1
|
Meek S, Wei J, Oh T, Watson T, Olavarrieta J, Sutherland L, Carlson DF, Salzano A, Chandra T, Joshi A, Burdon T. A Stem Cell Reporter for Investigating Pluripotency and Self-Renewal in the Rat. Stem Cell Reports 2020; 14:154-166. [PMID: 31902707 PMCID: PMC6962659 DOI: 10.1016/j.stemcr.2019.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
Rat embryonic stem cells (rESCs) are capable of contributing to all differentiated tissues, including the germ line in chimeric animals, and represent a unique, authentic alternative to mouse embryonic stem cells for studying stem cell pluripotency and self-renewal. Here, we describe an EGFP reporter transgene that tracks expression of the benchmark naive pluripotency marker gene Rex1 (Zfp42) in the rat. Insertion of the EGFP reporter gene downstream of the Rex1 promoter disrupted Rex1 expression, but REX1-deficient rESCs and rats were viable and apparently normal, validating this targeted knockin transgene as a neutral reporter. The Rex1-EGFP gene responded to self-renewal/differentiation factors and validated the critical role of β-catenin/LEF1 signaling. The stem cell reporter also allowed the identification of functionally distinct sub-populations of cells within rESC cultures, thus demonstrating its utility in discriminating between cell states in rat stem cell cultures, as well as providing a tool for tracking Rex1 expression in the rat. Rex1-EGFP transgene is a neutral reporter of pluripotency and self-renewal in the rat Rex1-EGFP transgene responds appropriately to self-renewal and differentiation signaling Rex1-EGFP transgene allows the discrimination between rat ESC pluripotent states
Collapse
Affiliation(s)
- Stephen Meek
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jun Wei
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK; iRegene Therapeutics, C6-522, 666 Gaoxin Avenue, Wuhan, 430070, China
| | - Taeho Oh
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tom Watson
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jaime Olavarrieta
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Linda Sutherland
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Daniel F Carlson
- Recombinetics Inc., 1246 University Avenue W, St. Paul, MN 55125, USA
| | - Angela Salzano
- MRC Unit for Human Genetics, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Tamir Chandra
- MRC Unit for Human Genetics, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Anagha Joshi
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tom Burdon
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
2
|
CARM1 (PRMT4) Acts as a Transcriptional Coactivator during Retinoic Acid-Induced Embryonic Stem Cell Differentiation. J Mol Biol 2018; 430:4168-4182. [PMID: 30153436 PMCID: PMC6186513 DOI: 10.1016/j.jmb.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023]
Abstract
Activation of the retinoic acid (RA) signaling pathway is important for controlling embryonic stem cell differentiation and development. Modulation of this pathway occurs through the recruitment of different epigenetic regulators at the retinoic acid receptors (RARs) located at RA-responsive elements and/or RA-responsive regions of RA-regulated genes. Coactivator-associated arginine methyltransferase 1 (CARM1, PRMT4) is a protein arginine methyltransferase that also functions as a transcriptional coactivator. Previous studies highlight CARM1's importance in the differentiation of different cell types. We address CARM1 function during RA-induced differentiation of murine embryonic stem cells (mESCs) using shRNA lentiviral transduction and CRISPR/Cas9 technology to deplete CARM1 in mESCs. We identify CARM1 as a novel transcriptional coactivator required for the RA-associated decrease in Rex1 (Zfp42) and for the RA induction of a subset of RA-regulated genes, including CRABP2 and NR2F1 (Coup-TF1). Furthermore, CARM1 is required for mESCs to differentiate into extraembryonic endoderm in response to RA. We next characterize the epigenetic mechanisms that contribute to RA-induced transcriptional activation of CRABP2 and NR2F1 in mESCs and show for the first time that CARM1 is required for this activation. Collectively, our data demonstrate that CARM1 is required for transcriptional activation of a subset of RA target genes, and we uncover changes in the recruitment of Suz12 and the epigenetic H3K27me3 and H3K27ac marks at gene regulatory regions for CRABP2 and NR2F1 during RA-induced differentiation.
Collapse
|
3
|
Laursen KB, Gudas LJ. Combinatorial knockout of RARα, RARβ, and RARγ completely abrogates transcriptional responses to retinoic acid in murine embryonic stem cells. J Biol Chem 2018; 293:11891-11900. [PMID: 29848550 PMCID: PMC6066298 DOI: 10.1074/jbc.ra118.001951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (RA), a potent inducer of cellular differentiation, functions as a ligand for retinoic acid receptors (RARα, β, and γ). RARs are activated by ligand binding, which induces transcription of direct genomic targets. However, whether embryonic stem cells respond to RA through routes that do not involve RARs is unknown. Here, we used CRISPR technology to introduce biallelic frameshift mutations in RARα, RARβ, and RARγ, thereby abrogating all RAR functions in murine embryonic stem cells. We then evaluated RA-responsiveness of the RAR-null cells using RNA-Seq transcriptome analysis. We found that the RAR-null cells display no changes in transcripts in response to RA, demonstrating that the RARs are essential for the regulation of all transcripts in murine embryonic stem cells in response to RA. Our key finding, that in embryonic stem cells the transcriptional effects of RA all depend on RARs, addresses a long-standing topic of discussion in the field of retinoic acid signaling.
Collapse
Affiliation(s)
| | - Lorraine J Gudas
- From the Departments of Pharmacology and
- Medicine, Weill Cornell Medical College Cornell University, New York, New York 10065
| |
Collapse
|
4
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
5
|
Kakizaki F, Sonoshita M, Miyoshi H, Itatani Y, Ito S, Kawada K, Sakai Y, Taketo MM. Expression of metastasis suppressor gene AES driven by a Yin Yang (YY) element in a CpG island promoter and transcription factor YY2. Cancer Sci 2017; 107:1622-1631. [PMID: 27561171 PMCID: PMC5132282 DOI: 10.1111/cas.13063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 01/25/2023] Open
Abstract
We recently found that the product of the AES gene functions as a metastasis suppressor of colorectal cancer (CRC) in both humans and mice. Expression of amino‐terminal enhancer of split (AES) protein is significantly decreased in liver metastatic lesions compared with primary colon tumors. To investigate its downregulation mechanism in metastases, we searched for transcriptional regulators of AES in human CRC and found that its expression is reduced mainly by transcriptional dysregulation and, in some cases, by additional haploidization of its coding gene. The AES promoter‐enhancer is in a typical CpG island, and contains a Yin‐Yang transcription factor recognition sequence (YY element). In human epithelial cells of normal colon and primary tumors, transcription factor YY2, a member of the YY family, binds directly to the YY element, and stimulates expression of AES. In a transplantation mouse model of liver metastases, however, expression of Yy2 (and therefore of Aes) is downregulated. In human CRC metastases to the liver, the levels of AES protein are correlated with those of YY2. In addition, we noticed copy‐number reduction for the AES coding gene in chromosome 19p13.3 in 12% (5/42) of human CRC cell lines. We excluded other mechanisms such as point or indel mutations in the coding or regulatory regions of the AES gene, CpG methylation in the AES promoter enhancer, expression of microRNAs, and chromatin histone modifications. These results indicate that Aes may belong to a novel family of metastasis suppressors with a CpG‐island promoter enhancer, and it is regulated transcriptionally.
Collapse
Affiliation(s)
- Fumihiko Kakizaki
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Sonoshita
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hiroyuki Miyoshi
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiro Itatani
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kawada
- Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiharu Sakai
- Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy. J Clin Med 2015; 4:102-23. [PMID: 26237021 PMCID: PMC4470242 DOI: 10.3390/jcm4010102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Abstract
Disease-specific induced pluripotent stem (iPS) cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3)-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.
Collapse
|
7
|
Maeda M, Harris AW, Kingham BF, Lumpkin CJ, Opdenaker LM, McCahan SM, Wang W, Butchbach MER. Transcriptome profiling of spinal muscular atrophy motor neurons derived from mouse embryonic stem cells. PLoS One 2014; 9:e106818. [PMID: 25191843 PMCID: PMC4156416 DOI: 10.1371/journal.pone.0106818] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 01/20/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an early onset, autosomal recessive motor neuron disease caused by loss of or mutation in SMN1 (survival motor neuron 1). Despite understanding the genetic basis underlying this disease, it is still not known why motor neurons (MNs) are selectively affected by the loss of the ubiquitously expressed SMN protein. Using a mouse embryonic stem cell (mESC) model for severe SMA, the RNA transcript profiles (transcriptomes) between control and severe SMA (SMN2+/+;mSmn−/−) mESC-derived MNs were compared in this study using massively parallel RNA sequencing (RNA-Seq). The MN differentiation efficiencies between control and severe SMA mESCs were similar. RNA-Seq analysis identified 3,094 upregulated and 6,964 downregulated transcripts in SMA mESC-derived MNs when compared against control cells. Pathway and network analysis of the differentially expressed RNA transcripts showed that pluripotency and cell proliferation transcripts were significantly increased in SMA MNs while transcripts related to neuronal development and activity were reduced. The differential expression of selected transcripts such as Crabp1, Crabp2 and Nkx2.2 was validated in a second mESC model for SMA as well as in the spinal cords of low copy SMN2 severe SMA mice. Furthermore, the levels of these selected transcripts were restored in high copy SMN2 rescue mouse spinal cords when compared against low copy SMN2 severe SMA mice. These findings suggest that SMN deficiency affects processes critical for normal development and maintenance of MNs.
Collapse
Affiliation(s)
- Miho Maeda
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Ashlee W. Harris
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Brewster F. Kingham
- Sequencing and Genotyping Center, University of Delaware, Newark, Delaware, United States of America
| | - Casey J. Lumpkin
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Lynn M. Opdenaker
- Center for Translational Cancer Research, University of Delaware, Newark, Delaware, United States of America
| | - Suzanne M. McCahan
- Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Bioinformatics Core Facility, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Wenlan Wang
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Yim CY, Mao P, Spinella MJ. Headway and hurdles in the clinical development of dietary phytochemicals for cancer therapy and prevention: lessons learned from vitamin A derivatives. AAPS JOURNAL 2014; 16:281-8. [PMID: 24431081 DOI: 10.1208/s12248-014-9562-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023]
Abstract
Accumulating epidemiologic and preclinical evidence support the pharmacologic use of a variety of dietary chemicals for the prevention and treatment of cancer. However, it will be challenging to translate these findings into routine clinical practice since phytochemicals have pleiotropic biological activities that have to be balanced for optimal efficacy without unacceptable and potentially unanticipated toxicities. Correctly matching patient populations and settings with optimal, natural product-based phytochemical therapies will require a greater understanding of the specific mechanisms underlying the efficacy, toxicity, and resistance of each agent in a variety of normal, premalignant, and malignant settings. This, in turn, necessitates continued commitment from the basic research community to guide carefully designed and informed clinical trials. The most developed class of anticancer phytochemicals consists of the derivatives of vitamin A called retinoids. Unlike other natural product chemicals currently under study, the retinoids have been extensively tested in humans. Over 30 years of clinical investigation has resulted in several disappointments, but there were some spectacular successes where certain retinoid-based protocols are now FDA-approved standard of care therapies to treat specific malignancies. Furthermore, retinoids are one of the most evaluated pharmacologic agents in the ultra-challenging setting of interventional cancer prevention. This review will summarize the development of retinoids in cancer therapy and prevention with an emphasis on currently proposed mechanisms mediating their efficacy, toxicity, and resistance.
Collapse
Affiliation(s)
- Christina Y Yim
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, New Hampshire, 03755, USA
| | | | | |
Collapse
|
9
|
Pérez RJ, Benoit YD, Gudas LJ. Deletion of retinoic acid receptor β (RARβ) impairs pancreatic endocrine differentiation. Exp Cell Res 2013; 319:2196-204. [PMID: 23756134 DOI: 10.1016/j.yexcr.2013.05.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
All-trans retinoic acid (RA) signals via binding to retinoic acid receptors (RARs α, β, and γ). RA directly influences expression of Pdx1, a transcription factor essential for pancreatic development and beta-cell (β-cell) maturation. In this study we follow the differentiation of cultured wild-type (WT) vs. RARβ knockout (KO) embryonic stem (ES) cells into pancreatic islet cells. We found that RARβ KO ES cells show greatly reduced expression of some important endocrine markers of differentiated islet cells, such as glucagon, islet amyloid polypeptide (Iapp), and insulin 1 (Ins1) relative to WT. We conclude that RARβ activity is essential for proper differentiation of ES cells to pancreatic endocrine cells.
Collapse
Affiliation(s)
- Ronald J Pérez
- Pharmacology Department, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
10
|
Calloni R, Cordero EAA, Henriques JAP, Bonatto D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev 2013; 22:1455-76. [PMID: 23336433 PMCID: PMC3629778 DOI: 10.1089/scd.2012.0637] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells.
Collapse
Affiliation(s)
- Raquel Calloni
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | |
Collapse
|
11
|
Climent M, Alonso-Martin S, Pérez-Palacios R, Guallar D, Benito AA, Larraga A, Fernández-Juan M, Sanz M, de Diego A, Seisdedos MT, Muniesa P, Schoorlemmer J. Functional analysis of Rex1 during preimplantation development. Stem Cells Dev 2012; 22:459-72. [PMID: 22897771 DOI: 10.1089/scd.2012.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rex1/Zfp42 is a nuclear protein that is highly conserved in mammals, and widely used as an embryonic stem (ES) cell marker. Although Rex1 expression is associated with enhanced pluripotency, loss-of-function models recently described do not exhibit major phenotypes, and both preimplantation development and ES cell derivation appear normal in the absence of Rex1. To better understand the functional role of Rex1, we examined the expression and localization of Rex1 during preimplantation development. Our studies indicated that REX1 is expressed at all stages during mouse preimplantation development, with a mixed pattern of nuclear, perinuclear, and cytoplasmic localization. Chromatin association seemed to be altered in 8-cell embryos, and in the blastocyst, we found REX1 localized almost exclusively in the nucleus. A functional role for Rex1 in vivo was assessed by gain- and loss-of-function approaches. Embryos with attenuated levels of Rex1 after injection of zygotes with siRNAs did not exhibit defects in preimplantation development in vitro. In contrast, overexpression of Rex1 interfered with cleavage divisions and with proper blastocyst development, although we failed to detect alterations in the expression of lineage and pluripotency markers. Rex1 gain- and loss-of-function did alter the expression levels of Zscan4, an important regulator of preimplantation development and pluripotency. Our results suggest that Rex1 plays a role during preimplantation development. They are compatible with a role for Rex1 during acquisition of pluripotency in the blastocyst.
Collapse
Affiliation(s)
- María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guallar D, Pérez-Palacios R, Climent M, Martínez-Abadía I, Larraga A, Fernández-Juan M, Vallejo C, Muniesa P, Schoorlemmer J. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Res 2012; 40:8993-9007. [PMID: 22844087 PMCID: PMC3467079 DOI: 10.1093/nar/gks686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rex1/Zfp42 is a Yy1-related zinc-finger protein whose expression is frequently used to identify pluripotent stem cells. We show that depletion of Rex1 levels notably affected self-renewal of mouse embryonic stem (ES) cells in clonal assays, in the absence of evident differences in expression of marker genes for pluripotency or differentiation. By contrast, marked differences in expression of several endogenous retroviral elements (ERVs) were evident upon Rex1 depletion. We demonstrate association of REX1 to specific elements in chromatin-immunoprecipitation assays, most strongly to muERV-L and to a lower extent to IAP and musD elements. Rex1 regulates muERV-L expression in vivo, as we show altered levels upon transient gain-and-loss of Rex1 function in pre-implantation embryos. We also find REX1 can associate with the lysine-demethylase LSD1/KDM1A, suggesting they act in concert. Similar to REX1 binding to retrotransposable elements (REs) in ES cells, we also detected binding of the REX1 related proteins YY1 and YY2 to REs, although the binding preferences of the two proteins were slightly different. Altogether, we show that Rex1 regulates ERV expression in mouse ES cells and during pre-implantation development and suggest that Rex1 and its relatives have evolved as regulators of endogenous retroviral transcription.
Collapse
Affiliation(s)
- D Guallar
- Regenerative Medicine Programme, IIS Aragón, Instituto Aragonés de Ciencias de Salud, Zaragoza, Avda. Gómez Laguna, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bach I. Releasing the break on X chromosome inactivation: Rnf12/RLIM targets REX1 for degradation. Cell Res 2012; 22:1524-6. [PMID: 22785560 DOI: 10.1038/cr.2012.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the two X chromosomes in cells of female mammals is transcriptionally silenced in a process known as X chromosome inactivation (XCI). Initiation of XCI is regulated by the ubiquitin ligase Rnf12/RLIM, but the mechanisms by which Rnf12/RLIM mediates this process has been a mystery. A recent study by Gontan et al. shows that Rnf12/RLIM targets REX1, an inhibitor of XCI, for proteasomal degradation, providing an answer to this question.
Collapse
Affiliation(s)
- Ingolf Bach
- Program in Gene Function & Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 2012; 485:386-90. [PMID: 22596162 DOI: 10.1038/nature11070] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/09/2012] [Indexed: 12/25/2022]
Abstract
Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome in all female somatic cells. Upregulation of Xist transcription on the future inactive X chromosome acts against Tsix antisense transcription, and spreading of Xist RNA in cis triggers epigenetic changes leading to X-chromosome inactivation. Previously, we have shown that the X-encoded E3 ubiquitin ligase RNF12 is upregulated in differentiating mouse embryonic stem cells and activates Xist transcription and X-chromosome inactivation. Here we identify the pluripotency factor REX1 as a key target of RNF12 in the mechanism of X-chromosome inactivation. RNF12 causes ubiquitination and proteasomal degradation of REX1, and Rnf12 knockout embryonic stem cells show an increased level of REX1. Using chromatin immunoprecipitation sequencing, REX1 binding sites were detected in Xist and Tsix regulatory regions. Overexpression of REX1 in female embryonic stem cells was found to inhibit Xist transcription and X-chromosome inactivation, whereas male Rex1(+/-) embryonic stem cells showed ectopic X-chromosome inactivation. From this, we propose that RNF12 causes REX1 breakdown through dose-dependent catalysis, thereby representing an important pathway to initiate X-chromosome inactivation. Rex1 and Xist are present only in placental mammals, which points to co-evolution of these two genes and X-chromosome inactivation.
Collapse
|
15
|
Rezende NC, Lee MY, Monette S, Mark W, Lu A, Gudas LJ. Rex1 (Zfp42) null mice show impaired testicular function, abnormal testis morphology, and aberrant gene expression. Dev Biol 2011; 356:370-82. [PMID: 21641340 DOI: 10.1016/j.ydbio.2011.05.664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 12/27/2022]
Abstract
Rex1 (Zfp42), GeneID 132625, is a gene whose expression is closely associated with pluripotency/multipotency in both mouse and human embryonic stem cells. To study the function of the murine Rex1 gene in vivo, we have used cre/lox technology to create Rex1(floxed) mice and mice deficient in Rex1 gene function. Rex1(-/-)males are characterized by an age-associated decrease in sperm counts, abnormal sperm morphology, and mild testicular atrophy. We characterized global patterns of gene expression in primary germ cells by microarray and identified the growth hormone responsive gene, GRTP1, as a transcript present at a 4.5 fold higher level in wild type (WT) compared to Rex1(-/-) mice. We analyzed immature germ cell (Dazl), proliferating (PCNA), and Sertoli cell populations, and quantitated levels of apoptosis in Rex1(-/-) as compared to WT testes. We evaluated the expression of proteins previously reported to correlate with Rex1 expression, such as STAT3, phospho-STAT3, p38, and phospho-p38 in the testis. We report a distinct cellular localization of total STAT3 protein in Rex1(-/-) affected testes. Our data suggest that loss of Rex1 leads to impaired testicular function.
Collapse
Affiliation(s)
- Naira C Rezende
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
16
|
Reinisch CM, Mildner M, Petzelbauer P, Pammer J. Embryonic stem cell factors undifferentiated transcription factor-1 (UFT-1) and reduced expression protein-1 (REX-1) are widely expressed in human skin and may be involved in cutaneous differentiation but not in stem cell fate determination. Int J Exp Pathol 2011; 92:326-32. [PMID: 21446939 DOI: 10.1111/j.1365-2613.2011.00769.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Undifferentiated transcription factor-1 (UTF-1) and reduced expression protein-1 (REX-1) are used as markers for the undifferentiated state of pluripotent stem cells. Because no highly specific cytochemical marker for epidermal stem cells has yet been identified, we investigated the expression pattern of these markers in human epidermis and skin tumours by immunohistochemistry and in keratinocyte cell cultures. Both presumed stem cell markers were widely expressed in the epidermis and skin appendages. Distinct expression was found in the matrix cells of the hair shaft. Differentiation of human primary keratinocytes (KC) in vitro strongly downregulated UTF-1 and REX-1 expression. In addition, REX-1 was upregulated in squamous cell carcinomas, indicating a possible role of this transcription factor in malignant tumour formation. Our data point to a role for these proteins not only in maintaining KC stem cell populations, but also in proliferation and differentiation of matrix cells of the shaft and also suprabasal KC.
Collapse
|
17
|
Kim JD, Kim H, Ekram MB, Yu S, Faulk C, Kim J. Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Hum Mol Genet 2011; 20:1353-62. [PMID: 21233130 DOI: 10.1093/hmg/ddr017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zfp42/Rex1 (reduced expression gene 1) is a well-known stem-cell marker that has been duplicated from YY1 in the eutherian lineage. In the current study, we characterized the in vivo roles of Rex1 using a mutant mouse line disrupting its transcription. In contrast to the ubiquitous expression of YY1, Rex1 is expressed only during spermatogenesis and early embryogenesis and also in a very limited area of the placenta. Yet, the gene dosage of Rex1 is very critical for the survival of the late-stage embryos and neonates. This delayed phenotypic consequence suggests potential roles for Rex1 in establishing and maintaining unknown epigenetic modifications. Consistently, Rex1-null blastocysts display hypermethylation in the differentially methylated regions (DMRs) of Peg3 and Gnas imprinted domains, which are known to contain YY1 binding sites. Further analyses confirmed in vivo binding of Rex1 only to the unmethylated allele of these two regions. Thus, Rex1 may function as a protector for these DMRs against DNA methylation. Overall, the functional connection of Rex1 to genomic imprinting represents another case where newly made genes have co-evolved with lineage-specific phenomena.
Collapse
Affiliation(s)
- Jeong Do Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Retinoids are ubiquitous signaling molecules that influence nearly every cell type, exert profound effects on development, and complement cancer chemotherapeutic regimens. All-trans retinoic acid (RA) and other active retinoids are generated from vitamin A (retinol), but key aspects of the signaling pathways required to produce active retinoids remain unclear. Retinoids generated by one cell type can affect nearby cells, so retinoids also function in intercellular communication. RA induces differentiation primarily by binding to RARs, transcription factors that associate with RXRs and bind RAREs in the nucleus. Binding of RA: (1) initiates changes in interactions of RAR/RXRs with co-repressor and co-activator proteins, activating transcription of primary target genes; (2) alters interactions with proteins that induce epigenetic changes; (3) induces transcription of genes encoding transcription factors and signaling proteins that further modify gene expression (e.g., FOX03A, Hoxa1, Sox9, TRAIL, UBE2D3); and (4) results in alterations in estrogen receptor α signaling. Proteins that bind at or near RAREs include Sin3a, N-CoR1, PRAME, Trim24, NRIP1, Ajuba, Zfp423, and MN1/TEL. Interactions among retinoids, RARs/RXRs, and these proteins explain in part the powerful effects of retinoids on stem cell differentiation. Studies of this retinol signaling cascade enhance our ability to understand and regulate stem cell differentiation for therapeutic and scientific purposes. In cancer chemotherapeutic regimens retinoids can promote tumor cell differentiation and/or induce proteins that sensitize tumors to drug combinations. Mechanistic studies of retinoid signaling continue to suggest novel drug targets and will improve therapeutic strategies for cancer and other diseases, such as immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York 10065, USA.
| | | |
Collapse
|
19
|
Lee MY, Lu A, Gudas LJ. Transcriptional regulation of Rex1 (zfp42) in normal prostate epithelial cells and prostate cancer cells. J Cell Physiol 2010; 224:17-27. [PMID: 20232320 DOI: 10.1002/jcp.22071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rex1 (zfp42) was identified by our laboratory because of its reduced expression in F9 teratocarcinoma stem cells after retinoic acid (RA) treatment. The Rex1 (Zfp42) gene is currently widely used as a marker of embryonic stem cells. We compared the transcriptional regulation of the human Rex1 gene in NTera-2 (NT-2) human teratocarcinoma, normal human prostate epithelial cells (PrEC), and prostate cancer cells (PC-3) by promoter/luciferase analyses. Oct4, Sox2, Nanog, and Dax1 transcripts are expressed at higher levels in NT-2 and PrEC cells than in PC-3 cells. Co-transfection analyses showed that YY1 and Rex1 are positive regulators of hRex1 transcription in NT-2 and PrEC cells, whereas Nanog is not. Serial deletion constructs of the hRex1 promoter were created and analyzed, by which we identified a potential negative regulatory site that is located between -1 and -0.4 kb of the hRex1 promoter. We also delineated regions of the hRex1 promoter between -0.4 kb and the TSS that, when mutated, reduced transcriptional activation; these are putative Rex1 binding sites. Mutation of a putative Rex1 binding site in electrophoretic mobility shift assays (EMSA) resulted in reduced protein binding. Taken together, our results indicate that hRex1 binds to the hRex1 promoter region at -298 bp and positively regulates hRex1 transcription, but that this regulation is lost in PC-3 human prostate cancer cells. This lack of positive transcriptional regulation by the hRex1 protein may be responsible for the lack of Rex1 expression in PC-3 prostate cancer cells.
Collapse
Affiliation(s)
- Mi-Young Lee
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
20
|
Bhandari DR, Seo KW, Roh KH, Jung JW, Kang SK, Kang KS. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells. PLoS One 2010; 5:e10493. [PMID: 20463961 PMCID: PMC2864743 DOI: 10.1371/journal.pone.0010493] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 04/13/2010] [Indexed: 11/19/2022] Open
Abstract
Background REX1/ZFP42 is a well-known embryonic stem cell (ESC) marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs) isolated from young tissues and cancer cells express REX1. Methodology/Principal Finding Human umbilical cord blood-derived MSCs (hUCB-MSCs) and adipose tissue-derived MSCs (hAD-MSCs) strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs) have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA). After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP) assay. Conclusions/Significance These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs). These results were the first to show the role of REX1 in the proliferation/differentiation of ASCs.
Collapse
Affiliation(s)
- Dilli Ram Bhandari
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kwang-Won Seo
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyoung-Hwan Roh
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Ji-Won Jung
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Soo-Kyung Kang
- Laboratory of Veterinary Biotechnology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
21
|
Chen L, Shioda T, Coser KR, Lynch MC, Yang C, Schmidt EV. Genome-wide analysis of YY2 versus YY1 target genes. Nucleic Acids Res 2010; 38:4011-26. [PMID: 20215434 PMCID: PMC2896514 DOI: 10.1093/nar/gkq112] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Yin Yang 1 (YY1) is a critical transcription factor controlling cell proliferation, development and DNA damage responses. Retrotranspositions have independently generated additional YY family members in multiple species. Although Drosophila YY1 [pleiohomeotic (Pho)] and its homolog [pleiohomeotic-like (Phol)] redundantly control homeotic gene expression, the regulatory contributions of YY1-homologs have not yet been examined in other species. Indeed, targets for the mammalian YY1 homolog YY2 are completely unknown. Using gene set enrichment analysis, we found that lentiviral constructs containing short hairpin loop inhibitory RNAs for human YY1 (shYY1) and its homolog YY2 (shYY2) caused significant changes in both shared and distinguishable gene sets in human cells. Ribosomal protein genes were the most significant gene set upregulated by both shYY1 and shYY2, although combined shYY1/2 knock downs were not additive. In contrast, shYY2 reversed the anti-proliferative effects of shYY1, and shYY2 particularly altered UV damage response, platelet-specific and mitochondrial function genes. We found that decreases in YY1 or YY2 caused inverse changes in UV sensitivity, and that their combined loss reversed their respective individual effects. Our studies show that human YY2 is not redundant to YY1, and YY2 is a significant regulator of genes previously identified as uniquely responding to YY1.
Collapse
Affiliation(s)
- Li Chen
- Cancer Research Center at Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
22
|
Scotland KB, Chen S, Sylvester R, Gudas LJ. Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Dev Dyn 2009; 238:1863-77. [PMID: 19618472 DOI: 10.1002/dvdy.22037] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rex1 (zfp42) is a zinc finger protein expressed primarily in undifferentiated stem cells, both in the embryo and the adult. Upon all-trans retinoic acid induced differentiation of murine embryonic stem (ES) cells, Rex1 mRNA levels decrease several fold. To characterize the function(s) of Rex1 more extensively, we generated Rex1 double knockout ES cell lines. The disruption of the Rex1 gene enhanced the expression of ectoderm, mesoderm, and endoderm markers as compared to wild-type (Wt) cells. We propose that Rex1 acts to reduce retinoic acid induced differentiation in ES cells. We performed microarray analyses on Wt and Rex1-/- cells cultured in the presence or absence of LIF to identify potential Rex1 targets. We also evaluated gene expression in a Wt line that overexpresses Rex1 and in a Rex1-/- line in which Rex1 expression was restored. These data, taken together, suggest that Rex1 influences differentiation, cell cycle regulation, and cancer progression.
Collapse
Affiliation(s)
- Kymora B Scotland
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
23
|
Milewski WM, Temple KA, Wesselschmidt RL, Hara M. Generation of embryonic stem cells from mouse insulin I promoter-green fluorescent protein transgenic mice and characterization in a teratoma model. In Vitro Cell Dev Biol Anim 2008; 45:1-5. [PMID: 18855079 DOI: 10.1007/s11626-008-9142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/25/2008] [Indexed: 11/29/2022]
Abstract
Insulin-secreting pancreatic beta cells play a key role in the pathogenesis of diabetes mellitus. Potential new treatments for this disease include cell-replacement therapies using embryonic stem cells (ESCs). We have generated ESCs from a transgenic mouse model, mouse insulin 1 promoter (MIP) green fluorescent protein (GFP) mice, in which embryonic and adult beta cells are genetically tagged with GFP. The aim of the present study is to examine the differentiation potential of MIP-GFP ESCs in the microenvironment of the kidney capsule. The ESCs grew rapidly and formed a teratoma with GFP-expressing beta-like cells present in clusters that formed a cord-like structure similar to what is seen in the embryonic pancreas. These structures also included glucagon-expressing alpha cells and amylase-expressing acinar cells. Electron microscopic analysis showed insulin-like granules in columnar epithelium with microvilli adjacent to exocrine-like granule-containing cells. The MIP-GFP ESCs should be a useful research tool to study the differentiation capacity of ESCs toward pancreatic lineages.
Collapse
Affiliation(s)
- Wieslawa M Milewski
- Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, MC1027, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
24
|
Masui S, Ohtsuka S, Yagi R, Takahashi K, Ko MSH, Niwa H. Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC DEVELOPMENTAL BIOLOGY 2008; 8:45. [PMID: 18433507 PMCID: PMC2386458 DOI: 10.1186/1471-213x-8-45] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 04/24/2008] [Indexed: 12/11/2022]
Abstract
Background Rex1/Zfp42 has been extensively used as a marker for the undifferentiated state of pluripotent stem cells. However, its function in pluripotent stem cells including embryonic stem (ES) cells remained unclear although its involvement in visceral endoderm differentiation in F9 embryonal carcinoma (EC) cells was reported. Results We showed the function of Rex1 in mouse ES cells as well as in embryos using the conventional gene targeting strategy. Our results clearly indicated that Rex1 function is dispensable for both the maintenance of pluripotency in ES cells and the development of embryos. However, Rex1-/- ES cells showed the defect to induce a subset of the marker genes of visceral endoderm, when differentiated as embryoid body, as found in EC cells. Conclusion Rex1 should be regarded just as a marker of pluripotency without functional significance like the activity of alkaline phosphatase.
Collapse
Affiliation(s)
- Shinji Masui
- Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Siegel N, Rosner M, Hanneder M, Valli A, Hengstschläger M. Stem cells in amniotic fluid as new tools to study human genetic diseases. ACTA ACUST UNITED AC 2008; 3:256-64. [PMID: 17955390 DOI: 10.1007/s12015-007-9003-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In future, the characterization and isolation of different human stem cells will allow the detailed molecular investigation of cell differentiation processes and the establishment of new therapeutic concepts for a wide variety of diseases. Since the first successful isolation and cultivation of human embryonic stem cells about 10 years ago, their usage for research and therapy has been constrained by complex ethical consideration as well as by the risk of malignant development of undifferentiated embryonic stem cells after transplantation into the patient's body. Adult stem cells are ethically acceptable and harbor a low risk of tumor development. However, their differentiation potential and their proliferative capacity are limited. About 4 years ago, the discovery of amniotic fluid stem cells, expressing Oct-4, a specific marker of pluripotent stem cells, and harboring a high proliferative capacity and multilineage differentiation potential, initiated a new and promising stem cell research field. In between, amniotic fluid stem cells have been demonstrated to harbor the potential to differentiate into cells of all three embryonic germlayers. These stem cells do not form tumors in vivo and do not raise the ethical concerns associated with human embryonic stem cells. Further investigations will reveal whether amniotic fluid stem cells really represent an intermediate cell type with advantages over both, adult stem cells and embryonic stem cells. The approach to generate clonal amniotic fluid stem cell lines as new tools to investigate molecular and cell biological consequences of human natural occurring disease causing mutations is discussed.
Collapse
Affiliation(s)
- Nicol Siegel
- Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | |
Collapse
|
26
|
Xu J, Sylvester R, Tighe AP, Chen S, Gudas LJ. Transcriptional activation of the suppressor of cytokine signaling-3 (SOCS-3) gene via STAT3 is increased in F9 REX1 (ZFP-42) knockout teratocarcinoma stem cells relative to wild-type cells. J Mol Biol 2008; 377:28-46. [PMID: 18237746 DOI: 10.1016/j.jmb.2007.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Rex1 (Zfp42), first identified as a gene that is transcriptionally repressed by retinoic acid (RA), encodes a zinc finger transcription factor expressed at high levels in F9 teratocarcinoma stem cells, embryonic stem cells, and other stem cells. Loss of both alleles of Rex1 by homologous recombination alters the RA-induced differentiation of F9 cells, a model of pluripotent embryonic stem cells. We identified Suppressor of Cytokine Signaling-3 (SOCS-3) as a gene that exhibits greatly increased transcriptional activation in RA, cAMP, and theophylline (RACT)-treated F9 Rex1(-/-) cells (approximately 25-fold) as compared to wild-type (WT) cells ( approximately 2.5-fold). By promoter deletion, mutation, and transient transfection analyses, we have shown that this transcriptional increase is mediated by the STAT3 DNA-binding elements located between -99 to -60 in the SOCS-3 promoter. Overexpression of STAT3 dominant-negative mutants greatly diminishes this SOCS-3 transcriptional increase in F9 Rex1(-/-) cells. This increase in SOCS-3 transcription is associated with a four- to fivefold higher level of tyrosine-phosphorylated STAT3 in the RACT-treated F9 Rex1(-/-) cells as compared to WT. Dominant-negative Src tyrosine kinase, Jak2, and protein kinase A partially reduce the transcriptional activation of the SOCS 3 gene in RACT-treated F9 Rex1 null cells. In contrast, parathyroid hormone peptide enhances the effect of RA in F9 Rex1(-/-) cells, but not in F9 WT. Thus, Rex1, which is highly expressed in stem cells, inhibits signaling via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, thereby modulating the differentiation of F9 cells.
Collapse
Affiliation(s)
- Juliana Xu
- Pharmacology Department, Weill Cornell Medical College, 1300 York Avenue, Room E-409, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
27
|
An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells. Gene Expr Patterns 2007; 8:181-98. [PMID: 18178135 DOI: 10.1016/j.gep.2007.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/23/2007] [Accepted: 10/29/2007] [Indexed: 11/21/2022]
Abstract
We previously reported that Zscan4 showed heterogeneous expression patterns in mouse embryonic stem (ES) cells. To identify genes that show similar expression patterns, we carried out high-throughput in situ hybridization assays on ES cell cultures for 244 genes. Most of the genes are involved in transcriptional regulation, and were selected using microarray-based comparisons of gene expression profiles in ES and embryonal carcinoma (EC) cells versus differentiated cell types. Pou5f1 (Oct4, Oct3/4) and Krt8 (EndoA) were used as controls. Hybridization signals were detected on ES cell colonies for 147 genes (60%). The majority (136 genes) of them showed relatively homogeneous expression in ES cell colonies. However, we found that two genes unequivocally showed Zscan4-like spotted expression pattern (spot-in-colony pattern; Whsc2 and Rhox9). We also found that nine genes showed relatively heterogeneous expression pattern (mosaic-in-colony pattern: Zfp42/Rex1, Rest, Atf4, Pa2g4, E2f2, Nanog, Dppa3/Pgc7/Stella, Esrrb, and Fscn1). Among these genes, Zfp42/Rex1 showed unequivocally heterogeneous expression in individual ES cells prepared by the CytoSpin. These results show the presence of different types or states of cells within ES cell cultures otherwise thought to be undifferentiated and homogeneous, suggesting a previously unappreciated complexity in ES cell cultures.
Collapse
|
28
|
Li X, Leder P. Identifying genes preferentially expressed in undifferentiated embryonic stem cells. BMC Cell Biol 2007; 8:37. [PMID: 17725840 PMCID: PMC1995199 DOI: 10.1186/1471-2121-8-37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 08/28/2007] [Indexed: 12/28/2022] Open
Abstract
Background The mechanism involved in the maintenance and differentiation of embryonic stem (ES) cells is incompletely understood. Results To address this issue, we have developed a retroviral gene trap vector that can target genes expressed in undifferentiated ES cells. This gene trap vector harbors both GFP and Neo reporter genes. G-418 drug resistance was used to select ES clones in which the vector was integrated into transcriptionally active loci. This was then followed by GFP FACS profiling to identify ES clones with reduced GFP fluorescence and, hence, reduced transcriptional activity when ES cells differentiate. Reduced expression of the GFP reporter in six of three hundred ES clones in our pilot screening was confirmed to be down-regulated by Northern blot analysis during ES cell differentiation. These six ES clones represent four different genes. Among the six integration sites, one was at Zfp-57 whose gene product is known to be enriched in undifferentiated ES cells. Three were located in an intron of a novel isoform of CSL/RBP-Jkappa which encodes the key transcription factor of the LIN-12/Notch pathway. Another was inside a gene that may encode noncoding RNA transcripts. The last integration event occurred at a locus that may harbor a novel gene. Conclusion Taken together, we demonstrate the use of a novel retroviral gene trap vector in identifying genes preferentially expressed in undifferentiated ES cells.
Collapse
Affiliation(s)
- Xiajun Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Philip Leder
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Kim JD, Faulk C, Kim J. Retroposition and evolution of the DNA-binding motifs of YY1, YY2 and REX1. Nucleic Acids Res 2007; 35:3442-52. [PMID: 17478514 PMCID: PMC1904287 DOI: 10.1093/nar/gkm235] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
YY1 is a DNA-binding transcription factor found in both vertebrates and invertebrates. Database searches identified 62 YY1 related sequences from all the available genome sequences ranging from flying insects to human. These sequences are characterized by high levels of sequence conservation, ranging from 66% to 100% similarity, in the zinc finger DNA-binding domain of the predicted proteins. Phylogenetic analyses uncovered duplication events of YY1 in several different lineages, including flies, fish and mammals. Retroposition is responsible for generating one duplicate in flies, PHOL from PHO, and two duplicates in placental mammals, YY2 and Reduced Expression 1 (REX1) from YY1. DNA-binding motif studies have demonstrated that YY2 still binds to the same consensus sequence as YY1 but with much lower affinity. In contrast, REX1 binds to DNA motifs divergent from YY1, but the binding motifs of REX1 and YY1 share some similarity at their core regions (5′-CCAT-3′). This suggests that the two duplicates, YY2 and REX1, although generated through similar retroposition events have undergone different selection schemes to adapt to new roles in placental mammals. Overall, the conservation of YY2 and REX1 in all placental mammals predicts that each duplicate has co-evolved with some unique features of eutherian mammals.
Collapse
Affiliation(s)
- Jeong Do Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
30
|
Willey S, Ayuso-Sacido A, Zhang H, Fraser ST, Sahr KE, Adlam MJ, Kyba M, Daley GQ, Keller G, Baron MH. Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating ES cells by the mouse Mix-like homeodomain transcription factor. Blood 2006; 107:3122-30. [PMID: 16403910 PMCID: PMC1784910 DOI: 10.1182/blood-2005-10-4120] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular and molecular events underlying the formation and differentiation of mesoderm to derivatives such as blood are critical to our understanding of the development and function of many tissues and organ systems. How different mesodermal populations are set aside to form specific lineages is not well understood. Although previous genetic studies in the mouse embryo have pointed to a critical role for the homeobox gene Mix-like (mMix) in gastrulation, its function in mesoderm development remains unclear. Hematopoietic defects have been identified in differentiating embryonic stem cells in which mMix was genetically inactivated. Here we show that conditional induction of mMix in embryonic stem cell-derived embryoid bodies results in the early activation of mesodermal markers prior to expression of Brachyury/T and acceleration of the mesodermal developmental program. Strikingly, increased numbers of mesodermal, hemangioblastic, and hematopoietic progenitors form in response to premature activation of mMix. Differentiation to primitive (embryonic) and definitive (adult type) blood cells proceeds normally and without an apparent bias in the representation of different hematopoietic cell fates. Therefore, the mouse Mix gene functions early in the recruitment and/or expansion of mesodermal progenitors to the hemangioblastic and hematopoietic lineages.
Collapse
Affiliation(s)
- Stephen Willey
- Department of Medicine, Mt Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 2005; 16:5719-35. [PMID: 16195347 PMCID: PMC1289416 DOI: 10.1091/mbc.e05-06-0572] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Functional reprogramming of a differentiated cell toward pluripotency may have long-term applications in regenerative medicine. We report the induction of dedifferentiation, associated with genomewide programming of gene expression and epigenetic reprogramming of an embryonic gene, in epithelial 293T cells treated with an extract of undifferentiated human NCCIT carcinoma cells. 293T cells exposed for 1 h to extract of NCCIT cells, but not of 293T or Jurkat T-cells, form defined colonies that are maintained for at least 23 passages in culture. Microarray and quantitative analyses of gene expression reveal that the transition from a 293T to a pluripotent cell phenotype involves a dynamic up-regulation of hundreds of NCCIT genes, concomitant with down-regulation of 293T genes and of indicators of differentiation such as A-type lamins. Up-regulated genes encompass embryonic and stem cell markers, including OCT4, SOX2, NANOG, and Oct4-responsive genes. OCT4 activation is associated with DNA demethylation in the OCT4 promoter and nuclear targeting of Oct4 protein. In fibroblasts exposed to extract of mouse embryonic stem cells, Oct4 activation is biphasic and RNA-PolII dependent, with the first transient rise of Oct4 up-regulation being necessary for the second, long-term activation of Oct4. Genes characteristic of multilineage differentiation potential are also up-regulated in NCCIT extract-treated cells, suggesting the establishment of "multilineage priming." Retinoic acid triggers Oct4 down-regulation, de novo activation of A-type lamins, and nestin. Furthermore, the cells can be induced to differentiate toward neurogenic, adipogenic, osteogenic, and endothelial lineages. The data provide a proof-of-concept that an extract of undifferentiated carcinoma cells can elicit differentiation plasticity in an otherwise more developmentally restricted cell type.
Collapse
Affiliation(s)
- Christel K Taranger
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Tanaka TS, Kunath T, Kimber WL, Jaradat SA, Stagg CA, Usuda M, Yokota T, Niwa H, Rossant J, Ko MSH. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res 2002; 12:1921-8. [PMID: 12466296 PMCID: PMC187571 DOI: 10.1101/gr.670002] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Large-scale gene expression profiling was performed on embryo-derived stem cell lines to identify molecular signatures of pluripotency and lineage specificity. Analysis of pluripotent embryonic stem (ES) cells, extraembryonic-restricted trophoblast stem (TS) cells, and terminally-differentiated mouse embryo fibroblast (MEF) cells identified expression profiles unique to each cell type, as well as genes common only to ES and TS cells. Whereas most of the MEF-specific genes had been characterized previously, the majority (67%) of the ES-specific genes were novel and did not include known differentiated cell markers. Comparison with microarray data from embryonic material demonstrated that ES-specific genes were underrepresented in all stages sampled, whereas TS-specific genes included known placental markers. Investigation of four novel TS-specific genes showed trophoblast-restricted expression in cell lines and in vivo, whereas one uncharacterized ES-specific gene, Esg-1, was found to be exclusively associated with pluripotency. We suggest that pluripotency requires a set of genes not expressed in other cell types, whereas lineage-restricted stem cells, like TS cells, express genes predictive of their differentiated lineage.
Collapse
Affiliation(s)
- Tetsuya S Tanaka
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224-6820, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tomioka M, Nishimoto M, Miyagi S, Katayanagi T, Fukui N, Niwa H, Muramatsu M, Okuda A. Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 2002; 30:3202-13. [PMID: 12136102 PMCID: PMC135755 DOI: 10.1093/nar/gkf435] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sox-2 is a transcriptional cofactor expressed in embryonic stem (ES) cells as well as in neuronal cells. It has been demonstrated that Sox-2 plays an important role in supporting gene expression in ES cells, especially by forming a complex with embryonic Octamer factor, Oct-3/4. Here, we have analyzed the regulatory regions of the Sox-2 gene and identified two enhancers which stimulate transcription in ES cells as well as in embryonal carcinoma cells. These regulatory regions, which we termed Sox regulatory regions (SRR) 1 and 2, exert their function specifically when cells are in an undifferentiated state. Interestingly, like the regulatory elements of FGF-4 and UTF1 genes, combinatorial action of Octamer and Sox-2 binding sites support the SRR2 activity. However, biochemical analyses reveal that, due to the unique sequence and/or its organization, the SRR2 bears distinct characteristics from those of FGF-4 and UTF1 regulatory elements. That is, unlike the FGF-4 gene enhancer, the SRR2 precludes the binding of the Oct-1-Sox-2 complex. The difference between the SRR2 and UTF1 regulatory element is in the ability of SRR2 to recruit the Oct-6-Sox-2 complex as well as the Oct-3/4-Sox-2 complex. Co-transfection analyses confirm that both complexes are able to stimulate transcription through the SRR2 element.
Collapse
Affiliation(s)
- Mizuho Tomioka
- Division of Developmental Biology, Saitama Medical School Research Center for Genomic Medicine, 1397-1 Yamane Hidaka-City, Saitama 350-1241, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Oka M, Tagoku K, Russell TL, Nakano Y, Hamazaki T, Meyer EM, Yokota T, Terada N. CD9 is associated with leukemia inhibitory factor-mediated maintenance of embryonic stem cells. Mol Biol Cell 2002; 13:1274-81. [PMID: 11950938 PMCID: PMC102268 DOI: 10.1091/mbc.02-01-0600] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mouse embryonic stem (ES) cells can proliferate indefinitely in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), or differentiate into all three germ layers upon removal of this factor. To determine cellular factors associated with self-renewal of undifferentiated ES cells, we used polymerase chain reaction-assisted cDNA subtraction to screen genes that are expressed in undifferentiated ES cells and down-regulated after incubating these cells in a differentiation medium without LIF for 48 h. The mRNA expression of a tetraspanin transmembrane protein, CD9, was high in undifferentiated ES cells and decreased shortly after cell differentiation. An immunohistochemical analysis confirmed that plasma membrane-associated CD9 was expressed in undifferentiated ES cells but low in the differentiated cells. Addition of LIF to differentiating ES cells reinduced mRNA expression of CD9, and CD9 expression was accompanied with a reappearance of undifferentiated ES cells. Furthermore, activation of STAT3 induced the expression of CD9, indicating the LIF/STAT3 pathway is critical for maintaining CD9 expression. Finally, addition of anti-CD9 antibody blocked ES cell colony formation and reduced cell viability. These results indicate that CD9 may play a role in LIF-mediated maintenance of undifferentiated ES cells.
Collapse
Affiliation(s)
- Masahiro Oka
- Department of Pathology, Program in Stem Cell Biology, Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nishimoto M, Fukushima A, Okuda A, Muramatsu M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol Cell Biol 1999; 19:5453-65. [PMID: 10409735 PMCID: PMC84387 DOI: 10.1128/mcb.19.8.5453] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/1999] [Accepted: 05/04/1999] [Indexed: 11/20/2022] Open
Abstract
UTF1 is a transcriptional coactivator which has recently been isolated and found to be expressed mainly in pluripotent embryonic stem (ES) cells (A. Okuda, A. Fukushima, M. Nishimoto, et al., EMBO J. 17:2019-2032, 1998). To gain insight into the regulatory network of gene expression in ES cells, we have characterized the regulatory elements governing UTF1 gene expression. The results indicate that the UTF1 gene is one of the target genes of an embryonic octamer binding transcription factor, Oct-3/4. UTF1 expression is, like the FGF-4 gene, regulated by the synergistic action of Oct-3/4 and another embryonic factor, Sox-2, implying that the requirement for Sox-2 by Oct-3/4 is not limited to the FGF-4 enhancer but is rather a general mechanism of activation for Oct-3/4. Our biochemical analyses, however, also reveal one distinct difference between these two regulatory elements: unlike the FGF-4 enhancer, the UTF1 regulatory element can, by its one-base difference from the canonical octamer-binding sequence, selectively recruit the complex comprising Oct-3/4 and Sox-2 and preclude the binding of the transcriptionally inactive complex containing Oct-1 or Oct-6. Furthermore, our analyses reveal that these properties are dictated by the unique ability of the Oct-3/4 POU-homeodomain that recognizes a variant of the Octamer motif in the UTF1 regulatory element.
Collapse
Affiliation(s)
- M Nishimoto
- Department of Biochemistry, Saitama Medical School, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | |
Collapse
|
36
|
Okuda A, Fukushima A, Nishimoto M, Orimo A, Yamagishi T, Nabeshima Y, Kuro-o M, Nabeshima YI, Boon K, Keaveney M, Stunnenberg HG, Muramatsu M. UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J 1998; 17:2019-32. [PMID: 9524124 PMCID: PMC1170547 DOI: 10.1093/emboj/17.7.2019] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have obtained a novel transcriptional cofactor, termed undifferentiated embryonic cell transcription factor 1 (UTF1), from F9 embryonic carcinoma (EC) cells. This protein is expressed in EC and embryonic stem cells, as well as in germ line tissues, but could not be detected in any of the other adult mouse tissues tested. Furthermore, when EC cells are induced to differentiate, UTF1 expression is rapidly extinguished. In normal mouse embryos, UTF1 mRNA is present in the inner cell mass, the primitive ectoderm and the extra-embryonic tissues. During the primitive streak stage, the induction of mesodermal cells is accompanied by the down-regulation of UTF1 in the primitive ectoderm. However, its expression is maintained for up to 13.5 days post-coitum in the extra-embryonic tissue. Functionally, UTF1 boosts the level of transcription of the adenovirus E2A promoter. However, unlike the pluripotent cell-specific E1A-like activity, which requires the E2F sites of the E2A promoter for increased transcriptional activation, UTF1-mediated activation is dependent on the upstream ATF site of this promoter. This result indicates that UTF1 is not a major component of the E1A-like activity present in pluripotent embryonic cells. Further analyses revealed that UTF1 interacts not only with the activation domain of ATF-2, but also with the TFIID complex in vivo. Thus, UTF1 displays many of the hallmark characteristics expected for a tissue-specific transcriptional coactivator that works in early embryogenesis.
Collapse
Affiliation(s)
- A Okuda
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ben-Shushan E, Thompson JR, Gudas LJ, Bergman Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol Cell Biol 1998; 18:1866-78. [PMID: 9528758 PMCID: PMC121416 DOI: 10.1128/mcb.18.4.1866] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1997] [Accepted: 01/06/1998] [Indexed: 02/07/2023] Open
Abstract
The Rex-1 (Zfp-42) gene, which encodes an acidic zinc finger protein, is expressed at high levels in embryonic stem (ES) and F9 teratocarcinoma cells. Prior analysis identified an octamer motif in the Rex-1 promoter which is required for promoter activity in undifferentiated F9 cells and is involved in retinoic acid (RA)-associated reduction in expression. We show here that the Oct-3/4 transcription factor, but not Oct-1, can either activate or repress the Rex-1 promoter, depending on the cellular environment. Rex-1 repression is enhanced by E1A. The protein domain required for Oct-3/4 activation was mapped to amino acids 1 to 35, whereas the domain required for Oct-3/4 repression was mapped to amino acids 61 to 126, suggesting that the molecular mechanisms underlying transcriptional activation and repression differ. Like Oct-3/4, Oct-6 can also lower the expression of the Rex-1 promoter via the octamer site, and the amino-terminal portion of Oct-6 mediates this repression. In addition to the octamer motif, a novel positive regulatory element, located immediately 5' of the octamer motif, was identified in the Rex-1 promoter. Mutations in this element greatly reduce Rex-1 promoter activity in F9 cells. High levels of a binding protein(s), designated Rox-1, recognize this novel DNA element in F9 cells, and this binding activity is reduced following RA treatment. Taken together, these results indicate that the Rex-1 promoter is regulated by specific octamer family members in early embryonic cells and that a novel element also contributes to Rex-1 expression.
Collapse
Affiliation(s)
- E Ben-Shushan
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
38
|
Burdsal CA, Pedersen RA, Hyun WC, Latimer JJ. Novel flow-cytometric method for separating cell types in differentiated F9 embryoid bodies. CYTOMETRY 1995; 21:145-52. [PMID: 8582234 PMCID: PMC4729370 DOI: 10.1002/cyto.990210206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The differentiation of F9 teratocarcinoma cells mimics the formation of a mouse embryonic tissue, the primitive endoderm. In vitro, small aggregates of F9 cells, termed embryoid bodies, differentiate in response to retinoic acid and develop a surface epithelium that is characterized by the production of alpha-fetoprotein. In the present study, cellular autofluorescence profiles obtained by fluorescence-activated embryoid bodies were composed of a single type of cell. In contrast, retinoic acid-induced embryoid bodies were composed of two cell types: a major population displaying autofluorescence levels similar to those of cells from undifferentiated embryoid bodies and a second population displaying higher autofluorescence. RNA analyses demonstrated that the transcription of alpha-fetoprotein was associated only with the more highly autofluorescent population, indicating that flow cytometry provides a novel mechanism for the separation of undifferentiated cells from differentiated endoderm cells in F9 embryoid bodies.
Collapse
Affiliation(s)
- C A Burdsal
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
39
|
Boylan JF, Lufkin T, Achkar CC, Taneja R, Chambon P, Gudas LJ. Targeted disruption of retinoic acid receptor alpha (RAR alpha) and RAR gamma results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism. Mol Cell Biol 1995; 15:843-51. [PMID: 7823950 PMCID: PMC231962 DOI: 10.1128/mcb.15.2.843] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
F9 embryonic teratocarcinoma stem cells differentiate into an epithelial cell type called extraembryonic endoderm when treated with retinoic acid (RA), a derivative of retinol (vitamin A). This differentiation is presumably mediated through the actions of retinoid receptors, the RARs and RXRs. To delineate the functions of each of the different retinoid receptors in this model system, we have generated F9 cell lines in which both copies of either the RAR alpha gene or the RAR gamma gene are disrupted by homologous recombination. The absence of RAR alpha is associated with a reduction in the RA-induced expression of both the CRABP-II and Hoxb-1 (formerly 2.9) genes. The absence of RAR gamma is associated with a loss of the RA-inducible expression of the Hoxa-1 (formerly Hox-1.6), Hoxa-3 (formerly Hox-1.5), laminin B1, collagen IV (alpha 1), GATA-4, and BMP-2 genes. Furthermore, the loss of RAR gamma is associated with a reduction in the metabolism of all-trans-RA to more polar derivatives, while the loss of RAR alpha is associated with an increase in metabolism of RA relative to wild-type F9 cells. Thus, each of these RARs exhibits some specificity with respect to the regulation of differentiation-specific gene expression. These results provide an explanation for the expression of multiple RAR types within one cell type and suggest that each RAR has specific functions.
Collapse
Affiliation(s)
- J F Boylan
- Department of Pharmacology, Cornell University Medical College, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
40
|
AP-1, ETS, and transcriptional silencers regulate retinoic acid-dependent induction of keratin 18 in embryonic cells. Mol Cell Biol 1994. [PMID: 7526151 DOI: 10.1128/mcb.14.12.7744] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentiation of both embryonal carcinoma (EC) and embryonic stem (ES) cells can be triggered in culture by exposure to retinoic acid and results in the transcriptional induction of both the endogenous mouse keratin 18 (mK18) intermediate filament gene and an experimentally introduced human keratin 18 (K18) gene as well as a variety of other markers characteristic of extraembryonic endoderm. The induction of K18 in EC cells is limited, in part, by low levels of ETS and AP-1 transcription factor activities which bind to sites within a complex enhancer element located within the first intron of K18. RNA levels of ETS-2, c-Jun, and JunB increase upon the differentiation of ES cells and correlate with increased expression of K18. Occupancy of the ETS site, detected by in vivo footprinting methods, correlates with K18 induction in ES cells. In somatic cells, the ETS and AP-1 elements mediate induction by a variety of oncogenes associated with the ras signal transduction pathway. In EC cells, in addition to the induction by these limiting transcription factors, relief from negative regulation is mediated by three silencer elements located within the first intron of the K18 gene. These silencer elements function in F9 EC cells but not their differentiated derivatives, and their activity is correlated with proteins in F9 EC nuclei which bind to the silencers and are reduced in the nuclei of differentiated F9 cells. The induction of K18, associated with the differentiation of EC cells to extraembryonic endoderm, is due to a combination of relief from negative regulation and activation by members of the ETS and AP-1 transcription factor families.
Collapse
|
41
|
Pankov R, Neznanov N, Umezawa A, Oshima RG. AP-1, ETS, and transcriptional silencers regulate retinoic acid-dependent induction of keratin 18 in embryonic cells. Mol Cell Biol 1994; 14:7744-57. [PMID: 7526151 PMCID: PMC359315 DOI: 10.1128/mcb.14.12.7744-7757.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The differentiation of both embryonal carcinoma (EC) and embryonic stem (ES) cells can be triggered in culture by exposure to retinoic acid and results in the transcriptional induction of both the endogenous mouse keratin 18 (mK18) intermediate filament gene and an experimentally introduced human keratin 18 (K18) gene as well as a variety of other markers characteristic of extraembryonic endoderm. The induction of K18 in EC cells is limited, in part, by low levels of ETS and AP-1 transcription factor activities which bind to sites within a complex enhancer element located within the first intron of K18. RNA levels of ETS-2, c-Jun, and JunB increase upon the differentiation of ES cells and correlate with increased expression of K18. Occupancy of the ETS site, detected by in vivo footprinting methods, correlates with K18 induction in ES cells. In somatic cells, the ETS and AP-1 elements mediate induction by a variety of oncogenes associated with the ras signal transduction pathway. In EC cells, in addition to the induction by these limiting transcription factors, relief from negative regulation is mediated by three silencer elements located within the first intron of the K18 gene. These silencer elements function in F9 EC cells but not their differentiated derivatives, and their activity is correlated with proteins in F9 EC nuclei which bind to the silencers and are reduced in the nuclei of differentiated F9 cells. The induction of K18, associated with the differentiation of EC cells to extraembryonic endoderm, is due to a combination of relief from negative regulation and activation by members of the ETS and AP-1 transcription factor families.
Collapse
Affiliation(s)
- R Pankov
- Cancer Research Center, La Jolla Cancer Research Foundation, California 92037
| | | | | | | |
Collapse
|
42
|
BOX DNA: a novel regulatory element related to embryonal carcinoma cell differentiation. Mol Cell Biol 1994. [PMID: 7902532 DOI: 10.1128/mcb.13.12.7747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BOX DNA was previously isolated from the DNA sequence inserted in the enhancer B domain of mutant polyomavirus (fPyF9) DNA. We also reported that BOX DNA functioned negatively on DNA replication and transcription of another polyomavirus mutant (PyhrN2) in F9-28 cells, a subclone of mouse F9 embryonal carcinoma (EC) cells expressing the polyomavirus large T antigen. In this study, we demonstrate that BOX DNA enhances transcription from the thymidine kinase (TK) promoter in various EC cells. One or three copies of BOX DNA, linked to the bacterial chloramphenicol acetyltransferase gene under the control of the herpes simplex virus TK promoter, activated promoter activity in F9, P19, and ECA2 cells. Band shift assays using BOX DNA as a probe revealed that specific binding proteins were present in all EC cells examined; the patterns of BOX DNA-protein complexes were the same among them. A mutation introduced within BOX DNA abolished enhancer activity as well as the formation of specific DNA-protein complexes. In non-EC cells, including L and BALB/3T3 cells, the enhancer activity of BOX DNA on the TK promoter was not observed, although binding proteins specific to the sequence exist. In band shift assays, the patterns of the DNA-protein complexes of either L or BALB/3T3 cells were different from those of EC cells. Furthermore, the enhancer activity of BOX DNA decreased upon differentiation induction in all EC cells examined, of different origins and distinct differentiation ability. In parallel with the loss of enhancer activity, the binding proteins specific for BOX DNA decreased in these cells. Moreover, we cloned a genomic DNA of F9, termed BOXF1, containing BOX DNA sequence approximately 400 bp upstream from the RNA start site of the gene. BOXF1, containing a TATA-like motif and the binding elements for Sp1 and Oct in addition to BOX DNA, possessed promoter activity deduced by a BOXF1-chloramphenicol acetyltransferase construct. Deletion analyses of the construct revealed that the transcription of BOXF1 gene is regulated by BOX DNA, preferentially in undifferentiated EC cells versus differentiated cells. Hence, BOX DNA is probably a novel transcriptional element related to EC cell differentiation.
Collapse
|
43
|
Kihara-Negishi F, Tsujita R, Negishi Y, Ariga H. BOX DNA: a novel regulatory element related to embryonal carcinoma cell differentiation. Mol Cell Biol 1993; 13:7747-56. [PMID: 7902532 PMCID: PMC364846 DOI: 10.1128/mcb.13.12.7747-7756.1993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BOX DNA was previously isolated from the DNA sequence inserted in the enhancer B domain of mutant polyomavirus (fPyF9) DNA. We also reported that BOX DNA functioned negatively on DNA replication and transcription of another polyomavirus mutant (PyhrN2) in F9-28 cells, a subclone of mouse F9 embryonal carcinoma (EC) cells expressing the polyomavirus large T antigen. In this study, we demonstrate that BOX DNA enhances transcription from the thymidine kinase (TK) promoter in various EC cells. One or three copies of BOX DNA, linked to the bacterial chloramphenicol acetyltransferase gene under the control of the herpes simplex virus TK promoter, activated promoter activity in F9, P19, and ECA2 cells. Band shift assays using BOX DNA as a probe revealed that specific binding proteins were present in all EC cells examined; the patterns of BOX DNA-protein complexes were the same among them. A mutation introduced within BOX DNA abolished enhancer activity as well as the formation of specific DNA-protein complexes. In non-EC cells, including L and BALB/3T3 cells, the enhancer activity of BOX DNA on the TK promoter was not observed, although binding proteins specific to the sequence exist. In band shift assays, the patterns of the DNA-protein complexes of either L or BALB/3T3 cells were different from those of EC cells. Furthermore, the enhancer activity of BOX DNA decreased upon differentiation induction in all EC cells examined, of different origins and distinct differentiation ability. In parallel with the loss of enhancer activity, the binding proteins specific for BOX DNA decreased in these cells. Moreover, we cloned a genomic DNA of F9, termed BOXF1, containing BOX DNA sequence approximately 400 bp upstream from the RNA start site of the gene. BOXF1, containing a TATA-like motif and the binding elements for Sp1 and Oct in addition to BOX DNA, possessed promoter activity deduced by a BOXF1-chloramphenicol acetyltransferase construct. Deletion analyses of the construct revealed that the transcription of BOXF1 gene is regulated by BOX DNA, preferentially in undifferentiated EC cells versus differentiated cells. Hence, BOX DNA is probably a novel transcriptional element related to EC cell differentiation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinoma, Embryonal/genetics
- Carcinoma, Embryonal/microbiology
- Carcinoma, Embryonal/pathology
- Cell Differentiation/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Enhancer Elements, Genetic
- Genes, Homeobox
- Genes, Regulator
- Mice
- Molecular Sequence Data
- Mutation
- Polyomavirus/genetics
- Polyomavirus/physiology
- Promoter Regions, Genetic
- Protein Binding
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/microbiology
- Tumor Cells, Cultured/pathology
- Virus Replication/genetics
Collapse
Affiliation(s)
- F Kihara-Negishi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
44
|
An octamer motif contributes to the expression of the retinoic acid-regulated zinc finger gene Rex-1 (Zfp-42) in F9 teratocarcinoma cells. Mol Cell Biol 1993. [PMID: 8474450 DOI: 10.1128/mcb.13.5.2919] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The message for the zinc finger gene Rex-1 (Zfp-42) is expressed in undifferentiated murine F9 teratocarcinoma cells and embryonic stem cells. Expression of Rex-1 is reduced at the transcriptional level when F9 cells are induced by the addition of retinoic acid (RA) to differentiate. We have isolated genomic DNA for the Rex-1 gene (Zfp-42), characterized the gene's structure, and mapped the gene to mouse chromosome 8. Promoter elements contributing to the regulation of the Rex-1 promoter in F9 cells have been identified. A region required for Rex-1 promoter activity in F9 stem cells contains an octamer motif (ATTTGCAT) which is a binding site for octamer transcription factor members of the POU domain family of DNA-binding proteins. Rex-1 reporter plasmids including this octamer site also exhibited reduced expression in F9 cells treated with RA. Thus, the octamer motif is a regulatory element required for the activity of the Rex-1 promoter in F9 stem cells, and this motif contributes to the negative regulation by RA of the transcription of the Rex-1 gene. As an initial confirmation of the in vivo relevance of the isolated fragment, a larger Rex-1 promoter fragment, also containing the octamer site, was able to promote expression of the bacterial lacZ gene in mouse embryos at the morula stage.
Collapse
|
45
|
Hosler BA, Rogers MB, Kozak CA, Gudas LJ. An octamer motif contributes to the expression of the retinoic acid-regulated zinc finger gene Rex-1 (Zfp-42) in F9 teratocarcinoma cells. Mol Cell Biol 1993; 13:2919-28. [PMID: 8474450 PMCID: PMC359685 DOI: 10.1128/mcb.13.5.2919-2928.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The message for the zinc finger gene Rex-1 (Zfp-42) is expressed in undifferentiated murine F9 teratocarcinoma cells and embryonic stem cells. Expression of Rex-1 is reduced at the transcriptional level when F9 cells are induced by the addition of retinoic acid (RA) to differentiate. We have isolated genomic DNA for the Rex-1 gene (Zfp-42), characterized the gene's structure, and mapped the gene to mouse chromosome 8. Promoter elements contributing to the regulation of the Rex-1 promoter in F9 cells have been identified. A region required for Rex-1 promoter activity in F9 stem cells contains an octamer motif (ATTTGCAT) which is a binding site for octamer transcription factor members of the POU domain family of DNA-binding proteins. Rex-1 reporter plasmids including this octamer site also exhibited reduced expression in F9 cells treated with RA. Thus, the octamer motif is a regulatory element required for the activity of the Rex-1 promoter in F9 stem cells, and this motif contributes to the negative regulation by RA of the transcription of the Rex-1 gene. As an initial confirmation of the in vivo relevance of the isolated fragment, a larger Rex-1 promoter fragment, also containing the octamer site, was able to promote expression of the bacterial lacZ gene in mouse embryos at the morula stage.
Collapse
Affiliation(s)
- B A Hosler
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
46
|
Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol 1992. [PMID: 1309593 DOI: 10.1128/mcb.12.1.38] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The long terminal repeat of Moloney murine leukemia virus (MuLV) contains the upstream conserved region (UCR). The UCR core sequence, CGCCATTTT, binds a ubiquitous nuclear factor and mediates negative regulation of MuLV promoter activity. We have isolated murine cDNA clones encoding a protein, referred to as UCRBP, that binds specifically to the UCR core sequence. Gel mobility shift assays demonstrate that the UCRBP fusion protein expressed in bacteria binds the UCR core with specificity identical to that of the UCR-binding factor in the nucleus of murine and human cells. Analysis of full-length UCRBP cDNA reveals that it has a putative zinc finger domain composed of four C2H2 zinc fingers of the GLI subgroup and an N-terminal region containing alternating charges, including a stretch of 12 histidine residues. The 2.4-kb UCRBP message is expressed in all cell lines examined (teratocarcinoma, B- and T-cell, macrophage, fibroblast, and myocyte), consistent with the ubiquitous expression of the UCR-binding factor. Transient transfection of an expressible UCRBP cDNA into fibroblasts results in down-regulation of MuLV promoter activity, in agreement with previous functional analysis of the UCR. Recently three groups have independently isolated human and mouse UCRBP. These studies show that UCRBP binds to various target motifs that are distinct from the UCR motif: the adeno-associated virus P5 promoter and elements in the immunoglobulin light- and heavy-chain genes, as well as elements in ribosomal protein genes. These results indicate that UCRBP has unusually diverse DNA-binding specificity and as such is likely to regulate expression of many different genes.
Collapse
|
47
|
Rogers MB, Rosen V, Wozney JM, Gudas LJ. Bone morphogenetic proteins-2 and -4 are involved in the retinoic acid-induced differentiation of embryonal carcinoma cells. Mol Biol Cell 1992; 3:189-96. [PMID: 1550961 PMCID: PMC275518 DOI: 10.1091/mbc.3.2.189] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bone morphogenetic proteins-2 and -4 (BMPs-2 and -4) are transforming growth factor beta-related proteins that can induce bone formation in vivo. We observed that the level of endogenous BMP-2 mRNA increased an average of 11-fold on differentiation of F9 embryonal carcinoma cells into parietal endoderm after treatment with retinoic acid (RA) and cAMP, whereas the message for the closely related BMP-4 decreased 12-fold after this treatment. Therefore, the effects of exogenous recombinant BMP-2 protein on the RA-induced differentiation of F9 embryonal carcinoma cells were investigated. BMP-2 addition altered the growth and morphology of RA-treated but not untreated cells. Moreover, the abundance of several messages was affected by exogenous BMP-2 treatment. Notably, the BMP-2 and -4 messages themselves were reduced by the addition of exogenous BMP-2. The observations suggest that RA, which is known to affect bone morphogenesis, may regulate the osteoinductive proteins, BMP-2 and -4. Furthermore, BMP-2 and -4 may be involved in preimplantation embryogenesis.
Collapse
Affiliation(s)
- M B Rogers
- Pharmacology Department, Cornell University Medical College, New York, New York 10021
| | | | | | | |
Collapse
|
48
|
Flanagan JR, Becker KG, Ennist DL, Gleason SL, Driggers PH, Levi BZ, Appella E, Ozato K. Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol 1992; 12:38-44. [PMID: 1309593 PMCID: PMC364067 DOI: 10.1128/mcb.12.1.38-44.1992] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The long terminal repeat of Moloney murine leukemia virus (MuLV) contains the upstream conserved region (UCR). The UCR core sequence, CGCCATTTT, binds a ubiquitous nuclear factor and mediates negative regulation of MuLV promoter activity. We have isolated murine cDNA clones encoding a protein, referred to as UCRBP, that binds specifically to the UCR core sequence. Gel mobility shift assays demonstrate that the UCRBP fusion protein expressed in bacteria binds the UCR core with specificity identical to that of the UCR-binding factor in the nucleus of murine and human cells. Analysis of full-length UCRBP cDNA reveals that it has a putative zinc finger domain composed of four C2H2 zinc fingers of the GLI subgroup and an N-terminal region containing alternating charges, including a stretch of 12 histidine residues. The 2.4-kb UCRBP message is expressed in all cell lines examined (teratocarcinoma, B- and T-cell, macrophage, fibroblast, and myocyte), consistent with the ubiquitous expression of the UCR-binding factor. Transient transfection of an expressible UCRBP cDNA into fibroblasts results in down-regulation of MuLV promoter activity, in agreement with previous functional analysis of the UCR. Recently three groups have independently isolated human and mouse UCRBP. These studies show that UCRBP binds to various target motifs that are distinct from the UCR motif: the adeno-associated virus P5 promoter and elements in the immunoglobulin light- and heavy-chain genes, as well as elements in ribosomal protein genes. These results indicate that UCRBP has unusually diverse DNA-binding specificity and as such is likely to regulate expression of many different genes.
Collapse
Affiliation(s)
- J R Flanagan
- Department of Internal Medicine, University of Iowa, Iowa City 52242
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Park K, Atchison ML. Isolation of a candidate repressor/activator, NF-E1 (YY-1, delta), that binds to the immunoglobulin kappa 3' enhancer and the immunoglobulin heavy-chain mu E1 site. Proc Natl Acad Sci U S A 1991; 88:9804-8. [PMID: 1946405 PMCID: PMC52809 DOI: 10.1073/pnas.88.21.9804] [Citation(s) in RCA: 301] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have determined that the developmental control of immunoglobulin kappa 3' enhancer (kappa E3') activity is the result of the combined influence of positive- and negative-acting elements. We show that a central core in the kappa E3' enhancer is active at the pre-B-cell stage but is repressed by flanking negative-acting elements. The negative-acting sequences repress enhancer activity in a position- and orientation-independent manner at the pre-B-cell stage. We have isolated a human cDNA clone encoding a zinc finger protein (NF-E1) that binds to the negative-acting segment of the kappa E3' enhancer. This protein also binds to the immunoglobulin heavy-chain enhancer mu E1 site. NF-E1 is encoded by the same gene as the YY-1 protein, which binds to the adeno-associated virus P5 promoter. NF-E1 is also the human homologue of the mouse delta protein, which binds to ribosomal protein gene promoters. The predicted amino acid sequence of this protein contains features characteristic of transcriptional activators as well as transcriptional repressors. Cotransfection studies with this cDNA indicate that it can repress basal promoter activity. The apparent dual function of this protein is discussed.
Collapse
Affiliation(s)
- K Park
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia 19104
| | | |
Collapse
|
50
|
Hariharan N, Kelley DE, Perry RP. Delta, a transcription factor that binds to downstream elements in several polymerase II promoters, is a functionally versatile zinc finger protein. Proc Natl Acad Sci U S A 1991; 88:9799-803. [PMID: 1946404 PMCID: PMC52808 DOI: 10.1073/pnas.88.21.9799] [Citation(s) in RCA: 252] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The promoters of several eukaryotic genes transcribed by RNA polymerase II contain elements located downstream of the transcriptional start site. To gain insight into how these elements function in the formation of an active transcription complex, we have cloned and sequenced the cDNA that encodes delta, a protein that binds to critical downstream promoter elements in the mouse ribosomal protein rpL30 and rpL32 genes. Our results revealed that the delta protein contains four C-terminal zinc fingers, which are essential for its DNA binding capability and a very unusual N-terminal domain that includes stretches of 11 consecutive negatively charged amino acids and 12 consecutive histidines. The sequence of the delta protein was found to be essentially identical to a concurrently cloned human transcription factor that acts both positively and negatively in the context of immunoglobulin enhancers and a viral promoter. Our structural modeling of this protein indicates properties that could endow it with exquisite functional versatility.
Collapse
Affiliation(s)
- N Hariharan
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | | |
Collapse
|