1
|
Zheng T, Deng J, Wen J, Xiao S, Huang H, Shang J, Zhang L, Chen H, Li J, Wang Y, Ouyang S, Yang M, Otsu K, Liu X, Huang G. p38α deficiency ameliorates psoriasis development by downregulating STAT3-mediated keratinocyte proliferation and cytokine production. Commun Biol 2024; 7:999. [PMID: 39147860 PMCID: PMC11327308 DOI: 10.1038/s42003-024-06700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Psoriasis is characterized by keratinocyte (KC) hyperproliferation and inflammatory cell infiltration, but the mechanisms remain unclear. In an imiquimod-induced mouse psoriasiform model, p38 activity is significantly elevated in KCs and p38α specific deletion in KCs ameliorates skin inflammation. p38α signaling promotes KC proliferation and psoriasis-related proinflammatory gene expression during psoriasis development. Mechanistically, p38α enhances KC proliferation and production of inflammatory cytokines and chemokines by activating STAT3. While p38α signaling in KCs does not affect the expression of IL-23 and IL-17, it substantially amplifies the IL-23/IL-17 pathogenic axis in psoriasis. The therapeutic effect of IL-17 neutralization is associated with decreased p38 and STAT3 activities in KCs and targeting the p38α-STAT3 axis in KCs ameliorates the severity of psoriasis. As IL-17 also highly activates p38 and STAT3 in KCs, our findings reveal a sustained signaling circuit important for psoriasis development, highlighting p38α-STAT3 axis as an important target for psoriasis treatment.
Collapse
Affiliation(s)
- Tingting Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Jiaqi Deng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jiahong Wen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Shuxiu Xiao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyong Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jiawen Shang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Luwen Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Huan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jingyu Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Meng Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Cardiovascular Division, King's College London, London, UK
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Cai K, Jiang H, Zou Y, Song C, Cao K, Chen S, Wu Y, Zhang Z, Geng D, Zhang N, Liu B, Sun G, Tang M, Li Z, Zhang Y, Sun Y, Zhang Y. Programmed death of cardiomyocytes in cardiovascular disease and new therapeutic approaches. Pharmacol Res 2024; 206:107281. [PMID: 38942341 DOI: 10.1016/j.phrs.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.
Collapse
Affiliation(s)
- Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Haoyue Jiang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China
| | - Bo Liu
- The first hospital of China Medical University, Department of cardiac surgery, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| |
Collapse
|
3
|
Ren FF, Zhao L, Jiang XY, Zhang JJ, Gou JM, Yu XY, Wu SJ, Li L. Sphingosylphosphorylcholine alleviates pressure overload-induced myocardial remodeling in mice via inhibiting CaM-JNK/p38 signaling pathway. Acta Pharmacol Sin 2024; 45:312-326. [PMID: 37833535 PMCID: PMC10789762 DOI: 10.1038/s41401-023-01168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Apoptosis plays a critical role in the development of heart failure, and sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid naturally occurring in blood plasma. Some studies have shown that SPC inhibits hypoxia-induced apoptosis in myofibroblasts, the crucial non-muscle cells in the heart. Calmodulin (CaM) is a known SPC receptor. In this study we investigated the role of CaM in cardiomyocyte apoptosis in heart failure and the associated signaling pathways. Pressure overload was induced in mice by trans-aortic constriction (TAC) surgery. TAC mice were administered SPC (10 μM·kg-1·d-1) for 4 weeks post-surgery. We showed that SPC administration significantly improved survival rate and cardiac hypertrophy, and inhibited cardiac fibrosis in TAC mice. In neonatal mouse cardiomyocytes, treatment with SPC (10 μM) significantly inhibited Ang II-induced cardiomyocyte hypertrophy, fibroblast-to-myofibroblast transition and cell apoptosis accompanied by reduced Bax and phosphorylation levels of CaM, JNK and p38, as well as upregulated Bcl-2, a cardiomyocyte-protective protein. Thapsigargin (TG) could enhance CaM functions by increasing Ca2+ levels in cytoplasm. TG (3 μM) annulled the protective effect of SPC against Ang II-induced cardiomyocyte apoptosis. Furthermore, we demonstrated that SPC-mediated inhibition of cardiomyocyte apoptosis involved the regulation of p38 and JNK phosphorylation, which was downstream of CaM. These results offer new evidence for SPC regulation of cardiomyocyte apoptosis, potentially providing a new therapeutic target for cardiac remodeling following stress overload.
Collapse
Affiliation(s)
- Fang-Fang Ren
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lin Zhao
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian-Yun Jiang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jing-Jing Zhang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jia-Min Gou
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao-Yu Yu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shu-Jin Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Li
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Balderas-Villalobos J, Medina-Contreras JML, Lynch C, Kabadi R, Hayles J, Ramirez RJ, Tan AY, Kaszala K, Samsó M, Huizar JF, Eltit JM. Mechanisms of adaptive hypertrophic cardiac remodeling in a large animal model of premature ventricular contraction-induced cardiomyopathy. IUBMB Life 2023; 75:926-940. [PMID: 37427864 PMCID: PMC10592397 DOI: 10.1002/iub.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Frequent premature ventricular contractions (PVCs) promoted eccentric cardiac hypertrophy and reduced ejection fraction (EF) in a large animal model of PVC-induced cardiomyopathy (PVC-CM), but the molecular mechanisms and markers of this hypertrophic remodeling remain unexplored. Healthy mongrel canines were implanted with pacemakers to deliver bigeminal PVCs (50% burden with 200-220 ms coupling interval). After 12 weeks, left ventricular (LV) free wall samples were studied from PVC-CM and Sham groups. In addition to reduced LV ejection fraction (LVEF), the PVC-CM group showed larger cardiac myocytes without evident ultrastructural alterations compared to the Sham group. Biochemical markers of pathological hypertrophy, such as store-operated Ca2+ entry, calcineurin/NFAT pathway, β-myosin heavy chain, and skeletal type α-actin were unaltered in the PVC-CM group. In contrast, pro-hypertrophic and antiapoptotic pathways including ERK1/2 and AKT/mTOR were activated and/or overexpressed in the PVC-CM group, which appeared counterbalanced by an overexpression of protein phosphatase 1 and a borderline elevation of the anti-hypertrophic factor atrial natriuretic peptide. Moreover, the potent angiogenic and pro-hypertrophic factor VEGF-A and its receptor VEGFR2 were significantly elevated in the PVC-CM group. In conclusion, a molecular program is in place to keep this structural remodeling associated with frequent PVCs as an adaptive pathological hypertrophy.
Collapse
Affiliation(s)
| | - JML Medina-Contreras
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Christopher Lynch
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Rajiv Kabadi
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Janée Hayles
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rafael J. Ramirez
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Alex Y. Tan
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Karoly Kaszala
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Jose F. Huizar
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Jose M. Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| |
Collapse
|
5
|
Gu JJ, Du TJ, Zhang LN, Zhou J, Gu X, Zhu Y. Identification of Ferroptosis-Related Genes in Heart Failure Induced by Transverse Aortic Constriction. J Inflamm Res 2023; 16:4899-4912. [PMID: 37927963 PMCID: PMC10625389 DOI: 10.2147/jir.s433387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Background Heart failure (HF) is a common clinical syndrome due to ventricular dysfunction and is a major cause of mortality worldwide. Ferroptosis, marked by excessive iron-dependent lipid peroxidation, is closely related to HF. Therefore, the purpose of this study is to explore and validate ferroptosis-related markers in HF by bioinformatics analysis and animal experiments validation. Materials and Methods The gene expression profiles (GSE36074) of murine transverse aortic constriction (TAC) were obtained from the Gene Expression Omnibus (GEO); From the FerrDb database, ferroptosis-related genes (FRGs) were identified. Using GEO2R, differential expressed genes (DEGs) were screened. An overlapping analysis was conducted among DEGs and FRGs to identify ferroptosis-related DEGs (FRDEGs). We then performed clustering, functional enrichment analysis, and protein-protein interaction (PPI) analyses. In addition, the key FRDEGs were extracted by cytoHubba plugin and the networks of transcription factors (TFs)-key FRDEGs and microRNA-key FRDEGs were constructed. Lastly, the key FRDEGs were carried by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC). Results Fifty-nine FRGs showing significantly different expression were identified from a total of 1918 DEGs in mice heart by transverse aortic constriction. GO and KEGG functional enrichment analysis revealed that these 59 ferroptosis-related DEGs mostly associated with positive regulation of apoptotic process, FoxO signaling pathway, VEGF signaling pathway, Apoptosis, Ferroptosis. Five key FRDEGs (Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2) were identified using PPI networks; Based on TFs-key FRDEGs networks, we found that Mapk14, Hif1a, Tlr4 and Ptgs2 were regulated by 3, 4, 5, and 29 TFs, respectively; however, Ddit3 was not regulated by any TF; By analyzing the miRNA-key FRDEGs networks, we found that 39, 74, 11, 28, and 18 miRNAs targets regulate the expression of Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2, respectively. Lastly, five key FRDEGs were validated at the mRNA and protein levels by RT-qPCR and IHC, which were in line with our bioinformatics analysis. Conclusion Our findings reveal that Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2 may be involved in the development of HF through regulating ferroptosis and as potential targets for HF.
Collapse
Affiliation(s)
- Jian Jun Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, People’s Republic of China
| | - Tian Jian Du
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, People’s Republic of China
| | - Li Na Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Xiang Gu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, People’s Republic of China
| | - Ye Zhu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Fujimura K, Karasawa T, Komada T, Yamada N, Mizushina Y, Baatarjav C, Matsumura T, Otsu K, Takeda N, Mizukami H, Kario K, Takahashi M. NLRP3 inflammasome-driven IL-1β and IL-18 contribute to lipopolysaccharide-induced septic cardiomyopathy. J Mol Cell Cardiol 2023; 180:58-68. [PMID: 37172930 DOI: 10.1016/j.yjmcc.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Sepsis is a life-threatening syndrome, and its associated mortality is increased when cardiac dysfunction and damage (septic cardiomyopathy [SCM]) occur. Although inflammation is involved in the pathophysiology of SCM, the mechanism of how inflammation induces SCM in vivo has remained obscure. NLRP3 inflammasome is a critical component of the innate immune system that activates caspase-1 (Casp1) and causes the maturation of IL-1β and IL-18 as well as the processing of gasdermin D (GSDMD). Here, we investigated the role of the NLRP3 inflammasome in a murine model of lipopolysaccharide (LPS)-induced SCM. LPS injection induced cardiac dysfunction, damage, and lethality, which was significantly prevented in NLRP3-/- mice, compared to wild-type (WT) mice. LPS injection upregulated mRNA levels of inflammatory cytokines (Il6, Tnfa, and Ifng) in the heart, liver, and spleen of WT mice, and this upregulation was prevented in NLRP3-/- mice. LPS injection increased plasma levels of inflammatory cytokines (IL-1β, IL-18, and TNF-α) in WT mice, and this increase was markedly inhibited in NLRP3-/- mice. LPS-induced SCM was also prevented in Casp1/11-/- mice, but not in Casp11mt, IL-1β-/-, IL-1α-/-, or GSDMD-/- mice. Notably, LPS-induced SCM was apparently prevented in IL-1β-/- mice transduced with adeno-associated virus vector expressing IL-18 binding protein (IL-18BP). Furthermore, splenectomy, irradiation, or macrophage depletion alleviated LPS-induced SCM. Our findings demonstrate that the cross-regulation of NLRP3 inflammasome-driven IL-1β and IL-18 contributes to the pathophysiology of SCM and provide new insights into the mechanism underlying the pathogenesis of SCM.
Collapse
Affiliation(s)
- Kenta Fujimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoya Yamada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yoshiko Mizushina
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Chintogtokh Baatarjav
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom; National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
7
|
Sabikunnahar B, Caldwell S, Varnum S, Hogan T, Cooper A, Lahue KG, Bivona JJ, Cousens PM, Symeonides M, Ballif BA, Poynter ME, Krementsov DN. Long Noncoding RNA U90926 Is Induced in Activated Macrophages, Is Protective in Endotoxic Shock, and Encodes a Novel Secreted Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:807-819. [PMID: 36705532 PMCID: PMC9998366 DOI: 10.4049/jimmunol.2200215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023]
Abstract
Thousands of long noncoding RNAs are encoded in mammalian genomes, yet most remain uncharacterized. In this study, we functionally characterized a mouse long noncoding RNA named U90926. Analysis of U90926 RNA levels revealed minimal expression across multiple tissues at steady state. However, the expression of this gene was highly induced in macrophages and dendritic cells by TLR activation, in a p38 MAPK- and MyD88-dependent manner. To study the function of U90926, we generated U90926-deficient (U9-KO) mice. Surprisingly, we found minimal effects of U90926 deficiency in cultured macrophages. Given the lack of macrophage-intrinsic effect, we investigated the subcellular localization of U90926 transcript and its protein-coding potential. We found that U90926 RNA localizes to the cytosol, associates with ribosomes, and contains an open reading frame that encodes a novel glycosylated protein (termed U9-ORF), which is secreted from the cell. An in vivo model of endotoxic shock revealed that, in comparison with wild type mice, U9-KO mice exhibited increased sickness responses and mortality. Mechanistically, serum levels of IL-6 were elevated in U9-KO mice, and IL-6 neutralization improved endotoxemia outcomes in U9-KO mice. Taken together, these results suggest that U90926 expression is protective during endotoxic shock, potentially mediated by the paracrine and/or endocrine actions of the novel U9-ORF protein secreted by activated myeloid cells.
Collapse
Affiliation(s)
- Bristy Sabikunnahar
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Stella Varnum
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Tyler Hogan
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Alexei Cooper
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Joseph J Bivona
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT
- Department of Medicine, University of Vermont, Burlington, VT
| | | | - Menelaos Symeonides
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT
| | | | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| |
Collapse
|
8
|
Shinohara T, Yamamoto T, Morimoto H, Shiromoto Y, Kanatsu-Shinohara M. Allogeneic offspring produced by induction of PD-L1 in spermatogonial stem cells via self-renewal stimulation. Stem Cell Reports 2023; 18:985-998. [PMID: 36963391 PMCID: PMC10147552 DOI: 10.1016/j.stemcr.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
The testis is an immune-privileged organ. It is considered that the testis somatic microenvironment is responsible for immune suppression. However, immunological properties of spermatogonial stem cells (SSCs) have remained unknown. Here, we report the birth of allogeneic offspring by enhanced expression of immunosuppressive PD-L1 in SSCs. In vitro supplementation of GDNF and FGF2 increased expression of PD-L1 in SSCs. Cultured SSCs maintained allogeneic spermatogenesis that persisted for >1 year. However, depletion or gene editing of Pd-l1 family genes in SSCs prevented allogeneic spermatogenesis, which suggested that germ cells are responsible for suppression of the allogeneic response. PD-L1 was induced by activation of the MAPK14-BCL6B pathway, which drives self-renewal by reactive oxygen species (ROS) generation. By contrast, reduced ROS or Mapk14 deficiency downregulated PD-L1. Allogeneic offspring were born after SSC transplantation into congenitally infertile and chemically castrated mice. Thus, SSCs have unique immunological properties, which make allogeneic recipients into "surrogate fathers."
Collapse
Affiliation(s)
- Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Takuya Yamamoto
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Shiromoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| |
Collapse
|
9
|
Notch1 Is Involved in Physiologic Cardiac Hypertrophy of Mice via the p38 Signaling Pathway after Voluntary Running. Int J Mol Sci 2023; 24:ijms24043212. [PMID: 36834623 PMCID: PMC9966550 DOI: 10.3390/ijms24043212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Appropriate exercise such as voluntary wheel-running can induce physiological cardiac hypertrophy. Notch1 plays an important role in cardiac hypertrophy; however, the experimental results are inconsistent. In this experiment, we aimed to explore the role of Notch1 in physiological cardiac hypertrophy. Twenty-nine adult male mice were randomly divided into a Notch1 heterozygous deficient control (Notch1+/- CON) group, a Notch1 heterozygous deficient running (Notch1+/- RUN) group, a wild type control (WT CON) group, and a wild type running (WT RUN) group. Mice in the Notch1+/- RUN and WT RUN groups had access to voluntary wheel-running for two weeks. Next, the cardiac function of all of the mice was examined by echocardiography. The H&E staining, Masson trichrome staining, and a Western blot assay were carried out to analyze cardiac hypertrophy, cardiac fibrosis, and the expression of proteins relating to cardiac hypertrophy. After two-weeks of running, the Notch1 receptor expression was decreased in the hearts of the WT RUN group. The degree of cardiac hypertrophy in the Notch1+/- RUN mice was lower than that of their littermate control. Compared to the Notch1+/- CON group, Notch1 heterozygous deficiency could lead to a decrease in Beclin-1 expression and the ratio of LC3II/LC3I in the Notch1+/- RUN group. The results suggest that Notch1 heterozygous deficiency could partly dampen the induction of autophagy. Moreover, Notch1 deficiency may lead to the inactivation of p38 and the reduction of β-catenin expression in the Notch1+/- RUN group. In conclusion, Notch1 plays a critical role in physiologic cardiac hypertrophy through the p38 signaling pathway. Our results will help to understand the underlying mechanism of Notch1 on physiological cardiac hypertrophy.
Collapse
|
10
|
Froese N, Szaroszyk M, Korf-Klingebiel M, Koch K, Schmitto JD, Geffers R, Hilfiker-Kleiner D, Riehle C, Wollert KC, Bauersachs J, Heineke J. Endothelial Cell GATA2 Modulates the Cardiomyocyte Stress Response through the Regulation of Two Long Non-Coding RNAs. BIOLOGY 2022; 11:biology11121736. [PMID: 36552246 PMCID: PMC9775420 DOI: 10.3390/biology11121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
Capillary endothelial cells modulate myocardial growth and function during pathological stress, but it is unknown how and whether this contributes to the development of heart failure. We found that the endothelial cell transcription factor GATA2 is downregulated in human failing myocardium. Endothelial GATA2 knock-out (G2-EC-KO) mice develop heart failure and defective myocardial signal transduction during pressure overload, indicating that the GATA2 downregulation is maladaptive. Heart failure and perturbed signaling in G2-EC-KO mice could be induced by strong upregulation of two unknown, endothelial cell-derived long non-coding (lnc) RNAs (AK037972, AK038629, termed here GADLOR1 and 2). Mechanistically, the GADLOR1/2 lncRNAs transfer from endothelial cells to cardiomyocytes, where they block stress-induced signalling. Thereby, lncRNAs can contribute to disease as paracrine effectors of signal transduction and therefore might serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Natali Froese
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, 30625 Hannover, Germany
- Correspondence: (N.F.); (J.H.)
| | - Malgorzata Szaroszyk
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, 30625 Hannover, Germany
| | - Mortimer Korf-Klingebiel
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, 30625 Hannover, Germany
| | - Katrin Koch
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, 30625 Hannover, Germany
| | - Jan D. Schmitto
- Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, 30625 Hannover, Germany
| | - Robert Geffers
- Genomanalytik, Helmholtz-Zentrum für Infektionsforschung GmbH, 38124 Braunschweig, Germany
| | - Denise Hilfiker-Kleiner
- Fachbereich Medizin–Der Dekan, Medicine, Philipps-Universität Marburg, Baldingerstraße, 35032 Marburg, Germany
| | - Christian Riehle
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, 30625 Hannover, Germany
| | - Kai C. Wollert
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, 30625 Hannover, Germany
| | - Johann Bauersachs
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, 30625 Hannover, Germany
| | - Joerg Heineke
- Department of Cardiovascular Physiology, Medizinische Fakultät Mannheim, European Center for Angioscience (ECAS), Universität Heidelberg, 68167 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
- Correspondence: (N.F.); (J.H.)
| |
Collapse
|
11
|
Romero-Becerra R, Mora A, Manieri E, Nikolic I, Santamans AM, Montalvo-Romeral V, Cruz FM, Rodríguez E, León M, Leiva-Vega L, Sanz L, Bondía V, Filgueiras-Rama D, Jiménez-Borreguero LJ, Jalife J, Gonzalez-Teran B, Sabio G. MKK6 deficiency promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR hyperactivation. eLife 2022; 11:e75250. [PMID: 35971771 PMCID: PMC9381040 DOI: 10.7554/elife.75250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated p38 kinases control a plethora of functions, and their dysregulation has been linked to the development of steatosis, obesity, immune disorders, and cancer. Therefore, they have been identified as potential targets for novel therapeutic strategies. There are four p38 family members (p38α, p38β, p38γ, and p38δ) that are activated by MKK3 and MKK6. Here, we demonstrate that lack of MKK6 reduces the lifespan in mice. Longitudinal study of cardiac function in MKK6 KO mice showed that young mice develop cardiac hypertrophy which progresses to cardiac dilatation and fibrosis with age. Mechanistically, lack of MKK6 blunts p38α activation while causing MKK3-p38γ/δ hyperphosphorylation and increased mammalian target of rapamycin (mTOR) signaling, resulting in cardiac hypertrophy. Cardiac hypertrophy in MKK6 KO mice is reverted by knocking out either p38γ or p38δ or by inhibiting the mTOR pathway with rapamycin. In conclusion, we have identified a key role for the MKK3/6-p38γ/δ pathway in the development of cardiac hypertrophy, which has important implications for the clinical use of p38α inhibitors in the long-term treatment since they might result in cardiotoxicity.
Collapse
Affiliation(s)
| | - Alfonso Mora
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Elisa Manieri
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Ivana Nikolic
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | | | | | - Elena Rodríguez
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Marta León
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Laura Sanz
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Víctor Bondía
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER de Enfermedades CardiovascularesMadridSpain
- Hospital Clínico Universitario San CarlosMadridSpain
| | | | - José Jalife
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER de Enfermedades CardiovascularesMadridSpain
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann ArborAnn ArborUnited States
| | - Barbara Gonzalez-Teran
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
- Gladstone InstitutesSan FranciscoUnited States
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones CardiovascularesMadridSpain
| |
Collapse
|
12
|
P38α MAPK is a gatekeeper of uterine progesterone responsiveness at peri-implantation via Ube3c-mediated PGR degradation. Proc Natl Acad Sci U S A 2022; 119:e2206000119. [PMID: 35914132 PMCID: PMC9371708 DOI: 10.1073/pnas.2206000119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.
Collapse
|
13
|
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. Int J Mol Sci 2022; 23:ijms23158582. [PMID: 35955714 PMCID: PMC9369123 DOI: 10.3390/ijms23158582] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the most common cause of death among diabetic patients worldwide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease management. Recent studies have demonstrated that protein kinase C activation plays a vital role in the development of cardiovascular complications via its activation of mitogen-activated protein kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia in diabetic conditions contribute to preserved PKC activation mediated by excessive production of diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular responses, including enhancing oxidative stress and activating signalling pathways that lead to uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review, we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in the development and progression of diabetic cardiovascular complications, and their potential as therapeutic targets for cardiovascular management in diabetic patients.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Zariyantey Abdul Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nor Anizah Mohd Nor
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Faculty of Health Sciences, University College MAIWP International, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| |
Collapse
|
14
|
Han M, Ma J, Ouyang S, Wang Y, Zheng T, Lu P, Zheng Z, Zhao W, Li H, Wu Y, Zhang B, Hu R, Otsu K, Liu X, Wan Y, Li H, Huang G. The kinase p38α functions in dendritic cells to regulate Th2-cell differentiation and allergic inflammation. Cell Mol Immunol 2022; 19:805-819. [PMID: 35551270 PMCID: PMC9243149 DOI: 10.1038/s41423-022-00873-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in controlling T helper 2 (Th2) cell-dependent diseases, but the signaling mechanism that triggers this function is not fully understood. We showed that p38α activity in DCs was decreased upon HDM stimulation and dynamically regulated by both extrinsic signals and Th2-instructive cytokines. p38α-specific deletion in cDC1s but not in cDC2s or macrophages promoted Th2 responses under HDM stimulation. Further study showed that p38α in cDC1s regulated Th2-cell differentiation by modulating the MK2−c-FOS−IL-12 axis. Importantly, crosstalk between p38α-dependent DCs and Th2 cells occurred during the sensitization phase, not the effector phase, and was conserved between mice and humans. Our results identify p38α signaling as a central pathway in DCs that integrates allergic and parasitic instructive signals with Th2-instructive cytokines from the microenvironment to regulate Th2-cell differentiation and function, and this finding may offer a novel strategy for the treatment of allergic diseases and parasitic infection.
Collapse
Affiliation(s)
- Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Jingyu Ma
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Peishan Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China
| | - Weiheng Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Hongjin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Baohua Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Ran Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Basic Department of Cancer Center, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,School of Cardiovascular Medicine and Sciences, King's College London, London, SE59NU, UK
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China.
| | - Huabin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China.
| |
Collapse
|
15
|
Jiménez-Andrade Y, Hillette KR, Yoshida T, Kashiwagi M, Choo MK, Liang Y, Georgopoulos K, Park JM. The Developmental Transcription Factor p63 Is Redeployed to Drive Allergic Skin Inflammation through Phosphorylation by p38α. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2613-2621. [PMID: 35623662 PMCID: PMC9308733 DOI: 10.4049/jimmunol.2101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Keratinocytes, the epithelial cells of the skin, reprogram their gene expression and produce immune effector molecules when exposed to environmental and endogenous triggers of inflammation. It remains unclear how keratinocytes process physiological signals generated during skin irritation and switch from a homeostatic to an inflammatory state. In this article, we show that the stress-activated protein kinase p38α is crucial for keratinocytes to prompt changes in their transcriptome upon cytokine stimulation and drive inflammation in allergen-exposed skin. p38α serves this function by phosphorylating p63, a transcription factor essential for the lineage identity and stemness of the skin epithelium. Phosphorylation by p38α alters the activity of p63 and redeploys this developmental transcription factor to a gene expression program linked to inflammation. Genetic ablation and pharmacological inhibition of p38α or the p38α-p63 target gene product MMP13 attenuate atopic dermatitis-like disease in mice. Our study reveals an epithelial molecular pathway promoting skin inflammation and actionable through treatment with topical small-molecule therapeutics.
Collapse
Affiliation(s)
- Yanek Jiménez-Andrade
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Kathryn R Hillette
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA;
| |
Collapse
|
16
|
Meng D, Zhang B, Wang Y, Zheng T, Hu R, Wang B, Otsu K, Wang Y, Huang G. p38α Deficiency in T Cells Ameliorates Diet-Induced Obesity, Insulin Resistance, and Adipose Tissue Senescence. Diabetes 2022; 71:1205-1217. [PMID: 35349644 DOI: 10.2337/db21-0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022]
Abstract
Adipose tissue-resident T cells play vital roles in regulating inflammation and metabolism in obesity, but the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding enhances p38 activity in adipose-resident T cells. T cell-specific deletion of p38α, an essential subunit of p38 expressed in most immune cells, protected mice from HFD-induced obesity, hepatic steatosis, adipose tissue inflammation, and insulin resistance. Mice with p38α deletion in T cells exhibited higher energy expenditure. Mechanistically, p38α promoted T-cell glycolysis through mechanistic target of rapamycin signaling, leading to enhanced Th1 differentiation. Accordingly, genetic deletion of p38α alleviated ongoing diet-induced obesity. Unexpectedly, p38α signaling in T cells promoted adipose tissue senescence during obesity and aging. Taken together, our results identify p38α in T cells as an essential regulator of obesity, insulin resistance, and adipose tissue senescence, and p38α may be a therapeutic target for obese- or aging-associated diseases.
Collapse
Affiliation(s)
- Deyun Meng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohua Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Ran Hu
- Basic Department of Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- School of Cardiovascular Medicine and Sciences, King's College London, London, U.K
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
17
|
Akazawa Y, Taneike M, Ueda H, Kitazume-Taneike R, Murakawa T, Sugihara R, Yorifuji H, Nishida H, Mine K, Hioki A, Omiya S, Nakayama H, Yamaguchi O, Yoshimori T, Sakata Y, Otsu K. Rubicon-regulated beta-1 adrenergic receptor recycling protects the heart from pressure overload. Sci Rep 2022; 12:41. [PMID: 34996972 PMCID: PMC8741968 DOI: 10.1038/s41598-021-03920-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
Heart failure has high morbidity and mortality in the developed countries. Autophagy is important for the quality control of proteins and organelles in the heart. Rubicon (Run domain Beclin-1-interacting and cysteine-rich domain-containing protein) has been identified as a potent negative regulator of autophagy and endolysosomal trafficking. The aim of this study was to investigate the in vivo role of Rubicon-mediated autophagy and endosomal trafficking in the heart. We generated cardiomyocyte-specific Rubicon-deficient mice and subjected the mice to pressure overload by means of transverse aortic constriction. Rubicon-deficient mice showed heart failure with left ventricular dilatation, systolic dysfunction and lung congestion one week after pressure overload. While autophagic activity was unchanged, the protein amount of beta-1 adrenergic receptor was decreased in the pressure-overloaded Rubicon-deficient hearts. The increases in heart rate and systolic function by beta-1 adrenergic stimulation were significantly attenuated in pressure-overloaded Rubicon-deficient hearts. In isolated rat neonatal cardiomyocytes, the downregulation of the receptor by beta-1 adrenergic agonist was accelerated by knockdown of Rubicon through the inhibition of recycling of the receptor. Taken together, Rubicon protects the heart from pressure overload. Rubicon maintains the intracellular recycling of beta-1 adrenergic receptor, which might contribute to its cardioprotective effect.
Collapse
Affiliation(s)
- Yasuhiro Akazawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Manabu Taneike
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Ueda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Preventive Diagnostics, Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Rika Kitazume-Taneike
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomokazu Murakawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuta Sugihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Yorifuji
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Mine
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ayana Hioki
- Preventive Diagnostics, Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Hiroyuki Nakayama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
18
|
Bottermann K, Kalfhues L, Nederlof R, Hemmers A, Leitner LM, Oenarto V, Nemmer J, Pfeffer M, Raje V, Deenen R, Petzsch P, Zabri H, Köhrer K, Reichert AS, Grandoch M, Fischer JW, Herebian D, Stegbauer J, Harris TE, Gödecke A. Cardiomyocyte p38 MAPKα suppresses a heart-adipose tissue-neutrophil crosstalk in heart failure development. Basic Res Cardiol 2022; 117:48. [PMID: 36205817 PMCID: PMC9542472 DOI: 10.1007/s00395-022-00955-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 01/31/2023]
Abstract
Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.8 ± 22.5 µl, 48 h AngII: 109.7 ± 14.6 µl) and an ectopic lipid deposition in cardiomyocytes, reflecting a metabolic dysfunction in pressure overload (PO). This was accompanied by a concerted downregulation of transcripts for oxidative phosphorylation, TCA cycle, and fatty acid metabolism. Cardiac inflammation involving neutrophils, macrophages, B- and T-cells was significantly enhanced. Inhibition of adipose tissue lipolysis by the small molecule inhibitor of adipocytetriglyceride lipase (ATGL) Atglistatin reduced cardiac lipid accumulation by 70% and neutrophil infiltration by 30% and went along with an improved cardiac function. Direct targeting of neutrophils by means of anti Ly6G-antibody administration in vivo led to a reduced LV dilation in iCMp38αKO mice and an improved systolic function (EF: 39.27 ± 14%). Thus, adipose tissue lipolysis and CM lipid accumulation augmented cardiac inflammation in iCMp38αKO mice. Neutrophils, in particular, triggered the rapid left ventricular dilatation. We provide the first evidence that p38 MAPKα acts as an essential switch in cardiac adaptation to PO by mitigating metabolic dysfunction and inflammation. Moreover, we identified a heart-adipose tissue-immune cell crosstalk, which might serve as new therapeutic target in cardiac pathologies.
Collapse
Affiliation(s)
- Katharina Bottermann
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Lisa Kalfhues
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Rianne Nederlof
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Anne Hemmers
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Lucia M Leitner
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Vici Oenarto
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Jana Nemmer
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Mirjam Pfeffer
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Vidisha Raje
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Rene Deenen
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Heba Zabri
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Maria Grandoch
- Institute of Translational Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Jens W Fischer
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
- CARID-Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany.
- CARID-Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
19
|
Braun C, Katholnig K, Kaltenecker C, Linke M, Sukhbaatar N, Hengstschläger M, Weichhart T. p38 regulates the tumor suppressor PDCD4 via the TSC-mTORC1 pathway. Cell Stress 2021; 5:176-182. [PMID: 34917890 PMCID: PMC8645265 DOI: 10.15698/cst2021.12.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Programmed cell death protein 4 (PDCD4) exerts critical functions as tumor suppressor and in immune cells to regulate inflammatory processes. The phosphoinositide 3-kinase (PI3K) promotes degradation of PDCD4 via mammalian target of rapamycin complex 1 (mTORC1). However, additional pathways that may regulate PDCD4 expression are largely ill-defined. In this study, we have found that activation of the mitogen-activated protein kinase p38 promoted degradation of PDCD4 in macrophages and fibroblasts. Mechanistically, we identified a pathway from p38 and its substrate MAP kinase-activated protein kinase 2 (MK2) to the tuberous sclerosis complex (TSC) to regulate mTORC1-dependent degradation of PDCD4. Moreover, we provide evidence that TSC1 and TSC2 regulate PDCD4 expression via an additional mechanism independent of mTORC1. These novel data extend our knowledge of how PDCD4 expression is regulated by stress- and nutrient-sensing pathways.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karl Katholnig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Christopher Kaltenecker
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Monika Linke
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Nyamdelger Sukhbaatar
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
McGill MM, Richman AR, Boyd JR, Sabikunnahar B, Lahue KG, Montgomery TL, Caldwell S, Varnum S, Frietze S, Krementsov DN. p38 MAP Kinase Signaling in Microglia Plays a Sex-Specific Protective Role in CNS Autoimmunity and Regulates Microglial Transcriptional States. Front Immunol 2021; 12:715311. [PMID: 34707603 PMCID: PMC8542909 DOI: 10.3389/fimmu.2021.715311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system, representing the leading cause of non-traumatic neurologic disease in young adults. This disease is three times more common in women, yet more severe in men, but the mechanisms underlying these sex differences remain largely unknown. MS is initiated by autoreactive T helper cells, but CNS-resident and CNS-infiltrating myeloid cells are the key proximal effector cells regulating disease pathology. We have previously shown that genetic ablation of p38α MAP kinase broadly in the myeloid lineage is protective in the autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), but only in females, and not males. To precisely define the mechanisms responsible, we used multiple genetic approaches and bone marrow chimeras to ablate p38α in microglial cells, peripheral myeloid cells, or both. Deletion of p38α in both cell types recapitulated the previous sex difference, with reduced EAE severity in females. Unexpectedly, deletion of p38α in the periphery was protective in both sexes. In contrast, deletion of p38α in microglia exacerbated EAE in males only, revealing opposing roles of p38α in microglia vs. periphery. Bulk transcriptional profiling revealed that p38α regulated the expression of distinct gene modules in male vs. female microglia. Single-cell transcriptional analysis of WT and p38α-deficient microglia isolated from the inflamed CNS revealed a diversity of complex microglial states, connected by distinct convergent transcriptional trajectories. In males, microglial p38α deficiency resulted in enhanced transition from homeostatic to disease-associated microglial states, with the downregulation of regulatory genes such as Atf3, Rgs1, Socs3, and Btg2, and increased expression of inflammatory genes such as Cd74, Trem2, and MHC class I and II genes. In females, the effect of p38α deficiency was divergent, exhibiting a unique transcriptional profile that included an upregulation of tissue protective genes, and a small subset of inflammatory genes that were also upregulated in males. Taken together, these results reveal a p38α-dependent sex-specific molecular pathway in microglia that is protective in CNS autoimmunity in males, suggesting that autoimmunity in males and females is driven by distinct cellular and molecular pathways, thus suggesting design of future sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Mahalia M McGill
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Alyssa R Richman
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Joseph R Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Bristy Sabikunnahar
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Stella Varnum
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
21
|
Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl) 2021; 134:2647-2655. [PMID: 34608069 PMCID: PMC8631411 DOI: 10.1097/cm9.0000000000001772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Cell death occurs in various tissues and organs in the body. It is a physiological or pathological process that has different effects. It is of great significance in maintaining the morphological function of cells and clearing abnormal cells. Pyroptosis, apoptosis, and necrosis are all modes of cell death that have been studied extensively by many experts and scholars, including studies on their effects on the liver, kidney, the heart, other organs, and even the whole body. The heart, as the most important organ of the body, should be a particular focus. This review summarizes the mechanisms underlying the various cell death modes and the relationship between the various mechanisms and heart diseases. The current research status for heart therapy is discussed from the perspective of pathogenesis.
Collapse
|
22
|
Hall EJ, Pal S, Glennon MS, Shridhar P, Satterfield SL, Weber B, Zhang Q, Salama G, Lal H, Becker JR. Cardiac natriuretic peptide deficiency sensitizes the heart to stress induced ventricular arrhythmias via impaired CREB signaling. Cardiovasc Res 2021; 118:2124-2138. [PMID: 34329394 DOI: 10.1093/cvr/cvab257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The cardiac natriuretic peptides (atrial natriuretic peptide [ANP] and B-type natriuretic peptide [BNP]) are important regulators of cardiovascular physiology, with reduced natriuretic peptide (NP) activity linked to multiple human cardiovascular diseases. We hypothesized that deficiency of either ANP or BNP would lead to similar changes in left ventricular structure and function given their shared receptor affinities. METHODS AND RESULTS We directly compared murine models deficient of ANP or BNP in the same genetic backgrounds (C57BL6/J) and environments. We evaluated control, ANP deficient (Nppa-/-) or BNP deficient (Nppb-/-) mice under unstressed conditions and multiple forms of pathological myocardial stress. Survival, myocardial structure, function and electrophysiology, tissue histology, and biochemical analyses were evaluated in the groups. In vitro validation of our findings was performed using human derived induced pluripotent stem cell cardiomyocytes (iPS-CM). In the unstressed state, both ANP and BNP deficient mice displayed mild ventricular hypertrophy which did not increase up to 1 year of life. NP-deficient mice exposed to acute myocardial stress secondary to thoracic aortic constriction (TAC) had similar pathological myocardial remodeling but a significant increase in sudden death. We discovered that the NP-deficient mice are more susceptible to stress induced ventricular arrhythmias using both in vivo and ex vivo models. Mechanistically, deficiency of either ANP or BNP led to reduced myocardial cGMP levels and reduced phosphorylation of the cAMP response element-binding protein (CREBS133) transcriptional regulator. Selective CREB inhibition sensitized wild type hearts to stress induced ventricular arrhythmias. ANP and BNP regulate cardiomyocyte CREBS133 phosphorylation through a cGMP-dependent protein kinase 1 (PKG1) and p38 mitogen activated protein kinase (p38 MAPK) signaling cascade. CONCLUSIONS Our data show that ANP and BNP act in a non-redundant fashion to maintain myocardial cGMP levels to regulate cardiomyocyte p38 MAPK and CREB activity. Cardiac natriuretic peptide deficiency leads to a reduction in CREB signaling which sensitizes the heart to stress induced ventricular arrhythmias. TRANSLATIONAL PERSPECTIVE Our study found that ANP or BNP deficiency leads to increased sudden death and ventricular arrhythmias after acute myocardial stress in murine models. We discovered that ANP and BNP act in a non-redundant fashion to maintain myocardial cGMP levels and uncovered a unique role for these peptides in regulating cardiomyocyte p38 MAPK and CREB signaling through a cGMP-PKG1 pathway. Importantly, this signaling pathway was conserved in human cardiomyocytes. This study provides mechanistic insight into how modulating natriuretic peptide levels in human heart failure patients reduces sudden death and mortality.
Collapse
Affiliation(s)
- Eric J Hall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Soumojit Pal
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael S Glennon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Puneeth Shridhar
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sidney L Satterfield
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Beth Weber
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qinkun Zhang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Guy Salama
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Jason R Becker
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Fabian DK, Fuentealba M, Dönertaş HM, Partridge L, Thornton JM. Functional conservation in genes and pathways linking ageing and immunity. IMMUNITY & AGEING 2021; 18:23. [PMID: 33990202 PMCID: PMC8120713 DOI: 10.1186/s12979-021-00232-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/31/2022]
Abstract
At first glance, longevity and immunity appear to be different traits that have not much in common except the fact that the immune system promotes survival upon pathogenic infection. Substantial evidence however points to a molecularly intertwined relationship between the immune system and ageing. Although this link is well-known throughout the animal kingdom, its genetic basis is complex and still poorly understood. To address this question, we here provide a compilation of all genes concomitantly known to be involved in immunity and ageing in humans and three well-studied model organisms, the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the house mouse Mus musculus. By analysing human orthologs among these species, we identified 7 evolutionarily conserved signalling cascades, the insulin/TOR network, three MAPK (ERK, p38, JNK), JAK/STAT, TGF-β, and Nf-κB pathways that act pleiotropically on ageing and immunity. We review current evidence for these pathways linking immunity and lifespan, and their role in the detrimental dysregulation of the immune system with age, known as immunosenescence. We argue that the phenotypic effects of these pathways are often context-dependent and vary, for example, between tissues, sexes, and types of pathogenic infection. Future research therefore needs to explore a higher temporal, spatial and environmental resolution to fully comprehend the connection between ageing and immunity.
Collapse
Affiliation(s)
- Daniel K Fabian
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK. .,Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Matías Fuentealba
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.,Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
24
|
Dual specific phosphatases (DUSPs) in cardiac hypertrophy and failure. Cell Signal 2021; 84:110033. [PMID: 33933582 DOI: 10.1016/j.cellsig.2021.110033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Pressure overload and other stress stimuli elicit a host of adaptive and maladaptive signaling cascades that eventually lead to cardiac hypertrophy and heart failure. Among those, the mitogen-activated protein kinase (MAPK) signaling pathway has been shown to play a prominent role. The dual specificity phosphatases (DUSPs), also known as MAPK specific phosphatases (MKPs), that can dephosphorylate the MAPKs and inactivate them are gaining increasing attention as potential drug targets. Here we try to review recent advancements in understanding the roles of the different DUSPs, and the pathways that they regulate in cardiac remodeling. We focus on the regulation of three main MAPK branches - the p38 kinases, the c-Jun-N-terminal kinases (JNKs) and the extracellular signal-regulated kinases (ERK) by various DUSPs and try to examine their roles.
Collapse
|
25
|
Zhao T, Kee HJ, Bai L, Kim MK, Kee SJ, Jeong MH. Selective HDAC8 Inhibition Attenuates Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis via p38 MAPK Pathway. Front Pharmacol 2021; 12:677757. [PMID: 33959033 PMCID: PMC8093872 DOI: 10.3389/fphar.2021.677757] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) expression and enzymatic activity are dysregulated in cardiovascular diseases. Among Class I HDACs, HDAC2 has been reported to play a key role in cardiac hypertrophy; however, the exact function of HDAC8 remains unknown. Here we investigated the role of HDAC8 in cardiac hypertrophy and fibrosis using the isoproterenol-induced cardiac hypertrophy model system.Isoproterenol-infused mice were injected with the HDAC8 selective inhibitor PCI34051 (30 mg kg−1 body weight). Enlarged hearts were assessed by HW/BW ratio, cross-sectional area, and echocardiography. RT-PCR, western blotting, histological analysis, and cell size measurements were performed. To elucidate the role of HDAC8 in cardiac hypertrophy, HDAC8 knockdown and HDAC8 overexpression were also used. Isoproterenol induced HDAC8 mRNA and protein expression in mice and H9c2 cells, while PCI34051 treatment decreased cardiac hypertrophy in isoproterenol-treated mice and H9c2 cells. PCI34051 treatment also reduced the expression of cardiac hypertrophic markers (Nppa, Nppb, and Myh7), transcription factors (Sp1, Gata4, and Gata6), and fibrosis markers (collagen type I, fibronectin, and Ctgf) in isoproterenol-treated mice. HDAC8 overexpression stimulated cardiac hypertrophy in cells, whereas HDAC8 knockdown reversed those effects. HDAC8 selective inhibitor and HDAC8 knockdown reduced the isoproterenol-induced activation of p38 MAPK, whereas HDAC8 overexpression promoted p38 MAPK phosphorylation. Furthermore, p38 MAPK inhibitor SB203580 significantly decreased the levels of p38 MAPK phosphorylation, as well as ANP and BNP protein expression, induced by HDAC8 overexpression.Here we show that inhibition of HDAC8 activity or expression suppresses cardiac hypertrophy and fibrosis. These findings suggest that HDAC8 could be a promising target to treat cardiac hypertrophy and fibrosis by regulating p38 MAPK.
Collapse
Affiliation(s)
- Tingwei Zhao
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Moon-Ki Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Sorimachi Y, Karigane D, Ootomo Y, Kobayashi H, Morikawa T, Otsu K, Kubota Y, Okamoto S, Goda N, Takubo K. p38α plays differential roles in hematopoietic stem cell activity dependent on aging contexts. J Biol Chem 2021; 296:100563. [PMID: 33745970 PMCID: PMC8065231 DOI: 10.1016/j.jbc.2021.100563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and their progeny sustain lifetime hematopoiesis. Aging alters HSC function, number, and composition and increases risk of hematological malignancies, but how these changes occur in HSCs remains unclear. Signaling via p38 mitogen-activated kinase (p38MAPK) has been proposed as a candidate mechanism underlying induction of HSC aging. Here, using genetic models of both chronological and premature aging, we describe a multimodal role for p38α, the major p38MAPK isozyme in hematopoiesis, in HSC aging. We report that p38α regulates differentiation bias and sustains transplantation capacity of HSCs in the early phase of chronological aging. However, p38α decreased HSC transplantation capacity in the late progression phase of chronological aging. Furthermore, codeletion of p38α in mice deficient in ataxia–telangiectasia mutated, a model of premature aging, exacerbated aging-related HSC phenotypes seen in ataxia–telangiectasia mutated single-mutant mice. Overall, these studies provide new insight into multiple functions of p38MAPK, which both promotes and suppresses HSC aging context dependently.
Collapse
Affiliation(s)
- Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yukako Ootomo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kinya Otsu
- School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
27
|
Hou Y, Yuan P, Fu Y, Zhang Q, Gao L, Wei Y, Zheng X, Feng W. Geniposide from Gardenia jasminoides var. radicans Makino Attenuates Myocardial Injury in Spontaneously Hypertensive Rats via Regulating Apoptotic and Energy Metabolism Signalling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:949-962. [PMID: 33688169 PMCID: PMC7937395 DOI: 10.2147/dddt.s292107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Introduction Hypertension is closely related to myocardial injury. Long-term hypertension can cause myocardial injury. Therefore, it is very important to find drugs to treat myocardial injury caused by hypertension. The aim of present study is to investigate the effects and mechanisms of geniposide on myocardial injuries in spontaneously hypertensive rats (SHR) and H9c2 cells induced by NaCl solution. Materials and Methods Male Wistar-Kyoto (WKY) and SHR rats were given different doses of geniposide (25 mg/kg/d or 50 mg/kg/d) or distilled water for three consecutive weeks. Meanwhile, an H9c2 cell line-injury model was established using a solution of 150 µmol/L NaCl for 8 h. The cardiac function and related indexes of rats were detected. Results The results showed that geniposide decreased the levels of COI and COIII, which promoted the phosphorylation of AMPK (p-AMPK) and enhanced the energy metabolism pathway. Geniposide improved myocardial apoptosis by regulating apoptotic proteins (p38, BAX and Bcl-2). Finally, heart function was regulated, and the markers of myocardial injury were decreased. Geniposide increased the viability of H9c2 cells treated with the NaCl solution and decreased the rate of apoptosis by regulating the levels of apoptotic proteins. Geniposide could activate energy metabolism signalling pathway (AMPK/SirT1/FOXO1) and reduce H9c2 cell apoptosis. Conclusion Our results showed that the mechanisms by which geniposide improves myocardial injury in SHR may be through regulating the energy metabolism signalling pathway (AMPK/SirT1/FOXO1) and improving myocardial apoptosis by regulating apoptotic proteins.
Collapse
Affiliation(s)
- Ying Hou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Peipei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Qi Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Liyuan Gao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Yaxin Wei
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Engineering and Technology Center for Chinese Medicine Development of Henan Province, Henan Science and Technology Department, Zhengzhou, 450046, People's Republic of China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Engineering and Technology Center for Chinese Medicine Development of Henan Province, Henan Science and Technology Department, Zhengzhou, 450046, People's Republic of China
| |
Collapse
|
28
|
MKL1 cooperates with p38MAPK to promote vascular senescence, inflammation, and abdominal aortic aneurysm. Redox Biol 2021; 41:101903. [PMID: 33667992 PMCID: PMC7937568 DOI: 10.1016/j.redox.2021.101903] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy. Myocardin related transcription factor A (MRTFA, MKL1) is a multifaceted transcription factor, regulating diverse biological processes. However, a detailed understanding of the mechanistic role of MKL1 in AAA has yet to be elucidated. In this study, we showed induced MKL1 expression in thoracic and abdominal aneurysmal tissues, respectively in both mice and humans. MKL1 global knockout mice displayed reduced AAA formation and aortic rupture compared with wild-type mice. Both gene deletion and pharmacological inhibition of MKL1 markedly protected mice from aortic dissection, an early event in Angiotensin II (Ang II)-induced AAA formation. Loss of MKL1 was accompanied by reduced senescence/proinflammation in the vessel wall and cultured vascular smooth muscle cells (VSMCs). Mechanistically, a deficiency in MKL1 abolished AAA-induced p38 mitogen activated protein kinase (p38MAPK) activity. Similar to MKL1, loss of MAPK14 (p38α), the dominant isoform of p38MAPK family in VSMCs suppressed Ang II-induced AAA formation, vascular inflammation, and senescence marker expression. These results reveal a molecular pathway of AAA formation involving MKL1/p38MAPK stimulation and a VSMC senescent/proinflammatory phenotype. These data support targeting MKL1/p38MAPK pathway as a potential effective treatment for AAA. MKL1 expression is induced in both thoracic and abdominal aneurysmal tissues. Genetic ablation and pharmacological inhibition of MKL1 protect mice from aortic dissection and AAA induced by Ang II. Depletion of MKL1 in mice suppresses Ang II-induced vascular inflammation and senescence. Depletion of MKL1 blunts the activation of p38MAPK and STAT3 pathways. Loss of MAPK14 in VSMCs suppresses Ang II-induced AAA formation, vascular inflammation, and senescence marker expression.
Collapse
|
29
|
Ruiz M, Khairallah M, Dingar D, Vaniotis G, Khairallah RJ, Lauzier B, Thibault S, Trépanier J, Shi Y, Douillette A, Hussein B, Nawaito SA, Sahadevan P, Nguyen A, Sahmi F, Gillis MA, Sirois MG, Gaestel M, Stanley WC, Fiset C, Tardif JC, Allen BG. MK2-Deficient Mice Are Bradycardic and Display Delayed Hypertrophic Remodeling in Response to a Chronic Increase in Afterload. J Am Heart Assoc 2021; 10:e017791. [PMID: 33533257 PMCID: PMC7955338 DOI: 10.1161/jaha.120.017791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Mitogen‐activated protein kinase–activated protein kinase‐2 (MK2) is a protein serine/threonine kinase activated by p38α/β. Herein, we examine the cardiac phenotype of pan MK2‐null (MK2−/−) mice. Methods and Results Survival curves for male MK2+/+ and MK2−/− mice did not differ (Mantel‐Cox test, P=0.580). At 12 weeks of age, MK2−/− mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R‐R interval and P‐R segment durations were prolonged in MK2‐deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2−/− mice. MK2−/− mice had lower body temperature and an age‐dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2−/− mice. For equivalent respiration rates, mitochondria from MK2−/− hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2−/− mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2−/− mice. Finally, the pressure overload–induced decrease in systolic function was attenuated in MK2−/− mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Maya Khairallah
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Dharmendra Dingar
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - George Vaniotis
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Simon Thibault
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Joëlle Trépanier
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Yanfen Shi
- Montreal Heart Institute Montréal Québec Canada
| | | | | | - Sherin Ali Nawaito
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada.,Department of Physiology Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Albert Nguyen
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Martin G Sirois
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Matthias Gaestel
- Institute of Cell BiochemistryHannover Medical School Hannover Germany
| | | | - Céline Fiset
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Jean-Claude Tardif
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Bruce G Allen
- Department of Medicine Université de Montréal Québec Canada.,Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| |
Collapse
|
30
|
Ito J, Omiya S, Rusu MC, Ueda H, Murakawa T, Tanada Y, Abe H, Nakahara K, Asahi M, Taneike M, Nishida K, Shah AM, Otsu K. Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. eLife 2021; 10:e62174. [PMID: 33526170 PMCID: PMC7853718 DOI: 10.7554/elife.62174] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/08/2021] [Indexed: 12/29/2022] Open
Abstract
Heart failure is a major public health problem, and abnormal iron metabolism is common in patients with heart failure. Although iron is necessary for metabolic homeostasis, it induces a programmed necrosis. Iron release from ferritin storage is through nuclear receptor coactivator 4 (NCOA4)-mediated autophagic degradation, known as ferritinophagy. However, the role of ferritinophagy in the stressed heart remains unclear. Deletion of Ncoa4 in mouse hearts reduced left ventricular chamber size and improved cardiac function along with the attenuation of the upregulation of ferritinophagy-mediated ferritin degradation 4 weeks after pressure overload. Free ferrous iron overload and increased lipid peroxidation were suppressed in NCOA4-deficient hearts. A potent inhibitor of lipid peroxidation, ferrostatin-1, significantly mitigated the development of pressure overload-induced dilated cardiomyopathy in wild-type mice. Thus, the activation of ferritinophagy results in the development of heart failure, whereas inhibition of this process protects the heart against hemodynamic stress.
Collapse
Affiliation(s)
- Jumpei Ito
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
- Department of Pharmacology, Faculty of Medicine, Osaka Medical CollegeOsakaJapan
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Mara-Camelia Rusu
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Hiromichi Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka UniversityOsakaJapan
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Yohei Tanada
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Hajime Abe
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Kazuki Nakahara
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical CollegeOsakaJapan
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka UniversityOsakaJapan
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Ajay M Shah
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| |
Collapse
|
31
|
Zhao J, Jiang X, Liu J, Ye P, Jiang L, Chen M, Xia J. Dual-Specificity Phosphatase 26 Protects Against Cardiac Hypertrophy Through TAK1. J Am Heart Assoc 2021; 10:e014311. [PMID: 33522247 PMCID: PMC7955340 DOI: 10.1161/jaha.119.014311] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Heart pathological hypertrophy has been recognized as a predisposing risk factor for heart failure and arrhythmia. DUSP (dual-specificity phosphatase) 26 is a member of the DUSP family of proteins, which has a significant effect on nonalcoholic fatty liver disease, neuroblastoma, glioma, and so on. However, the involvement of DUSP26 in cardiac hypertrophy remains unclear. Methods and Results Our study showed that DUSP26 expression was significantly increased in mouse hearts in response to pressure overload as well as in angiotensin II-treated cardiomyocytes. Cardiac-specific overexpression of DUSP26 mice showed attenuated cardiac hypertrophy and fibrosis, while deficiency of DUSP26 in mouse hearts resulted in increased cardiac hypertrophy and deteriorated cardiac function. Similar effects were also observed in cellular hypertrophy induced by angiotensin II. Importantly, we showed that DUSP26 bound to transforming growth factor-β activated kinase 1 and inhibited transforming growth factor-β activated kinase 1 phosphorylation, which led to suppression of the mitogen-activated protein kinase signaling pathway. In addition, transforming growth factor-β activated kinase 1-specific inhibitor inhibited cardiomyocyte hypertrophy induced by angiotensin II and attenuated the exaggerated hypertrophic response in DUSP26 conditional knockout mice. Conclusions Taken together, DUSP26 was induced in cardiac hypertrophy and protected against pressure overload induced cardiac hypertrophy by modulating transforming growth factor-β activated kinase 1-p38/ c-Jun N-terminal kinase-signaling axis. Therefore, DUSP26 may provide a therapeutic target for treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoli Jiang
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jinhua Liu
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ping Ye
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Lang Jiang
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Manhua Chen
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jiahong Xia
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
32
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
33
|
Abstract
Obesity is a health condition that has reached pandemic levels and is implicated in the development and progression of type 2 diabetes mellitus, cancer and heart failure. A key characteristic of obesity is the activation of stress-activated protein kinases (SAPKs), such as the p38 and JNK stress kinases, in several organs, including adipose tissue, liver, skeletal muscle, immune organs and the central nervous system. The correct timing, intensity and duration of SAPK activation contributes to cellular metabolic adaptation. By contrast, uncontrolled SAPK activation has been proposed to contribute to the complications of obesity. The stress kinase signalling pathways have therefore been identified as potential targets for the development of novel therapeutic approaches for metabolic syndrome. The past few decades have seen intense research efforts to determine how these kinases are regulated in a cell-specific manner and to define their contribution to the development of obesity and insulin resistance. Several studies have uncovered new and unexpected functions of the non-classical members of both pathways. Here, we provide an overview of the role of SAPKs in metabolic control and highlight important discoveries in the field.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
34
|
p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci 2020; 21:ijms21197412. [PMID: 33049962 PMCID: PMC7582802 DOI: 10.3390/ijms21197412] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli. p38 function has been studied in depth in relation to cardiac development and function. The first isoform demonstrated to play an important role in cardiac development was p38α; however, all p38 family members are now known to collaborate in different aspects of cardiomyocyte differentiation and growth. p38 family members have been proposed to have protective and deleterious actions in the stressed myocardium, with the outcome of their action in part dependent on the model system under study and the identity of the activated p38 family member. Most studies to date have been performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology and discuss recent advances in the field.
Collapse
|
35
|
Yokota T, Li J, Huang J, Xiong Z, Zhang Q, Chan T, Ding Y, Rau C, Sung K, Ren S, Kulkarni R, Hsiai T, Xiao X, Touma M, Minamisawa S, Wang Y. p38 Mitogen-activated protein kinase regulates chamber-specific perinatal growth in heart. J Clin Invest 2020; 130:5287-5301. [PMID: 32573492 PMCID: PMC7524480 DOI: 10.1172/jci135859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
In the mammalian heart, the left ventricle (LV) rapidly becomes more dominant in size and function over the right ventricle (RV) after birth. The molecular regulators responsible for this chamber-specific differential growth are largely unknown. We found that cardiomyocytes in the neonatal mouse RV had lower proliferation, more apoptosis, and a smaller average size compared with the LV. This chamber-specific growth pattern was associated with a selective activation of p38 mitogen-activated protein kinase (MAPK) activity in the RV and simultaneous inactivation in the LV. Cardiomyocyte-specific deletion of both the Mapk14 and Mapk11 genes in mice resulted in loss of p38 MAPK expression and activity in the neonatal heart. Inactivation of p38 activity led to a marked increase in cardiomyocyte proliferation and hypertrophy but diminished cardiomyocyte apoptosis, specifically in the RV. Consequently, the p38-inactivated hearts showed RV-specific enlargement postnatally, progressing to pulmonary hypertension and right heart failure at the adult stage. Chamber-specific p38 activity was associated with differential expression of dual-specific phosphatases (DUSPs) in neonatal hearts, including DUSP26. Unbiased transcriptome analysis revealed that IRE1α/XBP1-mediated gene regulation contributed to p38 MAPK-dependent regulation of neonatal cardiomyocyte proliferation and binucleation. These findings establish an obligatory role of DUSP/p38/IRE1α signaling in cardiomyocytes for chamber-specific growth in the postnatal heart.
Collapse
Affiliation(s)
- Tomohiro Yokota
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jin Li
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jijun Huang
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Zhaojun Xiong
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Zhang
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Tracey Chan
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Yichen Ding
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Cardiology and
| | - Christoph Rau
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kevin Sung
- Department of Bioengineering, School of Engineering and Applied Sciences
| | - Shuxun Ren
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rajan Kulkarni
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Dermatology, Department of Medicine, and
| | - Tzung Hsiai
- Department of Bioengineering, School of Engineering and Applied Sciences
- Division of Cardiology and
| | - Xinshu Xiao
- Integrative Biology and Physiology, David Geffen School of Medicine
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Yibin Wang
- Cardiovascular Research Laboratories, Department of Anesthesiology, Department of Physiology, and Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Division of Cardiology and
| |
Collapse
|
36
|
Schnöder L, Gasparoni G, Nordström K, Schottek A, Tomic I, Christmann A, Schäfer KH, Menger MD, Walter J, Fassbender K, Liu Y. Neuronal deficiency of p38α-MAPK ameliorates symptoms and pathology of APP or Tau-transgenic Alzheimer's mouse models. FASEB J 2020; 34:9628-9649. [PMID: 32475008 DOI: 10.1096/fj.201902731rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia with very limited therapeutic options. Amyloid β (Aβ) and phosphorylated Tau (p-Tau) are key pathogenic molecules in AD. P38α-MAPK is specifically activated in AD lesion sites. However, its effects on AD pathogenesis, especially on p-Tau-associated brain pathology, and the underlying molecular mechanisms remain unclear. We mated human APP-transgenic mice and human P301S Tau-transgenic mice with mapk14-floxed and neuron-specific Cre-knock-in mice. We observed that deletion of p38α-MAPK specifically in neurons improves the cognitive function of both 9-month-old APP and Tau-transgenic AD mice, which is associated with decreased Aβ and p-Tau load in the brain. We further used next-generation sequencing to analyze the gene transcription in brains of p38α-MAPK deficient and wild-type APP-transgenic mice, which indicated that deletion of p38α-MAPK regulates the transcription of calcium homeostasis-related genes, especially downregulates the expression of grin2a, a gene encoding NMDAR subunit NR2A. Cell culture experiments further verified that deletion of p38α-MAPK inhibits NMDA-triggered calcium influx and neuronal apoptosis. Our systemic studies of AD pathogenic mechanisms using both APP- and Tau-transgenic mice suggested that deletion of neuronal p38α-MAPK attenuates AD-associated brain pathology and protects neurons in AD pathogenesis. This study supports p38α-MAPK as a novel target for AD therapy.
Collapse
Affiliation(s)
- Laura Schnöder
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Andrea Schottek
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Anne Christmann
- Working Group Enteric Nervous System, University of Applied Sciences, Zweibrücken, Germany
| | - Karl H Schäfer
- Working Group Enteric Nervous System, University of Applied Sciences, Zweibrücken, Germany
| | - Michael D Menger
- Department of Experimental Surgery, Saarland University, Homburg, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| |
Collapse
|
37
|
McGill MM, Sabikunnahar B, Fang Q, Teuscher C, Krementsov DN. The sex-specific role of p38 MAP kinase in CNS autoimmunity is regulated by estrogen receptor alpha. J Neuroimmunol 2020; 342:577209. [PMID: 32200131 PMCID: PMC8978838 DOI: 10.1016/j.jneuroim.2020.577209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
Abstract
Biological sex is a critical factor in regulating immune function. A striking example of this is the higher prevalence of autoimmune diseases such as multiple sclerosis (MS) and lupus in females compared to males. While many studies have implicated the role of sex hormones such as estrogens and androgens in these sex differences, surprisingly little is known about other molecular pathways that underlie sex differences or interact with sex hormones. We have previously shown that conditional ablation of p38α MAP kinase signaling in myeloid cells (p38αCKO) was protective in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), in female but not male mice. This sex difference was dependent on the presence of sex hormones, leading us to hypothesize that the pathogenic function of p38α in EAE depends on estrogen signaling via one of the two nuclear estrogen receptors, encoded by Esr1 and Esr2 . To test this hypothesis, we performed experiments with p38αCKO macrophages, which demonstrated that the effects of estradiol and p38α were independent of one another in vitro . Since many sex hormone effects are lost in vitro, we generated p38αCKO mice lacking either Esr1 or Esr2 , and evaluated their EAE susceptibility in vivo . Myeloid-specific deletion of Esr1 abrogated protection in p38αCKO females, although global deletion of Esr1 and Esr2 did not. Moreover, global or myeloid-specific disruption of Esr1 unexpectedly promoted protection from EAE in p38αCKO males. Mechanistically, Esr1 deletion resulted in partial reprogramming of p38α-dependent transcriptional modules in male macrophages, in particular those regulated by TGFβ, BRD4, and SMARCA4. These results demonstrate that estrogen signaling in myeloid cells plays an important sex-specific role in programming their dependence on specific intracellular signaling pathways in the context of autoimmune disease pathogenesis, suggesting potential avenues for sex-specific therapeutics or combinatorial approaches for the treatment of such diseases.
Collapse
Affiliation(s)
- Mahalia M McGill
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Bristy Sabikunnahar
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Qian Fang
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
38
|
Omiya S, Omori Y, Taneike M, Murakawa T, Ito J, Tanada Y, Nishida K, Yamaguchi O, Satoh T, Shah AM, Akira S, Otsu K. Cytokine mRNA Degradation in Cardiomyocytes Restrains Sterile Inflammation in Pressure-Overloaded Hearts. Circulation 2020; 141:667-677. [PMID: 31931613 PMCID: PMC7034406 DOI: 10.1161/circulationaha.119.044582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Proinflammatory cytokines play an important role in the pathogenesis of heart failure. The mechanisms responsible for maintaining sterile inflammation within failing hearts remain poorly defined. Although transcriptional control is important for proinflammatory cytokine gene expression, the stability of mRNA also contributes to the kinetics of immune responses. Regnase-1 is an RNase involved in the degradation of a set of proinflammatory cytokine mRNAs in immune cells. The role of Regnase-1 in nonimmune cells such as cardiomyocytes remains to be elucidated. METHODS To examine the role of proinflammatory cytokine degradation by Regnase-1 in cardiomyocytes, cardiomyocyte-specific Regnase-1-deficient mice were generated. The mice were subjected to pressure overload by means of transverse aortic constriction to induce heart failure. Cardiac remodeling was assessed by echocardiography as well as histological and molecular analyses 4 weeks after operation. Inflammatory cell infiltration was examined by immunostaining. Interleukin-6 signaling was inhibited by administration with its receptor antibody. Overexpression of Regnase-1 in the heart was performed by adeno-associated viral vector-mediated gene transfer. RESULTS Cardiomyocyte-specific Regnase-1-deficient mice showed no cardiac phenotypes under baseline conditions, but exhibited severe inflammation and dilated cardiomyopathy after 4 weeks of pressure overload compared with control littermates. Four weeks after transverse aortic constriction, the Il6 mRNA level was upregulated, but not other cytokine mRNAs, including tumor necrosis factor-α, in Regnase-1-deficient hearts. Although the Il6 mRNA level increased 1 week after operation in both Regnase-1-deficient and control hearts, it showed no increase in control hearts 4 weeks after operation. Administration of anti-interleukin-6 receptor antibody attenuated the development of inflammation and cardiomyopathy in cardiomyocyte-specific Regnase-1-deficient mice. In severe pressure overloaded wild-type mouse hearts, sustained induction of Il6 mRNA was observed, even though the protein level of Regnase-1 increased. Adeno-associated virus 9-mediated cardiomyocyte-targeted gene delivery of Regnase-1 or administration of anti-interleukin-6 receptor antibody attenuated the development of cardiomyopathy induced by severe pressure overload in wild-type mice. CONCLUSIONS The degradation of cytokine mRNA by Regnase-1 in cardiomyocytes plays an important role in restraining sterile inflammation in failing hearts and the Regnase-1-mediated pathway might be a therapeutic target to treat patients with heart failure.
Collapse
Affiliation(s)
- Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Yosuke Omori
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Jumpei Ito
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Yohei Tanada
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan
| | - Takashi Satoh
- Laboratory of Host Defense, Research Institute for Microbial Diseases (T.S., S.A.), Osaka University, Suita, Japan
| | - Ajay M. Shah
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| | - Shizuo Akira
- Laboratory of Host Defense, Research Institute for Microbial Diseases (T.S., S.A.), Osaka University, Suita, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, United Kingdom (S.O., Y.O., M.T., T.M., J.I., Y.T., K.N., A.M.S., K.O.)
| |
Collapse
|
39
|
Ahmad F, Tomar D, Aryal A C S, Elmoselhi AB, Thomas M, Elrod JW, Tilley DG, Force T. Nicotinamide riboside kinase-2 alleviates ischemia-induced heart failure through P38 signaling. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165609. [PMID: 31743747 DOI: 10.1016/j.bbadis.2019.165609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023]
Abstract
Nicotinamide riboside kinase-2 (NRK-2), a muscle-specific β1 integrin binding protein, predominantly expresses in skeletal muscle with a trace amount expressed in healthy cardiac tissue. NRK-2 expression dramatically increases in mouse and human ischemic heart however, the specific role of NRK-2 in the pathophysiology of ischemic cardiac diseases is unknown. We employed NRK2 knockout (KO) mice to identify the role of NRK-2 in ischemia-induced cardiac remodeling and dysfunction. Following myocardial infarction (MI), or sham surgeries, serial echocardiography was performed in the KO and littermate control mice. Cardiac contractile function rapidly declined and left ventricular interior dimension (LVID) was significantly increased in the ischemic KO vs. control mice at 2 weeks post-MI. An increase in mortality was observed in the KO vs. control group. The KO hearts displayed increased cardiac hypertrophy and heart failure reflected by morphometric analysis. Consistently, histological assessment revealed an extensive and thin scar and dilated LV chamber accompanied with elevated fibrosis in the KOs post-MI. Mechanistically, we observed that loss of NRK-2 enhanced p38α activation following ischemic injury. Consistently, ex vivo studies demonstrated that the gain of NRK-2 function suppresses the p38α as well as fibroblast activation (α-SMA expression) upon TGF-β stimulation, and limits cardiomyocytes death upon hypoxia/re‑oxygenation. Collectively our findings show, for the first time, that NRK-2 plays a critical role in heart failure progression following ischemic injury. NRK-2 deficiency promotes post-MI scar expansion, rapid LV chamber dilatation, cardiac dysfunction and fibrosis possibly due to increased p38α activation.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Smriti Aryal A C
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel B Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Manfred Thomas
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Thomas Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
40
|
Dumont AA, Dumont L, Berthiaume J, Auger-Messier M. p38α MAPK proximity assay reveals a regulatory mechanism of alternative splicing in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118557. [PMID: 31505169 DOI: 10.1016/j.bbamcr.2019.118557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/26/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is essential for normal heart function. However, p38 also contributes to heart failure pathogenesis by affecting cardiomyocytes contractility and survival. To unravel part of the complex role of p38 in cardiac function, we performed an APEX2-based proximity assay in cultured neonatal rat ventricular myocytes and identified the protein interaction networks (interactomes) of two highly expressed p38 isoforms in the heart. We found that p38α and p38γ have distinct interactomes in cardiomyocytes under both basal and osmotic stress-activated states. Interestingly, the activated p38α interactome contains many RNA-binding proteins implicated in splicing, including the serine/arginine-rich splicing factor 3 (SRSF3). Its interaction with the activated p38α was validated by co-immunoprecipitation. The cytoplasmic abundance and alternative splicing function of SRSF3 are also both modulated by the p38 signaling pathway. Our findings reveal a new function for p38 as a specific regulator of SRSF3 in cardiomyocytes.
Collapse
Affiliation(s)
- Audrey-Ann Dumont
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Berthiaume
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
41
|
Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis 2019; 6:jcdd6030027. [PMID: 31394846 PMCID: PMC6787752 DOI: 10.3390/jcdd6030027] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
The cardiac fibroblast is a remarkably versatile cell type that coordinates inflammatory, fibrotic and hypertrophic responses in the heart through a complex array of intracellular and intercellular signaling mechanisms. One important signaling node that has been identified involves p38 MAPK; a family of kinases activated in response to stress and inflammatory stimuli that modulates multiple aspects of cardiac fibroblast function, including inflammatory responses, myofibroblast differentiation, extracellular matrix turnover and the paracrine induction of cardiomyocyte hypertrophy. This review explores the emerging importance of the p38 MAPK pathway in cardiac fibroblasts, describes the molecular mechanisms by which it regulates the expression of key genes, and highlights its potential as a therapeutic target for reducing adverse myocardial remodeling.
Collapse
|
42
|
Zhao YT, Du J, Yano N, Wang H, Wang J, Dubielecka PM, Zhang LX, Qin G, Zhuang S, Liu PY, Chin YE, Zhao TC. p38-Regulated/activated protein kinase plays a pivotal role in protecting heart against ischemia-reperfusion injury and preserving cardiac performance. Am J Physiol Cell Physiol 2019; 317:C525-C533. [PMID: 31291142 DOI: 10.1152/ajpcell.00122.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
p38-Regulated/activated protein kinase (PRAK) plays a critical role in modulating cellular survival and biological function. However, the function of PRAK in the regulation of myocardial ischemic injury remains unknown. This study is aimed at determining the function of PRAK in modulating myocardial ischemia-reperfusion injury and myocardial remodeling following myocardial infarction. Hearts were isolated from adult male homozygous PRAK-/- and wild-type mice and subjected to global ischemia-reperfusion injury in Langendorff isolated heart perfusion. PRAK-/- mice mitigated postischemic ventricular functional recovery and decreased coronary effluent. Moreover, the infarct size in the perfused heart was significantly increased by deletion of PRAK. Western blot showed that deletion of PRAK decreased the phosphorylation of ERK1/2. Furthermore, the effect of deletion of PRAK on myocardial function and remodeling was also examined on infarcted mice in which the left anterior descending artery was ligated. Echocardiography indicated that PRAK-/- mice had accelerated left ventricular systolic dysfunction, which was associated with increased hypertrophy in the infarcted area. Deletion of PRAK augmented interstitial fibrosis and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive myocytes. Furthermore, immunostaining analysis shows that CD31-postive vascular density and α-smooth muscle actin capillary staining decreased significantly in PRAK-/- mice. These results indicate that deletion of PRAK enhances susceptibility to myocardial ischemia-reperfusion injury, attenuates cardiac performance and angiogenesis, and increases interstitial fibrosis and apoptosis in the infarcted hearts.
Collapse
Affiliation(s)
- Yu Tina Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Jianfeng Du
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Naohiro Yano
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Hao Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Jianguo Wang
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ling X Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Paul Y Liu
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
| |
Collapse
|
43
|
Kase Y, Otsu K, Shimazaki T, Okano H. Involvement of p38 in Age-Related Decline in Adult Neurogenesis via Modulation of Wnt Signaling. Stem Cell Reports 2019; 12:1313-1328. [PMID: 31080114 PMCID: PMC6565990 DOI: 10.1016/j.stemcr.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Neurogenesis in specific brain regions in adult mammals decreases with age. Progressive reduction in the proliferation of neural stem and progenitor cells (NS/PCs) is a primary cause of this age-associated decline. However, the mechanism responsible for this reduction is poorly understood. We identify p38 MAPK as a key factor in the proliferation of neural progenitor cells (NPCs) in adult neurogenic niches. p38 expression in adult NS/PCs is downregulated during aging. Deletion of p38α in NS/PCs specifically reduces the proliferation of NPCs but not stem cells. Conversely, forced expression of p38α in NS/PCs in the aged mouse subventricular zone (SVZ) restores NPC proliferation and neurogenesis, and prevents age-dependent SVZ atrophy. We also found that p38 is necessary for suppressing the expression of Wnt antagonists DKK1 and SFRP3, which inhibit the proliferation of NPCs. Age-related reduction in p38 thus leads to decreased adult neurogenesis via downregulation of Wnt signaling.
Collapse
Affiliation(s)
- Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Takuya Shimazaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
44
|
Shi L, Zhu D, Wang S, Jiang A, Li F. Dapagliflozin Attenuates Cardiac Remodeling in Mice Model of Cardiac Pressure Overload. Am J Hypertens 2019; 32:452-459. [PMID: 30689697 DOI: 10.1093/ajh/hpz016] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dapagliflozin (DAPA) is an inhibitor of sodium-glucose cotransporter 2 prescribed for type 2 diabetes mellitus. DAPA plays a protective role against cardiovascular diseases. Nevertheless, the effect and mechanism of DAPA on pressure-overload-induced cardiac remodeling has not been determined. METHODS We used a transverse aortic constriction (TAC) induced cardiac remodeling model to evaluate the effect of DAPA. Twenty-four C57BL/6J mice were divided into 3 groups: Sham, TAC, and TAC + DAPA groups (n = 8, each). DAPA was administered by gavage (1.0 mg/kg/day) for 4 weeks in the TAC + DAPA group, and then the myocardial hypertrophy, cardiac systolic function, myocardial fibrosis, and cardiomyocyte apoptosis were evaluated. RESULTS Mice in TAC group showed increased heart weight/body weight, left ventricular (LV) diameter, LV posterior wall thickness, and decreased LV ejection fraction and LV fractional shortening. The collagen volume fraction and perivascular collagen area/luminal area ratio were significantly greater in the TAC group; the TUNEL-positive cell number and PARP level were also increased. We found that DAPA treatment reduced myocardial hypertrophy, myocardial interstitial and perivascular fibrosis, and cardiomyocyte apoptosis. Furthermore, DAPA administration inhibited phosphorylation of P38 and JNK in TAC group. In addition, the inhibited phosphorylation of FoxO1 in the TAC mice was upregulated by DAPA administration. CONCLUSION DAPA administration had a cardioprotective effect by improving cardiac systolic function, inhibiting myocardial fibrosis and cardiomyocyte apoptosis in a TAC mouse model, indicating that it could serve as a new therapy to prevent pathological cardiac remodeling in nondiabetics.
Collapse
Affiliation(s)
- Lin Shi
- Department of Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Diqi Zhu
- Department of Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shoubao Wang
- Department of Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aixia Jiang
- Department of Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fen Li
- Department of Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Morimoto H, Kanastu-Shinohara M, Ogonuki N, Kamimura S, Ogura A, Yabe-Nishimura C, Mori Y, Morimoto T, Watanabe S, Otsu K, Yamamoto T, Shinohara T. ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Sci Alliance 2019; 2:2/2/e201900374. [PMID: 30940732 PMCID: PMC6448598 DOI: 10.26508/lsa.201900374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Although reactive oxygen species (ROS) are required for spermatogonial stem cell (SSC) self-renewal, the mechanism has remained unknown. We show that SSC self-renewal signals activate MAPK14/MAPK7 pathway to induce nuclear translocation of BCL6B and activation of NOX1. Reactive oxygen species (ROS) play critical roles in self-renewal division for various stem cell types. However, it remains unclear how ROS signals are integrated with self-renewal machinery. Here, we report that the MAPK14/MAPK7/BCL6B pathway creates a positive feedback loop to drive spermatogonial stem cell (SSC) self-renewal via ROS amplification. The activation of MAPK14 induced MAPK7 phosphorylation in cultured SSCs, and targeted deletion of Mapk14 or Mapk7 resulted in significant SSC deficiency after spermatogonial transplantation. The activation of this signaling pathway not only induced Nox1 but also increased ROS levels. Chemical screening of MAPK7 targets revealed many ROS-dependent spermatogonial transcription factors, of which BCL6B was found to initiate ROS production by increasing Nox1 expression via ETV5-induced nuclear translocation. Because hydrogen peroxide or Nox1 transfection also induced BCL6B nuclear translocation, our results suggest that BCL6B initiates and amplifies ROS signals to activate ROS-dependent spermatogonial transcription factors by forming a positive feedback loop.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mito Kanastu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science, Tokyo, Japan
| | - Narumi Ogonuki
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | - Satoshi Kamimura
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | - Atsuo Ogura
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | | | - Yoshifumi Mori
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Takuya Yamamoto
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science, Tokyo, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Czarzasta K, Koperski L, Segiet A, Janiszewski M, Kuch M, Gornicka B, Cudnoch-Jedrzejewska A. The role of high fat diet in the regulation of MAP kinases activity in left ventricular fibrosis. Acta Histochem 2019; 121:303-310. [PMID: 30733042 DOI: 10.1016/j.acthis.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 01/11/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
It is well known that obesity contributes to the development of systemic inflammatory responses, which in turn may be involved in the process of interstitial fibrosis and left ventricular (LV) remodelling. Activation of pro-inflammatory factors such as transforming growth factor β (TGF-β) can directly stimulate mitogen-activated protein kinase (MAPK) p38 and JNK. The aim of the study was to evaluate the level of TGF-β and MAPK p38 and JNK in the LV in Sprague Dawley (SPRD) rats maintained on a high fat diet (HFD). The SPRD rats from 4 weeks of age were on a normal fat diet (NFD) or a HFD for 12 weeks (NFD-16-week-old rats, NFD 16-wk; or HFD-16-week-old rats, HFD 16-wk) or 16 weeks (NFD-20-week-old rats, NFD 20-wk; or HFD-20-week-old rats, HFD 20-wk). At the end of the experiment, blood and LV were collected from all rats for further analysis (biochemical, Real Time PCR and immunohistochemical analysis). TGF-β mRNA expression did not differ between the study groups of rats. However, p38 MAPK mRNA expression was significantly lower in the HFD 20-wk rats than in both the HFD 16-wk rats and the NFD 20-wk rats. c-jun mRNA expression was significantly higher in the HFD 16-wk rats than in the NFD 16-wk rats. There was significantly lower expression of c-jun mRNA in the HFD 20-wk rats and in the NFD 20-wk rats than in the HFD 16-wk rats and in the NFD 16-wk rats, respectively. TGF-β type II receptor (TβRII) protein demonstrated only cytoplasmic reactivity, while p38 MAPK protein and c-jun protein showed both nuclear and cytoplasmic reactivity. The results suggest that a high fat diet and in two time intervals significantly influence the expression of p38 MAPK and JNK in the LV. However, demonstrating their potential involvement in the processes of interstitial myocardial fibrosis and left ventricular remodeling requires further research.
Collapse
|
47
|
Wu W, Zhang W, Choi M, Zhao J, Gao P, Xue M, Singer HA, Jourd'heuil D, Long X. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol 2019; 22:101137. [PMID: 30771750 PMCID: PMC6377391 DOI: 10.1016/j.redox.2019.101137] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Injury-induced stenosis is a serious vascular complication. We previously reported that p38α (MAPK14), a redox-regulated p38MAPK family member was a negative regulator of the VSMC contractile phenotype in vitro. Here we evaluated the function of VSMC-MAPK14 in vivo in injury-induced neointima hyperplasia and the underlying mechanism using an inducible SMC-MAPK14 knockout mouse line (iSMC-MAPK14-/-). We show that MAPK14 expression and activity were induced in VSMCs after carotid artery ligation injury in mice and ex vivo cultured human saphenous veins. While the vasculature from iSMC-MAPK14-/- mice was indistinguishable from wildtype littermate controls at baseline, these mice exhibited reduced neointima formation following carotid artery ligation injury. Concomitantly, there was an increased VSMC contractile protein expression in the injured vessels and a decrease in proliferating cells. Blockade of MAPK14 through a selective inhibitor suppressed, while activation of MAPK14 by forced expression of an upstream MAPK14 kinase promoted VSMC proliferation in cultured VSMCs. Genome wide RNA array combined with VSMC lineage tracing studies uncovered that vascular injury evoked robust inflammatory responses including the activation of proinflammatory gene expression and accumulation of CD45 positive inflammatory cells, which were attenuated in iSMC-MAPK14-/- mice. Using multiple pharmacological and molecular approaches to manipulate MAPK14 pathway, we further confirmed the critical role of MAPK14 in activating proinflammatory gene expression in cultured VSMCs, which occurs in a p65/NFkB-dependent pathway. Finally, we found that NOX4 contributes to MAPK14 suppression of the VSMC contractile phenotype. Our results revealed that VSMC-MAPK14 is required for injury-induced neointima formation, likely through suppressing VSMC differentiation and promoting VSMC proliferation and inflammation. Our study will provide mechanistic insights into therapeutic strategies for mitigation of vascular stenosis.
Collapse
Affiliation(s)
- Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Wei Zhang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Mihyun Choi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Jinjing Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Min Xue
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
48
|
Protein kinase p38α signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proc Natl Acad Sci U S A 2018; 115:E12313-E12322. [PMID: 30541887 DOI: 10.1073/pnas.1814705115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) play pivotal roles in maintaining intestinal homeostasis, but how the DCs regulate diverse immune networks on homeostasis breakdown remains largely unknown. Here, we report that, in response to epithelial barrier disruption, colonic DCs regulate the differentiation of type 1 regulatory T (Tr1) cells through p38α-dependent IL-27 production to initiate an effective immune response. Deletion of p38α in DCs, but not in T cells, led to increased Tr1 and protected mice from dextran sodium sulfate-induced acute colitis and chronic colitis-associated colorectal cancer. We show that higher levels of IL-27 in p38α-deficient colonic cDC1s, but not cDC2s, were responsible for the increase of Tr1 cells. Moreover, p38α-dependent IL-27 enhanced IL-22 secretion from intestinal group 3 innate lymphoid cells and protected epithelial barrier function. In p38α-deficient DCs, the TAK1-MKK4/7-JNK-c-Jun axis was hyperactivated, leading to high IL-27 levels, and inhibition of the JNK-c-Jun axis suppressed IL-27 expression. ChIP assay revealed direct binding of c-Jun to the promoter of Il27p28, which was further enhanced in p38α-deficient DCs. In summary, here we identify a key role for p38α signaling in DCs in regulating intestinal inflammatory response and tumorigenesis, and our finding may provide targets for the treatment of inflammatory intestinal diseases.
Collapse
|
49
|
Choo MK, Kraft S, Missero C, Park JM. The protein kinase p38α destabilizes p63 to limit epidermal stem cell frequency and tumorigenic potential. Sci Signal 2018; 11:11/551/eaau0727. [PMID: 30301786 DOI: 10.1126/scisignal.aau0727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The molecular circuitry directing tissue development and homeostasis is hardwired by genetic programs but may also be subject to fine-tuning or major modification by environmental conditions. It remains unclear whether such malleability is at work-particularly in tissues directly in contact with the environment-and contributes to their optimal maintenance and resilience. The protein kinase p38α is activated by physiological cues that signal tissue damage and neoplastic transformation. Here, we found that p38α phosphorylated and thereby destabilized p63, a transcription factor essential for epidermal development. Through this regulatory mechanism, p38α limited the frequency of keratinocytes with stem cell properties and tumorigenic potential. Correspondingly, epidermal loss of p38α expression or activity promoted or correlated with carcinogenesis in mouse and human skin, respectively. Genetic mouse models revealed a tumorigenic mechanism from p38α loss through p63-mediated suppression of the matrix metalloprotease MMP13. These findings illustrate a previously uncharacterized epidermal tumor-suppressive mechanism in which stress-activated signaling induces the contraction of stem cell-like keratinocyte pools.
Collapse
Affiliation(s)
- Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Stefan Kraft
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy.,Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
50
|
Bageghni SA, Hemmings KE, Zava N, Denton CP, Porter KE, Ainscough JFX, Drinkhill MJ, Turner NA. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism. FASEB J 2018; 32:4941-4954. [PMID: 29601781 PMCID: PMC6629170 DOI: 10.1096/fj.201701455rr] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Recent studies suggest that cardiac fibroblast-specific p38α MAPK contributes to the development of cardiac hypertrophy, but the underlying mechanism is unknown. Our study used a novel fibroblast-specific, tamoxifen-inducible p38α knockout (KO) mouse line to characterize the role of fibroblast p38α in modulating cardiac hypertrophy, and we elucidated the mechanism. Myocardial injury was induced in tamoxifen-treated Cre-positive p38α KO mice or control littermates via chronic infusion of the β-adrenergic receptor agonist isoproterenol. Cardiac function was assessed by pressure-volume conductance catheter analysis and was evaluated for cardiac hypertrophy at tissue, cellular, and molecular levels. Isoproterenol infusion in control mice promoted overt cardiac hypertrophy and dysfunction (reduced ejection fraction, increased end systolic volume, increased cardiac weight index, increased cardiomyocyte area, increased fibrosis, and up-regulation of myocyte fetal genes and hypertrophy-associated microRNAs). Fibroblast-specific p38α KO mice exhibited marked protection against myocardial injury, with isoproterenol-induced alterations in cardiac function, histology, and molecular markers all being attenuated. In vitro mechanistic studies determined that cardiac fibroblasts responded to damaged myocardium by secreting several paracrine factors known to induce cardiomyocyte hypertrophy, including IL-6, whose secretion was dependent upon p38α activity. In conclusion, cardiac fibroblast p38α contributes to cardiomyocyte hypertrophy and cardiac dysfunction, potentially via a mechanism involving paracrine fibroblast-to-myocyte IL-6 signaling.-Bageghni, S. A., Hemmings, K. E., Zava, N., Denton, C. P., Porter, K. E., Ainscough, J. F. X., Drinkhill, M. J., Turner, N. A. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism.
Collapse
Affiliation(s)
- Sumia A. Bageghni
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Karen E. Hemmings
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Ngonidzashe Zava
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Christopher P. Denton
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Karen E. Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Justin F. X. Ainscough
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Mark J. Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| | - Neil A. Turner
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; and
| |
Collapse
|