabey
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, 35340 Izmir, Turkey
| | | | - Esra Erdal
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, 35340 Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey.
| |
Collapse
|
20
|
Han J, Lin K, Zhang X, Yan L, Chen Y, Chen H, Liu J, Liu J, Wu Y. PTEN-mediated AKT/β-catenin signaling enhances the proliferation and expansion of Lgr5+ hepatocytes. Int J Biol Sci 2021; 17:861-868. [PMID: 33767594 PMCID: PMC7975694 DOI: 10.7150/ijbs.56091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/23/2021] [Indexed: 11/15/2022] Open
Abstract
Rationale: Compelling evidence suggests that Lgr5+ hepatocytes repair liver damage by promoting the regeneration of hepatocytes and ductal cells in the case of liver injury. The PTEN-mediated AKT/β-catenin signaling plays a key role in the regulation of innate immune regulation in the liver. However, the signaling pathways that control Lgr5+ hepatocyte proliferation in the liver remain unclear. Methods: In order to assess the involvement of PTEN-mediated AKT/β-catenin signaling in the expansion of Lgr5+ hepatocytes upon liver injuries, the Lgr5-CreER; Rosa-mTmG lineage tracing system was used to target Lgr5+ hepatocytes. Results: The tracing of Lgr5+ hepatocytes showed that PTEN deletion and β-catenin activation significantly promoted the proliferation of Lgr5+ hepatocytes. In converse, the simultaneous inhibition of PTEN and β-catenin limited Lgr5+ hepatocyte proliferation in the liver. Our findings provide an insight into understanding how PTEN-mediated AKT/β-catenin signaling regulates the proliferation of Lgr5+ hepatocytes. Conclusion: The outcomes can improve the application potential of Lgr5+ hepatocytes in the treatment of liver injury diseases and provide a new treatment option for liver cancer.
Collapse
Affiliation(s)
- Jimin Han
- School of Life Sciences, Tsinghua University, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Kaijun Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xuezheng Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lingchen Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- School of Life Sciences, Tsinghua University, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Haiyan Chen
- School of Life Sciences, Tsinghua University, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jianjun Liu
- Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 518054, Shenzhen, China
| | - Jia Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yaojiong Wu
- School of Life Sciences, Tsinghua University, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, China
| |
Collapse
|
21
|
Little DW, Dumontet T, LaPensee CR, Hammer GD. β-catenin in adrenal zonation and disease. Mol Cell Endocrinol 2021; 522:111120. [PMID: 33338548 PMCID: PMC8006471 DOI: 10.1016/j.mce.2020.111120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
The Wnt signaling pathway is a critical mediator of the development and maintenance of several tissues. The adrenal cortex is highly dependent upon Wnt/β-catenin signaling for proper zonation and endocrine function. Adrenocortical cells emerge in the peripheral capsule and subcapsular cortex of the gland as progenitor cells that centripetally differentiate into steroid hormone-producing cells of three functionally distinct concentric zones that respond robustly to various endocrine stimuli. Wnt/β-catenin signaling mediates adrenocortical progenitor cell fate and tissue renewal to maintain the gland throughout life. Aberrant Wnt/β-catenin signaling contributes to various adrenal disorders of steroid production and growth that range from hypofunction and hypoplasia to hyperfunction, hyperplasia, benign adrenocortical adenomas, and malignant adrenocortical carcinomas. Great strides have been made in defining the molecular underpinnings of adrenocortical homeostasis and disease, including the interplay between the capsule and cortex, critical components involved in maintaining the adrenocortical Wnt/β-catenin signaling gradient, and new targets in adrenal cancer. This review seeks to examine these and other recent advancements in understanding adrenocortical Wnt/β-catenin signaling and how this knowledge can inform therapeutic options for adrenal disease.
Collapse
Affiliation(s)
| | - Typhanie Dumontet
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Christopher R LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Gary D Hammer
- Doctoral Program in Cancer Biology, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Lai S, Cheng R, Gao D, Chen YG, Deng C. LGR5 constitutively activates NF-κB signaling to regulate the growth of intestinal crypts. FASEB J 2020; 34:15605-15620. [PMID: 33001511 DOI: 10.1096/fj.202001329r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
Abstract
Mammalian LGR5 and LGR4, markers of adult stem cells, are involved in many physiological functions by enhancing WNT signaling. However, whether LGR5 and LGR4 are coupled to other intracellular signaling pathways to regulate stem cell function remains unknown. Here, we show that LGR5 and LGR4 can constitutively activate NF-κB signaling in a ligand-independent manner, which is dependent on their C-termini, but independent of receptor endocytosis. Moreover, the C-termini of LGR5/4 interact with TROY, which is required for activating NF-κB signaling. In small intestinal crypt organoids, overexpression of a C-terminal deletion mutant of LGR5 inhibits the growth and bud formation of organoids, whereas overexpression of the R-spondin-binding mutant of LGR5 that is defective for WNT signaling can still promote organoid growth. Our study reveals that NF-κB signaling, regulated by LGR5 and LGR4, plays an important role in the survival of colon cancer cells and the growth of intestinal crypts. Our findings also suggest that LGR5/4-induced NF-κB signaling and WNT signaling may co-regulate the growth of LGR5+ adult stem cells and intestinal crypts.
Collapse
Affiliation(s)
- Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
Ji YZ, Ruan WH. [Diagnosis and treatment of ankyloglossia in newborns and infants]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:443-448. [PMID: 32865366 PMCID: PMC7426681 DOI: 10.7518/hxkq.2020.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Ankyloglossia is a congenital condition characterized by a short lingual frenulum, which may result in the restriction of tongue movement and function. Considerable controversy regarding the diagnosis, clinical significance, and management of the condition remains, and great variations in practice have been recorded. Indeed, attitudes toward ankyloglossia differ among professional groups, and opinions may vary remarkably even among those within the same specialty. This article reviews the embryology, genetics, diagnosis, clinical presentation, and treatment of ankyloglossia to help physicians better understand and treat the condition.
Collapse
Affiliation(s)
- Yue-Zhi Ji
- Dept. of Pediatric Dentistry, The Children's Hospital, Zhejiang Univesity School of Medicine, Hangzhou 310051, China
| | - Wen-Hua Ruan
- Dept. of Pediatric Dentistry, The Children's Hospital, Zhejiang Univesity School of Medicine, Hangzhou 310051, China
| |
Collapse
|
24
|
Holmes G, Gonzalez-Reiche AS, Lu N, Zhou X, Rivera J, Kriti D, Sebra R, Williams AA, Donovan MJ, Potter SS, Pinto D, Zhang B, van Bakel H, Jabs EW. Integrated Transcriptome and Network Analysis Reveals Spatiotemporal Dynamics of Calvarial Suturogenesis. Cell Rep 2020; 32:107871. [PMID: 32640236 PMCID: PMC7379176 DOI: 10.1016/j.celrep.2020.107871] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
Craniofacial abnormalities often involve sutures, the growth centers of the skull. To characterize the organization and processes governing their development, we profile the murine frontal suture, a model for sutural growth and fusion, at the tissue- and single-cell level on embryonic days (E)16.5 and E18.5. For the wild-type suture, bulk RNA sequencing (RNA-seq) analysis identifies mesenchyme-, osteogenic front-, and stage-enriched genes and biological processes, as well as alternative splicing events modifying the extracellular matrix. Single-cell RNA-seq analysis distinguishes multiple subpopulations, of which five define a mesenchyme-osteoblast differentiation trajectory and show variation along the anteroposterior axis. Similar analyses of in vivo mouse models of impaired frontal suturogenesis in Saethre-Chotzen and Apert syndromes, Twist1+/- and Fgfr2+/S252W, demonstrate distinct transcriptional changes involving angiogenesis and ribogenesis, respectively. Co-expression network analysis reveals gene expression modules from which we validate key driver genes regulating osteoblast differentiation. Our study provides a global approach to gain insights into suturogenesis.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Rivera
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anthony A Williams
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH 45229, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
25
|
Fernandez Vallone V, Leprovots M, Ribatallada‐Soriano D, Gerbier R, Lefort A, Libert F, Vassart G, Garcia M. LGR5 controls extracellular matrix production by stem cells in the developing intestine. EMBO Rep 2020; 21:e49224. [PMID: 32468660 PMCID: PMC7332981 DOI: 10.15252/embr.201949224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
The Lgr5 receptor is a marker of intestinal stem cells (ISCs) that regulates Wnt/b-catenin signaling. In this study, phenotype analysis of knockin/knockout Lgr5-eGFP-IRES-Cre and Lgr5-DTReGFP embryos reveals that Lgr5 deficiency during Wnt-mediated cytodifferentiation results in amplification of ISCs and early differentiation into Paneth cells, which can be counteracted by in utero treatment with the Wnt inhibitor LGK974. Conditional ablation of Lgr5 postnatally, but not in adults, alters stem cell fate toward the Paneth lineage. Together, these in vivo studies suggest that Lgr5 is part of a feedback loop to adjust the Wnt tone in ISCs. Moreover, transcriptome analyses reveal that Lgr5 controls fetal ISC maturation associated with acquisition of a definitive stable epithelial phenotype, as well as the capacity of ISCs to generate their own extracellular matrix. Finally, using the ex vivo culture system, evidences are provided that Lgr5 antagonizes the Rspondin 2-Wnt-mediated response in ISCs in organoids, revealing a sophisticated regulatory process for Wnt signaling in ISCs.
Collapse
Affiliation(s)
- Valeria Fernandez Vallone
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
- Present address:
1 Charité – Universitätsmedizin Berlin, Berlin Institute of Health (BIH)BerlinGermany
| | - Morgane Leprovots
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Didac Ribatallada‐Soriano
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Romain Gerbier
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Anne Lefort
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Frédérick Libert
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Gilbert Vassart
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Marie‐Isabelle Garcia
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| |
Collapse
|
26
|
Doherty L, Sanjay A. LGRs in Skeletal Tissues: An Emerging Role for Wnt-Associated Adult Stem Cell Markers in Bone. JBMR Plus 2020; 4:e10380. [PMID: 32666024 PMCID: PMC7340442 DOI: 10.1002/jbm4.10380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/18/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptors (LGRs) are adult stem cell markers that have been described across various stem cell niches, and expression of LGRs and their corresponding ligands (R-spondins) has now been reported in multiple bone-specific cell types. The skeleton harbors elusive somatic stem cell populations that are exceedingly compartment-specific and under tight regulation from various signaling pathways. Skeletal progenitors give rise to multiple tissues during development and during regenerative processes of bone, requiring postnatal endochondral and intramembranous ossification. The relevance of LGRs and the LGR/R-spondin ligand interaction in bone and tooth biology is becoming increasingly appreciated. LGRs may define specific stem cell and progenitor populations and their behavior during both development and regeneration, and their role as Wnt-associated receptors with specific ligands poses these proteins as unique therapeutic targets via potential R-spondin agonism. This review seeks to outline the current literature on LGRs in the context of bone and its associated tissues, and points to key future directions for studying the functional role of LGRs and ligands in skeletal biology. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laura Doherty
- Department of Orthopaedic SurgeryUConn HealthFarmingtonCTUSA
| | - Archana Sanjay
- Department of Orthopaedic SurgeryUConn HealthFarmingtonCTUSA
| |
Collapse
|
27
|
|
28
|
Chaimowicz C, Ruffault PL, Chéret C, Woehler A, Zampieri N, Fortin G, Garratt AN, Birchmeier C. Teashirt 1 (Tshz1) is essential for the development, survival and function of hypoglossal and phrenic motor neurons in mouse. Development 2019; 146:dev.174045. [PMID: 31427287 PMCID: PMC6765129 DOI: 10.1242/dev.174045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/09/2019] [Indexed: 11/20/2022]
Abstract
Feeding and breathing are essential motor functions and rely on the activity of hypoglossal and phrenic motor neurons that innervate the tongue and diaphragm, respectively. Little is known about the genetic programs that control the development of these neuronal subtypes. The transcription factor Tshz1 is strongly and persistently expressed in developing hypoglossal and phrenic motor neurons. We used conditional mutation of Tshz1 in the progenitor zone of motor neurons (Tshz1MN Δ) to show that Tshz1 is essential for survival and function of hypoglossal and phrenic motor neurons. Hypoglossal and phrenic motor neurons are born in correct numbers, but many die between embryonic day 13.5 and 14.5 in Tshz1MN Δ mutant mice. In addition, innervation and electrophysiological properties of phrenic and hypoglossal motor neurons are altered. Severe feeding and breathing problems accompany this developmental deficit. Although motor neuron survival can be rescued by elimination of the pro-apoptotic factor Bax, innervation, feeding and breathing defects persist in Bax-/-; Tshz1MN Δ mutants. We conclude that Tshz1 is an essential transcription factor for the development and physiological function of phrenic and hypoglossal motor neurons.
Collapse
Affiliation(s)
- Charlotte Chaimowicz
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Cyril Chéret
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Andrew Woehler
- Systems Biology Imaging, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Niccolò Zampieri
- Development and Function of Neural Circuits, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Gilles Fortin
- UMR9197, CNRS/Université Paris-Sud, Paris-Saclay Institute of Neuroscience, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Alistair N Garratt
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| |
Collapse
|
29
|
Xu L, Lin W, Wen L, Li G. Lgr5 in cancer biology: functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell Res Ther 2019; 10:219. [PMID: 31358061 PMCID: PMC6664754 DOI: 10.1186/s13287-019-1288-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer remains one of the leading lethal diseases worldwide. Identifying biomarkers of cancers might provide insights into the strategies for the development of novel targeted anti-cancer therapies. Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) has been recently discovered as a candidate marker of cancer stem cell populations. Aberrant increased expression of Lgr5 may represent one of the most common molecular alterations in some human cancers, leading to long-term potentiation of canonical Wnt/β-catenin signaling. On the other hand, however, Lgr5-mediated suppression in canonical Wnt/β-catenin signaling has also been reported in certain cancers, such as B cell malignancies. Until now, therapeutic approaches targeting Lgr5-associated signaling axis are not yet clinically available. Increasing evidence have indicated that endogenous Lgr5+ cell population is implicated in tumor initiation, progression, and metastasis. This review is to summarize our current knowledge about the importance of Lgr5 in cancer biology and the underlying molecular mechanisms of Lgr5-mediated tumor-promoting/suppressive activities, as well as potentially useful preventive strategies in treating tumor. Therefore, targeted therapeutic modulation of Lgr5+ cancer cell population by targeting Wnt/β-catenin signaling through targeted drug delivery system or targeted genome editing might be promising for potential novel anti-cancer treatments. Simultaneously, combination of therapeutics targeting both Lgr5+ and Lgr5- cancer cells may deserve further consideration considering the plasticity of cancer cells. Also, a more specific targeting of cancer cells using double biomarkers may be much safer and more effective for anti-cancer therapy.
Collapse
Affiliation(s)
- Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Weiping Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Longping Wen
- Nanobio Laboratory, Institute of Life Sciences, South China University of Technology, Guangzhou, Guangdong People’s Republic of China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
30
|
Nagano K. R-spondin signaling as a pivotal regulator of tissue development and homeostasis. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:80-87. [PMID: 31049116 PMCID: PMC6479641 DOI: 10.1016/j.jdsr.2019.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/04/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
R-spondins (Rspos) are cysteine-rich secreted glycoproteins which control a variety of cellular functions and are essential for embryonic development and tissue homeostasis. R-spondins (Rspo1 to 4) have high structural similarity and share 60% sequence homology. It has been shown that their cysteine-rich furin-like (FU) domain and the thrombospondin (TSP) type I repeat domain are essential for initiating downstream signaling cascades and therefore for their biological functions. Although numerous studies have unveiled their pivotal role as critical developmental regulators, the most important finding is that Rspos synergize Wnt signaling. Recent studies have identified novel receptors for Rspos, the Lgr receptors, closely related orphans of the leucin-rich repeat containing G protein-coupled receptors, and proposed that Rspos potentiate canonical Wnt signaling via these receptors. Given that Wnt signaling is one of the most important developmental signaling pathways that controls cell fate decisions and tissue development, growth and homeostasis, Rspos may function as key players for these processes as well as potential therapeutic targets. Here, I recapitulate the Wnt signaling and then outline the biological role of Rspos in tissue development and homeostasis and explore the possibility that Rspos may be used as therapeutic targets.
Collapse
Affiliation(s)
- Kenichi Nagano
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave, REB314, Boston, MA 02115, USA
| |
Collapse
|
31
|
Da Silva F, Massa F, Motamedi FJ, Vidal V, Rocha AS, Gregoire EP, Cai CL, Wagner KD, Schedl A. Myocardial-specific R-spondin3 drives proliferation of the coronary stems primarily through the Leucine Rich Repeat G Protein coupled receptor LGR4. Dev Biol 2018; 441:42-51. [PMID: 29859889 DOI: 10.1016/j.ydbio.2018.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Coronary artery anomalies are common congenital disorders with serious consequences in adult life. Coronary circulation begins when the coronary stems form connections between the aorta and the developing vascular plexus. We recently identified the WNT signaling modulator R-spondin 3 (Rspo3), as a crucial regulator of coronary stem proliferation. Using expression analysis and tissue-specific deletion we now demonstrate that Rspo3 is primarily produced by cardiomyocytes. Moreover, we have employed CRISPR/Cas9 technology to generate novel Lgr4-null alleles that showed a significant decrease in coronary stem proliferation and thus phenocopied the coronary artery defects seen in Rspo3 mutants. Interestingly, Lgr4 mutants displayed slightly hypomorphic right ventricles, an observation also made after myocardial specific deletion of Rspo3. These results shed new light on the role of Rspo3 in heart development and demonstrate that LGR4 is the principal R-spondin 3 receptor in the heart.
Collapse
Affiliation(s)
- Fabio Da Silva
- Université Côte d'Azur, Inserm, CNRS, iBV, Nice 06108, France
| | - Filippo Massa
- Université Côte d'Azur, Inserm, CNRS, iBV, Nice 06108, France
| | | | - Valerie Vidal
- Université Côte d'Azur, Inserm, CNRS, iBV, Nice 06108, France
| | - Ana Sofia Rocha
- Université Côte d'Azur, Inserm, CNRS, iBV, Nice 06108, France
| | | | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, iBV, Nice 06108, France.
| |
Collapse
|
32
|
Szenker-Ravi E, Altunoglu U, Leushacke M, Bosso-Lefèvre C, Khatoo M, Thi Tran H, Naert T, Noelanders R, Hajamohideen A, Beneteau C, de Sousa SB, Karaman B, Latypova X, Başaran S, Yücel EB, Tan TT, Vlaminck L, Nayak SS, Shukla A, Girisha KM, Le Caignec C, Soshnikova N, Uyguner ZO, Vleminckx K, Barker N, Kayserili H, Reversade B. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature 2018; 557:564-569. [PMID: 29769720 DOI: 10.1038/s41586-018-0118-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.
Collapse
Affiliation(s)
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Marc Leushacke
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Célia Bosso-Lefèvre
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Muznah Khatoo
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rivka Noelanders
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | | | - Sergio B de Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University Clinic of Genetics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Birsen Karaman
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Xenia Latypova
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Seher Başaran
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Esra Börklü Yücel
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Thong Teck Tan
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Lena Vlaminck
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Cédric Le Caignec
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,INSERM, UMR1238, Bone Sarcoma and Remodeling of Calcified Tissue, Université Bretagne Loire, Nantes, France
| | | | - Zehra Oya Uyguner
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Center for Medical Genetics, Ghent University, Ghent, Belgium.
| | - Nick Barker
- Institute of Medical Biology, A*STAR, Singapore, Singapore. .,Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan. .,Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey. .,Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore. .,Department of Paediatrics, National University of Singapore, Singapore, Singapore. .,Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey. .,Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore. .,Reproductive Biology Laboratory, Academic Medical Center (AMC), Amsterdam-Zuidoost, The Netherlands.
| |
Collapse
|
33
|
Emmerson E, Knox SM. Salivary gland stem cells: A review of development, regeneration and cancer. Genesis 2018; 56:e23211. [PMID: 29663717 PMCID: PMC5980780 DOI: 10.1002/dvg.23211] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
Salivary glands are responsible for maintaining the health of the oral cavity and are routinely damaged by therapeutic radiation for head and neck cancer as well as by autoimmune diseases such as Sjögren's syndrome. Regenerative approaches based on the reactivation of endogenous stem cells or the transplant of exogenous stem cells hold substantial promise in restoring the structure and function of these organs to improve patient quality of life. However, these approaches have been hampered by a lack of knowledge on the identity of salivary stem cell populations and their regulators. In this review we discuss our current knowledge on salivary stem cells and their regulators during organ development, homeostasis and regeneration. As increasing evidence in other systems suggests that progenitor cells may be a source of cancer, we also review whether these same salivary stem cells may also be cancer initiating cells.
Collapse
Affiliation(s)
- Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah M. Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
34
|
Lenormand A, Khonsari R, Corre P, Perrin JP, Boscher C, Nizon M, Pichon O, David A, Le Caignec C, Bertin H, Isidor B. Familial autosomal dominant severe ankyloglossia with tooth abnormalities. Am J Med Genet A 2018; 176:1614-1617. [PMID: 29704302 DOI: 10.1002/ajmg.a.38690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/29/2017] [Accepted: 02/12/2018] [Indexed: 02/04/2023]
Abstract
Ankyloglossia is a congenital oral anomaly characterized by the presence of a hypertrophic and short lingual frenulum. Mutations in the gene encoding the transcription factor TBX22 have been involved in isolated ankyloglossia and X-linked cleft palate. The knockout of Lgr5 in mice results in ankyloglossia. Here, we report a five-generation family including patients with severe ankyloglossia and missing lower central incisors. Two members of this family also exhibited congenital anorectal malformations. In this report, male-to-male transmission was in favor of an autosomal dominant inheritance, which allowed us to exclude the X-linked TBX22 gene. Linkage analysis using short tandem repeat markers located in the vicinity of LGR5 excluded this gene as a potential candidate. These results indicate genetic heterogeneity for ankyloglossia. Further investigations with additional families are required in order to identify novel candidate genes.
Collapse
Affiliation(s)
- Anaëlle Lenormand
- Clinique de Stomatologie et de Chirurgie Maxillo-Faciale, CHU de Nantes, Nantes, France
| | - Roman Khonsari
- Assistantce publique-hôpitaux de Paris, Service de chirurgie maxillofaciale et plastique, Hôpital Universitaire Necker-Enfants Malades, Université Sorbonne Paris cité, Université Paris-Descartes, Paris, France
| | - Pierre Corre
- Clinique de Stomatologie et de Chirurgie Maxillo-Faciale, CHU de Nantes, Nantes, France
| | - Jean Philippe Perrin
- Clinique de Stomatologie et de Chirurgie Maxillo-Faciale, CHU de Nantes, Nantes, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Olivier Pichon
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Albert David
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | | | - Helios Bertin
- Clinique de Stomatologie et de Chirurgie Maxillo-Faciale, CHU de Nantes, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| |
Collapse
|
35
|
Jha R, Singh M, Wu Q, Gentillon C, Preininger MK, Xu C. Downregulation of LGR5 Expression Inhibits Cardiomyocyte Differentiation and Potentiates Endothelial Differentiation from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 9:513-527. [PMID: 28793247 PMCID: PMC5550222 DOI: 10.1016/j.stemcr.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Understanding molecules involved in differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes and endothelial cells is important in advancing hPSCs for cell therapy and drug testing. Here, we report that LGR5, a leucine-rich repeat-containing G-protein-coupled receptor, plays a critical role in hPSC differentiation into cardiomyocytes and endothelial cells. LGR5 expression was transiently upregulated during the early stage of cardiomyocyte differentiation, and knockdown of LGR5 resulted in reduced expression of cardiomyocyte-associated markers and poor cardiac differentiation. In contrast, knockdown of LGR5 promoted differentiation of endothelial-like cells with increased expression of endothelial cell markers and appropriate functional characteristics, including the ability to form tube-like structures and to take up acetylated low-density lipoproteins. Furthermore, knockdown of LGR5 significantly reduced the proliferation of differentiated cells and increased the nuclear translocation of β-catenin and expression of Wnt signaling-related genes. Therefore, regulation of LGR5 may facilitate efficient generation of cardiomyocytes or endothelial cells from hPSCs. LGR5 expression is upregulated in the early stage of cardiomyocyte differentiation Knockdown of LGR5 inhibits differentiation of cardiomyocytes Knockdown of LGR5 increases differentiation of endothelial cells Knockdown of LGR5 decreases the expression of Wnt signaling-related genes
Collapse
Affiliation(s)
- Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Cinsley Gentillon
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
36
|
LGR5 and BMI1 Increase Pig Intestinal Epithelial Cell Proliferation by Stimulating WNT/β-Catenin Signaling. Int J Mol Sci 2018; 19:ijms19041036. [PMID: 29601474 PMCID: PMC5979389 DOI: 10.3390/ijms19041036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) and B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) are markers of fast-cycling and quiescent intestinal stem cells, respectively. To determine the functions of these proteins in large animals, we investigated their effects on the proliferation of intestinal epithelial cells from pigs. Our results indicated that LGR5 and BMI1 are highly conserved proteins and that the pig proteins have greater homology with the human proteins than do mouse proteins. Overexpression of either LGR5 or BMI1 promoted cell proliferation and WNT/β-catenin signaling in pig intestinal epithelial cells (IPEC-J2). Moreover, the activation of WNT/β-catenin signaling by recombinant human WNT3A protein increased cell proliferation and LGR5 and BMI1 protein levels. Conversely, inhibition of WNT/β-catenin signaling using XAV939 reduced cell proliferation and LGR5 and BMI1 protein levels. This is the first report that LGR5 and BMI1 can increase proliferation of pig intestinal epithelial cells by activating WNT/β-catenin signaling.
Collapse
|
37
|
Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells. Genes (Basel) 2018; 9:genes9010020. [PMID: 29316729 PMCID: PMC5793173 DOI: 10.3390/genes9010020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL pool. Wnt ligands can trigger alternative signalling that directly involves some of the Hippo pathway components such as YAP1, TAZ and TEADs. By upregulating Wnt pathway agonists, the alternative Wnt signalling can inhibit the canonical Wnt pathway activity.
Collapse
|
38
|
Sanz-Navarro M, Seidel K, Sun Z, Bertonnier-Brouty L, Amendt BA, Klein OD, Michon F. Plasticity within the niche ensures the maintenance of a Sox2+ stem cell population in the mouse incisor. Development 2018; 145:dev.155929. [PMID: 29180573 DOI: 10.1242/dev.155929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signalling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate that a Sox2+ stem cell population can be regenerated from Sox2- cells, reinforcing its importance for incisor homeostasis.
Collapse
Affiliation(s)
- Maria Sanz-Navarro
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.,Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland
| | - Kerstin Seidel
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143, USA
| | - Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Ludivine Bertonnier-Brouty
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.,Département de Biologie, École Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA.,College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Frederic Michon
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland .,Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
39
|
Rao S, Zaidi S, Banerjee J, Jogunoori W, Sebastian R, Mishra B, Nguyen BN, Wu RC, White J, Deng C, Amdur R, Li S, Mishra L. Transforming growth factor-β in liver cancer stem cells and regeneration. Hepatol Commun 2017; 1:477-493. [PMID: 29404474 PMCID: PMC5678904 DOI: 10.1002/hep4.1062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells have established mechanisms that contribute to tumor heterogeneity as well as resistance to therapy. Over 40% of hepatocellular carcinomas (HCCs) are considered to be clonal and arise from a stem-like/cancer stem cell. Moreover, HCC is the second leading cause of cancer death worldwide, and an improved understanding of cancer stem cells and targeting these in this cancer are urgently needed. Multiple studies have revealed etiological patterns and multiple genes/pathways signifying initiation and progression of HCC; however, unlike the transforming growth factor β (TGF-β) pathway, loss of p53 and/or activation of β-catenin do not spontaneously drive HCC in animal models. Despite many advances in cancer genetics that include identifying the dominant role of TGF-β signaling in gastrointestinal cancers, we have not reached an integrated view of genetic mutations, copy number changes, driver pathways, and animal models that support effective targeted therapies for these common and lethal cancers. Moreover, pathways involved in stem cell transformation into gastrointestinal cancers remain largely undefined. Identifying the key mechanisms and developing models that reflect the human disease can lead to effective new treatment strategies. In this review, we dissect the evidence obtained from mouse and human liver regeneration, and mouse genetics, to provide insight into the role of TGF-β in regulating the cancer stem cell niche. (Hepatology Communications 2017;1:477-493).
Collapse
Affiliation(s)
- Shuyun Rao
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Sobia Zaidi
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Jaideep Banerjee
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Wilma Jogunoori
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Raul Sebastian
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Bibhuti Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine George Washington University Washington DC
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Chuxia Deng
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Health Sciences University of Macau Taipa Macau China
| | - Richard Amdur
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Shulin Li
- Department of Pediatrics The University of Texas MD Anderson Cancer Center Houston TX
| | - Lopa Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| |
Collapse
|
40
|
Abstract
Purpose of review The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. Recent findings The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. Summary ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.
Collapse
Affiliation(s)
- Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | | |
Collapse
|
41
|
Trejo CL, Luna G, Dravis C, Spike BT, Wahl GM. Lgr5 is a marker for fetal mammary stem cells, but is not essential for stem cell activity or tumorigenesis. NPJ Breast Cancer 2017. [PMID: 28649656 PMCID: PMC5460261 DOI: 10.1038/s41523-017-0018-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The search for the bipotent mammary stem cells that drive mammary development requires markers to enable their prospective isolation. There is general agreement that bipotent mouse mammary stem cells are abundant in late fetal development, but their existence in the adult is vigorously debated. Among markers useful for mammary stem cell identification, the Wnt co-receptor Lgr5 has been suggested by some to be both "necessary and sufficient" for bipotency and transplantation of adult mammary stem cell activity, though other studies disagree. Importantly, the relevance of Lgr5 to the bipotency of fetal mammary stem cells has not been studied. We show here that expression of a fluorescent protein driven by the endogenous Lgr5 promoter enables significant fetal mammary stem cell enrichment. We used lineage tracing to demonstrate embryonic cells expressing Lgr5 are bipotent, while their adult counterparts are myoepithelial restricted. Importantly, our data conclusively demonstrate that Lgr5 is dispensable for both fetal and adult mammary stem cell activity and for the development of mammary tumors.
Collapse
Affiliation(s)
- Christy L Trejo
- Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 USA
| | - Gidsela Luna
- Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 USA
| | - Christopher Dravis
- Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 USA
| | - Benjamin T Spike
- Huntsman Cancer Institute, University of Utah, Salt Lake City, 84103 UT USA
| | - Geoffrey M Wahl
- Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 USA
| |
Collapse
|
42
|
Alowolodu O, Johnson G, Alashwal L, Addou I, Zhdanova IV, Uversky VN. Intrinsic disorder in spondins and some of their interacting partners. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1255295. [PMID: 28232900 DOI: 10.1080/21690707.2016.1255295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/22/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
Spondins, which are proteins that inhibit and promote adherence of embryonic cells so as to aid axonal growth are part of the thrombospondin-1 family. Spondins function in several important biological processes, such as apoptosis, angiogenesis, etc. Spondins constitute a thrombospondin subfamily that includes F-spondin, a protein that interacts with Aβ precursor protein and inhibits its proteolytic processing; R-spondin, a 4-membered group of proteins that regulates Wnt pathway and have other functions, such as regulation of kidney proliferation, induction of epithelial proliferation, the tumor suppressant action; M-spondin that mediates mechanical linkage between the muscles and apodemes; and the SCO-spondin, a protein important for neuronal development. In this study, we investigated intrinsic disorder status of human spondins and their interacting partners, such as members of the LRP family, LGR family, Frizzled family, and several other binding partners in order to establish the existence and importance of disordered regions in spondins and their interacting partners by conducting a detailed analysis of their sequences, finding disordered regions, and establishing a correlation between their structure and biological functions.
Collapse
Affiliation(s)
- Oluwole Alowolodu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Gbemisola Johnson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Lamis Alashwal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Iqbal Addou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Irina V Zhdanova
- Department of Anatomy & Neurobiology, Boston University School of Medicine , Boston, MA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
43
|
The role of R-spondins and their receptors in bone metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:93-100. [DOI: 10.1016/j.pbiomolbio.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
|
44
|
Guilleminault C, Huseni S, Lo L. A frequent phenotype for paediatric sleep apnoea: short lingual frenulum. ERJ Open Res 2016; 2:00043-2016. [PMID: 27730205 PMCID: PMC5034598 DOI: 10.1183/23120541.00043-2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/27/2016] [Indexed: 12/04/2022] Open
Abstract
A short lingual frenulum has been associated with difficulties in sucking, swallowing and speech. The oral dysfunction induced by a short lingual frenulum can lead to oral-facial dysmorphosis, which decreases the size of upper airway support. Such progressive change increases the risk of upper airway collapsibility during sleep. Clinical investigation of the oral cavity was conducted as a part of a clinical evaluation of children suspected of having sleep disordered breathing (SDB) based on complaints, symptoms and signs. Systematic polysomnographic evaluation followed the clinical examination. A retrospective analysis of 150 successively seen children suspected of having SDB was performed, in addition to a comparison of the findings between children with and without short lingual frenula. Among the children, two groups of obstructive sleep apnoea syndrome (OSAS) were found: 1) absence of adenotonsils enlargement and short frenula (n=63); and 2) normal frenula and enlarged adenotonsils (n=87). Children in the first group had significantly more abnormal oral anatomy findings, and a positive family of short frenulum and SDB was documented in at least one direct family member in 60 cases. A short lingual frenulum left untreated at birth is associated with OSAS at later age, and a systematic screening for the syndrome should be conducted when this anatomical abnormality is recognised. A short lingual frenulum left untreated at birth is associated with obstructive sleep apnoea syndrome at a later agehttp://ow.ly/6kMQ30163nG
Collapse
Affiliation(s)
| | | | - Lauren Lo
- Stanford University Sleep Medicine Division, Redwood City, CA, USA
| |
Collapse
|
45
|
R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5. Sci Rep 2016; 6:28512. [PMID: 27328992 PMCID: PMC4916433 DOI: 10.1038/srep28512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
At the neuromuscular junction (NMJ), acetylcholine receptor (AChR) clustering is mediated by spinal motor neuron (SMN)-derived agrin and its receptors on the muscle, the low-density lipoprotein receptor-related protein 4 (LRP4) and muscle-specific receptor tyrosine kinase (MuSK). Additionally, AChR clustering is mediated by the components of the Wnt pathway. Laser capture microdissection of SMNs revealed that a secreted activator of Wnt signaling, R-spondin 2 (Rspo2), is highly expressed in SMNs. We found that Rspo2 is enriched at the NMJ, and that Rspo2 induces MuSK phosphorylation and AChR clustering. Rspo2 requires Wnt ligands, but not agrin, for promoting AChR clustering in cultured myotubes. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), an Rspo2 receptor, is also accumulated at the NMJ, and is associated with MuSK via LRP4. Lgr5 is required for Rspo2-mediated AChR clustering in myotubes. In Rspo2-knockout mice, the number and density of AChRs at the NMJ are reduced. The Rspo2-knockout diaphragm has an altered ultrastructure with widened synaptic clefts and sparse synaptic vesicles. Frequency of miniature endplate currents is markedly reduced in Rspo2-knockout mice. To conclude, we demonstrate that Rspo2 and its receptor Lgr5 are Wnt-dependent and agrin-independent regulators of AChR clustering at the NMJ.
Collapse
|
46
|
Zhang X, Xu M, Su S, Zhou Z, Yang H, Zhao S, Zeng D, Yang K, Liu Y, Wang L, Li J. Lgr5-positive cells in the lung and their clinical significance in patients with lung adenocarcinoma. Mol Clin Oncol 2016; 5:283-288. [PMID: 27446565 PMCID: PMC4950790 DOI: 10.3892/mco.2016.934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is well-characterized as a marker of intestinal stem cells and certain types of tumor stem cells, where positive cells may develop into intestinal epithelial cells or intestinal adenomas. However, the roles of Lgr5 in the lung and in lung tumors remain unclear. An immunohistochemistry (IHC) analysis was performed to detect the expression of Lgr5 in the lung from a normal mouse. Histopathological sections of the lungs from Lgr5 heterozygous knockout mice (Lgr5+/−) were observed following with hematoxylin and eosin. Furthermore, tissue microarrays containing tumor cores from lung cancer patients were also analyzed by IHC. Lgr5-positive cells were present in the pulmonary alveoli and bronchi of normal mice, whereas the lungs of Lgr5+/− mice lost their normal morphological structure compared with the lungs of the normal mice. Lgr5 was expressed in lung adenocarcinoma, however, not in squamous carcinoma, and Lgr5 expression was positively associated with tumor, node, metastasis stage. Lgr5 is expressed in normal murine lung and is associated with TNM stage in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Shixin Su
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Zeqi Zhou
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Hong Yang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Suwen Zhao
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Danni Zeng
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Kaiying Yang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yanan Liu
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Lijing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiangchao Li
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
47
|
Wu L, Wu F, Xie L, Wang D, Zhou L. Synergistic role of β-catenin1 and 2 in ovarian differentiation and maintenance of female pathway in Nile tilapia. Mol Cell Endocrinol 2016; 427:33-44. [PMID: 26948949 DOI: 10.1016/j.mce.2016.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
Two β-catenin (β-cat) genes exist in teleosts but little is known about their expression and function in ovarian development. We identified β-cat1 and β-cat2 from the Nile tilapia. β-cat1 and β-cat2 displayed a similar expression pattern in the ovary during development, and were mainly expressed in the oogonia and oocytes. In luciferase assays, β-cat1 activated the TOPFlash reporter dose-dependently, whereas β-cat2 failed to do so. Cotransfection of β-cat1 and β-cat2 synergistically enhanced the expression of the reporter. A specific interaction between β-cat1 and β-cat2 was also observed in a mammalian two-hybrid assay. Furthermore, tilapia recombinant Dkk1, an inhibitor of the β-cat pathway, decreased β-cat1 and β-cat2, while increased sox9, dmrt1, cyp11b2 and foxl2 expression in the in vitro cultured tilapia ovary, which could be abolished by simultaneous treatment with Bio, an agonist of β-cat. Consistently, β-cat1 or β-cat2 knockdown in XX fish by TALENs caused the retardation of ovarian differentiation and masculinization, as reflected by the upregulation of dmrt1, cyp11b2, sox9, and serum 11-KT level. On the contrary, serum E2 level was unchanged even though foxl2 transcription was upregulated. These data suggestes that both β-cat1 and β-cat2 are important members and play synergistic roles in the canonical Wnt signal pathway in fish. Independent of Foxl2-leading estrogen pathway, they might be involved in ovarian differentiation and repression of the male pathway gene expression in tilapia.
Collapse
Affiliation(s)
- Limin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Fengrui Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China; School of Biological and Food Engineering, Fuyang Teachers College, Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province, Fuyang 236000, China
| | - Lang Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China.
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
48
|
Gustin SE, Hogg K, Stringer JM, Rastetter RH, Pelosi E, Miles DC, Sinclair AH, Wilhelm D, Western PS. WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Dev Biol 2016; 412:250-60. [DOI: 10.1016/j.ydbio.2016.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/06/2023]
|
49
|
Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells 2016; 34:720-31. [PMID: 26865184 DOI: 10.1002/stem.2314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/09/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.
Collapse
Affiliation(s)
- Keerthi Boddupally
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Guangfang Wang
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, California, USA
| | - Agnieszka Kobielak
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Wang L, Shao Y, Guan Y, Li L, Wu L, Chen F, Liu M, Chen H, Ma Y, Ma X, Liu M, Li D. Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Sci Rep 2015; 5:17517. [PMID: 26620761 PMCID: PMC4664917 DOI: 10.1038/srep17517] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/30/2015] [Indexed: 11/14/2022] Open
Abstract
The CRISPR-Cas RNA-guided system has versatile uses in many organisms and allows modification of multiple target sites simultaneously. Generating novel genetically modified mouse and rat models is one valuable application of this system. Through the injection of Cas9 protein instead of mRNA into embryos, we observed fewer off-target effects of Cas9 and increased point mutation knock-in efficiency. Large genomic DNA fragment (up to 95 kb) deletion mice were generated for in vivo study of lncRNAs and gene clusters. Site-specific insertion of a 2.7 kb CreERT2 cassette into the mouse Nfatc1 locus allowed labeling and tracing of hair follicle stem cells. In addition, we combined the Cre-Loxp system with a gene-trap strategy to insert a GFP reporter in the reverse orientation into the rat Lgr5 locus, which was later inverted by Cre-mediated recombination, yielding a conditional knockout/reporter strategy suitable for mosaic mutation analysis.
Collapse
Affiliation(s)
- Liren Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuting Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lijuan Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fangrui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huaqing Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,The Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|