1
|
Bilger A, Lambert PF. Rapid-onset cancer. Tumour Virus Res 2025:200312. [PMID: 39755235 DOI: 10.1016/j.tvr.2024.200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Human cancers are generally thought to develop over the course of decades. Such slow progression is well documented for a variety of cancers that we designate "slow-onset" cancers. "Rapid-onset" cancers, in contrast, can develop in a matter of months in humans or in as little as 9 days in mice. These cancers often develop under conditions that might be expected to accelerate cancer development: early development, immune deficiency, or viral infection. We will discuss rapid-onset cancers in the context of the "hallmarks of cancer" - properties cells must acquire in order to become malignant - focusing on how viruses are particularly well suited to causing rapid-onset cancer.
Collapse
Affiliation(s)
- Andrea Bilger
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705 USA.
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705 USA.
| |
Collapse
|
2
|
Saribas AS, Jensen LE, Safak M. Recent advances in discovery and functional analysis of the small proteins and microRNA expressed by polyomaviruses. Virology 2025; 602:110310. [PMID: 39612622 DOI: 10.1016/j.virol.2024.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
The polyomavirus family consists of a highly diverse group of small DNA viruses isolated from various species, including humans. Some family members have been used as model systems to understand the fundamentals of modern biology. After the discovery of the first two human polyomaviruses (JC virus and BK virus) during the early 1970s, their current number reached 14 today. Some family members cause considerably severe human diseases, including polyomavirus-associated nephropathy (PVAN), progressive multifocal leukoencephalopathy (PML), trichodysplasia spinulosa (TS) and Merkel cell carcinoma (MCC). Polyomaviruses encode universal regulatory and structural proteins, but some members express additional virus-specific proteins and microRNA, which significantly contribute to the viral biology, cell transformation, and perhaps progression of the disease that they are associated with. In the current review, we summarized the recent advances in discovery, and functional and structural analysis of those viral proteins and microRNA.
Collapse
Affiliation(s)
- A Sami Saribas
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Liselotte E Jensen
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Lanclos N, Radulovic P, Bland J, Oganisyan V, Radefeld K, Uversky VN. Implications of intrinsic disorder and functional proteomics in the merkel cell polyomavirus life cycle. J Cell Biochem 2024; 125:e30485. [PMID: 37812573 DOI: 10.1002/jcb.30485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Infection with merkel cell polyomavirus (MCPyV) is implicated in the development of merkel cell carcinoma (MCC), a rare but aggressive skin cancer. MCC has a mortality rate near 50%, and incidence has been rapidly increasing in recent decades, making development of improved treatment strategies critical to addressing its growing social burden. The parallel increasing necessity for novel research to better understand MCPyV pathogenesis has prompted numerous studies in recent years, yet the role of intrinsic disorder in MCPyV proteins remains unexplored. This study carries out computational characterization of intrinsic disorder within the MCPyV proteome and suggests mechanisms that may contribute to the oncogenicity of the virus to invade and hijack host immune systems. Our analysis finds that significant levels of intrinsic disorder are present in proteins LT, ALTO, 57kT, and VP1, and suggests that regions of sT may also contain large, disordered regions. The investigation further shows correlation of disorder propensity with the outputs for functional predictors of eukaryotic linear motifs (ELMs), molecular recognition features (MoRFs), and propensity for liquid-liquid phase separation (LLPS). Our findings indicate that MCPyV may use disorder and phase condensation to alter viral function that may accentuate or provide the basis for oncogenic activities. It is intended that this study will inform future experimental validation efforts around the phase separation capacity of MCPyV and its host protein-protein interactions. Furthermore, we hope to inform other investigators on the potential role of disorder in the MCPyV life cycle toward ultimately progressing the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Nathan Lanclos
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Peter Radulovic
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
- Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Jackson Bland
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Valentin Oganisyan
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Kelton Radefeld
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Tosi G, Paoli A, Zuccolotto G, Turco E, Simonato M, Tosoni D, Tucci F, Lugato P, Giomo M, Elvassore N, Rosato A, Cogo P, Pece S, Santoro MM. Cancer cell stiffening via CoQ 10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer. Nat Commun 2024; 15:8214. [PMID: 39294175 PMCID: PMC11410950 DOI: 10.1038/s41467-024-52523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.
Collapse
Affiliation(s)
- Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Alessandro Paoli
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilia Turco
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Manuela Simonato
- Pediatric Research Institute "Città della Speranza", Padova, Italy
| | | | | | - Pietro Lugato
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Paola Cogo
- Pediatric Research Institute "Città della Speranza", Padova, Italy
- Division of Pediatrics, Department of Medicine, Udine University, Udine, Italy
| | - Salvatore Pece
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
5
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Mahmood N, Arakelian A, Szyf M, Rabbani SA. Methyl-CpG binding domain protein 2 (Mbd2) drives breast cancer progression through the modulation of epithelial-to-mesenchymal transition. Exp Mol Med 2024; 56:959-974. [PMID: 38556549 PMCID: PMC11058268 DOI: 10.1038/s12276-024-01205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 04/02/2024] Open
Abstract
Methyl-CpG-binding domain protein 2 (Mbd2), a reader of DNA methylation, has been implicated in different types of malignancies, including breast cancer. However, the exact role of Mbd2 in various stages of breast cancer growth and progression in vivo has not been determined. To test whether Mbd2 plays a causal role in mammary tumor growth and metastasis, we performed genetic knockout (KO) of Mbd2 in MMTV-PyMT transgenic mice and compared mammary tumor progression kinetics between the wild-type (PyMT-Mbd2+/+) and KO (PyMT-Mbd2-/-) groups. Our results demonstrated that deletion of Mbd2 in PyMT mice impedes primary tumor growth and lung metastasis at the experimental endpoint (postnatal week 20). Transcriptomic and proteomic analyses of primary tumors revealed that Mbd2 deletion abrogates the expression of several key determinants involved in epithelial-to-mesenchymal transition, such as neural cadherin (N-cadherin) and osteopontin. Importantly, loss of the Mbd2 gene impairs the activation of the PI3K/AKT pathway, which is required for PyMT-mediated oncogenic transformation, growth, and survival of breast tumor cells. Taken together, the results of this study provide a rationale for further development of epigenetic therapies targeting Mbd2 to inhibit the progression of breast cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC, H4A3J1, Canada
- Department of Biochemistry, McGill University, Montréal, QC, H3A1A3, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University, Montréal, QC, H4A3J1, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G1Y6, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University, Montréal, QC, H4A3J1, Canada.
| |
Collapse
|
7
|
Peng WY, Abere B, Shi H, Toland S, Smithgall TE, Moore PS, Chang Y. Membrane-bound Merkel cell polyomavirus middle T protein constitutively activates PLCγ1 signaling through Src-family kinases. Proc Natl Acad Sci U S A 2023; 120:e2316467120. [PMID: 38079542 PMCID: PMC10740393 DOI: 10.1073/pnas.2316467120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023] Open
Abstract
Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.
Collapse
Affiliation(s)
- Wen-Yu Peng
- School of Medicine, Tsinghua University, Beijing100084, China
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Bizunesh Abere
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Sabrina Toland
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Thomas E. Smithgall
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Patrick S. Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Yuan Chang
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA15213
| |
Collapse
|
8
|
Martínez-Illescas NG, Leal S, González P, Graña-Castro O, Muñoz-Oliveira JJ, Cortés-Peña A, Gómez-Gil M, Vega Z, Neva V, Romero A, Quintela-Fandino M, Ciruelos E, Sanz C, Aragón S, Sotolongo L, Jiménez S, Caleiras E, Mulero F, Sánchez C, Malumbres M, Salazar-Roa M. miR-203 drives breast cancer cell differentiation. Breast Cancer Res 2023; 25:91. [PMID: 37542268 PMCID: PMC10401798 DOI: 10.1186/s13058-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
A hallmark of many malignant tumors is dedifferentiated (immature) cells bearing slight or no resemblance to the normal cells from which the cancer originated. Tumor dedifferentiated cells exhibit a higher capacity to survive to chemo and radiotherapies and have the ability to incite tumor relapse. Inducing cancer cell differentiation would abolish their self-renewal and invasive capacity and could be combined with the current standard of care, especially in poorly differentiated and aggressive tumors (with worst prognosis). However, differentiation therapy is still in its early stages and the intrinsic complexity of solid tumor heterogeneity demands innovative approaches in order to be efficiently translated into the clinic. We demonstrate here that microRNA 203, a potent driver of differentiation in pluripotent stem cells (ESCs and iPSCs), promotes the differentiation of mammary gland tumor cells. Combining mouse in vivo approaches and both mouse and human-derived tridimensional organoid cultures, we report that miR-203 influences the self-renewal capacity, plasticity and differentiation potential of breast cancer cells and prevents tumor cell growth in vivo. Our work sheds light on differentiation-based antitumor therapies and offers miR-203 as a promising tool for directly confronting the tumor-maintaining and regeneration capability of cancer cells.
Collapse
Affiliation(s)
- Nuria G Martínez-Illescas
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, CNIO, Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), San Pablo-CEU University, Madrid, Spain
| | | | - Alfonso Cortés-Peña
- Flow Cytometry and Fluorescence Microscopy Unit (CAI), Complutense University, Madrid, Spain
| | | | - Zaira Vega
- Histopathology Unit, CNIO, Madrid, Spain
| | | | | | | | - Eva Ciruelos
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Consuelo Sanz
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Sofía Aragón
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Leisy Sotolongo
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Sara Jiménez
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | | | | | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Cancer Cell Cycle Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, Barcelona, Spain.
| | - María Salazar-Roa
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain.
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
9
|
Rentz LE, Whetsell MA, Clayton SA, Mizener AD, Holásková I, Chapa MG, Hoblitzell EH, Eubank TD, Pistilli EE. Sexual Dimorphism of Skeletal Muscle in a Mouse Model of Breast Cancer: A Functional and Molecular Analysis. Int J Mol Sci 2023; 24:11669. [PMID: 37511427 PMCID: PMC10380440 DOI: 10.3390/ijms241411669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer incidence in men is statistically rare; however, given the lack of screening in males, more advanced stages at initial diagnosis result in lower 5-year survival rates for men with breast cancer compared to women. A sexual dimorphism, with respect to the effect of tumor growth on cachexia incidence and severity, has also been reported across cancer types. The purpose of this study was to examine the sexual dimorphism of breast cancer as it pertains to skeletal muscle function and molecular composition. Using female and male transgenic PyMT mice, we tested the hypothesis that the isometric contractile properties and molecular composition of skeletal muscle would be differentially affected by breast tumors. PyMT tumor-bearing mice of each sex, corresponding to maximal tumor burden, were compared to their respective controls. RNA sequencing of skeletal muscle revealed different pathway alterations that were exclusive to each sex. Further, differentially expressed genes and pathways were substantially more abundant in female tumor mice, with only minimal dysregulation in male tumor mice, each compared to their respective controls. These differences in the transcriptome were mirrored in isometric contractile properties, with greater tumor-induced dysfunction in females than male mice, as well as muscle wasting. Collectively, these data support the concept of sexually dimorphic responses to cancer in skeletal muscle and suggest that these responses may be associated with the clinical differences in breast cancer between the sexes. The identified sex-dependent pathways within the muscle of male and female mice provide a framework to evaluate therapeutic strategies targeting tumor-associated skeletal muscle alterations.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Marcella A. Whetsell
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Stuart A. Clayton
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Alan D. Mizener
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
| | - Ida Holásková
- Office of Statistics, West Virginia Agriculture and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Matthew G. Chapa
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
| | - Emily H. Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| |
Collapse
|
10
|
Tolg C, Milojevic M, Qi FW, Pavanel HA, Locke MEO, Ma J, Price M, Nelson AC, McCarthy JB, Hill KA, Turley EA. RHAMM regulates MMTV-PyMT-induced lung metastasis by connecting STING-dependent DNA damage sensing to interferon/STAT1 pro-apoptosis signaling. Breast Cancer Res 2023; 25:74. [PMID: 37349798 PMCID: PMC10286489 DOI: 10.1186/s13058-023-01652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/28/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND RHAMM is a multifunctional protein that is upregulated in breast tumors, and the presence of strongly RHAMM+ve cancer cell subsets associates with elevated risk of peripheral metastasis. Experimentally, RHAMM impacts cell cycle progression and cell migration. However, the RHAMM functions that contribute to breast cancer metastasis are poorly understood. METHODS We interrogated the metastatic functions of RHAMM using a loss-of-function approach by crossing the MMTV-PyMT mouse model of breast cancer susceptibility with Rhamm-/- mice. In vitro analyses of known RHAMM functions were performed using primary tumor cell cultures and MMTV-PyMT cell lines. Somatic mutations were identified using a mouse genotyping array. RNA-seq was performed to identify transcriptome changes resulting from Rhamm-loss, and SiRNA and CRISPR/Cas9 gene editing was used to establish cause and effect of survival mechanisms in vitro. RESULTS Rhamm-loss does not alter initiation or growth of MMTV-PyMT-induced primary tumors but unexpectedly increases lung metastasis. Increased metastatic propensity with Rhamm-loss is not associated with obvious alterations in proliferation, epithelial plasticity, migration, invasion or genomic stability. SNV analyses identify positive selection of Rhamm-/- primary tumor clones that are enriched in lung metastases. Rhamm-/- tumor clones are characterized by an increased ability to survive with ROS-mediated DNA damage, which associates with blunted expression of interferon pathway and target genes, particularly those implicated in DNA damage-resistance. Mechanistic analyses show that ablating RHAMM expression in breast tumor cells by siRNA knockdown or CRISPR-Cas9 gene editing blunts interferon signaling activation by STING agonists and reduces STING agonist-induced apoptosis. The metastasis-specific effect of RHAMM expression-loss is linked to microenvironmental factors unique to tumor-bearing lung tissue, notably high ROS and TGFB levels. These factors promote STING-induced apoptosis of RHAMM+ve tumor cells to a significantly greater extent than RHAMM-ve comparators. As predicted by these results, colony size of Wildtype lung metastases is inversely related to RHAMM expression. CONCLUSION RHAMM expression-loss blunts STING-IFN signaling, which offers growth advantages under specific microenvironmental conditions of lung tissue. These results provide mechanistic insight into factors controlling clonal survival/expansion of metastatic colonies and has translational potential for RHAMM expression as a marker of sensitivity to interferon therapy.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Maja Milojevic
- Departments of Biology, Western University, London, ON, Canada
| | - Freda W Qi
- Departments of Biology, Western University, London, ON, Canada
| | | | - M Elizabeth O Locke
- Departments of Biology, Western University, London, ON, Canada
- Departments of Computer Science, Western University, London, ON, Canada
| | - Jenny Ma
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Mathew Price
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - James B McCarthy
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen A Hill
- Departments of Biology, Western University, London, ON, Canada.
- Departments of Computer Science, Western University, London, ON, Canada.
| | - Eva A Turley
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
- Departments of Biochemistry, Oncology and Surgery, Western University, London, ON, Canada.
| |
Collapse
|
11
|
Rentz LE, Whetsell M, Clayton SA, Mizener AD, Holásková I, Chapa MG, Hoblitzell EH, Eubank TD, Pistilli EE. Sexual Dimorphism of Skeletal Muscle in a Mouse Model of Breast Cancer: A Functional and Molecular Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544049. [PMID: 37362158 PMCID: PMC10288531 DOI: 10.1101/2023.06.07.544049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Breast cancer incidence in men is statistically rare; however, given the lack of screening in males, more advanced stages at initial diagnosis results in lower 5-year survival rates for men with breast cancer compared to women. A sexual dimorphism, with respect to the effect of tumor growth on cachexia incidence and severity, has also been reported across cancer types. The purpose of this study was to examine the sexual dimorphism of breast cancer as it pertains to skeletal muscle function and molecular composition. Using female and male transgenic PyMT mice, we tested the hypothesis that isometric contractile properties and molecular composition of skeletal muscle would be differentially affected by breast tumors. PyMT tumor-bearing mice of each sex, corresponding to maximal tumor burden, were compared to their respective controls. RNA-sequencing of skeletal muscle revealed different pathway alterations that were exclusive to each sex. Further, differentially expressed genes and pathways were substantially more abundant in female tumor mice, with only minimal dysregulation in male tumor mice, each compared to their respective controls. These differences in the transcriptome were mirrored in isometric contractile properties, with greater tumor-induced dysfunction in females than male mice, as well as muscle wasting. Collectively, these data support the concept of sexually dimorphic responses to cancer in skeletal muscle and suggest these responses may be associated with the clinical differences in breast cancer between the sexes. The identified sex-dependent pathways within muscle of male and female mice provide a framework to evaluate therapeutic strategies targeting tumor-associated skeletal muscle alterations.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Marcella Whetsell
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Stuart A. Clayton
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Alan D. Mizener
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Ida Holásková
- Office of Statistics, West Virginia Agriculture and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Matthew G. Chapa
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - E. Hannah Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Timothy D. Eubank
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| |
Collapse
|
12
|
Ortiz MMO, Andrechek ER. Molecular Characterization and Landscape of Breast cancer Models from a multi-omics Perspective. J Mammary Gland Biol Neoplasia 2023; 28:12. [PMID: 37269418 DOI: 10.1007/s10911-023-09540-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Breast cancer is well-known to be a highly heterogenous disease. This facet of cancer makes finding a research model that mirrors the disparate intrinsic features challenging. With advances in multi-omics technologies, establishing parallels between the various models and human tumors is increasingly intricate. Here we review the various model systems and their relation to primary breast tumors using available omics data platforms. Among the research models reviewed here, breast cancer cell lines have the least resemblance to human tumors since they have accumulated many mutations and copy number alterations during their long use. Moreover, individual proteomic and metabolomic profiles do not overlap with the molecular landscape of breast cancer. Interestingly, omics analysis revealed that the initial subtype classification of some breast cancer cell lines was inappropriate. In cell lines the major subtypes are all well represented and share some features with primary tumors. In contrast, patient-derived xenografts (PDX) and patient-derived organoids (PDO) are superior in mirroring human breast cancers at many levels, making them suitable models for drug screening and molecular analysis. While patient derived organoids are spread across luminal, basal- and normal-like subtypes, the PDX samples were initially largely basal but other subtypes have been increasingly described. Murine models offer heterogenous tumor landscapes, inter and intra-model heterogeneity, and give rise to tumors of different phenotypes and histology. Murine models have a reduced mutational burden compared to human breast cancer but share some transcriptomic resemblance, and representation of many breast cancer subtypes can be found among the variety subtypes. To date, while mammospheres and three- dimensional cultures lack comprehensive omics data, these are excellent models for the study of stem cells, cell fate decision and differentiation, and have also been used for drug screening. Therefore, this review explores the molecular landscapes and characterization of breast cancer research models by comparing recent published multi-omics data and analysis.
Collapse
Affiliation(s)
- Mylena M O Ortiz
- Genetics and Genomics Science Program, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
13
|
Aboouf MA, Armbruster J, Guscetti F, Thiersch M, Boss A, Gödecke A, Winning S, Padberg C, Fandrey J, Kristiansen G, Bicker A, Hankeln T, Gassmann M, Gorr TA. Endogenous myoglobin expression in mouse models of mammary carcinoma reduces hypoxia and metastasis in PyMT mice. Sci Rep 2023; 13:7530. [PMID: 37161046 PMCID: PMC10170105 DOI: 10.1038/s41598-023-34614-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/04/2023] [Indexed: 05/11/2023] Open
Abstract
Myoglobin (MB) is expressed in different cancer types and may act as a tumor suppressor in breast cancer. The mechanisms by which basal MB expression level impacts murine mammary tumorigenesis are unclear. We investigated how MB expression in breast cancer influences proliferation, metastasis, tumor hypoxia, and chemotherapy treatment in vivo. We crossed PyMT and WapCreTrp53flox mammary cancer mouse models that differed in tumor grade/type and onset of mammary carcinoma with MB knockout mice. The loss of MB in WapCre;Trp53flox mice did not affect tumor development and progression. On the other hand, loss of MB decreased tumor growth and increased tissue hypoxia as well as the number of lung metastases in PyMT mice. Furthermore, Doxorubicin therapy prevented the stronger metastatic propensity of MB-deficient tumors in PyMT mice. This suggests that, although MB expression predicts improved prognosis in breast cancer patients, MB-deficient tumors may still respond well to first-line therapies. We propose that determining the expression level of MB in malignant breast cancer biopsies will improve tumor stratification, outcome prediction, and personalized therapy in cancer patients.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Franco Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Boss
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Axel Gödecke
- Institute of Cardiovascular Pathology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Sandra Winning
- Institute for Physiology, University Duisburg-Essen, 47057, Essen, Germany
| | - Claudia Padberg
- Institute for Physiology, University Duisburg-Essen, 47057, Essen, Germany
| | - Joachim Fandrey
- Institute for Physiology, University Duisburg-Essen, 47057, Essen, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular and Genome Analysis, Johannes Gutenberg University, 55099, Mainz, Germany
- University Medical Center Mainz, I. Medical Clinic, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular and Genome Analysis, Johannes Gutenberg University, 55099, Mainz, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Thomas A Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| |
Collapse
|
14
|
Ito S, Chambers JK, Son NV, Kita C, Ise KI, Miwa Y, Nakayama H, Uchida K. Hamster polyomavirus-associated T-cell lymphomas in Syrian hamsters ( Mesocricetus auratus). Vet Pathol 2023; 60:267-275. [PMID: 36537739 DOI: 10.1177/03009858221140823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hamster polyomavirus (HaPyV) infection has been associated with lymphomas in Syrian hamsters. In the present study, 14 cases of lymphoma in pet Syrian hamsters were pathologically examined and the involvement of HaPyV was investigated. Among 14 cases, 11 were abdominal and 3 were cutaneous lymphomas. The average ages of hamsters with abdominal lymphoma and cutaneous lymphoma were 7 months (range: 4-12 months) and 14 months (range: 6-23 months), respectively. Histologically, abdominal lymphomas were characterized by the diffuse growth of tumor cells with intermediate or large nuclei, low mitotic rates, the presence of tingible body macrophages, and the T-cell immunophenotype. Furthermore, 4/11 abdominal lymphomas were immunopositive for T-cell intracellular antigen-1, suggesting cytotoxic T-cell lymphomas. Cutaneous lymphomas were diagnosed as nonepitheliotropic T-cell lymphoma. Polymerase chain reaction (PCR) detected HaPyV DNA in 12/14 samples, and a sequence analysis of PCR amplicons confirmed >99% nucleotide identity to the published HaPyV sequences. In situ hybridization (ISH) for HaPyV DNA resulted in diffuse nuclear signals within tumor cells in 10/14 cases. Consistent with previous findings, all HaPyV-associated lymphomas were observed in the abdominal cavity of young hamsters. Polymerase chain reaction and ISH were useful for identifying the involvement of HaPyV in lymphomas, and ISH results indicated the presence of episomal HaPyV in neoplastic lymphocytes. The present study suggests that HaPyV infection is highly involved in abdominal lymphomas in young pet Syrian hamsters in Japan and provides diagnostic information on HaPyV-associated lymphoma.
Collapse
Affiliation(s)
- Soma Ito
- The University of Tokyo, Tokyo, Japan
| | | | - Nguyen Vu Son
- The University of Tokyo, Tokyo, Japan.,Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Chiaki Kita
- Shikoku Cytopathological Laboratory, Takamatsu-shi, Japan
| | | | - Yasutsugu Miwa
- Miwa Exotic Animal Hospital, Tokyo, Japan.,Vision Vets Group Lab, Tokyo, Japan
| | | | | |
Collapse
|
15
|
Pro-Apoptotic and Anti-Invasive Properties Underscore the Tumor-Suppressing Impact of Myoglobin on a Subset of Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231911483. [PMID: 36232784 PMCID: PMC9570501 DOI: 10.3390/ijms231911483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The expression of myoglobin (MB), well known as the oxygen storage and transport protein of myocytes, is a novel hallmark of the luminal subtype in breast cancer patients and correlates with better prognosis. The mechanisms by which MB impacts mammary tumorigenesis are hitherto unclear. We aimed to unravel this role by using CRISPR/Cas9 technology to generate MB-deficient clones of MCF7 and SKBR3 breast cancer cell lines and subsequently characterize them by transcriptomics plus molecular and functional analyses. As main findings, loss of MB at normoxia upregulated the expression of cell cyclins and increased cell survival, while it prevented apoptosis in MCF7 cells. Additionally, MB-deficient cells were less sensitive to doxorubicin but not ionizing radiation. Under hypoxia, the loss of MB enhanced the partial epithelial to mesenchymal transition, thus, augmenting the migratory and invasive behavior of cells. Notably, in human invasive mammary ductal carcinoma tissues, MB and apoptotic marker levels were positively correlated. In addition, MB protein expression in invasive ductal carcinomas was associated with a positive prognostic value, independent of the known tumor suppressor p53. In conclusion, we provide multiple lines of evidence that endogenous MB in cancer cells by itself exerts novel tumor-suppressive roles through which it can reduce cancer malignancy.
Collapse
|
16
|
Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. Nat Immunol 2022; 23:904-915. [PMID: 35618834 DOI: 10.1038/s41590-022-01213-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that although clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8+ T cells that negatively correlated with patient prognosis, chromophobe RCC (chRCC) had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival. Interleukin-15 (IL-15) promoted ILC1 granzyme A expression and cytotoxicity, and IL-15 expression in chRCC tumor tissue positively tracked with the ILC1 response. An ILC1 gene signature also predicted survival of a subset of breast cancer patients in association with IL-15 expression. Notably, ILC1s directly interacted with cancer cells, and IL-15 produced by cancer cells supported the expansion and anti-tumor function of ILC1s in a murine breast cancer model. Thus, ILC1 sensing of cancer cell IL-15 defines an immunosurveillance mechanism of epithelial malignancies.
Collapse
|
17
|
Hunt BG, Jones A, Lester C, Davis JC, Benight NM, Waltz SE. RON ( MST1R) and HGFL ( MST1) Co-Overexpression Supports Breast Tumorigenesis through Autocrine and Paracrine Cellular Crosstalk. Cancers (Basel) 2022; 14:2493. [PMID: 35626096 PMCID: PMC9140067 DOI: 10.3390/cancers14102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Aberrant RON signaling is present in numerous cancers including breast cancer. Evidence suggests that the ligand, hepatocyte growth factor-like (HGFL), is also overexpressed in breast cancer. RON (MST1R) and HGFL (MST1) genes are located on human chromosome 3 and mouse chromosome 9 respectively and are found near each other in both species. Based on co-expression patterns, we posited that RON and HGFL are co-regulated and that coordinate upregulation drives aggressive tumorigenesis. METHODS Mouse models were used to establish the functional significance of RON and HGFL co-overexpression on the activation of tumor cells and tumor-associated macrophages in breast cancer. TCGA and METABRIC gene expression and alteration data were used to query the relationships between MST1R and MST1 in breast cancer. RESULTS In tumor models, physiologic sources of HGFL modestly improve Arginase-1+ (M2) macrophage recruitment to the tumor proper. Tumor-cell produced HGFL functions in autocrine to sustain tumor cell RON activation and MAPK-dependent secretion of chemotactic factors and in paracrine to activate RON on macrophages and to promote breast cancer stem cell self-renewal. In silico analyses support that RON and HGFL are co-expressed across virtually all cancer types including breast cancer and that common genomic alterations do not appear to be drivers of RON/HGFL co-overexpression. CONCLUSIONS Co-overexpression of RON and HGFL in breast cancer cells (augmented by physiologic sources of HGFL) promotes tumorigenesis through autocrine-mediated RON activation/RON-dependent secretome changes and paracrine activation of macrophage RON to promote breast cancer stem cell self-renewal.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
18
|
Song Y, Bugada L, Li R, Hu H, Zhang L, Li C, Yuan H, Rajanayake KK, Truchan NA, Wen F, Gao W, Sun D. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Sci Transl Med 2022; 14:eabl3649. [PMID: 35507675 DOI: 10.1126/scitranslmed.abl3649] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunomodulators that remodel the tumor immunosuppressive microenvironment have been combined with anti-programmed death 1 (α-PD1) or anti-programmed death ligand 1 (α-PDL1) immunotherapy but have shown limited success in clinical trials. However, therapeutic strategies to modulate the immunosuppressive microenvironment of lymph nodes have been largely overlooked. Here, we designed an albumin nanoparticle, Nano-PI, containing the immunomodulators PI3Kγ inhibitor (IPI-549) and paclitaxel (PTX). We treated two breast cancer mouse models with Nano-PI in combination with α-PD1, which remodeled the tumor microenvironment in both lymph nodes and tumors. This combination achieved long-term tumor remission in mouse models and eliminated lung metastases. PTX combined with IPI-549 enabled the formation of a stable nanoparticle and enhanced the repolarization of M2 to M1 macrophages. Nano-PI not only enhanced the delivery of both immunomodulators to lymph nodes and tumors but also improved the drug accumulation in the macrophages of these two tissues. Immune cell profiling revealed that the combination of Nano-PI with α-PD1 remodeled the immune microenvironment by polarizing M2 to M1 macrophages, increasing CD4+ and CD8+ T cells, B cells, and dendritic cells, decreasing regulatory T cells, and preventing T cell exhaustion. Our data suggest that Nano-PI in combination with α-PD1 modulates the immune microenvironment in both lymph nodes and tumors to achieve long-term remission in mice with metastatic breast cancer, and represents a promising candidate for future clinical trials.
Collapse
Affiliation(s)
- Yudong Song
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luke Bugada
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruiting Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luchen Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chengyi Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Krishani Kumari Rajanayake
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan A Truchan
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fei Wen
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Ho WHJ, Law AMK, Masle-Farquhar E, Castillo LE, Mawson A, O'Bryan MK, Goodnow CC, Gallego-Ortega D, Oakes SR, Ormandy CJ. Activation of the viral sensor oligoadenylate synthetase 2 (Oas2) prevents pregnancy-driven mammary cancer metastases. Breast Cancer Res 2022; 24:31. [PMID: 35505346 PMCID: PMC9066770 DOI: 10.1186/s13058-022-01525-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interferon response can influence the primary and metastatic activity of breast cancers and can interact with checkpoint immunotherapy to modulate its effects. Using N-ethyl-N-nitrosourea mutagenesis, we found a mouse with an activating mutation in oligoadenylate synthetase 2 (Oas2), a sensor of viral double stranded RNA, that resulted in an interferon response and prevented lactation in otherwise healthy mice. METHODS To determine if sole activation of Oas2 could alter the course of mammary cancer, we combined the Oas2 mutation with the MMTV-PyMT oncogene model of breast cancer and examined disease progression and the effects of checkpoint immunotherapy using Kaplan-Meier survival analysis with immunohistochemistry and flow cytometry. RESULTS Oas2 mutation prevented pregnancy from increasing metastases to lung. Checkpoint immunotherapy with antibodies against programmed death-ligand 1 was more effective when the Oas2 mutation was present. CONCLUSIONS These data establish OAS2 as a therapeutic target for agents designed to reduce metastases and increase the effectiveness of checkpoint immunotherapy.
Collapse
Affiliation(s)
- Wing-Hong Jonathan Ho
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia.,St. Vincent's Clinical School, St. Vincent's Hospital, UNSW Sydney, Kensington, NSW, Australia
| | - Andrew M K Law
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia.,St. Vincent's Clinical School, St. Vincent's Hospital, UNSW Sydney, Kensington, NSW, Australia
| | - Etienne Masle-Farquhar
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia.,St. Vincent's Clinical School, St. Vincent's Hospital, UNSW Sydney, Kensington, NSW, Australia
| | - Lesley E Castillo
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia.,St. Vincent's Clinical School, St. Vincent's Hospital, UNSW Sydney, Kensington, NSW, Australia
| | - Amanda Mawson
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia.,St. Vincent's Clinical School, St. Vincent's Hospital, UNSW Sydney, Kensington, NSW, Australia
| | - Moira K O'Bryan
- The School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia.,Cellular Genomics Futures Institute, UNSW Sydney, Kensington, NSW, Australia
| | - David Gallego-Ortega
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia.,St. Vincent's Clinical School, St. Vincent's Hospital, UNSW Sydney, Kensington, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, 81 Broadway, Ultimo Sydney, NSW, 2007, Australia
| | - Samantha R Oakes
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia.,St. Vincent's Clinical School, St. Vincent's Hospital, UNSW Sydney, Kensington, NSW, Australia.,National Breast Cancer Foundation Level 7, 50 Margaret Street, Sydney, NSW, 2001, Australia
| | - Christopher J Ormandy
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW, 2010, Australia. .,St. Vincent's Clinical School, St. Vincent's Hospital, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
20
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
21
|
Schreiber C, Gruber A, Roßwag S, Saraswati S, Harkins S, Thiele W, Foroushani ZH, Munding N, Schmaus A, Rothley M, Dimmler A, Tanaka M, Garvalov BK, Sleeman JP. Loss of ASAP1 in the MMTV-PyMT model of luminal breast cancer activates AKT, accelerates tumorigenesis, and promotes metastasis. Cancer Lett 2022; 533:215600. [PMID: 35181478 DOI: 10.1016/j.canlet.2022.215600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis in a variety of cancers, and can promote cell migration, invasion and metastasis. Although amplification and expression of ASAP1 has been associated with poor survival in breast cancer, we found that in the autochthonous MMTV-PyMT model of luminal breast cancer, ablation of ASAP1 resulted in an earlier onset of tumor initiation and increased metastasis. This was due to tumor cell-intrinsic effects of ASAP1 deletion, as ASAP1 deficiency in tumor, but not in stromal cells was sufficient to replicate the enhanced tumorigenicity and metastasis observed in the ASAP1-null MMTV-PyMT mice. Loss of ASAP1 in MMTV-PyMT mice had no effect on proliferation, apoptosis, angiogenesis or immune cell infiltration, but enhanced mammary gland hyperplasia and tumor cell invasion, indicating that ASAP1 can accelerate tumor initiation and promote dissemination. Mechanistically, these effects were associated with a potent activation of AKT. Importantly, lower ASAP1 levels correlated with poor prognosis and enhanced AKT activation in human ER+/luminal breast tumors, validating our findings in the MMTV-PyMT mouse model for this subtype of breast cancer. Taken together, our findings reveal that ASAP1 can have distinct functions in different tumor types and demonstrate a tumor suppressive activity for ASAP1 in luminal breast cancer.
Collapse
Affiliation(s)
- Caroline Schreiber
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Annette Gruber
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Sven Roßwag
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Supriya Saraswati
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Shannon Harkins
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Zahra Hajian Foroushani
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Natalie Munding
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Melanie Rothley
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Arno Dimmler
- Vincentius-Diakonissen-Kliniken, 76135, Karlsruhe, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany.
| |
Collapse
|
22
|
Vafaizadeh V, Buechel D, Rubinstein N, Kalathur RKR, Bazzani L, Saxena M, Valenta T, Hausmann G, Cantù C, Basler K, Christofori G. The interactions of Bcl9/Bcl9L with β-catenin and Pygopus promote breast cancer growth, invasion, and metastasis. Oncogene 2021; 40:6195-6209. [PMID: 34545187 PMCID: PMC8553620 DOI: 10.1038/s41388-021-02016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Canonical Wnt/β-catenin signaling is an established regulator of cellular state and its critical contributions to tumor initiation, malignant tumor progression and metastasis formation have been demonstrated in various cancer types. Here, we investigated how the binding of β-catenin to the transcriptional coactivators B-cell CLL/lymphoma 9 (Bcl9) and Bcl9-Like (Bcl9L) affected mammary gland carcinogenesis in the MMTV-PyMT transgenic mouse model of metastatic breast cancer. Conditional knockout of both Bcl9 and Bcl9L resulted into tumor cell death. In contrast, disrupting the interaction of Bcl9/Bcl9L with β-catenin, either by deletion of their HD2 domains or by a point mutation in the N-terminal domain of β-catenin (D164A), diminished primary tumor growth and tumor cell proliferation and reduced tumor cell invasion and lung metastasis. In comparison, the disruption of HD1 domain-mediated binding of Bcl9/Bcl9L to Pygopus had only moderate effects. Interestingly, interfering with the β-catenin-Bcl9/Bcl9L-Pygo chain of adapters only partially impaired the transcriptional response of mammary tumor cells to Wnt3a and TGFβ treatments. Together, the results indicate that Bcl9/Bcl9L modulate but are not critically required for canonical Wnt signaling in its contribution to breast cancer growth and malignant progression, a notion consistent with the “just-right” hypothesis of Wnt-driven tumor progression.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - David Buechel
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Natalia Rubinstein
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ravi K R Kalathur
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lorenzo Bazzani
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Meera Saxena
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
23
|
Lal JC, Townsend MG, Mehta AK, Oliwa M, Miller E, Sotayo A, Cheney E, Mittendorf EA, Letai A, Guerriero JL. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer. Breast Cancer Res 2021; 23:83. [PMID: 34353349 PMCID: PMC8340363 DOI: 10.1186/s13058-021-01448-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The heterogeneity of the breast tumor microenvironment (TME) may contribute to the lack of durable responses to immune checkpoint blockade (ICB); however, mouse models to test this are currently lacking. Proper selection and use of preclinical models are necessary for rigorous, preclinical studies to rapidly move laboratory findings into the clinic. METHODS Three versions of a common syngeneic model derived from the MMTV-PyMT autochthonous model were generated by inoculating 1E6, 1E5, or 1E4 cells derived from the MMTV-PyMT mouse into wildtype recipient mice. To elucidate how tumor latency and TME heterogeneity contribute to ICB resistance, comprehensive characterization of the TME using quantitative flow-cytometry and RNA expression analysis (NanoString) was performed. Subsequently, response to ICB was tested. These procedures were repeated using the EMT6 breast cancer model. RESULTS The 3 syngeneic versions of the MMTV-PyMT model had vastly different TMEs that correlated to ICB response. The number of cells used to generate syngeneic tumors significantly influenced tumor latency, infiltrating leukocyte populations, and response to ICB. These results were confirmed using the EMT6 breast cancer model. Compared to the MMTV-PyMT autochthonous model, all 3 MMTV-PyMT syngeneic models had significantly more tumor-infiltrating lymphocytes (TILs; CD3+, CD4+, and CD8+) and higher proportions of PD-L1-positive myeloid cells, whereas the MMTV-PyMT autochthonous model had the highest frequency of myeloid cells out of total leukocytes. Increased TILs correlated with response to anti-PD-L1 and anti-CTLA-4 therapy, but PD-L1expression on tumor cells or PD-1 expression of T cells did not. CONCLUSIONS These studies reveal that tumor cell number correlates with tumor latency, TME, and response to ICB. ICB-sensitive and resistant syngeneic breast cancer models were identified, in which the 1E4 syngeneic model was most resistant to ICB. Given the lack of benefit from ICB in breast cancer, identifying robust murine models presented here provides the opportunity to further interrogate the TME for breast cancer treatment and provide novel insights into therapeutic combinations to overcome ICB resistance.
Collapse
Affiliation(s)
- Jessica Castrillon Lal
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Madeline G Townsend
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anita K Mehta
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Madisson Oliwa
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | | | - Alaba Sotayo
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Emily Cheney
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Elizabeth A Mittendorf
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.,Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA. .,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA. .,Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Li J, Huang L, He Z, Chen M, Ding Y, Yao Y, Duan Y, Zixuan L, Qi C, Zheng L, Li J, Zhang R, Li X, Dai J, Wang L, Zhang QQ. Andrographolide Suppresses the Growth and Metastasis of Luminal-Like Breast Cancer by Inhibiting the NF-κB/miR-21-5p/PDCD4 Signaling Pathway. Front Cell Dev Biol 2021; 9:643525. [PMID: 34249905 PMCID: PMC8261247 DOI: 10.3389/fcell.2021.643525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Tumor growth and metastasis are responsible for breast cancer-related mortality. Andrographolide (Andro) is a traditional anti-inflammatory drug used in the clinic that inhibits NF-κB activation. Recently, Andro has been found in the treatment of various cancers. Andro inhibits breast cell proliferation and invasion and induces apoptosis via activating various signaling pathways. Therefore, the underlying mechanisms with regard to the antitumor effects of Andro still need to be further confirmed. Herein, a MMTV-PyMT spontaneous luminal-like breast cancer lung metastatic transgenic tumor model was employed to estimate the antitumor effects of Andro on breast cancer in vivo. Andro significantly inhibited tumor growth and metastasis in MMTV-PyMT mice and suppressed the cell proliferation, migration, and invasion of MCF-7 breast cancer cells in vitro. Meanwhile, Andro significantly inhibited the expression of NF-κB, and the downregulated NF-κB reduced miR-21-5p expression. In addition, miR-21-5p dramatically inhibited the target gene expression of programmed cell death protein 4 (PDCD4). In the current study, we demonstrated the potential anticancer effects of Andro on luminal-like breast cancer and indicated that Andro inhibits the expression of miR-21-5p and further promotes PDCD4 via NF-κB suppression. Therefore, Andro could be an antitumor agent for the treatment of luminal-like breast cancer in the clinic.
Collapse
Affiliation(s)
- Junchen Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lixun Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zinan He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minggui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ding
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuying Yao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Youfa Duan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zixuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoming Li
- Department of Pathology, People's Hospital of Baoan District, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianwei Dai
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
25
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
26
|
Wei L, Lu X, Weng S, Zhu S, Chen Y. Cholesteryl Ester Promotes Mammary Tumor Growth in MMTV-PyMT Mice and Activates Akt-mTOR Pathway in Tumor Cells. Biomolecules 2021; 11:biom11060853. [PMID: 34201030 PMCID: PMC8228430 DOI: 10.3390/biom11060853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
The association between intratumoral cholesteryl ester (CE) and tumor progression has been reported previously. The objective of our study was to investigate a causal effect of CE on mammary tumor progression. Using MMTV-PyMT (MMTV-polyoma virus middle T) transgenic mice and breast tumor cell MCF-7, we show that both exogenous and endogenous CE can increase mammary tumor growth, that CE upregulates the AKT/mTOR pathway, and that CE synthesis blockade suppresses this signaling pathway. Our data suggest that SOAT1, a sterol O-acyltransferase, may be a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Lengyun Wei
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xuyang Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengmei Weng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
27
|
Regua AT, Arrigo A, Doheny D, Wong GL, Lo HW. Transgenic mouse models of breast cancer. Cancer Lett 2021; 516:73-83. [PMID: 34090924 DOI: 10.1016/j.canlet.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Transgenic breast cancer mouse models are critical tools for preclinical studies of human breast cancer. Genetic editing of the murine mammary gland allows for modeling of abnormal genetic events frequently found in human breast cancers. Genetically engineered mouse models (GEMMs) of breast cancer employ tissue-specific genetic manipulation for tumorigenic induction within the mammary tissue. Under the transcriptional control of mammary-specific promoters, transgenic mouse models can simulate spontaneous mammary tumorigenesis by expressing one or more putative oncogenes, such as MYC, HRAS, and PIK3CA. Alternatively, the Cre-Lox system allows for tissue-specific deletion of tumor suppressors, such as p53, Rb1, and Brca1, or specific knock-in of putative oncogenes. Thus, GEMMs can be designed to implement one or more genetic events to induce mammary tumorigenesis. Features of GEMMs, such as age of transgene expression, breeding quality, tumor latency, histopathological characteristics, and propensity for local and distant metastasis, are variable and strain-dependent. This review aims to summarize currently available transgenic breast cancer mouse models that undergo spontaneous mammary tumorigenesis upon genetic manipulation, their varying characteristics, and their individual genetic manipulations that model aberrant signaling events observed in human breast cancers.
Collapse
Affiliation(s)
- Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| |
Collapse
|
28
|
McFarland AP, Yalin A, Wang SY, Cortez VS, Landsberger T, Sudan R, Peng V, Miller HL, Ricci B, David E, Faccio R, Amit I, Colonna M. Multi-tissue single-cell analysis deconstructs the complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity 2021; 54:1320-1337.e4. [PMID: 33945787 PMCID: PMC8312473 DOI: 10.1016/j.immuni.2021.03.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s) are heterogenous innate lymphocytes broadly defined in mice as Lin-NK1.1+NKp46+ cells that express the transcription factor T-BET and produce interferon-γ. The ILC1 definition primarily stems from studies on liver and small intestinal populations. However, NK1.1+NKp46+ cells in the salivary glands, uterus, adipose, and other tissues exhibit nonuniform programs that differ from those of liver or intestinal ILC1s or NK cells. Here, we performed single-cell RNA sequencing on murine NK1.1+NKp46+ cells from blood, spleen, various tissues, and solid tumors. We identified gene expression programs of tissue-specific ILC1s, tissue-specific NK cells, and non-tissue-specific populations in blood, spleen, and other tissues largely corresponding to circulating cells. Moreover, we found that circulating NK cell programs were reshaped in tumor-bearing mice. Core programs of circulating and tumor NK cells paralleled conserved human NK cells signatures, advancing our understanding of the human NK-ILC1 spectrum.
Collapse
Affiliation(s)
- Adelle P McFarland
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam Yalin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shuang-Yin Wang
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Victor S Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomer Landsberger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Raki Sudan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah L Miller
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Biancamaria Ricci
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO, USA; Shriners Children's Hospital in St. Louis, St. Louis, MO, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Janovec V, Ryabchenko B, Škarková A, Pokorná K, Rösel D, Brábek J, Weber J, Forstová J, Hirsch I, Huérfano S. TLR4-Mediated Recognition of Mouse Polyomavirus Promotes Cancer-Associated Fibroblast-Like Phenotype and Cell Invasiveness. Cancers (Basel) 2021; 13:cancers13092076. [PMID: 33923020 PMCID: PMC8123340 DOI: 10.3390/cancers13092076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
The tumorigenic potential of mouse polyomavirus (MPyV) has been studied for decades in cell culture models and has been mainly attributed to nonstructural middle T antigen (MT), which acts as a scaffold signal adaptor, activates Src tyrosine kinases, and possesses transforming ability. We hypothesized that MPyV could also transform mouse cells independent of MT via a Toll-like receptor 4 (TLR4)-mediated inflammatory mechanism. To this end, we investigated the interaction of MPyV with TLR4 in mouse embryonic fibroblasts (MEFs) and 3T6 cells, resulting in secretion of interleukin 6 (IL-6), independent of active viral replication. TLR4 colocalized with MPyV capsid protein VP1 in MEFs. Neither TLR4 activation nor recombinant IL-6 inhibited MPyV replication in MEFs and 3T6 cells. MPyV induced STAT3 phosphorylation through both direct and MT-dependent and indirect and TLR4/IL-6-dependent mechanisms. We demonstrate that uninfected mouse fibroblasts exposed to the cytokine environment from MPyV-infected fibroblasts upregulated the expressions of MCP-1, CCL-5, and α-SMA. Moreover, the cytokine microenvironment increased the invasiveness of MEFs and CT26 carcinoma cells. Collectively, TLR4 recognition of MPyV induces a cytokine environment that promotes the cancer-associated fibroblast (CAF)-like phenotype in noninfected fibroblasts and increases cell invasiveness.
Collapse
Affiliation(s)
- Vaclav Janovec
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150 Vestec, Czech Republic; (V.J.); (B.R.); (J.F.); (S.H.)
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (K.P.); (J.W.)
| | - Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150 Vestec, Czech Republic; (V.J.); (B.R.); (J.F.); (S.H.)
| | - Aneta Škarková
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, 25150 Vestec, Czech Republic; (A.Š.); (D.R.); (J.B.)
| | - Karolína Pokorná
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (K.P.); (J.W.)
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, 25150 Vestec, Czech Republic; (A.Š.); (D.R.); (J.B.)
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, 25150 Vestec, Czech Republic; (A.Š.); (D.R.); (J.B.)
| | - Jan Weber
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (K.P.); (J.W.)
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150 Vestec, Czech Republic; (V.J.); (B.R.); (J.F.); (S.H.)
| | - Ivan Hirsch
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150 Vestec, Czech Republic; (V.J.); (B.R.); (J.F.); (S.H.)
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (K.P.); (J.W.)
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Correspondence: ; Tel.: +420-221-951-723
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150 Vestec, Czech Republic; (V.J.); (B.R.); (J.F.); (S.H.)
| |
Collapse
|
30
|
Vogel CFA, Lazennec G, Kado SY, Dahlem C, He Y, Castaneda A, Ishihara Y, Vogeley C, Rossi A, Haarmann-Stemmann T, Jugan J, Mori H, Borowsky AD, La Merrill MA, Sweeney C. Targeting the Aryl Hydrocarbon Receptor Signaling Pathway in Breast Cancer Development. Front Immunol 2021; 12:625346. [PMID: 33763068 PMCID: PMC7982668 DOI: 10.3389/fimmu.2021.625346] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to known human carcinogens including dioxins can lead to the promotion of breast cancer. While the repressor protein of the AhR (AhRR) blocks the canonical AhR pathway, the function of AhRR in the development of breast cancer is not well-known. In the current study we examined the impact of suppressing AhR activity using its dedicated repressor protein AhRR. AhRR is a putative tumor suppressor and is silenced in several cancer types, including breast, where its loss correlates with shorter patient survival. Using the AhRR transgenic mouse, we demonstrate that AhRR overexpression opposes AhR-driven and inflammation-induced growth of mammary tumors in two different murine models of breast cancer. These include a syngeneic model using E0771 mammary tumor cells as well as the Polyoma Middle T antigen (PyMT) transgenic model. Further AhRR overexpression or knockout of AhR in human breast cancer cells enhanced apoptosis induced by chemotherapeutics and inhibited the growth of mouse mammary tumor cells. This study provides the first in vivo evidence that AhRR suppresses mammary tumor development and suggests that strategies which lead to its functional restoration and expression may have therapeutic benefit.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Antigens, Polyomavirus Transforming/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- MCF-7 Cells
- Mice, Inbred C57BL
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Time Factors
- Tumor Burden
- Tumor Cells, Cultured
- Mice
Collapse
Affiliation(s)
- Christoph F. A. Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | | | - Sarah Y. Kado
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Carla Dahlem
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yi He
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Alejandro Castaneda
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Christian Vogeley
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Juliann Jugan
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D. Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
Expression pattern analysis and drug differential sensitivity of cancer-associated fibroblasts in triple-negative breast cancer. Transl Oncol 2020; 14:100891. [PMID: 33069102 PMCID: PMC7563008 DOI: 10.1016/j.tranon.2020.100891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has the characteristics of a complex molecular landscape, aggressive or high proliferation leading to poor prognosis, and behavioral heterogeneity. The purpose of the present study was to determine the spatiotemporal expression of α-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs) at histological level in 4T1 tumors and to predict the sensitivity to 138 drugs in patients with TNBC according to α-SMA expression. The quantitative results of fibrosis showed that the volume of 4T1 tumors correlated positively with the area of tumor fibrosis. Furthermore, we divided 4T1 tumors according to the degree of fibrosis and characterized the molecular characteristics of the four regions. Finally, the difference in the signaling pathways and sensitivity to 138 drugs was analyzed in patients with TNBC according to α-SMA expression combined with The Cancer Genome Atlas (TCGA) database. The myogenesis, TGF-β, and Notch signaling pathways were upregulated and the patients with TNBC were significantly differentially sensitive to 25 drugs. The results of in vivo experiments showed that the inhibitory effect of embelin on 4T1 tumors with high α-SMA expression was greater than that on 4TO7 tumors with low α-SMA expression. At the same time, embelin significantly decreased α-SMA and PDGFRA expression in 4T1 tumors compared with the control group. Our findings add to understanding of CAF distribution in the 4T1 tumor microenvironment and its possible role in treating cancer.
Collapse
|
32
|
Peters DK, Erickson KD, Garcea RL. Live Cell Microscopy of Murine Polyomavirus Subnuclear Replication Centers. Viruses 2020; 12:v12101123. [PMID: 33023278 PMCID: PMC7650712 DOI: 10.3390/v12101123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/24/2023] Open
Abstract
During polyomavirus (PyV) infection, host proteins localize to subnuclear domains, termed viral replication centers (VRCs), to mediate viral genome replication. Although the protein composition and spatial organization of VRCs have been described using high-resolution immunofluorescence microscopy, little is known about the temporal dynamics of VRC formation over the course of infection. We used live cell fluorescence microscopy to analyze VRC formation during murine PyV (MuPyV) infection of a mouse fibroblast cell line that constitutively expresses a GFP-tagged replication protein A complex subunit (GFP-RPA32). The RPA complex forms a heterotrimer (RPA70/32/14) that regulates cellular DNA replication and repair and is a known VRC component. We validated previous observations that GFP-RPA32 relocalized to sites of cellular DNA damage in uninfected cells and to VRCs in MuPyV-infected cells. We then used GFP-RPA32 as a marker of VRC formation and expansion during live cell microscopy of infected cells. VRC formation occurred at variable times post-infection, but the rate of VRC expansion was similar between cells. Additionally, we found that the early viral protein, small TAg (ST), was required for VRC expansion but not VRC formation, consistent with the role of ST in promoting efficient vDNA replication. These results demonstrate the dynamic nature of VRCs over the course of infection and establish an approach for analyzing viral replication in live cells.
Collapse
Affiliation(s)
- Douglas K. Peters
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
| | - Kimberly D. Erickson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
| | - Robert L. Garcea
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
33
|
Hyun D, Abou-Elkacem L, Bam R, Brickson LL, Herickhoff CD, Dahl JJ. Nondestructive Detection of Targeted Microbubbles Using Dual-Mode Data and Deep Learning for Real-Time Ultrasound Molecular Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3079-3088. [PMID: 32286963 PMCID: PMC7793556 DOI: 10.1109/tmi.2020.2986762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound molecular imaging (UMI) is enabled by targeted microbubbles (MBs), which are highly reflective ultrasound contrast agents that bind to specific biomarkers. Distinguishing between adherent MBs and background signals can be challenging in vivo. The preferred preclinical technique is differential targeted enhancement (DTE), wherein a strong acoustic pulse is used to destroy MBs to verify their locations. However, DTE intrinsically cannot be used for real-time imaging and may cause undesirable bioeffects. In this work, we propose a simple 4-layer convolutional neural network to nondestructively detect adherent MB signatures. We investigated several types of input data to the network: "anatomy-mode" (fundamental frequency), "contrast-mode" (pulse-inversion harmonic frequency), or both, i.e., "dual-mode", using IQ channel signals, the channel sum, or the channel sum magnitude. Training and evaluation were performed on in vivo mouse tumor data and microvessel phantoms. The dual-mode channel signals yielded optimal performance, achieving a soft Dice coefficient of 0.45 and AUC of 0.91 in two test images. In a volumetric acquisition, the network best detected a breast cancer tumor, resulting in a generalized contrast-to-noise ratio (GCNR) of 0.93 and Kolmogorov-Smirnov statistic (KSS) of 0.86, outperforming both regular contrast mode imaging (GCNR = 0.76, KSS = 0.53) and DTE imaging (GCNR = 0.81, KSS = 0.62). Further development of the methodology is necessary to distinguish free from adherent MBs. These results demonstrate that neural networks can be trained to detect targeted MBs with DTE-like quality using nondestructive dual-mode data, and can be used to facilitate the safe and real-time translation of UMI to clinical applications.
Collapse
|
34
|
Jussing E, Lu L, Grafström J, Tegnebratt T, Arnberg F, Rosik HW, Wennborg A, Holmin S, Feldwisch J, Stone-Elander S. [ 68Ga]ABY-028: an albumin-binding domain (ABD) protein-based imaging tracer for positron emission tomography (PET) studies of altered vascular permeability and predictions of albumin-drug conjugate transport. EJNMMI Res 2020; 10:106. [PMID: 32960353 PMCID: PMC7509035 DOI: 10.1186/s13550-020-00694-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Albumin is commonly used as a carrier platform for drugs to extend their circulatory half-lives and influence their uptake into tissues that have altered permeability to the plasma protein. The albumin-binding domain (ABD) protein, which binds in vivo to serum albumin with high affinity, has proven to be a versatile scaffold for engineering biopharmaceuticals with a range of binding capabilities. In this study, the ABD protein equipped with a mal-DOTA chelator (denoted ABY-028) was radiolabeled with gallium-68 (68Ga). This novel radiotracer was then used together with positron emission tomography (PET) imaging to examine variations in the uptake of the ABD-albumin conjugate with variations in endothelial permeability. Results ABY-028, produced by peptide synthesis in excellent purity and stored at − 20 °C, was stable for 24 months (end of study). [68Ga]ABY-028 could be obtained with labeling yields of > 80% and approximately 95% radiochemical purity. [68Ga]ABY-028 distributed in vivo with the plasma pool, with highest radioactivity in the heart ventricles and major vessels of the body, a gradual transport over time from the circulatory system into tissues and elimination via the kidneys. Early [68Ga]ABY-028 uptake differed in xenografts with different vascular properties: mean standard uptake values (SUVmean) were initially 5 times larger in FaDu than in A431 xenografts, but the difference decreased to 3 after 1 h. Cutaneously administered, vasoactive nitroglycerin increased radioactivity in the A431 xenografts. Heterogeneity in the levels and rates of increases of radioactivity uptake was observed in sub-regions of individual MMTV-PyMT mammary tumors and in FaDu xenografts. Higher uptake early after tracer administration could be observed in lower metabolic regions. Fluctuations in the increased permeability for the tracer across the blood-brain-barrier (BBB) direct after experimentally induced stroke were monitored by PET and the increased uptake was confirmed by ex vivo phosphorimaging. Conclusions [68Ga]ABY-028 is a promising new tracer for visualization of changes in albumin uptake due to disease- and pharmacologically altered vascular permeability and their potential effects on the passive uptake of targeting therapeutics based on the ABD protein technology.
Collapse
Affiliation(s)
- Emma Jussing
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden. .,Department of Oncology and Pathology, Karolinska Institutet, SE17177, Stockholm, Sweden. .,Department of Radiopharmacy, Karolinska University Hospital, SE17176, Stockholm, Sweden.
| | - Li Lu
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Comparative Medicine (KERIC), Karolinska University Hospital, SE17176, Stockholm, Sweden
| | - Jonas Grafström
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden
| | - Tetyana Tegnebratt
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Department of Radiopharmacy, Karolinska University Hospital, SE17176, Stockholm, Sweden
| | - Fabian Arnberg
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, SE17176, Stockholm, Sweden
| | - Helena Wållberg Rosik
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Affibody AB, SE17165, Solna, Sweden
| | | | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, SE17176, Stockholm, Sweden
| | | | - Sharon Stone-Elander
- Department of Clinical Neuroscience, Karolinska Institutet, SE17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, SE17176, Stockholm, Sweden
| |
Collapse
|
35
|
Merkel Cell Polyomavirus Large T Antigen Unique Domain Regulates Its Own Protein Stability and Cell Growth. Viruses 2020; 12:v12091043. [PMID: 32962090 PMCID: PMC7551350 DOI: 10.3390/v12091043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Merkel cell polyomavirus (MCV) is the only known human oncogenic virus in the polyomaviridae family and the etiological agent of most Merkel cell carcinomas (MCC). MCC is an aggressive and highly metastatic skin cancer with a propensity for recurrence and poor prognosis. Large tumor antigen (LT), is an essential oncoprotein for MCV transcription, viral replication, and cancer cell proliferation. MCV LT is a short-lived protein that encodes a unique domain: MCV LT unique regions (MURs). These domains consist of phosphorylation sites that interact with multiple E3 ligases, thus limiting LT expression and consequently, viral replication. In this study, we show that MURs are necessary for regulating LT stability via multiple E3 ligase interactions, resulting in cell growth arrest. While expression of wild-type MCV LT induced a decrease in cellular proliferation, deletion of the MUR domains resulted in increased LT stability and cell proliferation. Conversely, addition of MURs to SV40 LT propagated E3 ligase interactions, which in turn, reduced SV40 LT stability and decreased cell growth activity. Our results demonstrate that compared to other human polyomaviruses (HPyVs), MCV LT has evolved to acquire the MUR domains that are essential for MCV LT autoregulation, potentially leading to viral latency and MCC.
Collapse
|
36
|
Matrix Metalloproteinase-11 Promotes Early Mouse Mammary Gland Tumor Growth through Metabolic Reprogramming and Increased IGF1/AKT/FoxO1 Signaling Pathway, Enhanced ER Stress and Alteration in Mitochondrial UPR. Cancers (Basel) 2020; 12:cancers12092357. [PMID: 32825455 PMCID: PMC7565046 DOI: 10.3390/cancers12092357] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinase 11 (MMP11) is an extracellular proteolytic enzyme belonging to the matrix metalloproteinase (MMP11) family. These proteases are involved in extracellular matrix (ECM) remodeling and activation of latent factors. MMP11 is a negative regulator of adipose tissue development and controls energy metabolism in vivo. In cancer, MMP11 expression is associated with poorer survival, and preclinical studies in mice showed that MMP11 accelerates tumor growth. How the metabolic role of MMP11 contributes to cancer development is poorly understood. To address this issue, we developed a series of preclinical mouse mammary gland tumor models by genetic engineering. Tumor growth was studied in mice either deficient (Loss of Function-LOF) or overexpressing MMP11 (Gain of Function-GOF) crossed with a transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV) (MMTV-PyMT). Both GOF and LOF models support roles for MMP11, favoring early tumor growth by increasing proliferation and reducing apoptosis. Of interest, MMP11 promotes Insulin-like Growth Factor-1 (IGF1)/protein kinase B (AKT)/Forkhead box protein O1 (FoxO1) signaling and is associated with a metabolic switch in the tumor, activation of the endoplasmic reticulum stress response, and an alteration in the mitochondrial unfolded protein response with decreased proteasome activity. In addition, high resonance magic angle spinning (HRMAS) metabolomics analysis of tumors from both models established a metabolic signature that favors tumorigenesis when MMP11 is overexpressed. These data support the idea that MMP11 contributes to an adaptive metabolic response, named metabolic flexibility, promoting cancer growth.
Collapse
|
37
|
He Z, Khatib AM, Creemers JW. Loss of the proprotein convertase Furin in T cells represses mammary tumorigenesis in oncogene-driven triple negative breast cancer. Cancer Lett 2020; 484:40-49. [DOI: 10.1016/j.canlet.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 01/24/2023]
|
38
|
Miszewski SG, Trott JF, Berryhill GE, Tat L, Green R, Borowsky AD, Miller JW, Hovey RC. Folate Deficiency Inhibits Development of the Mammary Gland and its Associated Lymphatics in FVB Mice. J Nutr 2020; 150:2120-2130. [PMID: 32510141 DOI: 10.1093/jn/nxaa154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Folate is essential for DNA synthesis, DNA repair, cell proliferation, development, and morphogenesis. Folic acid (FA) is a nutritional supplement used to fortify human diets. OBJECTIVES We investigated the effects of dietary FA on early mammary gland (MG) development and hyperplasia. METHODS Study 1: nulliparous female FVB wild-type (WT) mice were fed control (Con; 2 mg FA/kg), deficient (Def; 0 mg FA/kg), excess (Ex; 5 mg FA/kg), or super excess (S-Ex; 20 mg FA/kg) diets for 8 wk before mating to WT or heterozygous FVB/N-Tg[mouse mammary tumor virus long terminal repeat (MMTV)-polyomavirus middle T antigen (PyVT)]634Mul/J (MMTV-PyMT+/-) transgenic males. Dams were fed these diets until they weaned WT or MMTV-PyMT+/- pups, which were fed the dam's diet from postnatal day (PND) 21 to 42. Tissues were collected from female progeny at PNDs 1, 21, and 42. Study 2: Con or Def diets were fed to WT intact females and males from PND 21 to 56, or to ovariectomized females from PND 21 to 77; tissues were collected at PND 56 or 77. Growth of all offspring, development of MGs, MG hyperplasia, supramammary lymph nodes, thymus and spleen, cell proliferation, and expression of MG growth factors were measured. RESULTS Study 1: Ex or S-Ex did not affect postnatal MG development or hyperplasia. The rate of isometric MG growth (PND 1-21) was reduced by 69% in Def female progeny (P < 0.0001). Similarly, hyperplastic growth in MGs of Def MMTV-PyMT+/- offspring was 18% of Con (P < 0.05). The Def diet reduced supramammary lymph node size by 20% (P < 0.0001) and increased MG insulin-like growth factor 2 mRNA by 200% (P < 0.05) and protein by 130%-150% (P < 0.05). Study 2: the Def diet did not affect MG growth, but it did reduce supramammary lymph node size (P < 0.05), spleen weight (P < 0.001), and thymic medulla area (P < 0.05). CONCLUSIONS In utero and postnatal folate deficiency reduced the isometric development of the MGs and early MG hyperplasia. Postnatal folate deficiency reduced the development of lymphatic tissues.
Collapse
Affiliation(s)
- Susan G Miszewski
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Grace E Berryhill
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Lyvin Tat
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Joshua W Miller
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA.,Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Russell C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
39
|
Parigiani MA, Ketscher A, Timme S, Bronsert P, Schlimpert M, Kammerer B, Jacquel A, Chaintreuil P, Reinheckel T. Conditional Gene Targeting Reveals Cell Type-Specific Roles of the Lysosomal Protease Cathepsin L in Mammary Tumor Progression. Cancers (Basel) 2020; 12:E2004. [PMID: 32707827 PMCID: PMC7463523 DOI: 10.3390/cancers12082004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Cathepsin L (Ctsl) is a cysteine protease mainly located within the endosomal/lysosomal cell compartment. High expression of Ctsl indicates poor prognosis in human breast cancer. However, the cell type-specific Ctsl functions responsible for this association remain elusive. Methods: Because constitutive Ctsl-/- mice develop a complex phenotype, we developed a conditional model allowing for cell type-specific inactivation of Ctsl in mammary epithelium or myeloid cells in the transgenic mouse mammary tumor virus (MMTV)-polyoma middle T (PyMT) breast cancer model. Results: Ctsl ablation in mammary epithelial cells resulted in delayed initiation and end-stage of cancers. The latter displayed large dead cell areas. Inducible in vitro deletion of Ctsl in MMTV-PyMT-derived breast cancer cells revealed expansion of the acidic cell compartment, alteration of intracellular amino acid levels, and impaired mTOR signaling. In consequence, Ctsl-deficient cells exhibited slow growth rates and high apoptosis susceptibility. In contrast to Ctsl-deficient mammary epithelium, selective knockout of Ctsl in myeloid cells had no effects on primary tumors, but promoted lung metastasis formation. Conclusions: Our cell type-specific in vivo analysis provides strong evidence for a cancer cell-intrinsic, tumor-promoting role of Ctsl in primary breast cancer, whereas metastasis is negatively regulated by Ctsl expressed by bone marrow-derived cells.
Collapse
Affiliation(s)
- María Alejandra Parigiani
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany; (M.A.P.); (A.K.)
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schaenzle Str. 1, 79104 Freiburg, Germany;
| | - Anett Ketscher
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany; (M.A.P.); (A.K.)
| | - Sylvia Timme
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Breisacher Str. 115A, 79106 Freiburg, Germany; (S.T.); (P.B.)
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Breisacher Str. 115A, 79106 Freiburg, Germany; (S.T.); (P.B.)
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany
| | - Manuel Schlimpert
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schaenzle Str. 1, 79104 Freiburg, Germany;
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104 Freiburg, Germany;
| | - Bernd Kammerer
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104 Freiburg, Germany;
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzle Str. 18, 79104 Freiburg, Germany
| | - Arnaud Jacquel
- Université Côte d’Azur, C3M Inserm U1065, 06204 Nice, France; (A.J.); (P.C.)
- INSERM U1065, C3M, Team: Myeloid Malignancies and Multiple Myeloma, 06204 Nice, France
- Equipe Labellisée par la Fondation ARC, 94803 Villejuif, France
| | - Paul Chaintreuil
- Université Côte d’Azur, C3M Inserm U1065, 06204 Nice, France; (A.J.); (P.C.)
- INSERM U1065, C3M, Team: Myeloid Malignancies and Multiple Myeloma, 06204 Nice, France
- Equipe Labellisée par la Fondation ARC, 94803 Villejuif, France
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany; (M.A.P.); (A.K.)
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzle Str. 18, 79104 Freiburg, Germany
- Faculty German Cancer Consortium (DKTK), Partner Site Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Achyut BR, Zhang H, Angara K, Mivechi NF, Arbab AS, Ko L. Oncoprotein GT198 vaccination delays tumor growth in MMTV-PyMT mice. Cancer Lett 2020; 476:57-66. [PMID: 32061755 PMCID: PMC7067666 DOI: 10.1016/j.canlet.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/29/2019] [Accepted: 02/07/2020] [Indexed: 02/05/2023]
Abstract
Targeting early lesion in breast cancer is more therapeutically effective. We have previously identified an oncoprotein GT198 (PSMC3IP) in human breast cancer. Here we investigated GT198 in MMTV-PyMT mouse mammary gland tumors and found that GT198 is a shared early lesion in both species. Similar to human breast cancer even before a tumor appears, cytoplasmic GT198 is overexpressed in mouse tumor stroma including pericyte stem cells, descendent adipocytes, fibroblasts, and myoepithelial cells. Using recombinant GT198 protein as an antigen, we vaccinated MMTV-PyMT mice and found that the GT198 vaccine delayed mouse tumor growth and reduced lung metastasis. The antitumor effects were linearly correlated with vaccinated mouse serum titers of GT198 antibody, which recognized cell surface GT198 protein on viable tumor cells confirmed by FACS. Furthermore, GT198+ tumor cells isolated from MMTV-PyMT tumor induced faster tumor growths than GT198- cells when re-implanted into normal FVB/N mice. Together, this first study of GT198 vaccine in mouse showed its effectiveness in antitumor and anti-metastasis. The finding supports GT198 as a potential target in human immunotherapy since GT198 defect is shared in both human and mouse.
Collapse
Affiliation(s)
- Bhagelu R Achyut
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hao Zhang
- Department of General Surgery, The First of Affiliated Hospital of Jinan University, And Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China; Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Kartik Angara
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nahid F Mivechi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Radiation Oncology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lan Ko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
41
|
Peters DK, Garcea RL. Murine polyomavirus DNA transitions through spatially distinct nuclear replication subdomains during infection. PLoS Pathog 2020; 16:e1008403. [PMID: 32203554 PMCID: PMC7117779 DOI: 10.1371/journal.ppat.1008403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The replication of small DNA viruses requires both host DNA replication and repair factors that are often recruited to subnuclear domains termed viral replication centers (VRCs). Aside from serving as a spatial focus for viral replication, little is known about these dynamic areas in the nucleus. We investigated the organization and function of VRCs during murine polyomavirus (MuPyV) infection using 3D structured illumination microscopy (3D-SIM). We localized MuPyV replication center components, such as the viral large T-antigen (LT) and the cellular replication protein A (RPA), to spatially distinct subdomains within VRCs. We found that viral DNA (vDNA) trafficked sequentially through these subdomains post-synthesis, suggesting their distinct functional roles in vDNA processing. Additionally, we observed disruption of VRC organization and vDNA trafficking during mutant MuPyV infections or inhibition of DNA synthesis. These results reveal a dynamic organization of VRC components that coordinates virus replication.
Collapse
Affiliation(s)
- Douglas K. Peters
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Robert L. Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
42
|
Guo B, Wu S, Zhu X, Zhang L, Deng J, Li F, Wang Y, Zhang S, Wu R, Lu J, Zhou Y. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J 2020; 39:e102190. [PMID: 31755573 PMCID: PMC6939193 DOI: 10.15252/embj.2019102190] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 01/22/2023] Open
Abstract
TGF-β signaling pathway plays a key role in breast cancer metastasis. Recent studies suggest that TGF-β regulates tumor progression and invasion not only via transcriptional regulation, but also via translational regulation. Using both bioinformatics and experimental tools, we identified a micropeptide CIP2A-BP encoded by LINC00665, whose translation was downregulated by TGF-β in breast cancer cell lines. Using TNBC cell lines, we showed that TGF-β-activated Smad signaling pathway induced the expression of translation inhibitory protein 4E-BP1, which inhibited eukaryote translation initiation factor elF4E, leading to reduced translation of CIP2A-BP from LINC00665. CIP2A-BP directly binds tumor oncogene CIP2A to replace PP2A's B56γ subunit, thus releasing PP2A activity, which inhibits PI3K/AKT/NFκB pathway, resulting in decreased expression levels of MMP-2, MMP-9, and Snail. Downregulation of CIP2A-BP in TNBC patients was significantly associated with metastasis and poor overall survival. In the MMTV-PyMT model, either introducing CIP2A-BP gene or direct injection of CIP2A-BP micropeptide significantly reduced lung metastases and improved overall survival. In conclusion, we provide evidence that CIP2A-BP is both a prognostic marker and a novel therapeutic target for TNBC.
Collapse
Affiliation(s)
- Binbin Guo
- Department of GeneticsMedical College of Soochow UniversitySuzhouChina
| | - Siqi Wu
- Department of GeneticsMedical College of Soochow UniversitySuzhouChina
| | - Xun Zhu
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Liyuan Zhang
- Department of Radiotherapy & OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jieqiong Deng
- Department of GeneticsMedical College of Soochow UniversitySuzhouChina
| | - Fang Li
- Department of GeneticsMedical College of Soochow UniversitySuzhouChina
| | - Yirong Wang
- Department of GeneticsMedical College of Soochow UniversitySuzhouChina
| | - Shenghua Zhang
- Department of GeneticsMedical College of Soochow UniversitySuzhouChina
| | - Rui Wu
- Department of GeneticsMedical College of Soochow UniversitySuzhouChina
| | - Jiachun Lu
- The State Key Lab of Respiratory DiseaseThe First Affiliated HospitalThe School of Public HealthGuangzhou Medical UniversityGuangzhouChina
| | - Yifeng Zhou
- Department of GeneticsMedical College of Soochow UniversitySuzhouChina
| |
Collapse
|
43
|
Amphiregulin deletion strongly attenuates the development of estrogen receptor-positive tumors in p53 mutant mice. Breast Cancer Res Treat 2019; 179:653-660. [PMID: 31838731 DOI: 10.1007/s10549-019-05507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE The epidermal growth factor receptor ligand, Amphiregulin, is a transcriptional target of estrogen receptor alpha and is required for pubertal mammary gland development. Previous studies using immortalized human breast cancer cell line xenografts have suggested that Amphiregulin may be an important effector of estrogen receptor alpha during breast cancer development, at least in immune-compromised animals. Here, we evaluate the requirement for Amphiregulin in an immune-competent mouse model which is prone to developing estrogen receptor-positive tumors. METHODS We have intercrossed mice with mammary-specific mutation of p53 with mice deficient in Amphiregulin in order to assess the requirement for Amphiregulin in the initiation and progression of both estrogen receptor-positive and estrogen receptor-negative mammary tumors. RESULTS Deletion of Amphiregulin significantly delayed the onset of palpable mammary tumors and also strongly reduced the proportion of estrogen receptor alpha-positive tumors formed. Upon necropsy, no substantial differences in the prevalence of non-palpable lesions were observed between cohorts, suggesting that the importance of Amphiregulin in mammary tumorigenesis is limited to the post-initiation phase. CONCLUSIONS This study underlines the importance of the EGFR ligand, Amphiregulin, as a key mediator of estrogen receptor action in breast cancer.
Collapse
|
44
|
Impact of proteolysis on cancer stem cell functions. Biochimie 2019; 166:214-222. [DOI: 10.1016/j.biochi.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|
45
|
K Ca3.1 Channels Confer Radioresistance to Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11091285. [PMID: 31480522 PMCID: PMC6770875 DOI: 10.3390/cancers11091285] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
KCa3.1 K+ channels reportedly contribute to the proliferation of breast tumor cells and may serve pro-tumor functions in the microenvironment. The putative interaction of KCa3.1 with major anti-cancer treatment strategies, which are based on cytotoxic drugs or radiotherapy, remains largely unexplored. We employed KCa3.1-proficient and -deficient breast cancer cells derived from breast cancer-prone MMTV-PyMT mice, pharmacological KCa3.1 inhibition, and a syngeneic orthotopic mouse model to study the relevance of functional KCa3.1 for therapy response. The KCa3.1 status of MMTV-PyMT cells did not determine tumor cell proliferation after treatment with different concentrations of docetaxel, doxorubicin, 5-fluorouracil, or cyclophosphamide. KCa3.1 activation by ionizing radiation (IR) in breast tumor cells in vitro, however, enhanced radioresistance, probably via an involvement of the channel in IR-stimulated Ca2+ signals and DNA repair pathways. Consistently, KCa3.1 knockout increased survival time of wildtype mice upon syngeneic orthotopic transplantation of MMTV-PyMT tumors followed by fractionated radiotherapy. Combined, our results imply that KCa3.1 confers resistance to radio- but not to chemotherapy in the MMTV-PyMT breast cancer model. Since KCa3.1 is druggable, KCa3.1 targeting concomitant to radiotherapy seems to be a promising strategy to radiosensitize breast tumors.
Collapse
|
46
|
Swiatnicki MR, Andrechek ER. How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective. J Mammary Gland Biol Neoplasia 2019; 24:231-243. [PMID: 31227983 DOI: 10.1007/s10911-019-09433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Human breast cancer is a heterogeneous disease with numerous subtypes that have been defined through immunohistological, histological, and gene expression patterns. The diversity of breast cancer has made the study of its various underlying causes complex. To facilitate the examination of particular facets of breast cancer, mouse models have been generated, ranging from carcinogen induced models to genetically engineered mice. While mouse models have been generated to mimic the initiating event, including p53 loss, BRCA loss, or overexpression of HER2 / Neu / erbB2, other genomic events are often not well characterized. However, these secondary genetic events are often critical to the mouse tumor evolution, subtype, and outcome, just as they are in human breast cancer. As such, these other genomic events are a critical component of what models are chosen to study specific subtypes of human breast cancer. Here we review the genomic analyses that have been completed for various genetically engineered mouse models, how they compare to human breast cancer, and detail how this information can be used in choosing a mouse model for analysis.
Collapse
Affiliation(s)
- Matthew R Swiatnicki
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
47
|
Hollern DP, Swiatnicki MR, Rennhack JP, Misek SA, Matson BC, McAuliff A, Gallo KA, Caron KM, Andrechek ER. E2F1 Drives Breast Cancer Metastasis by Regulating the Target Gene FGF13 and Altering Cell Migration. Sci Rep 2019; 9:10718. [PMID: 31341204 PMCID: PMC6656723 DOI: 10.1038/s41598-019-47218-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
In prior work we demonstrated that loss of E2F transcription factors inhibits metastasis. Here we address the mechanisms for this phenotype and identify the E2F regulated genes that coordinate tumor cell metastasis. Transcriptomic profiling of E2F1 knockout tumors identified a role for E2F1 as a master regulator of a suite of pro-metastatic genes, but also uncovered E2F1 target genes with an unknown role in pulmonary metastasis. High expression of one of these genes, Fgf13, is associated with early human breast cancer metastasis in a clinical dataset. Together these data led to the hypothesis that Fgf13 is critical for breast cancer metastasis, and that upregulation of Fgf13 may partially explain how E2F1 promotes breast cancer metastasis. To test this hypothesis we ablated Fgf13 via CRISPR. Deletion of Fgf13 in a MMTV-PyMT breast cancer cell line reduces colonization of the lungs in a tail vein injection. In addition, loss of Fgf13 reduced in vitro cell migration, suggesting that Fgf13 may be critical for tumor cells to escape the primary tumor and to colonize the distal sites. The significance of this work is twofold: we have both uncovered genomic features by which E2F1 regulates metastasis and we have identified new pro-metastatic functions for the E2F1 target gene Fgf13.
Collapse
Affiliation(s)
- Daniel P Hollern
- Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, United States
| | - Matthew R Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Jonathan P Rennhack
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Sean A Misek
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Brooke C Matson
- University of North Carolina Department of Cell Biology, Chapel Hill, United States
| | - Andrew McAuliff
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Kathleen M Caron
- Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, United States
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, United States.
| |
Collapse
|
48
|
Kheirolomoom A, Silvestrini MT, Ingham ES, Mahakian LM, Tam SM, Tumbale SK, Foiret J, Hubbard NE, Borowsky AD, Ferrara KW. Combining activatable nanodelivery with immunotherapy in a murine breast cancer model. J Control Release 2019; 303:42-54. [PMID: 30978432 DOI: 10.1016/j.jconrel.2019.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022]
Abstract
A successful chemotherapy-immunotherapy solid-tumor protocol should accomplish the following goals: debulk large tumors, release tumor antigen for cross-presentation and cross-priming, release cancer-suppressive cytokines and enhance anti-tumor immune cell populations. Thermally-activated drug delivery particles have the potential to synergize with immunotherapeutics to accomplish these goals; activation can release chemotherapy within bulky solid tumors and can enhance response when combined with immunotherapy. We set out to determine whether a single protocol, combining locally-activated chemotherapy and agonist immunotherapy, could accomplish these goals and yield a potentially translational therapy. For effective delivery of free doxorubicin to tumors with minimal toxicity, we stabilized doxorubicin with copper in temperature-sensitive liposomes that rapidly release free drug in the vasculature of cancer lesions upon exposure to ultrasound-mediated hyperthermia. We found that in vitro exposure of tumor cells to hyperthermia and doxorubicin resulted in immunogenic cell death and the local release of type I interferons across murine cancer cell lines. Following intravenous injection, local activation of the liposomes within a single tumor released doxorubicin and enhanced cross-presentation of a model antigen at distant tumor sites. While a variety of protocols achieved a complete response in >50% of treated mice, the complete response rate was greatest (90%) when 1 week of immunotherapy priming preceded a single activatable chemotherapeutic administration. While repeated chemotherapeutic delivery reduced local viable tumor, the complete response rate and a subset of tumor immune cells were also reduced. Taken together, the results suggest that activatable chemotherapy can enhance adjuvant immunotherapy; however, in a murine model the systemic adaptive immune response was greatest with a single administration of chemotherapy.
Collapse
Affiliation(s)
- Azadeh Kheirolomoom
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA; Stanford University, Department of Radiology, 3165 Porter Drive, Palo Alto, CA 94304, USA
| | - Matthew T Silvestrini
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | - Elizabeth S Ingham
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | - Lisa M Mahakian
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | - Sarah M Tam
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | - Spencer K Tumbale
- Stanford University, Department of Radiology, 3165 Porter Drive, Palo Alto, CA 94304, USA
| | - Josquin Foiret
- Stanford University, Department of Radiology, 3165 Porter Drive, Palo Alto, CA 94304, USA
| | - Neil E Hubbard
- University of California, Davis, Center for Comparative Medicine, Davis, CA 95616, USA
| | - Alexander D Borowsky
- University of California, Davis, Center for Comparative Medicine, Davis, CA 95616, USA
| | - Katherine W Ferrara
- Stanford University, Department of Radiology, 3165 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
49
|
B-Raf deficiency impairs tumor initiation and progression in a murine breast cancer model. Oncogene 2019; 38:1324-1339. [DOI: 10.1038/s41388-018-0663-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
|
50
|
Tagaya H, Ishikawa K, Hosokawa Y, Kobayashi S, Ueoka Y, Shimada M, Ohashi Y, Mikami H, Yamamoto M, Ihara T, Kumazawa K, Sugihara K, Goshima N, Watanabe S, Semba K. A method of producing genetically manipulated mouse mammary gland. Breast Cancer Res 2019; 21:1. [PMID: 30611295 PMCID: PMC6321679 DOI: 10.1186/s13058-018-1086-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/05/2018] [Indexed: 01/23/2023] Open
Abstract
Background To obtain a deep understanding of the mechanism by which breast cancer develops, the genes involved in tumorigenesis should be analyzed in vivo. Mouse mammary gland can regenerate completely from a mammary stem cell (MaSC), which enables us to analyze the effect of gene expression and repression on tumorigenesis in mammary gland regenerated from genetically manipulated MaSCs. Although lentiviral and retroviral systems have usually been applied for gene transduction into MaSCs, they are associated with difficulty in introducing long, repeated, or transcriptional termination sequences. There is thus a need for an easier and quicker gene delivery system. Methods We devised a new system for gene delivery into MaSCs using the piggyBac transposon vectors and electroporation. Compared with viral systems, this system enables easier and quicker transfection of even long, repeated, or transcriptional termination DNA sequences. We designed gene expression vectors of the transposon system, equipped with a luciferase (Luc) expression cassette for monitoring gene transduction into regenerative mammary gland in mice by in-vivo imaging. A doxycycline (Dox)-inducible system was also integrated for expressing the target gene after mammary regeneration to mimic the actual mechanism of tumorigenesis. Results With this new gene delivery system, genetically manipulated mammary glands were successfully reconstituted even though the vector size was > 200 kb and even in the presence of DNA elements such as promoters and transcription termination sequences, which are major obstacles to viral vector packaging. They differentiated correctly into both basal and luminal cells, and showed normal morphological change and milk production after pregnancy, as well as self-renewal capacity. Using the Tet-On system, gene expression can be controlled by the addition of Dox after mammary reconstitution. In a case study using polyoma-virus middle T antigen (PyMT), oncogene-induced tumorigenesis was achieved. The histological appearance of the tumor was highly similar to that of the mouse mammary tumor virus-PyMT transgenic mouse model. Conclusions With this system, gene transduction in the mammary gland can be easily and quickly achieved, and gene expression can be controlled by Dox administration. This system for genetic manipulation could be useful for analyzing genes involved in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-1086-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroaki Tagaya
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo, 135-8073, Japan.
| | - Yoshito Hosokawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shun Kobayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yukino Ueoka
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Mayuna Shimada
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yasuko Ohashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hirofumi Mikami
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Mizuki Yamamoto
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Ihara
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kentaro Kumazawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kosuke Sugihara
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Naoki Goshima
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, 135-0064, Japan.,Translational Research Center, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Translational Research Center, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan.
| |
Collapse
|