1
|
Hassel KR, Gibson AM, Šeflová J, Cho EE, Blair NS, Van Raamsdonk CD, Anderson DM, Robia SL, Makarewich CA. Another-regulin regulates cardiomyocyte calcium handling via integration of neuroendocrine signaling with SERCA2a activity. J Mol Cell Cardiol 2024; 197:45-58. [PMID: 39437886 PMCID: PMC11588527 DOI: 10.1016/j.yjmcc.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Calcium (Ca2+) dysregulation is a hallmark feature of cardiovascular disease. Intracellular Ca2+ regulation is essential for proper heart function and is controlled by the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a). Another-regulin (ALN) is a newly discovered cardiomyocyte-expressed SERCA2a inhibitor, suggesting cardiomyocyte Ca2+-handling is more complex than previously appreciated. To study the role of ALN in cardiomyocytes, we generated ALN null mice (knockout, KO) and found that cardiomyocytes from these animals displayed enhanced Ca2+ cycling and contractility compared to wildtype (WT) mice, indicating enhanced SERCA2a activity. In vitro and in vivo studies show that ALN is post-translationally modified via phosphorylation on Serine 19 (S19), suggesting this contributes to its ability to regulate SERCA2a. Immunoprecipitation and FRET analysis of ALN-WT, phospho-deficient ALN (S19A), or phosphomimetic ALN (S19D) revealed that S19 phosphorylation alters the SERCA2a-ALN interaction, leading to relief of its inhibitory effects. Adeno-associated virus mediated delivery of ALN-WT or phospho-mutant ALN-S19A/D in ALN KO mice showed that cardiomyocyte-specific expression of phospho-deficient ALN-S19A resulted in increased SERCA2a inhibition characterized by reduced rates of cytoplasmic Ca2+ clearance compared to ALN-WT and ALN-S19D expressing cells, further supporting a role for this phosphorylation event in controlling SERCA2a-regulation by ALN. Levels of ALN phosphorylation were markedly increased in cardiomyocytes in response to Gαq agonists (angiotensin II, endothelin-1, phenylephrine) and Gαq-mediated phosphorylation of ALN translated to increased Ca2+ cycling in cardiomyocytes from WT but not ALN KO mice. Collectively, these results indicate that ALN uniquely regulates Ca2+ handling in cardiomyocytes via integration of neuroendocrine signaling with SERCA2a activity.
Collapse
Affiliation(s)
- Keira R Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Aaron M Gibson
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jaroslava Šeflová
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - N Scott Blair
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, B.C., Canada
| | - Douglas M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
2
|
Goudsward HJ, Ruiz-Velasco V, Stella SL, Herold PB, Holmes GM. Ghrelin Modulates Voltage-Gated Ca 2+ Channels through Voltage-Dependent and Voltage-Independent Pathways in Rat Gastric Vagal Afferent Neurons. Mol Pharmacol 2024; 106:253-263. [PMID: 39187389 PMCID: PMC11493335 DOI: 10.1124/molpharm.124.000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
The orexigenic gut peptide ghrelin is an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR1a). Systemic ghrelin administration has previously been shown to increase gastric motility and emptying. While these effects are known to be mediated by the vagus nerve, the cellular mechanism underlying these effects remains unclear. Therefore, the purpose of the present study was to investigate the signaling mechanism by which GHSR1a inhibits voltage-gated Ca2+ channels in isolated rat gastric vagal afferent neurons using whole-cell patch-clamp electrophysiology. The ghrelin pharmacological profile indicated that Ca2+ currents were inhibited with a log (Ic50) = -2.10 ± 0.44 and a maximal inhibition of 42.8 ± 5.0%. Exposure to the GHSR1a receptor antagonist (D-Lys3)-GHRP-6 reduced ghrelin-mediated Ca2+ channel inhibition (29.4 ± 16.7% vs. 1.9 ± 2.5%, n = 6, P = 0.0064). Interestingly, we observed that activation of GHSR1a inhibited Ca2+ currents through both voltage-dependent and voltage-independent pathways. We also treated the gastric neurons with either pertussis toxin (PTX) or YM-254890 to examine whether the Ca2+ current inhibition was mediated by the Gα i/o or Gα q/11 family of subunits. Treatment with both PTX (Ca2+ current inhibition = 15.7 ± 10.6%, n = 8, P = 0.0327) and YM-254890 (15.2 ± 11.9%, n = 8, P = 0.0269) blocked ghrelin's effects on Ca2+ currents, as compared with control neurons (34.3 ± 18.9%, n = 8). These results indicate GHSR1a can couple to both Gα i/o and Gα q/11 in gastric vagal afferent neurons. Overall, our findings suggest GHSR1a-mediated inhibition of Ca2+ currents occurs through two distinct pathways, offering necessary insights into the cellular mechanisms underlying ghrelin's regulation of gastric vagal afferents. SIGNIFICANCE STATEMENT: This study demonstrated that in gastric vagal afferent neurons, activation of GHSR1a by ghrelin inhibits voltage-gated Ca2+ channels through both voltage-dependent and voltage-independent signaling pathways. These results provide necessary insights into the cellular mechanism underlying ghrelin regulation of gastric vagal afferent activity, which may benefit future studies investigating ghrelin mimetics to treat gastric motility disorders.
Collapse
Affiliation(s)
- Hannah J Goudsward
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Salvatore L Stella
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Paul B Herold
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Gregory M Holmes
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
3
|
Izquierdo-Villalba I, Mirra S, Manso Y, Parcerisas A, Rubio J, Del Valle J, Gil-Bea FJ, Ulloa F, Herrero-Lorenzo M, Verdaguer E, Benincá C, Castro-Torres RD, Rebollo E, Marfany G, Auladell C, Navarro X, Enríquez JA, López de Munain A, Soriano E, Aragay AM. A mammalian-specific Alex3/Gα q protein complex regulates mitochondrial trafficking, dendritic complexity, and neuronal survival. Sci Signal 2024; 17:eabq1007. [PMID: 38320000 DOI: 10.1126/scisignal.abq1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCβ pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.
Collapse
Affiliation(s)
| | - Serena Mirra
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Yasmina Manso
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic, Central University of Catalonia (UVic-UCC); and Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 08500 Vic, Spain
| | - Javier Rubio
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francisco J Gil-Bea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Marina Herrero-Lorenzo
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Cristiane Benincá
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rubén D Castro-Torres
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Elena Rebollo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - José A Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBER-CIBERFES), Madrid 28031, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
- Neurology Department, Donostia University Hospital, San Sebastián 20014, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Anna M Aragay
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
4
|
Sun J, Tan Y, Su J, Mikhail H, Pavel V, Deng Z, Li Y. Role and molecular mechanism of ghrelin in degenerative musculoskeletal disorders. J Cell Mol Med 2023; 27:3681-3691. [PMID: 37661635 PMCID: PMC10718156 DOI: 10.1111/jcmm.17944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Ghrelin is a brain-gut peptide, and the first 28-peptide that was found in the gastric mucosa. It has a growth hormone (GH)-releasing hormone-like effect and can potently promote the release of GH from pituitary GH cells; however, it is unable to stimulate GH synthesis. Therefore, ghrelin is believed to play a role in promoting bone growth and development. The correlation between ghrelin and some degenerative diseases of the musculoskeletal system has been reported recently, and ghrelin may be one of the factors influencing degenerative pathologies, such as osteoporosis, osteoarthritis, sarcopenia and intervertebral disc degeneration. With population ageing, the risk of health problems caused by degenerative diseases of the musculoskeletal system gradually increases. In this article, the roles of ghrelin in musculoskeletal disorders are summarized to reveal the potential effects of ghrelin as a key target in the treatment of related bone and muscle diseases and the need for further research.
Collapse
Affiliation(s)
- Jianfeng Sun
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yibo Tan
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingyue Su
- Department of Sports MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and OrthopedicsMinskBelarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and OrthopedicsMinskBelarus
| | - Zhenhan Deng
- Department of Sports MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Yusheng Li
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Wang W, Du X, Chu M, He X. Photoperiod Induces the Epigenetic Change of the GNAQ Gene in OVX+E 2 Ewes. Int J Mol Sci 2023; 24:16442. [PMID: 38003630 PMCID: PMC10671395 DOI: 10.3390/ijms242216442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
GNAQ, a member of the alpha subunit encoding the q-like G protein, is a critical gene in cell signaling, and multiple studies have shown that upregulation of GNAQ gene expression ultimately inhibits the proliferation of gonadotropin-releasing hormone (GnRH) neurons and GnRH secretion, and ultimately affects mammalian reproduction. Photoperiod is a key inducer which plays an important role in gene expression regulation by affecting epigenetic modification. However, fewer studies have confirmed how photoperiod induces epigenetic modifications of the GNAQ gene. In this study, we examined the expression and epigenetic changes of GNAQ in the hypothalamus in ovariectomized and estradiol-treated (OVX+E2) sheep under three photoperiod treatments (short photoperiod treatment for 42 days, SP42; long photoperiod treatment for 42 days, LP42; 42 days of short photoperiod followed by 42 days of long photoperiod, SP-LP42). The results showed that the expression of GNAQ was significantly higher in SP-LP42 than in SP42 and LP42 (p < 0.05). Whole genome methylation sequencing (WGBS) results showed that there are multiple differentially methylated regions (DMRs) and loci between different groups of GNAQ. Among them, the DNA methylation level of DMRs at the CpG1 locus in SP42 was significantly higher than that of SP-LP42 (p < 0.01). Subsequently, we confirmed that the core promoter region of the GNAQ gene was located with 1100 to 1500 bp upstream, and the DNA methylation level of all eight CpG sites in SP42 was significantly higher than those in LP42 (p < 0.01), and significantly higher than those in SP-LP42 (p < 0.01), except site 2 and site 4 in the first sequencing fragment (p < 0.05) in the core promoter region. The expression of acetylated GNAQ histone H3 was significantly higher than that of the control group under three different photoperiods (p < 0.01); the acetylation level of sheep hypothalamic GNAQ genomic protein H3 was significantly lower under SP42 than under SP-LP42 (p < 0.05). This suggests that acetylated histone H3 binds to the core promoter region of the GNAQ gene, implying that GNAQ is epigenetically regulated by photoperiod through histone acetylation. In summary, the results suggest that photoperiod can induce DNA methylation in the core promoter region and histone acetylation in the promoter region of the GNAQ gene, and hypothesize that the two may be key factors in regulating the differential expression of GNAQ under different photoperiods, thus regulating the hypothalamus-pituitary-gonadal axis (HPGA) through the seasonal estrus in sheep. The results of this study will provide some new information to understand the function of epigenetic modifications in reproduction in sheep.
Collapse
Affiliation(s)
| | | | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.W.); (X.D.)
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.W.); (X.D.)
| |
Collapse
|
6
|
Kim HS, Lee SI, Choi YR, Kim J, Eun JW, Song KS, Jeong JY. GNAQ-Regulated ZO-1 and ZO-2 Act as Tumor Suppressors by Modulating EMT Potential and Tumor-Repressive Microenvironment in Lung Cancer. Int J Mol Sci 2023; 24:ijms24108801. [PMID: 37240145 DOI: 10.3390/ijms24108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a critical role in the development and progression of lung cancer by promoting its invasiveness and metastasis. Using integrative analyses of the public lung cancer database, we found that the expression levels of the tight junction proteins, zonula occluden (ZO)-1 and ZO-2, were lower in lung cancer tissues, including both lung adenocarcinoma and lung squamous cell carcinoma than in normal lung tissues analyzed using The Cancer Genome Atlas (TCGA). Although the ectopic expression or knockdown of ZO-1 and ZO-2 did not affect the growth of lung cancer cells, they significantly regulated cell migration and invasion. When M0 macrophages were co-cultured with ZO-1 or ZO-2 knockdown Calu-1 cells, M2-like polarization was efficiently induced. Conversely, co-culture of M0 THP-1 cells with A549 cells stably expressing ZO-1 or ZO-2 significantly reduced M2 differentiation. We also identified G protein subunit alpha q (GNAQ) as a potential ZO-1- and ZO-2-specific activator through analysis of correlated genes with the TCGA lung cancer database. Our results suggest that the GNAQ-ZO-1/2 axis may play a tumor-suppressive role in lung cancer development and progression and highlight ZO-1 and ZO-2 as key EMT- and tumor microenvironment-suppressive proteins. These findings provide new insights for the development of targeted therapies for lung cancer.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Su In Lee
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Yu Rim Choi
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Jiyun Kim
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Jung Woo Eun
- Department of Gastroenterology, School of Medicine, Ajou University, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
- Institute for Medical Science, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| |
Collapse
|
7
|
Goodwin AT, John AE, Joseph C, Habgood A, Tatler AL, Susztak K, Palmer M, Offermanns S, Henderson NC, Jenkins RG. Stretch regulates alveologenesis and homeostasis via mesenchymal Gαq/11-mediated TGFβ2 activation. Development 2023; 150:dev201046. [PMID: 37102682 PMCID: PMC10259661 DOI: 10.1242/dev.201046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-β (TGFβ) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFβ in epithelial cells. To understand the role of mesenchymal Gαq/11 in lung development, we generated constitutive (Pdgfrb-Cre+/-;Gnaqfl/fl;Gna11-/-) and inducible (Pdgfrb-Cre/ERT2+/-;Gnaqfl/fl;Gna11-/-) mesenchymal Gαq/11 deleted mice. Mice with constitutive Gαq/11 gene deletion exhibited abnormal alveolar development, with suppressed myofibroblast differentiation, altered mesenchymal cell synthetic function, and reduced lung TGFβ2 deposition, as well as kidney abnormalities. Tamoxifen-induced mesenchymal Gαq/11 gene deletion in adult mice resulted in emphysema associated with reduced TGFβ2 and elastin deposition. Cyclical mechanical stretch-induced TGFβ activation required Gαq/11 signalling and serine protease activity, but was independent of integrins, suggesting an isoform-specific role for TGFβ2 in this model. These data highlight a previously undescribed mechanism of cyclical stretch-induced Gαq/11-dependent TGFβ2 signalling in mesenchymal cells, which is imperative for normal alveologenesis and maintenance of lung homeostasis.
Collapse
Affiliation(s)
- Amanda T. Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alison E. John
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Chitra Joseph
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anthony Habgood
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amanda L. Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4238, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - R. Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
8
|
Gross JD, Zhou Y, Barak LS, Caron MG. Ghrelin receptor signaling in health and disease: a biased view. Trends Endocrinol Metab 2023; 34:106-118. [PMID: 36567228 PMCID: PMC9852078 DOI: 10.1016/j.tem.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
As allosteric complexes, G-protein-coupled receptors (GPCRs) respond to extracellular stimuli and pleiotropically couple to intracellular transducers to elicit signaling pathway-dependent effects in a process known as biased signaling or functional selectivity. One such GPCR, the ghrelin receptor (GHSR1a), has a crucial role in restoring and maintaining metabolic homeostasis during disrupted energy balance. Thus, pharmacological modulation of GHSR1a bias could offer a promising strategy to treat several metabolism-based disorders. Here, we summarize current evidence supporting GHSR1a functional selectivity in vivo and highlight recent structural data. We propose that precise determinations of GHSR1a molecular pharmacology and pathway-specific physiological effects will enable discovery of GHSR1a drugs with tailored signaling profiles, thereby providing safer and more effective treatments for metabolic diseases.
Collapse
Affiliation(s)
- Joshua D Gross
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yang Zhou
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
9
|
Van Trigt WK, Kelly KM, Hughes CCW. GNAQ mutations drive port wine birthmark-associated Sturge-Weber syndrome: A review of pathobiology, therapies, and current models. Front Hum Neurosci 2022; 16:1006027. [PMID: 36405075 PMCID: PMC9670321 DOI: 10.3389/fnhum.2022.1006027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Port-wine birthmarks (PWBs) are caused by somatic, mosaic mutations in the G protein guanine nucleotide binding protein alpha subunit q (GNAQ) and are characterized by the formation of dilated, dysfunctional blood vessels in the dermis, eyes, and/or brain. Cutaneous PWBs can be treated by current dermatologic therapy, like laser intervention, to lighten the lesions and diminish nodules that occur in the lesion. Involvement of the eyes and/or brain can result in serious complications and this variation is termed Sturge-Weber syndrome (SWS). Some of the biggest hurdles preventing development of new therapeutics are unanswered questions regarding disease biology and lack of models for drug screening. In this review, we discuss the current understanding of GNAQ signaling, the standard of care for patients, overlap with other GNAQ-associated or phenotypically similar diseases, as well as deficiencies in current in vivo and in vitro vascular malformation models.
Collapse
Affiliation(s)
- William K. Van Trigt
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States,*Correspondence: William K. Van Trigt,
| | - Kristen M. Kelly
- Department of Dermatology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States,Christopher C. W. Hughes,
| |
Collapse
|
10
|
Discovery of a functionally selective ghrelin receptor (GHSR 1a) ligand for modulating brain dopamine. Proc Natl Acad Sci U S A 2022; 119:e2112397119. [PMID: 35239443 PMCID: PMC8915830 DOI: 10.1073/pnas.2112397119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The modulation of growth hormone secretagogue receptor-1a (GHSR1a) signaling is a promising strategy for treating brain conditions of metabolism, aging, and addiction. GHSR1a activation results in pleiotropic physiological outcomes through distinct and pharmacologically separable G protein– and β-arrestin (βarr)–dependent signaling pathways. Thus, pathway-selective modulation can enable improved pharmacotherapeutics that can promote therapeutic efficacy while mitigating side effects. Here, we describe the discovery of a brain-penetrant small molecule, N8279 (NCATS-SM8864), that biases GHSR1a conformations toward Gαq activation and reduces aberrant dopaminergic behavior in mice. N8279 represents a promising chemical scaffold to advance the development of better treatments for GHSR1a-related brain disorders involving the pathological dysregulation of dopamine. The growth hormone secretagogue receptor-1a (GHSR1a) is the cognate G protein–coupled receptor (GPCR) for the peptide hormone ghrelin. GHSR1a is a promising therapeutic target for a wide range of metabolic, age-related, and central nervous system (CNS)–based conditions. In addition, growing evidence supports that GHSR1a is a modulator of dopamine (DA) homeostasis and is neuroprotective within brain DA circuits. GHSR1a signaling originates from pharmacologically separable G protein– and β-arrestin (βarr)–dependent pathways, and consequently, GHSR1a-mediated physiological responses depend upon their distinctive signaling contributions. Thus, when treating disorders of disrupted DA homeostasis, a pharmacological strategy that modulates biased GHSR1a signaling may uncouple desired therapeutic outcomes from unwanted side effects. Here, we report the discovery of a small molecule GHSR1a agonist, N8279 (NCATS-SM8864), functionally selective for G protein signaling. Comprehensive pharmacological characterization reveals that N8279 elicits potent Gαq activity at the apo- and ghrelin-bound GHSR1a. Further biochemical analysis and molecular modeling demonstrate that N8279 signaling requires the extracellular domain of GHSR1a, especially extracellular loop 2. Collectively, these findings suggest that N8279 possesses an extended binding mode into the extracellular vestibule of the GHSR1a that preferentially favors Gαq signaling over alternative G proteins and βarr2-dependent cellular responses. Critically, N8279 is brain-penetrant in mice, exhibits CNS stability, and attenuates dysfunctional DA-mediated behaviors in both genetic and pharmacological mouse models of hyperdopaminergia. Our findings provide insight into the mechanisms governing GPCR functional selectivity and emphasize how biased ligand drug development can produce novel GHSR1a pharmacotherapeutics to treat pathological disruptions of brain DA homeostasis.
Collapse
|
11
|
Lu X, Arbab AAI, Zhang Z, Fan Y, Han Z, Gao Q, Sun Y, Yang Z. Comparative Transcriptomic Analysis of the Pituitary Gland between Cattle Breeds Differing in Growth: Yunling Cattle and Leiqiong Cattle. Animals (Basel) 2020; 10:E1271. [PMID: 32722439 PMCID: PMC7460210 DOI: 10.3390/ani10081271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis hormones regulate the growth and development of ruminants, and the pituitary gland plays a decisive role in this process. In order to identify pivotal genes in the pituitary gland that could affect the growth of cattle by regulating the secretion of hormones, we detected the content of six HPT hormones related to growth in the plasma of two cattle breeds (Yunling and Leiqiong cattle, both also known as the zebu cattle) with great differences in growth and compared the transcriptome data of their pituitary glands. Our study found that the contents of GH, IGF, TSH, thyroxine, triiodothyronine, and insulin were significantly different between the two breeds, which was the main cause of the difference in growth; 175 genes were identified as differentially expressed genes (DEGs). Functional association analyses revealed that DEGs were mainly involved in the process of transcription and signal transduction. Combining the enrichment analysis and protein interaction analysis, eight DEGs were predicted to control the growth of cattle by affecting the expression of growth-related hormones in the pituitary gland. In summary, our results suggested that SLC38A1, SLC38A3, DGKH, GNB4, GNAQ, ESR1, NPY, and GAL are candidates in the pituitary gland for regulating the growth of Yunling and Leiqiong cattle by regulating the secretion of growth-related hormones. This study may help researchers further understand the growth mechanisms and improve the artificial selection of zebu cattle.
Collapse
Affiliation(s)
- Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Qisong Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| |
Collapse
|
12
|
Yin TC, Bauchle CJ, Rouault AAJ, Stephens SB, Sebag JA. The Insulinostatic Effect of Ghrelin Requires MRAP2 Expression in δ Cells. iScience 2020; 23:101216. [PMID: 32535024 PMCID: PMC7300157 DOI: 10.1016/j.isci.2020.101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 02/01/2023] Open
Abstract
Ghrelin regulates both energy intake and glucose homeostasis. In the endocrine pancreas, ghrelin inhibits insulin release to prevent hypoglycemia during fasting. The mechanism through which this is accomplished is unclear, but recent studies suggest that ghrelin acts on δ cells to stimulate somatostatin release, which in turn inhibits insulin release from β cells. Recently, the Melanocortin Receptor Accessory Protein 2 (MRAP2) was identified as an essential partner of the ghrelin receptor (GHSR1a) in mediating the central orexigenic action of ghrelin. In this study we show that MRAP2 is expressed in islet δ cells and is required for ghrelin to elicit a calcium response in those cells. Additionally, we show that both global and δ cell targeted deletion of MRAP2 abrogates the insulinostatic effect of ghrelin. Together, these findings establish that ghrelin signaling within δ cells is essential for the inhibition of insulin release and identify MRAP2 as a regulator of insulin secretion. δ Cells are responsible for the action of ghrelin in the endocrine pancreas MRAP2 is expressed in multiple cell types in the endocrine pancreas including δ cells MRAP2 is required for GHSR1a signaling in δ cells Deletion of MRAP2 results in loss of ghrelin-mediated inhibition of insulin secretion
Collapse
Affiliation(s)
- Terry C Yin
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Casey J Bauchle
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Fraternal Order of Eagle Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Alix A J Rouault
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B Stephens
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Fraternal Order of Eagle Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Julien A Sebag
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Gnaq Protects PC12 Cells from Oxidative Damage by Activation of Nrf2 and Inhibition of NF-kB. Neuromolecular Med 2020; 22:401-410. [DOI: 10.1007/s12017-020-08598-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
|
14
|
Zhuang X, Xu H, Fang Z, Xu C, Xue C, Hong X. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur J Pharmacol 2018; 834:213-220. [PMID: 30031795 DOI: 10.1016/j.ejphar.2018.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 02/05/2023]
Abstract
Previous studies suggested that serotonergic neurons and platelets share similarities in serotonin (5-HT) uptake by serotonin transporter (SERT), storage, metabolism and release mechanisms, indicating that platelets may be used as a reliable peripheral surrogate to measure central SERT activity in neuropsychiatric research. In this study, platelet 5-HT content and 5-HT uptake capacity of SERT in depression and anxiety patients were measured by ELISA and flow cytometry with IDT307 at baseline and after serotonin reuptake inhibitors (SSRIs) treatment for 4 weeks. Healthy persons matched with age and gender were used as reference. The clinical presentations of the patients were assessed with Hamilton Depression (HAMD) and Anxiety Rating Scales (HAMA) at the same time points. Compared to healthy subjects, anxiety and depression patients showed higher levels of platelet 5-HT and IDT307 fluorescence intensity, but the values were comparable between the patient groups. SSRIs administration for 4 weeks significantly decreased scores of HAMD (29 vs 14) and HAMA (22 vs 14) in depression and anxiety patients, respectively; while it decreased platelet 5-HT content, but did not change the IDT307 fluorescence intensity of platelets. After incubation with fluoxetine in vitro, the IDT307 fluorescence intensity of isolated platelets from both healthy subjects and patients decreased in a dose-dependent manner. These results provide further evidence supporting the employment of platelet 5-HT content and SERT as peripheral surrogates in depression and anxiety patients, and are of help in understanding the several weeks' delay from the initiation of antidepressant medication to their full therapeutic effects in the patients.
Collapse
Affiliation(s)
- Xiaoyin Zhuang
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Zeman Fang
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Chongtao Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Chaobiao Xue
- Outpatient Department, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Xiaohong Hong
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, PR China.
| |
Collapse
|
15
|
He Y, Yuan X, Li Y, Zhong C, Liu Y, Qian H, Xuan J, Duan L, Shi G. Loss of Gαq impairs regulatory B-cell function. Arthritis Res Ther 2018; 20:186. [PMID: 30143054 PMCID: PMC6109260 DOI: 10.1186/s13075-018-1682-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Background Recent studies have shown a crucial role of Gαq in immune regulation, but how Gαq modulates regulatory B-cell (Breg) function is still unclear. We address this here. Methods CD19+IL-10+ Bregs of wild-type (WT) and Gnaq−/− mice were analyzed by flow cytometry after stimulation by lipopolysaccharide. The WT and Gnaq−/− Bregs were isolated and cocultured with WT CD4+CD25− T cells in the presence of T-activator, and the proliferation of T cells and differentiation of regulatory T cells (Tregs) were analyzed by flow cytometry. We used inhibitors of PI3 kinase (PI3K), extracellular regulated protein kinases 1/2 (Erk1/2), and p38 mitogen-activated protein kinase (p38 MAPK) to detect the pathways involved in the regulation of Gαq on Breg differentiation, which were confirmed by western blot analysis. Furthermore, the expression level of Gαq was assessed by quantitative real-time PCR in peripheral blood mononuclear cells (PBMCs) from healthy controls and rheumatoid arthritis patients. The frequency of CD19+CD24hiCD38hi B cells in PBMCs was detected by flow cytometry, and the association of the Gαq mRNA expression level and the frequency of CD19+CD24hiCD38hi B cells was analyzed by Spearman test. Results The differentiation of CD19+IL-10+ Bregs was inhibited in the Gnaq−/− mice. In addition, Gαq depletion showed an impaired suppressive function of Bregs on T-cell proliferation, which might be due to the decreased Treg expansion. Mechanically, our data demonstrated that the PI3K, Erk1/2, and p38 MAPK signaling pathways were required for regulation of Gαq on Bregs, and blockage of these signaling pathways impaired Breg differentiation. Consistent with our previous studies, we also found a decreased frequency of CD19+CD24hiCD38hi Bregs in rheumatoid arthritis patients. As expected, a significantly positive correlation was investigated between CD19+CD24hiCD38hi Bregs with Gαq mRNA expression. Conclusions Our results indicate that Gαq plays a critical role in the differentiation and immunosuppression of Bregs, and it may provide a new therapeutic target for autoimmune diseases. Electronic supplementary material The online version of this article (10.1186/s13075-018-1682-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoqing Yuan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Ningbo City Medical Treatment Center Lihuili Hospital, No. 57 Xingning Road, Ningbo, 315000, China
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chunlian Zhong
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongyan Qian
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jingxiu Xuan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
16
|
|
17
|
Abstract
G protein-coupled receptors, such as the cannabinoid type 1 receptor (CB1R), have been shown to interact with multiple binding partners to transmit signals. In both transfected cell systems and in endogenously expressing cell lines, CB1R signaling has been described as multifaceted. The question remains as to how this highly widely expressed receptor signals in a given cell at a given time in vivo. The concept of functional selectivity, or biased agonism, describes the ability of an agonist to engage the receptor in a manner that preferentially engages certain signaling interactions (e.g., G proteins) over others (e.g., β-arrestins), presumably by stabilizing certain receptor conformations. There is growing interest in using such properties of ligands to direct signaling downstream of CB1R toward desirable therapeutic outcomes and to avoid adverse side effects. While it is not currently clear what pathways should be engaged and which should be avoided, the development of biased agonist tool compounds will aid in answering these questions. In this chapter, we discuss the approaches and caveats to assessing biased agonism at the CB1R.
Collapse
Affiliation(s)
| | - Edward L Stahl
- The Scripps Research Institute, Jupiter, FL, United States
| | - Laura M Bohn
- The Scripps Research Institute, Jupiter, FL, United States.
| |
Collapse
|
18
|
Moldovan RP, Els-Heindl S, Worm DJ, Kniess T, Kluge M, Beck-Sickinger AG, Deuther-Conrad W, Krügel U, Brust P. Development of Fluorinated Non-Peptidic Ghrelin Receptor Ligands for Potential Use in Molecular Imaging. Int J Mol Sci 2017; 18:ijms18040768. [PMID: 28379199 PMCID: PMC5412352 DOI: 10.3390/ijms18040768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
The ghrelin receptor (GhrR) is a widely investigated target in several diseases. However, the current knowledge of its role and distribution in the brain is limited. Recently, the small and non-peptidic compound (S)-6-(4-bromo-2-fluorophenoxy)-3-((1-isopropylpiperidin-3-yl)methyl)-2-methylpyrido[3,2-d]pyrimidin-4(3H)-one ((S)-9) has been described as a GhrR ligand with high binding affinity. Here, we describe the synthesis of fluorinated derivatives, the in vitro evaluation of their potency as partial agonists and selectivity at GhrRs, and their physicochemical properties. These results identified compounds (S)-9, (R)-9, and (S)-16 as suitable parent molecules for 18F-labeled positron emission tomography (PET) radiotracers to enable future investigation of GhrR in the brain.
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Universität Leipzig, 04103 Leipzig, Germany.
| | - Dennis J Worm
- Institute of Biochemistry, Universität Leipzig, 04103 Leipzig, Germany.
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Michael Kluge
- Department of Psychiatry, Universität Leipzig, 04103 Leipzig, Germany.
| | | | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, 04107 Leipzig, Germany.
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| |
Collapse
|
19
|
Graham DL, Buendia MA, Chapman MA, Durai HH, Stanwood GD. Deletion of Gαq in the telencephalon alters specific neurobehavioral outcomes. Synapse 2015; 69:434-45. [PMID: 25963901 DOI: 10.1002/syn.21830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 02/04/2023]
Abstract
G(αq) -coupled receptors are ubiquitously expressed throughout the brain and body, and it has been shown that these receptors and associated signaling cascades are involved in a number of functional outputs, including motor function and learning and memory. Genetic alterations to G(αq) have been implicated in neurodevelopmental disorders such as Sturge-Weber syndrome. Some of these associated disease outcomes have been modeled in laboratory animals, but as G(αq) is expressed in all cell types, it is difficult to differentiate the underlying circuitry or causative neuronal population. To begin to address neuronal cell type diversity in G(αq) function, we utilized a conditional knockout mouse whereby G(αq) was eliminated from telencephalic glutamatergic neurons. Unlike the global G(αq) knockout mouse, we found that these conditional knockout mice were not physically different from control mice, nor did they exhibit any gross motor abnormalities. However, similarly to the constitutive knockout animal, G(αq) conditional knockout mice demonstrated apparent deficits in spatial working memory. Loss of G(αq) from glutamatergic neurons also produced enhanced sensitivity to cocaine-induced locomotion, suggesting that cortical G(αq) signaling may limit behavioral responses to psychostimulants. Screening for a variety of markers of forebrain neuronal architecture revealed no obvious differences in the conditional knockouts, suggesting that the loss of G(αq) in telencephalic excitatory neurons does not result in major alterations in brain structure or neuronal differentiation. Taken together, our results define specific modulation of spatial working memory and psychostimulant responses through disruptions in G(αq) signaling within cerebral cortical glutamatergic neurons.
Collapse
Affiliation(s)
- Devon L Graham
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, 32303
| | - Matthew A Buendia
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Michelle A Chapman
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Heather H Durai
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Gregg D Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, 32303
| |
Collapse
|
20
|
Xie AX, Petravicz J, McCarthy KD. Molecular approaches for manipulating astrocytic signaling in vivo. Front Cell Neurosci 2015; 9:144. [PMID: 25941472 PMCID: PMC4403552 DOI: 10.3389/fncel.2015.00144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/27/2015] [Indexed: 12/26/2022] Open
Abstract
Astrocytes are the predominant glial type in the central nervous system and play important roles in assisting neuronal function and network activity. Astrocytes exhibit complex signaling systems that are essential for their normal function and the homeostasis of the neural network. Altered signaling in astrocytes is closely associated with neurological and psychiatric diseases, suggesting tremendous therapeutic potential of these cells. To further understand astrocyte function in health and disease, it is important to study astrocytic signaling in vivo. In this review, we discuss molecular tools that enable the selective manipulation of astrocytic signaling, including the tools to selectively activate and inactivate astrocyte signaling in vivo. Lastly, we highlight a few tools in development that present strong potential for advancing our understanding of the role of astrocytes in physiology, behavior, and pathology.
Collapse
Affiliation(s)
- Alison X Xie
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Jeremy Petravicz
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ken D McCarthy
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
21
|
Abstract
After the discovery in 1996 of the GH secretagogue-receptor type-1a (GHS-R1a) as an orphan G-protein coupled receptor, many research groups attempted to identify the endogenous ligand. Finally, Kojima and colleagues successfully isolated the peptide ligand from rat stomach extracts, determined its structure, and named it ghrelin. The GHS-R1a is now accepted to be the ghrelin receptor. The existence of the ghrelin system has been demonstrated in many animal classes through biochemical and molecular biological strategies as well as through genome projects. Our work, focused on identifying the ghrelin receptor and its ligand ghrelin in laboratory animals, particularly nonmammalian vertebrates, has provided new insights into the molecular evolution of the ghrelin receptor. In mammals, it is assumed that the ghrelin receptor evolution is in line with the plate tectonics theory. In contrast, the evolution of the ghrelin receptor in nonmammalian vertebrates differs from that of mammals: multiplicity of the ghrelin receptor isoforms is observed in nonmammalian vertebrates only. This multiplicity is due to genome duplication and polyploidization events that particularly occurred in Teleostei. Furthermore, it is likely that the evolution of the ghrelin receptor is distinct from that of its ligand, ghrelin, because only one ghrelin isoform has been detected in all species examined so far. In this review, we summarize current knowledge related to the molecular evolution of the ghrelin receptor in mammalian and nonmammalian vertebrates.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Mikiya Miyazato
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
22
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
23
|
Osterstock G, El Yandouzi T, Romanò N, Carmignac D, Langlet F, Coutry N, Guillou A, Schaeffer M, Chauvet N, Vanacker C, Galibert E, Dehouck B, Robinson ICAF, Prévot V, Mollard P, Plesnila N, Méry PF. Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice. Endocrinology 2014; 155:1887-98. [PMID: 24601879 DOI: 10.1210/en.2013-1336] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.
Collapse
Affiliation(s)
- Guillaume Osterstock
- INSERM Unité 661 (G.O., T.E.Y., N.Co., N.R., A.G., M.S., N.Ch., E.G., P.M., P.-F.M.), Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203 (G.O., T.E.Y., N.R., N.Co., A.G., M.S., N.Ch., E.G., P.M., P.-F.M.), Institut de Génomique Fonctionelle, 34094 Montpellier, France; Université Montpellier 1, 2 (G.O., T.E.Y., N.R., N.Co., A.G., M.S., N.Ch., E.G., P.M., P.-F.M.), 34967 Montpellier, France; Division of Molecular Neuroendocrinology (D.C., I.C.A.F.R.), Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; Royal College of Surgeons in Ireland (G.O., T.E.Y., M.S., N.P.), Dublin 2, Ireland; INSERM Unité 837 (F.L., C.V., B.D., V.P.), Department of Development and Plasticity of the Postnatal Brain, Jean-Pierre Aubert Research Center, 59045 Lille, France; and University of Lille 2 (F.L., C.V., B.D., V.P.), 59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kaiya H, Kangawa K, Miyazato M. Ghrelin receptors in non-Mammalian vertebrates. Front Endocrinol (Lausanne) 2013; 4:81. [PMID: 23882259 PMCID: PMC3713435 DOI: 10.3389/fendo.2013.00081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/20/2013] [Indexed: 11/13/2022] Open
Abstract
The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- *Correspondence: Hiroyuki Kaiya, Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan e-mail:
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
25
|
Contribution of the mesolimbic dopamine system in mediating the effects of leptin and ghrelin on feeding. Proc Nutr Soc 2012; 71:435-45. [DOI: 10.1017/s0029665112000614] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Feeding behaviour is crucial for the survival of an organism and is regulated by different brain circuits. Among these circuits the mesolimbic dopamine (DA) system is implicated in the anticipation and motivation for food rewards. This system consists of the dopaminergic neurons in the ventral tegmental area (VTA), and their projections to different cortico-limbic structures such as the nucleus accumbens and medial prefrontal cortex. While the importance of this system in motivational drive for different rewards, including drugs of abuse, has been clearly established, its role in energy balance remains largely unexplored. Evidence suggests that peripheral hormones such as leptin and ghrelin are involved in the anticipation and motivation for food and this might be partially mediated through their effects on the VTA. Yet, it remains to be determined whether these effects are direct effects of ghrelin and leptin onto VTA DA neurons, and to what extent indirect effects through other brain areas contribute. Elucidation of the role of leptin and ghrelin signalling on VTA DA neurons in relation to disruptions of energy balance might provide important insights into the role of this neural circuit in obesity and anorexia nervosa.
Collapse
|
26
|
Abstract
Muscarinic acetylcholine (ACh) receptors (mAChRs; M₁-M₅) regulate the activity of an extraordinarily large number of important physiological processes. During the past 10-15 years, studies with whole-body M₁-M₅ mAChR knockout mice have provided many new insights into the physiological and pathophysiological roles of the individual mAChR subtypes. This review will focus on the characterization of a novel generation of mAChR mutant mice, including mice in which distinct mAChR genes have been excised in a tissue- or cell type-specific fashion, various transgenic mouse lines that overexpress wild-type or different mutant M₃ mAChRs in certain tissues or cells only, as well as a novel M₃ mAChR knockin mouse strain deficient in agonist-induced M₃ mAChR phosphorylation. Phenotypic analysis of these new animal models has greatly advanced our understanding of the physiological roles of the various mAChR subtypes and has identified potential targets for the treatment of type 2 diabetes, schizophrenia, Parkinson's disease, drug addiction, cognitive disorders, and several other pathophysiological conditions.
Collapse
|
27
|
Tappe-Theodor A, Constantin CE, Tegeder I, Lechner SG, Langeslag M, Lepcynzsky P, Wirotanseng RI, Kurejova M, Agarwal N, Nagy G, Todd A, Wettschureck N, Offermanns S, Kress M, Lewin GR, Kuner R. Gαq/11 signaling tonically modulates nociceptor function and contributes to activity-dependent sensitization. Pain 2012; 153:184-196. [DOI: 10.1016/j.pain.2011.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/15/2022]
|
28
|
Rizzoti K. Adult pituitary progenitors/stem cells: from in vitro characterization to in vivo function. Eur J Neurosci 2011; 32:2053-62. [PMID: 21143660 DOI: 10.1111/j.1460-9568.2010.07524.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cells/progenitors are being discovered in a growing number of adult tissues. They have been hypothesized for a long time to exist in the pituitary, especially because this gland is characterized by its plasticity as it constantly adapts its hormonal response to evolving needs, under the control of the hypothalamus. Recently, five labs have reported the presence of adult progenitors in the gland and shown their endocrine differentiation potential, using different in vitro assays, selection methods and markers to purify and characterize these similar cell populations. These will be discussed here, highlighting common points, and also differences. Thanks to these recent developments it is now possible to integrate progenitors into the physiology of the gland, and uncover their participation in normal but also pathological situations. Moreover, experimental situations inducing generation of new endocrine cells can now be re-visited in light of the involvement of progenitors, and also used to better understand their role. Some of these aspects will also be developed in this review.
Collapse
Affiliation(s)
- Karine Rizzoti
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
29
|
Nestin-Cre mice are affected by hypopituitarism, which is not due to significant activity of the transgene in the pituitary gland. PLoS One 2010; 5:e11443. [PMID: 20625432 PMCID: PMC2897851 DOI: 10.1371/journal.pone.0011443] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/11/2010] [Indexed: 12/24/2022] Open
Abstract
Nestin-Cre mice express Cre recombinase under control of the rat nestin promoter and central nervous system (CNS) enhancer. While endogenous Nestin is expressed in some other tissues including the pituitary gland, Nestin-Cre mice induce recombination predominantly in the CNS. For this reason, they have been widely used to explore gene function or cell fate in the latter. Pituitary hormonal deficiencies, or hypopituitarism, are associated with a wide range of symptoms and with a significant morbidity. These can have a neural and/or a pituitary origin as the gland's secretions are controlled by the hypothalamus. We report here that Nestin-Cre mice themselves are affected by mild hypopituitarism. Hence, physiological consequences are expected, especially in combination with defects resulting from Cre mediated deletion of any gene under investigation. To further investigate the origin of this phenotype, we re-examined the activity of the transgene. We compared it with expression of Nestin itself in the context of the hypothalamo-pituitary axis, especially in the light of a recent report showing pituitary Nestin-Cre activity, which contrasts with previous data. Our results disagree with those of this recent study and do not support the claim that Nestin positive cells are present in the pituitary anlagen, the Rathke's pouch (RP). Moreover we did not observe any significant activity in the post-natal pituitary, in agreement with the initial report.
Collapse
|
30
|
Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A. Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev 2010; 61:430-81. [PMID: 20038570 DOI: 10.1124/pr.109.001958] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A breakthrough using "reverse pharmacology" identified and characterized acyl ghrelin from the stomach as the endogenous cognate ligand for the growth hormone (GH) secretagogue receptor (GHS-R) 1a. The unique post-translational modification of O-n-octanoylation at serine 3 is the first in peptide discovery history and is essential for GH-releasing ability. Des-acyl ghrelin, lacking O-n-octanoylation at serine 3, is also produced in the stomach and remains the major molecular form secreted into the circulation. The third ghrelin gene product, obestatin, a novel 23-amino acid peptide identified from rat stomach, was found by comparative genomic analysis. Three ghrelin gene products actively participate in modulating appetite, adipogenesis, gut motility, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. Knockdown or knockout of acyl ghrelin and/or GHS-R1a, and overexpression of des-acyl ghrelin show benefits in the therapy of obesity and metabolic syndrome. By contrast, agonism of acyl ghrelin and/or GHS-R1a could combat human anorexia-cachexia, including anorexia nervosa, chronic heart failure, chronic obstructive pulmonary disease, liver cirrhosis, chronic kidney disease, burn, and postsurgery recovery, as well as restore gut dysmotility, such as diabetic or neurogenic gastroparesis, and postoperative ileus. The ghrelin acyl-modifying enzyme, ghrelin O-Acyltransferase (GOAT), which attaches octanoate to serine-3 of ghrelin, has been identified and characterized also from the stomach. To date, ghrelin is the only protein to be octanylated, and inhibition of GOAT may have effects only on the stomach and is unlikely to affect the synthesis of other proteins. GOAT may provide a critical molecular target in developing novel therapeutics for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Japan
| | | | | | | | | |
Collapse
|
31
|
A concerted kinase interplay identifies PPARgamma as a molecular target of ghrelin signaling in macrophages. PLoS One 2009; 4:e7728. [PMID: 19888469 PMCID: PMC2766837 DOI: 10.1371/journal.pone.0007728] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/14/2009] [Indexed: 02/08/2023] Open
Abstract
The peroxisome proliferator-activator receptor PPARγ plays an essential role in vascular biology, modulating macrophage function and atherosclerosis progression. Recently, we have described the beneficial effect of combined activation of the ghrelin/GHS-R1a receptor and the scavenger receptor CD36 to induce macrophage cholesterol release through transcriptional activation of PPARγ. Although the interplay between CD36 and PPARγ in atherogenesis is well recognized, the contribution of the ghrelin receptor to regulate PPARγ remains unknown. Here, we demonstrate that ghrelin triggers PPARγ activation through a concerted signaling cascade involving Erk1/2 and Akt kinases, resulting in enhanced expression of downstream effectors LXRα and ABC sterol transporters in human macrophages. These effects were associated with enhanced PPARγ phosphorylation independently of the inhibitory conserved serine-84. Src tyrosine kinase Fyn was identified as being recruited to GHS-R1a in response to ghrelin, but failure of activated Fyn to enhance PPARγ Ser-84 specific phosphorylation relied on the concomitant recruitment of docking protein Dok-1, which prevented optimal activation of the Erk1/2 pathway. Also, substitution of Ser-84 preserved the ghrelin-induced PPARγ activity and responsiveness to Src inhibition, supporting a mechanism independent of Ser-84 in PPARγ response to ghrelin. Consistent with this, we found that ghrelin promoted the PI3-K/Akt pathway in a Gαq-dependent manner, resulting in Akt recruitment to PPARγ, enhanced PPARγ phosphorylation and activation independently of Ser-84, and increased expression of LXRα and ABCA1/G1. Collectively, these results illustrate a complex interplay involving Fyn/Dok-1/Erk and Gαq/PI3-K/Akt pathways to transduce in a concerted manner responsiveness of PPARγ to ghrelin in macrophages.
Collapse
|
32
|
Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth. Proc Natl Acad Sci U S A 2009; 106:6398-403. [PMID: 19332789 DOI: 10.1073/pnas.0900977106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.
Collapse
|
33
|
Nürnberg A, Braüer AU, Wettschureck N, Offermanns S. Antagonistic regulation of neurite morphology through Gq/G11 and G12/G13. J Biol Chem 2008; 283:35526-31. [PMID: 18854320 DOI: 10.1074/jbc.m804972200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of neurite retraction and growth cone collapse via G-protein-coupled receptors is involved in developmental as well as regenerative processes. The role of individual G-protein-mediated signaling processes in the regulation of neurite morphology is still incompletely understood. Using primary neurons from brains lacking Galpha(q)/Galpha(11) or Galpha(12)/Galpha(13), we show here that G(12)/G(13)-mediated signaling is absolutely required for neurite retraction and growth cone collapse induced by the blood-borne factors lysophosphatidic acid and thrombin. Interestingly, the effects of lysophosphatidic acid were mediated mainly by G(13), whereas thrombin effects required G(12). Surprisingly, lack of Galpha(q)/Galpha(11) resulted in overshooting responses to both stimuli, indicating that G(q)/G(11)-mediated signaling most likely via activation of Rac antagonizes the effects of G(12)/G(13).
Collapse
Affiliation(s)
- Alexander Nürnberg
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Zhong J, Li X, McNamee C, Chen AP, Baccarini M, Snider WD. Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat Neurosci 2007; 10:598-607. [PMID: 17396120 DOI: 10.1038/nn1898] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/23/2007] [Indexed: 11/09/2022]
Abstract
To define the role of the Raf serine/threonine kinases in nervous system development, we conditionally targeted B-Raf and C-Raf, two of the three known mammalian Raf homologs, using a mouse line expressing Cre recombinase driven by a nestin promoter. Targeting of B-Raf, but not C-Raf, markedly attenuated baseline phosphorylation of Erk in neural tissues and led to growth retardation. Conditional elimination of B-Raf in dorsal root ganglion (DRG) neurons did not interfere with survival, but instead caused marked reduction in expression of the glial cell line-derived neurotrophic factor receptor Ret at postnatal stages, associated with a profound reduction in levels of transcription factor CBF-beta. Elimination of both alleles of Braf, which encodes B-Raf, and one allele of Raf1, which encodes C-Raf, affected DRG neuron maturation as well as proprioceptive axon projection toward the ventral horn in the spinal cord. Finally, conditional elimination of all Braf and Raf1 alleles strongly reduced neurotrophin-dependent axon growth in vitro as well as cutaneous axon terminal arborization in vivo. We conclude that Raf function is crucial for several aspects of DRG neuron development, including differentiation and axon growth.
Collapse
Affiliation(s)
- Jian Zhong
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7250, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The G-protein-coupled receptor signaling system, consisting of a huge variety of receptors as well as of many G-proteins and effectors, operates in every cell and is involved in many physiological and pathological processes. The versatility of this system and the involvement of specific components makes G-protein-coupled receptors and their signaling pathways ideal targets for pharmacological interventions. Classical mouse knockout models have often provided important preliminary insights into the biological roles of individual receptors and signaling pathways and they are routinely used in the process of target validation. The recent development of efficient conditional mutagenesis techniques now allows a much more detailed analysis of G-protein-mediated signaling transduction processes. This review summarizes some of the areas in which progress has recently been made by applying conditional mutagenesis of genes coding for G-proteins and G-protein-coupled receptors.
Collapse
Affiliation(s)
- S Offermanns
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Abstract
Ghrelin is a novel growth hormone (GH)-releasing peptide, isolated from the stomach, which has been identified as an endogenous ligand for the GH secretagogues receptor. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated, not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. Considering the haemodynamic and anabolic effects of GH, ghrelin may have beneficial effects on cardiac function and energy metabolism in heart failure through GH-dependent mechanisms. On the other hand, ghrelin has some GH-independent actions: ghrelin stimulates food intake and induces adiposity. Interestingly, ghrelin acts directly on the CNS to decrease sympathetic nerve activity. It also inhibits apoptosis of cardiomyocytes and endothelial cells. An experimental study has shown that repeated administration of ghrelin improves cardiac structure and function, and attenuates the development of cardiac cachexia in chronic heart failure (CHF). These results suggest that ghrelin has cardiovascular effects and regulates energy metabolism through GH-dependent and -independent mechanisms. Thus, administration of ghrelin may be a new therapeutic strategy for the treatment of severe CHF.
Collapse
Affiliation(s)
- Noritoshi Nagaya
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan.
| | | |
Collapse
|
37
|
Cummings DE. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav 2006; 89:71-84. [PMID: 16859720 DOI: 10.1016/j.physbeh.2006.05.022] [Citation(s) in RCA: 412] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 05/24/2006] [Indexed: 12/17/2022]
Abstract
Ghrelin, an acylated upper gastrointestinal peptide, is the only known orexigenic hormone. Considerable evidence implicates ghrelin in mealtime hunger and meal initiation. Circulating levels decrease with feeding and increase before meals, achieving concentrations sufficient to stimulate hunger and food intake. Preprandial ghrelin surges occur before every meal on various fixed feeding schedules and also among individuals initiating meals voluntarily without time- or food-related cues. Ghrelin injections stimulate food intake rapidly and transiently, primarily by increasing appetitive feeding behaviors and the number of meals. Preprandial ghrelin surges are probably triggered by sympathetic nervous output. Postprandial suppression is not mediated by nutrients in the stomach or duodenum, where most ghrelin is produced. Rather, it results from post-ingestive increases in lower intestinal osmolarity (information probably relayed to the foregut via enteric nervous signaling), as well as from insulin surges. Consequently, ingested lipids suppress ghrelin poorly compared with other macronutrients. Beyond a probable role in meal initiation, ghrelin also fulfills established criteria for an adiposity-related hormone involved in long-term body-weight regulation. Ghrelin levels circulate in relation to energy stores and manifest compensatory changes in response to body-weight alterations. Ghrelin crosses the blood-brain barrier and stimulates food intake by acting on several classical body-weight regulatory centers, including the hypothalamus, hindbrain, and mesolimbic reward system. Chronic ghrelin administration increases body weight via diverse, concerted actions on food intake, energy expenditure, and fuel utilization. Congenital ablation of the ghrelin or ghrelin-receptor gene causes resistance to diet-induced obesity, and pharmacologic ghrelin blockade reduces food intake and body weight. Ghrelin levels are high in Prader-Willi syndrome and low after gastric bypass surgery, possibly contributing to body-weight alterations in these settings. Extant evidence favors roles for ghrelin in both short-term meal initiation and long-term energy homeostasis, making it an attractive target for drugs to treat obesity and/or wasting disorders.
Collapse
Affiliation(s)
- David E Cummings
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, VA Puget Sound Health Care System, 1660 South Columbian Way, S-111-Endo, Seattle, WA 98108, USA.
| |
Collapse
|
38
|
Abstract
Ghrelin, a gastric peptide involved in growth hormone release and energy homeostasis, is the endogenous ligand of the growth hormone secretagogue receptor type 1a (GHS-R1a), a G-protein coupled receptor mainly expressed in the pituitary and hypothalamus. This receptor mediates the main ghrelin-stimulated endocrine actions and some of the nonendocrine actions. However, a number of nonendocrine actions associated with ghrelin appear to be mediated by various GHS-R1a-related receptor subtypes, which are widely distributed in the central and peripheral tissues. This review summarises data concerning the localisation, regulation and function of GHS-R1a, as well as related receptors.
Collapse
Affiliation(s)
- J P Camiña
- Laboratory of Molecular Endocrinology, Research Area, Complexo Hospitalario Universitario de Santiago (CHUS), PO Box 563, E-15780 Santiago de Compostela, Spain.
| |
Collapse
|
39
|
Nagaya N, Kojima M, Kangawa K. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia. Intern Med 2006; 45:127-34. [PMID: 16508225 DOI: 10.2169/internalmedicine.45.1402] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ghrelin is a novel growth hormone (GH)-releasing peptide, isolated from the stomach, which has been identified as an endogenous ligand for GH secretagogue receptor. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. This peptide also stimulates food intake and induces adiposity through GH-independent mechanisms. In addition, ghrelin acts directly on the central nervous system to decrease sympathetic nerve activity. Thus, ghrelin plays important roles for maintaining GH release and energy homeostasis. Repeated administration of ghrelin improves body composition, muscle wasting, functional capacity, and sympathetic augmentation in cachectic patients with heart failure or chronic obstructive pulmonary disease. These results suggest that ghrelin has anti-cachectic effects through GH-dependent and independent mechanisms. Thus, administration of ghrelin may be a new therapeutic strategy for the treatment of cardiopulmonary-associated cachexia.
Collapse
Affiliation(s)
- Noritoshi Nagaya
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka
| | | | | |
Collapse
|
40
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
41
|
Hubbard KB, Hepler JR. Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cell Signal 2005; 18:135-50. [PMID: 16182515 DOI: 10.1016/j.cellsig.2005.08.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/19/2005] [Indexed: 12/31/2022]
Abstract
Many receptors for neurotransmitters and hormones rely upon members of the Gqalpha family of heterotrimeric G proteins to exert their actions on target cells. Galpha subunits of the Gq class of G proteins (Gqalpha, G11alpha, G14alpha and G15/16alpha) directly link receptors to activation of PLC-beta isoforms which, in turn, stimulate inositol lipid (i.e. calcium/PKC) signalling. Although Gqalpha family members share a capacity to activate PLC-beta, they also differ markedly in their biochemical properties and tissue distribution which predicts functional diversity. Nevertheless, established models suggest that Gqalpha family members are functionally redundant and that their cellular responses are a result of PLC-beta activation and downstream calcium/PKC signalling. Growing evidence, however, indicates that Gqalpha, G11alpha, G14alpha and G15/16alpha are functionally diverse and that many of their cellular actions are independent of inositol lipid signalling. Recent findings show that Gqalpha family members differ with regard to their linked receptors and downstream binding partners. Reported binding partners distinct from PLC-beta include novel candidate effector proteins, various regulatory proteins, and a growing list of scaffolding/adaptor proteins. Downstream of these signalling proteins, Gqalpha family members exhibit unexpected differences in the signalling pathways and the gene expression profiles they regulate. Finally, genetic studies using whole animal models demonstrate the importance of certain Gqalpha family members in cardiac, lung, brain and platelet functions among other physiological processes. Taken together, these findings demonstrate that Gqalpha, G11alpha, G14alpha and G15/16alpha regulate both overlapping and distinct signalling pathways, indicating that they are more functionally diverse than previously thought.
Collapse
Affiliation(s)
- Katherine B Hubbard
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | | |
Collapse
|