1
|
Ren JY, Yu HQ, Xu S, Zhou WJ, Liu ZH. Putative pathogenic factors underlying Streptococcus oralis opportunistic infections. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:157-163. [PMID: 39261123 DOI: 10.1016/j.jmii.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Streptococcus oralis, belonging to the viridans group streptococci (VGS), has been considered a component of the normal flora predominantly inhabiting the oral cavity. In recent years, a growing body of literature has revealed that dental procedures or daily tooth brushing activities can cause the spread of S. oralis from the oral cavity into various body sites leading to life-threatening opportunistic infections such as infective endocarditis (IE) and meningitis. However, very little is currently known about the pathogenicity of S. oralis. Thus, the aim of this review is to update the current understanding of the pathogenic potential of S. oralis to pave the way for the prevention and treatment of S. oralis opportunistic infections.
Collapse
Affiliation(s)
- Jing-Yi Ren
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; School of Stomatology, Binzhou Medical University, Yantai, China
| | - Hong-Qiang Yu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Xu
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Wen-Juan Zhou
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, China; Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, China.
| | - Zhong-Hao Liu
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; School of Stomatology, Binzhou Medical University, Yantai, China; Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, China; Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, China
| |
Collapse
|
2
|
Bassetti M, Giacobbe DR, Larosa B, Lamarina A, Vena A, Brucci G. The reemergence of Streptococcus pyogenes in skin and soft tissue infections: a review of epidemiology, pathogenesis, and management strategies. Curr Opin Infect Dis 2025; 38:114-121. [PMID: 39851242 DOI: 10.1097/qco.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
PURPOSE OF REVIEW To discuss skin and soft tissue infections (SSTIs) caused by group A Streptococcus (GAS) by focusing on their pathogenesis, clinical manifestations, and management strategies. RECENT FINDINGS GAS is responsible for a wide range of infections from mild disease to severe fatal invasive infections with high mortality rates. Invasive GAS (iGAS) infections affect both young and old individuals and account for 1.8 million cases worldwide, with a mortality rate of up to 20%. In addition, conditions resulting by immune responses triggered by GAS also contribute to GAS-associated morbidity, and should not be overlooked. GAS has the ability to produce a wide set of virulence factors which contribute to its pathogenicity and its ability to colonize different body site and subsequently cause invasive infections. Management of SSTIs caused by GAS is challenging due to the risk of rapid progression and the risk of developing complications. SUMMARY During the COVID-19 pandemic, a relevant increase in iGAS infections has been registered. A constantly updated knowledge of the clinical presentation of iGAS infections is thus necessary to reduce their high mortality rates. Proper recognition and treatment of iGAS infections remain crucial.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa
| | | | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giorgia Brucci
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
3
|
Albahri J, Allison H, Whitehead KA, Muhamadali H. The role of salivary metabolomics in chronic periodontitis: bridging oral and systemic diseases. Metabolomics 2025; 21:24. [PMID: 39920480 PMCID: PMC11805826 DOI: 10.1007/s11306-024-02220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Chronic periodontitis is a condition impacting approximately 50% of the world's population. As chronic periodontitis progresses, the bacteria in the oral cavity change resulting in new microbial interactions which in turn influence metabolite production. Chronic periodontitis manifests with inflammation of the periodontal tissues, which is progressively developed due to bacterial infection and prolonged bacterial interaction with the host immune response. The bi-directional relationship between periodontitis and systemic diseases has been reported in many previous studies. Traditional diagnostic methods for chronic periodontitis and systemic diseases such as chronic kidney diseases (CKD) have limitations due to their invasiveness, requiring practised individuals for sample collection, frequent blood collection, and long waiting times for the results. More rapid methods are required to detect such systemic diseases, however, the metabolic profiles of the oral cavity first need to be determined. AIM OF REVIEW In this review, we explored metabolomics studies that have investigated salivary metabolic profiles associated with chronic periodontitis and systemic illnesses including CKD, oral cancer, Alzheimer's disease, Parkinsons's disease, and diabetes to highlight the most recent methodologies that have been applied in this field. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Of the rapid, high throughput techniques for metabolite profiling, Nuclear magnetic resonance (NMR) spectroscopy was the most applied technique, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Furthermore, Raman spectroscopy was the most used vibrational spectroscopic technique for comparison of the saliva from periodontitis patients to healthy individuals, whilst Fourier Transform Infra-Red Spectroscopy (FT-IR) was not utilised as much in this field. A recommendation for cultivating periodontal bacteria in a synthetic medium designed to replicate the conditions and composition of saliva in the oral environment is suggested to facilitate the identification of their metabolites. This approach is instrumental in assessing the potential of these metabolites as biomarkers for systemic illnesses.
Collapse
Affiliation(s)
- Jawaher Albahri
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Heather Allison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester, M1 5GD, UK.
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
4
|
Fayoud H, Belousov MV, Antonets KS, Nizhnikov AA. Pathogenesis-Associated Bacterial Amyloids: The Network of Interactions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2107-2132. [PMID: 39865026 DOI: 10.1134/s0006297924120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 01/28/2025]
Abstract
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity. Recent studies have shown that, beside their commonly known activity, amyloids may be involved in the spatial regulation of proteome by modulating aggregation of other amyloidogenic proteins with multiple functional or pathological effects. Although the studies on the role of microbiome-produced amyloids in the development of amyloidoses in humans and animals have only been started, it is clear that humans as holobionts contain amyloids encoded not only by the host genome, but also by microorganisms that constitute the microbiome. Amyloids acquired from external sources (e.g., food) can interact with holobiont amyloids and modulate the effects of bacterial and host amyloids, thus adding another level of complexity to the holobiont-associated amyloid network. In this review, we described bacterial amyloids directly or indirectly involved in disease pathogenesis in humans and discussed the significance of bacterial amyloids in the three-component network of holobiont-associated amyloids.
Collapse
Affiliation(s)
- Haidar Fayoud
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Mikhail V Belousov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Kirill S Antonets
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Anton A Nizhnikov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8)
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| |
Collapse
|
5
|
Saluja S, Kalsi R, Saurav K, Gupta G, Arora SA, K.L V, Mishra SK. Effect of ionic tooth brushes on gingivitis among Indian patients undergoing orthodontic treatment. Bioinformation 2024; 20:1645-1649. [PMID: 40162467 PMCID: PMC11953540 DOI: 10.6026/9732063002001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 04/02/2025] Open
Abstract
The aim of the study was to evaluate and compare the efficacy of ionic toothbrushes versus orthodontic toothbrushes on gingivitis in patients undergoing orthodontic treatment. The study included 50 patients who were divided into 2 groups: Ionic and Ortho toothbrush users group. The clinical parameters like gingival bleeding index, plaque control record, gingival enlargement index and patient hygiene performance were recorded at baseline, 7 days, 21 days, 45 days and 90 days. It can be concluded that ionic toothbrushes give improved results than orthodontic toothbrushes in terms of maintaining oral health in gingivitis patients undergoing fixed orthodontic treatment.
Collapse
Affiliation(s)
- Simran Saluja
- Department of Periodontics, ITS Dental College, Hospital and Research Centre, Greater Noida, Uttar Pradesh, India
| | - Rupali Kalsi
- Department of Dentistry, Government Institute of Medical Sciences, Greater Noida India
| | - Kumar Saurav
- Department of Periodontics, Santosh Dental College, Ghaziabad, Uttar Pradesh, India
| | - Gunjan Gupta
- Department of Periodontics, ITS Dental College, Hospital and Research Centre, Greater Noida, Uttar Pradesh, India
| | - Sachit Anand Arora
- Department of Periodontics, ITS Dental College, Hospital and Research Centre, Greater Noida, Uttar Pradesh, India
| | - Vandana K.L
- Department of Periodontics, College of Dental Sciences, Davanagere, Karnataka, India
| | - Shivesh Kumar Mishra
- Department of Periodontics, ITS Dental College, Hospital and Research Centre, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Yang C, Ma J, Zhou H, Yang J, Pu J, Lu S, Jin D, Liu L, Dong K, Xu J. Genomic Characterization and Comparative Analysis of Streptococcus zhangguiae sp. nov. Isolated from the Respiratory Tract of Marmota Himalayana. J Microbiol 2024; 62:951-963. [PMID: 39495471 DOI: 10.1007/s12275-024-00177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
Two Gram-stain-positive, oxidase-negative, non-motile, facultative anaerobic, α-hemolytic, coccus-shaped bacteria (zg-86T and zg-70) were isolated from the respiratory tracts of marmots (Marmota Himalayana) on the Qinghai-Tibet Plateau of China. Phylogenetic analysis of the 16S rRNA gene and 545 core genes revealed that these two strains belong to the Streptococcus genus. These strains were most closely related to Streptococcus respiraculi HTS25T, Streptococcus cuniculi CCUG 65085T, and Streptococcus marmotae HTS5T. The average nucleotide identity (ANI) and digital DNA‒DNA hybridization (dDDH) were below the threshold for species delineation. The predominant cellular fatty acids (CFAs) in this novel species were C16:0, C18:0, and C18:1ω9c, whereas the primary polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and an unknown phosphoglycolipid (PGL). The optimal growth conditions for the strains were 37 °C, pH 7.0, and 0.5% (w/v) NaCl on brain-heart infusion (BHI) agar supplemented with 5% defibrinated sheep blood. Comparative genomics analyses revealed the potential pathogenicity of strain zg-86T through comparisons with suis subclade strains in terms of virulence factors, pathogen-host interactions (PHIs) and mobile genetic factors (MGEs). Based on the phenotypic characteristics and phylogenetic analyses, we propose that these two isolates represent novel species in the genus Streptococcus, for which the names Streptococcus zhangguiae sp. nov. (the type strain zg-86T=GDMCC 1.1758T=JCM 34273T) is proposed.
Collapse
Affiliation(s)
- Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People's Republic of China
- Research Center for Reverse Etiology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jiajia Ma
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Huimin Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050010, Hebei, People's Republic of China
| | - Ji Pu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Shan Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dong Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050010, Hebei, People's Republic of China
| | - Liyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050010, Hebei, People's Republic of China
| | - Kui Dong
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People's Republic of China.
- Research Center for Reverse Etiology, Shanxi Medical University, Taiyuan, People's Republic of China.
- Shanxi Province Key Laboratory of Ophthalmology, Shanxi Eye Hospital, Taiyuan, People's Republic of China.
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China.
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People's Republic of China.
- Research Center for Reverse Etiology, Shanxi Medical University, Taiyuan, People's Republic of China.
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Goo BJ, Choi YS, Gim DH, Jeong SW, Choi JW, Sung H, Lee JY, Bae JW. Description of Streptococcus dentalis sp. nov., Streptococcus gingivalis sp. nov., and Streptococcus lingualis sp. nov., Isolated from Human Oral Cavities. J Microbiol 2024; 62:973-983. [PMID: 39531154 DOI: 10.1007/s12275-024-00178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
We isolated three novel strains, S1T, S2T, and S5T, from human oral cavities and identified them as distinct novel species. All these strains are facultatively anaerobic, Gram-stain-positive, and non-flagellated bacteria. Their optimal growth conditions for these strains were observed in Columbia broth (CB) at 37 °C, pH 7.0, and in the absence of NaCl. Phylogenetic analyses, employing the 16S rRNA gene and whole-genome sequencing, confirmed that all three strains belong to the genus Streptococcus. The 16S rRNA gene sequences of strains S1T, S2T, and S5T showed the highest similarities to Streptococcus parasanguinis, 98.57%, 99.05%, and 99.05%, respectively, and the orthologous average nucleotide identity (OrthoANI) values between the three strains and S. parasanguinis were 93.82%, 93.67%, and 94.04%, respectively. The pairwise OrthoANI values between the novel strains were 94.37% (S1T-S2T), 95.03% (S2T-S5T), and 94.71% (S1T-S5T). All strains had C20:1 ω9c and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as major cellular fatty acids. Additionally, diphosphatidylglycerol (DPG) and hydroxyphosphatidylethanolamine (OH-PE) were identified as major polar lipids. Menaquinone was undetected in all strains. The results from the phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses collectively indicated that strains S1T, S2T, and S5T represent three distinct novel species within the genus Streptococcus, and we propose the names Streptococcus dentalis sp. nov. for strain S1T (= KCTC 21234T = JCM 36526T), Streptococcus gingivalis sp. nov. for strain S2T (= KCTC 21235T = JCM 36527T), and Streptococcus lingualis sp. nov. for strain S5T (= KCTC 21236T = JCM 36528T).
Collapse
Affiliation(s)
- Beom-Jin Goo
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young-Sik Choi
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Do-Hun Gim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Won Jeong
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee-Won Choi
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hojun Sung
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
8
|
Kaddoura R, Abdalbari K, Kadom M, Badla BA, Hijleh AA, Hanifa M, AlAshkar M, Asbaita M, Othman D, Faraji H, AlBakri O, Tahlak S, Hijleh AA, Kabbani R, Resen M, Abdalbari H, Du Plessis SS, Omolaoye TS. Post-Meningitic Syndrome: Pathophysiology and Consequences of Streptococcal Infections on the Central Nervous System. Int J Mol Sci 2024; 25:11053. [PMID: 39456835 PMCID: PMC11507220 DOI: 10.3390/ijms252011053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Streptococcus species represent a significant global cause of meningitis, leading to brain damage through bacterial virulence factors and the host inflammatory response. Upon entering the central nervous system (CNS), excessive inflammation leads to various neurological and psychological complications. This review explores the pathophysiological mechanisms and associated outcomes of streptococcal meningitis, particularly its short- and long-term neurological sequelae. Neurological symptoms, such as cognitive impairment, motor deficits, and sensory loss, are shown to vary in severity, with children being particularly susceptible to lasting complications. Among survivors, hearing loss, cognitive decline, and cranial nerve palsies emerge as the most frequently reported complications. The findings highlight the need for timely intervention, including neurorehabilitation strategies that focus on optimizing recovery and mitigating long-term disabilities. Future recommendations emphasize improving early diagnosis, expanding vaccine access, and personalizing rehabilitation protocols to enhance patient outcomes. As a novel contribution, this review proposes the term "post-meningitic syndrome" to showcase the broad spectrum of CNS complications that persist following streptococcal meningitis, providing a framework for a future clinical and research focus.
Collapse
Affiliation(s)
- Rachid Kaddoura
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Karim Abdalbari
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Mhmod Kadom
- Faculty of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | - Beshr Abdulaziz Badla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Amin Abu Hijleh
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Mohamed Hanifa
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Masa AlAshkar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Mohamed Asbaita
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Deema Othman
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Hanan Faraji
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Orjwan AlBakri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Sara Tahlak
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Amir Abu Hijleh
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Raneem Kabbani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Murtadha Resen
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Helmi Abdalbari
- Faculty of Medicine, University of Nicosia, P.O. Box 24005, Nicosia 1700, Cyprus;
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| | - Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (K.A.); (B.A.B.); (A.A.H.); (M.H.); (M.A.); (M.A.); (D.O.); (H.F.); (O.A.); (S.T.); (A.A.H.); (R.K.); (M.R.); (S.S.D.P.)
| |
Collapse
|
9
|
Wajima T, Sugawara T, Tanaka E, Uchiya KI. Molecular characterization of a novel putative pathogen, Streptococcus nakanoensis sp. nov., isolated from sputum culture. Microbiol Spectr 2024; 12:e0135424. [PMID: 39269180 PMCID: PMC11465973 DOI: 10.1128/spectrum.01354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Reports of novel species of α-hemolytic Streptococcus have increased recently. However, limited information exists regarding the pathogenicity of these species, with the exception of Streptococcus pneumoniae and Streptococcus pseudopneumoniae. In this study, a quinolone-resistant α-Streptococcus strain, MTG105, was isolated from the sputum of a patient with pneumonia. This strain was first identified as S. pneumoniae at the hospital laboratory; however, it exhibited unique genetic features upon further analysis. Digital DNA-DNA hybridization and average nucleotide identity based on BLAST values from whole-genome sequencing revealed MTG105 to be a novel species closely related to S. pseudopneumoniae. Although MTG105 carried two copies of the pneumolysin gene, similar to S. pseudopneumoniae, this isolate exhibited susceptibility to optochin under both aerobic and 5% CO2 conditions. Notably, no biochemical features could be used to definitively identify this species. In an infection assay using organotypic lung tissue models, MTG105 induced epithelial damage comparable to that of S. pneumoniae and S. pseudopneumoniae, possibly suggesting its potential as a pathogenic α-Streptococcus. The natural transformation abilities of Streptococcus species facilitate their exchange of genes within the same genus, resulting in the existence of species with increasingly more diverse genome structures. Therefore, the identification of this species highlights the importance of monitoring the emergence of novel species exhibiting virulence and/or multidrug resistance. This isolate was proposed as a novel species, designated Streptococcus nakanoensis sp. nov. The type strain was MTG 105T (= JCM 35953T = CCUG 76894T). IMPORTANCE The genus Streptococcus encompasses a wide range of bacteria with more than 60 species. Recently, there has been a notable increase in reports of novel species of α-Streptococcus based on genomic analysis data. However, limited information exists regarding the pathogenicity of these species. In this study, a quinolone-resistant α-hemolytic Streptococcus strain, MTG105, was isolated from a patient with pneumonia. Genetic analysis revealed that this species was a novel species closely related to S. pseudopneumoniae. In an infection assay using organotypic lung tissue models, MTG105 induced epithelial damage comparable to that caused by S. pneumoniae and S. pseudopneumoniae, strongly suggesting its potential as a pathogenic α-Streptococcus. The natural transformation abilities of Streptococcus species facilitate gene exchange within the same genus, leading to the emergence of species with increasingly diverse genome structures. Therefore, the identification of this species underscores the importance of monitoring the emergence of novel species exhibiting virulence and/or multidrug resistance.
Collapse
Affiliation(s)
- Takeaki Wajima
- Department of
Microbiology, Faculty of Pharmacy, Meijo
University, Nagoya,
Japan
| | | | - Emi Tanaka
- Department of
Microbiology, Faculty of Pharmacy, Meijo
University, Nagoya,
Japan
| | - Kei-ichi Uchiya
- Department of
Microbiology, Faculty of Pharmacy, Meijo
University, Nagoya,
Japan
| |
Collapse
|
10
|
Kametani M, Akitomo T, Hamada M, Usuda M, Kaneki A, Ogawa M, Ikeda S, Ito Y, Hamaguchi S, Kusaka S, Asao Y, Iwamoto Y, Mitsuhata C, Suehiro Y, Okawa R, Nakano K, Nomura R. Inhibitory Effects of Surface Pre-Reacted Glass Ionomer Filler Eluate on Streptococcus mutans in the Presence of Sucrose. Int J Mol Sci 2024; 25:9541. [PMID: 39273489 PMCID: PMC11395275 DOI: 10.3390/ijms25179541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The surface pre-reacted glass ionomer (S-PRG) filler is a type of bioactive functional glass that releases six different ions. This study examined the effects of the S-PRG filler eluate on Streptococcus mutans in the presence of sucrose. In a solution containing S. mutans, the concentrations of BO33-, Al3+, Sr2+, and F- were significantly higher in the presence of the S-PRG filler eluate than in its absence (p < 0.001). The concentrations of these ions further increased in the presence of sucrose. Additionally, the S-PRG filler eluate significantly reduced glucan formation by S. mutans (p < 0.001) and significantly increased the pH of the bacterial suspension (p < 0.001). Bioinformatic analyses revealed that the S-PRG filler eluate downregulated genes involved in purine biosynthesis (purC, purF, purL, purM, and purN) and upregulated genes involved in osmotic pressure (opuAa and opuAb). At a low pH (5.0), the S-PRG filler eluate completely inhibited the growth of S. mutans in the presence of sucrose and significantly increased the osmotic pressure of the bacterial suspension compared with the control (p < 0.001). These findings suggest that ions released from the S-PRG filler induce gene expression changes and exert an inhibitory effect on S. mutans in the presence of sucrose.
Collapse
Affiliation(s)
- Mariko Kametani
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Momoko Usuda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ami Kaneki
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masashi Ogawa
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shunya Ikeda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuya Ito
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuma Hamaguchi
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Satoru Kusaka
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuria Asao
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuko Iwamoto
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuto Suehiro
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
11
|
Li G, Wu M, Xiao Y, Tong Y, Li S, Qian H, Zhao T. Multi-omics reveals the ecological and biological functions of Enterococcus mundtii in the intestine of lepidopteran insects. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101309. [PMID: 39146704 DOI: 10.1016/j.cbd.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Insect guts offer unique habitats for microbial colonization, with gut bacteria potentially offering numerous benefits to their hosts. Although Enterococcus has emerged as one of the predominant gut commensal bacteria in insects, its establishment in various niches within the gut has not been characterized well. In this study, Enterococcus mundtii was inoculated into the silkworm (Bombyx mori L.) to investigate its biological functions. Genome-based analysis revealed that its successful colonization is related to adherence genes (ebpA, ebpC, efaA, srtC, and scm). This bacterium did not alter the activities of related metabolic enzymes or the intestinal barrier function. However, significant changes in the gene expressions levels of Att2, CecA, and Lys suggest potential adaptive mechanisms of host immunity to symbiotic E. mundtii. Moreover, 16S metagenomics analysis revealed a significant increase in the relative abundance of E. mundtii in the intestines of silkworms following inoculation. The intestinal microbiome displayed marked heterogeneity, an elevated gut microbiome health index, a reduced microbial dysbiosis index, and low potential pathogenicity in the treatment group. Additionally, E. mundtii enhanced the breakdown of carbohydrates in host intestines. Overall, E. mundtii serves as a beneficial microbe for insects, promoting intestinal homeostasis by providing competitive advantage. This characteristic helps E. mundtii dominate complex microbial environments and remain prevalent across Lepidoptera, likely fostering long-term symbiosis between the both parties. The present study contributes to clarifying the niche of E. mundtii in the intestine of lepidopteran insects and further reveals its potential roles in their insect hosts.
Collapse
Affiliation(s)
- Guannan Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China.
| | - Meihong Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Yi Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Yujie Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Heying Qian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Tianfu Zhao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China.
| |
Collapse
|
12
|
Hernández-Rangel A, Silva-Bermudez P, Almaguer-Flores A, García VI, Esparza R, Luna-Bárcenas G, Velasquillo C. Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes. RSC Adv 2024; 14:24910-24927. [PMID: 39131504 PMCID: PMC11310750 DOI: 10.1039/d4ra04274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
In this work, we developed novel nanocomposite three-dimensional (3D) scaffolds composed of chitosan (CTS), halloysite nanotubes (HNTs) and silver nanoparticles (AgNPs) with enhanced antimicrobial activity and fibroblast cell compatibility for their potential use in wound dressing applications. A stock CTS-HNT solution was obtained by mixing water-dispersed HNTs with CTS aqueous-acid solution, and then, AgNPs, in different concentrations, were synthesized in the CTS-HNT solution via a CTS-mediated in situ reduction method. Finally, freeze-gelation was used to obtain CTS-HNT-AgNP 3D porous scaffolds (sponges). Morphology analysis showed that synthesized AgNPs were spherical with an average diameter of 11 nm. HNTs' presence did not affect the AgNPs morphology or size but improved the mechanical properties of the scaffolds, where CTS-HNT sponges exhibited a 5 times larger compression stress than bare-CTS sponges. AgNPs in the scaffolds further increased their mechanical strength in correlation to the AgNP concentration, and conferred them improved antibacterial activity against Gram-negative and Gram-positive bacteria, inhibiting the planktonic proliferation and adhesion of bacteria in a AgNP concentration depending on manner. In vitro cell viability and immunofluorescence assays exhibited that human fibroblast (HF) culture was supported by the sponges, where HF retained their phenotype upon culture on the sponges. Present CTS-HNT-AgNP sponges showed promising mechanical, antibacterial and cytocompatibility properties to be used as potential scaffolds for wound dressing applications.
Collapse
Affiliation(s)
- A Hernández-Rangel
- Instituto Politécnico Nacional, ESIQIE Av. IPN S/N Zacatenco Mexico City 07738 Mexico
| | - P Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra 14389 Ciudad de México Mexico
| | - A Almaguer-Flores
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México 04510 Ciudad de México Mexico
| | - V I García
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México 04510 Ciudad de México Mexico
| | - R Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 Santiago de Querétaro 76230 Mexico
| | - G Luna-Bárcenas
- Centro de Investigación y de Estudios Avanzados del IPN 76230 Querétaro Mexico
| | - C Velasquillo
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra 14389 Ciudad de México Mexico
| |
Collapse
|
13
|
Xu W, Yu F, Addison O, Zhang B, Guan F, Zhang R, Hou B, Sand W. Microbial corrosion of metallic biomaterials in the oral environment. Acta Biomater 2024; 184:22-36. [PMID: 38942189 DOI: 10.1016/j.actbio.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.
Collapse
Affiliation(s)
- Weichen Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China.
| | - Fei Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266021, China.
| | - Owen Addison
- Centre for Oral Clinical Translational Science, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Biofilm Centre, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
14
|
Ge J, Li M, Yao J, Guo J, Li X, Li G, Han X, Li Z, Liu M, Zhao J. The potential of EGCG in modulating the oral-gut axis microbiota for treating inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155643. [PMID: 38820660 DOI: 10.1016/j.phymed.2024.155643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 06/02/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic intestinal disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis involves intricate interactions between pathogenic microorganisms, native intestinal microorganisms, and the intestinal immune system via the oral-gut axis. The strong correlation observed between oral diseases and IBD indicates the potential involvement of oral pathogenic microorganisms in IBD development. Consequently, therapeutic strategies targeting the proliferation, translocation, intestinal colonization and exacerbated intestinal inflammation of oral microorganisms within the oral-gut axis may partially alleviate IBD. Tea consumption has been identified as a contributing factor in reducing IBD, with epigallocatechin gallate (EGCG) being the primary bioactive compound used for IBD treatment. However, the precise mechanism by which EGCG mediates microbial crosstalk within the oral-gut axis remains unclear. In this review, we provide a comprehensive overview of the diverse oral microorganisms implicated in the pathogenesis of IBD and elucidate their colonization pathways and mechanisms. Subsequently, we investigated the antibacterial properties of EGCG and its potential to attenuate microbial translocation and colonization in the gut, emphasizing its role in attenuating exacerbations of IBD. We also elucidated the toxic and side effects of EGCG. Finally, we discuss current strategies for enhancing EGCG bioavailability and propose novel multi-targeted nano-delivery systems for the more efficacious management of IBD. This review elucidates the role and feasibility of EGCG-mediated modulation of the oral-gut axis microbiota in the management of IBD, contributing to a better understanding of the mechanism of action of EGCG in the treatment of IBD and the development of prospective treatment strategies.
Collapse
Affiliation(s)
- Jiaming Ge
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingwen Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinling Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangli Han
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin 300450, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Wang M, Wu M, Han M, Niu X, Fan A, Zhu S, Tong Y. Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases. ACS OMEGA 2024; 9:30891-30903. [PMID: 39035879 PMCID: PMC11256085 DOI: 10.1021/acsomega.4c03760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
Collapse
Affiliation(s)
- Mengjiao Wang
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Mengyue Wu
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s
Republic of China
| | - Meng Han
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiaogang Niu
- Beijing
Nuclear Magnetic Resonance Center, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Aili Fan
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s
Republic of China
| | - Shaozhou Zhu
- National
Institutes for Food and Drug Control, Beijing 102629, People’s Republic of China
| | - Yigang Tong
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
16
|
Barutçugil Ç, Tayfun D, Çetin Tuncer N, Dündar A. Bacterial adhesion and surface properties of computer-aided design-computer-aided manufacturing restorative materials. J Oral Sci 2024; 66:157-162. [PMID: 38866551 DOI: 10.2334/josnusd.24-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
PURPOSE This study aimed to evaluate the surface properties and bacterial adhesion of computer-aided design-computer-aided manufacturing (CAD-CAM) restorative materials. METHODS Four CAD-CAM resin-based blocks (Vita Enamic, Shofu block HC, Cerasmart [CS] and Lava Ultimate [LU]) and a leucite-reinforced glass ceramic block (IPS Empress CAD) were used in the present study. Specimens prepared with dimensions of 10 × 10 × 1 mm were polished. Surface characteristics were assessed with hydrophobicity and surface free energy (SFE) analysis. Surface roughness was measured using a profilometer, and elemental and topographic evaluations were performed with SEM-EDX analysis. After being kept in artificial saliva for 1 h, Streptococcus mutans (S. mutans) and Streptococcus mitis (S. mitis) were incubated separately in 5% CO2 atmosphere at 37°C for 24 h. The adhered bacteria were counted as ×108 CFU/mL. RESULTS Surface roughness, contact angle and SFE measurement values were found to be in the range of 0.144-0.264 Ra, 28.362°-70.074° and 39.65-63.62 mN/m, respectively. The highest adhered amount of S. mutans was found in CS and the lowest in LU, while there was no significant difference between the amounts of adhered S. mitis. CONCLUSION Despite differences in the surface properties of the materials used for the study, the materials exhibited identical properties with respect to bacterial adhesion.
Collapse
Affiliation(s)
- Çağatay Barutçugil
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University
| | | | - Nurgül Çetin Tuncer
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University
| | - Ayşe Dündar
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University
| |
Collapse
|
17
|
Rampersadh K, Salie MT, Engel KC, Moodley C, Zühlke LJ, Engel ME. Presence of Group A streptococcus frequently assayed virulence genes in invasive disease: a systematic review and meta-analysis. Front Cell Infect Microbiol 2024; 14:1337861. [PMID: 39055978 PMCID: PMC11270091 DOI: 10.3389/fcimb.2024.1337861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction It is currently unclear what the role of Group A streptococcus (GAS) virulence factors (VFs) is in contributing to the invasive potential of GAS. This work investigated the evidence for the association of GAS VFs with invasive disease. Methods We employed a broad search strategy for studies reporting the presence of GAS VFs in invasive and non-invasive GAS disease. Data were independently extracted by two reviewers, quality assessed, and meta-analyzed using Stata®. Results A total of 32 studies reported on 45 putative virulence factors [invasive (n = 3,236); non-invasive (n = 5,218)], characterized by polymerase chain reaction (PCR) (n = 30) and whole-genome sequencing (WGS) (n = 2). The risk of bias was rated as low and moderate, in 23 and 9 studies, respectively. Meta-,analyses of high-quality studies (n = 23) revealed a significant association of speM [OR, 1.64 (95%CI, 1.06; 2.52)] with invasive infection. Meta-analysis of WGS studies demonstrated a significant association of hasA [OR, 1.91 (95%CI, 1.36; 2.67)] and speG [OR, 2.83 (95%CI, 1.63; 4.92)] with invasive GAS (iGAS). Meta-analysis of PCR studies indicated a significant association of speA [OR, 1.59 (95%CI, 1.10; 2.30)] and speK [OR, 2.95 (95%CI, 1.81; 4.80)] with invasive infection. A significant inverse association was observed between prtf1 [OR, 0.42 (95%CI, 0.20; 0.87)] and invasive infection. Conclusion This systematic review and genomic meta-analysis provides evidence of a statistically significant association with invasive infection for the hasA gene, while smeZ, ssa, pnga3, sda1, sic, and NaDase show statistically significantly inverse associations with invasive infection. SpeA, speK, and speG are associated with GAS virulence; however, it is unclear if they are markers of invasive infection. This work could possibly aid in developing preventative strategies.
Collapse
Affiliation(s)
- Kimona Rampersadh
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - M. Taariq Salie
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Kelin C. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- Department of Pathology, Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- The National Health Laboratory Service, Microbiology, Groote Schuur Hospital, Cape Town, South Africa
| | - Liesl J. Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| | - Mark E. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| |
Collapse
|
18
|
Sangha JS, Barrett P, Curtis TP, Métris A, Jakubovics NS, Ofiteru ID. Effects of glucose and lactate on Streptococcus mutans abundance in a novel multispecies oral biofilm model. Microbiol Spectr 2024; 12:e0371323. [PMID: 38376204 PMCID: PMC10986578 DOI: 10.1128/spectrum.03713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
The oral microbiome plays an important role in protecting oral health. Here, we established a controlled mixed-species in vitro biofilm model and used it to assess the impact of glucose and lactate on the ability of Streptococcus mutans, an acidogenic and aciduric species, to compete with commensal oral bacteria. A chemically defined medium was developed that supported the growth of S. mutans and four common early colonizers of dental plaque: Streptococcus gordonii, Actinomyces oris, Neisseria subflava, and Veillonella parvula. Biofilms containing the early colonizers were developed in a continuous flow bioreactor, exposed to S. mutans, and incubated for up to 7 days. The abundance of bacteria was estimated by quantitative polymerase chain reaction (qPCR). At high glucose and high lactate, the pH in bulk fluid rapidly decreased to approximately 5.2, and S. mutans outgrew other species in biofilms. In low glucose and high lactate, the pH remained above 5.5, and V. parvula was the most abundant species in biofilms. By contrast, in low glucose and low lactate, the pH remained above 6.0 throughout the experiment, and the microbial community in biofilms was relatively balanced. Fluorescence in situ hybridization confirmed that all species were present in the biofilm and the majority of cells were viable using live/dead staining. These data demonstrate that carbon source concentration is critical for microbial homeostasis in model oral biofilms. Furthermore, we established an experimental system that can support the development of computational models to predict transitions to microbial dysbiosis based on metabolic interactions.IMPORTANCEWe developed a controlled (by removing host factor) dynamic system metabolically representative of early colonization of Streptococcus mutans not measurable in vivo. Hypotheses on factors influencing S. mutans colonization, such as community composition and inoculation sequence and the effect of metabolite concentrations, can be tested and used to predict the effect of interventions such as dietary modifications or the use of toothpaste or mouthwash on S. mutans colonization. The defined in vitro model (species and medium) can be simulated in an in silico model to explore more of the parameter space.
Collapse
Affiliation(s)
- Jay S. Sangha
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - Thomas P. Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aline Métris
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - Nicholas S. Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina D. Ofiteru
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
19
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
20
|
Sheng N, Mårell L, Sitaram RT, Svensäter G, Westerlund A, Strömberg N. Human PRH1, PRH2 susceptibility and resistance and Streptococcus mutans virulence phenotypes specify different microbial profiles in caries. EBioMedicine 2024; 101:105001. [PMID: 38364699 PMCID: PMC10878843 DOI: 10.1016/j.ebiom.2024.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Lifestyle- and sucrose-dependent polymicrobial ecological shifts are a primary cause of caries in populations with high caries prevalence. In populations with low prevalence, PRH1, PRH2 susceptibility and resistance phenotypes may interact with the Streptococcus mutans adhesin cariogenicity phenotype to affect caries progression, but studies are lacking on how these factors affect the microbial profile of caries. METHODS We analysed how the residency and infection profiles of S. mutans adhesin (SpaP A/B/C and Cnm/Cbm) phenotypes and commensal streptococci and lactobacilli influenced caries progression in a prospective case-referent sample of 452 Swedish adolescents with high (P4a), moderate (P6), and low (P1) caries PRH1, PRH2 phenotypes. Isolates of S. mutans from participants were analysed for adhesin expression and glycosylation and in vitro and in situ mechanisms related to caries activity. FINDINGS Among adolescents with the resistant (P1) phenotype, infection with S. mutans high-virulence phenotypes was required for caries progression. In contrast, with highly (P4a) or moderately (P6) susceptible phenotypes, caries developed from a broader polymicrobial flora that included moderately cariogenic oral commensal streptococci and lactobacilli and S. mutans phenotypes. High virulence involved unstable residency and fluctuating SpaP ABC, B-1, or Cnm expression/glycosylation phenotypes, whereas low/moderate virulence involved SpaP A phenotypes with stable residency. Adhesin phenotypes did not display changes in individual host residency but were paired within individuals and geographic regions. INTERPRETATION These results suggest that receptor PRH1, PRH2 susceptibility and resistance and S. mutans adhesin virulence phenotypes specify different microbial profiles in caries. FUNDING Swedish Research Council and funding bodies listed in the acknowledgement section.
Collapse
Affiliation(s)
- Nongfei Sheng
- Department of Odontology/Cariology, Umeå University, 901 87, Umeå, Sweden
| | - Lena Mårell
- Department of Odontology/Cariology, Umeå University, 901 87, Umeå, Sweden
| | | | | | - Anna Westerlund
- Department of Orthodontics, Sahlgrenska Academy, University of Gothenburg, 413 90, Göteborg, Sweden
| | - Nicklas Strömberg
- Department of Odontology/Cariology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
21
|
Ohashi A, Murayama MA, Miyabe Y, Yudoh K, Miyabe C. Streptococcal infection and autoimmune diseases. Front Immunol 2024; 15:1361123. [PMID: 38464518 PMCID: PMC10920276 DOI: 10.3389/fimmu.2024.1361123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Excessive activation of immune cells by environmental factors, such as infection or individual genetic risk, causes various autoimmune diseases. Streptococcus species are gram-positive bacteria that colonize the nasopharynx, respiratory tract, gastrointestinal tract, genitourinary tract, and skin. Group A Streptococcus (GAS) species cause various symptoms, ranging from mild infections, such as tonsillitis and pharyngitis, to serious infections, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The contribution of GAS infections to several autoimmune diseases, including acute rheumatic fever, vasculitis, and neuropsychiatric disorders, has been studied. In this review, we focus on the association between streptococcal infections and autoimmune diseases, and discuss current research on the mechanisms underlying the initiation and progression of autoimmune diseases.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Department of Immunology and Parasitology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masanori A. Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Parasitology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuo Yudoh
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
22
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
23
|
Ruiz-Rodríguez JC, Chiscano-Camón L, Maldonado C, Ruiz-Sanmartin A, Martin L, Bajaña I, Bastidas J, Lopez-Martinez R, Franco-Jarava C, González-López JJ, Ribas V, Larrosa N, Riera J, Nuvials-Casals X, Ferrer R. Catastrophic Streptococcus pyogenes Disease: A Personalized Approach Based on Phenotypes and Treatable Traits. Antibiotics (Basel) 2024; 13:187. [PMID: 38391573 PMCID: PMC10886101 DOI: 10.3390/antibiotics13020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Streptococcal toxic shock syndrome (STTS) is a critical medical emergency marked by high morbidity and mortality, necessitating swift awareness, targeted treatment, and early source control due to its rapid symptom manifestation. This report focuses on a cohort of 13 patients admitted to Vall d'Hebron University Hospital Intensive Care Unit, Barcelona, from November 2022 to March 2023, exhibiting invasive Streptococcus pyogenes infections and meeting institutional sepsis code activation criteria. The primary infections were community-acquired pneumonia (61.5%) and skin/soft tissue infection (30.8%). All patients received prompt antibiotic treatment, with clinical source control through thoracic drainage (30.8%) or surgical means (23.1%). Organ support involved invasive mechanical ventilation, vasopressors, and continuous renal replacement therapy as per guidelines. Of note, 76.9% of patients experienced septic cardiomyopathy, and 53.8% required extracorporeal membrane oxygenation (ECMO). The study identified three distinct phenotypic profiles-hyperinflammatory, low perfusion, and hypogammaglobulinemic-which could guide personalized therapeutic approaches. STTS, with a mean SOFA score of 17 (5.7) and a 53.8% requiring ECMO, underscores the need for precision medicine-based rescue therapies and sepsis phenotype identification. Integrating these strategies with prompt antibiotics and efficient source control offers a potential avenue to mitigate organ failure, enhancing patient survival and recovery in the face of this severe clinical condition.
Collapse
Affiliation(s)
- Juan Carlos Ruiz-Rodríguez
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Departament of Medicine, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Luis Chiscano-Camón
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Departament of Medicine, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Carolina Maldonado
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Adolf Ruiz-Sanmartin
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Laura Martin
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Ivan Bajaña
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Juliana Bastidas
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Rocio Lopez-Martinez
- Immunology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Clara Franco-Jarava
- Immunology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Juan José González-López
- Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Vicent Ribas
- Eurecat, Centre Tecnològic de Catalunya, EHealth Unit, 08005 Barcelona, Spain
| | - Nieves Larrosa
- Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Jordi Riera
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Xavier Nuvials-Casals
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Departament of Medicine, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
24
|
Numberger D, Siebert U, Valentin Weigand P. Survival and adaptation of Streptococcus phocae in host environments. PLoS One 2024; 19:e0296368. [PMID: 38289941 PMCID: PMC10826952 DOI: 10.1371/journal.pone.0296368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Marine mammals are sentinel species representing the "health" of our oceans on which we are dependent. There are many threats to marine mammals including infectious diseases that increase with climate change and pollution of the marine environment. Streptococcus phocae has frequently been isolated from diseased or dead marine mammals. However, its pathogenicity and contribution to disease in marine mammals is still unknown. As bacteria including (potential) pathogens has to deal with different host environments during colonization or infection, we investigated the survival of S. phocae in fresh porcine and phocid blood, in seawater and in the presence of macrophages and (epithelial) cells from harbor seals and pigs. Furthermore, we tested adherence on and invasion of different (marine) mammalian cells by S. phocae. Our results showed that S. phocae can survive in seawater for at least 11 and 28 days at 16°C and 4°C, respectively. It is able to grow in blood of harbor and grey seals, but not in porcine blood. Furthermore, S. phocae is adherent and invasive to cells from seals and pigs, while the portion of invasive cells was higher in seal derived cells. Macrophages of harbor seals were more efficient in killing S. phocae than porcine macrophages. Our results indicate that S. phocae has strategies enabling it to adapt to the marine environment and seal hosts.
Collapse
Affiliation(s)
- Daniela Numberger
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Buesum, Germany
| | - Peter Valentin Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
25
|
Leo F, Lood R, Thomsson KA, Nilsson J, Svensäter G, Wickström C. Characterization of MdpS: an in-depth analysis of a MUC5B-degrading protease from Streptococcus oralis. Front Microbiol 2024; 15:1340109. [PMID: 38304711 PMCID: PMC10830703 DOI: 10.3389/fmicb.2024.1340109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Oral biofilms, comprising hundreds of bacteria and other microorganisms on oral mucosal and dental surfaces, play a central role in oral health and disease dynamics. Streptococcus oralis, a key constituent of these biofilms, contributes significantly to the formation of which, serving as an early colonizer and microcolony scaffold. The interaction between S. oralis and the orally predominant mucin, MUC5B, is pivotal in biofilm development, yet the mechanism underlying MUC5B degradation remains poorly understood. This study introduces MdpS (Mucin Degrading Protease from Streptococcus oralis), a protease that extensively hydrolyses MUC5B and offers an insight into its evolutionary conservation, physicochemical properties, and substrate- and amino acid specificity. MdpS exhibits high sequence conservation within the species and also explicitly among early biofilm colonizing streptococci. It is a calcium or magnesium dependent serine protease with strict physicochemical preferences, including narrow pH and temperature tolerance, and high sensitivity to increasing concentrations of sodium chloride and reducing agents. Furthermore, MdpS primarily hydrolyzes proteins with O-glycans, but also shows activity toward immunoglobulins IgA1/2 and IgM, suggesting potential immunomodulatory effects. Significantly, MdpS extensively degrades MUC5B in the N- and C-terminal domains, emphasizing its role in mucin degradation, with implications for carbon and nitrogen sequestration for S. oralis or oral biofilm cross-feeding. Moreover, depending on substrate glycosylation, the amino acids serine, threonine or cysteine triggers the enzymatic action. Understanding the interplay between S. oralis and MUC5B, facilitated by MdpS, has significant implications for the management of a healthy eubiotic oral microenvironment, offering potential targets for interventions aimed at modulating oral biofilm composition and succession. Additionally, since MdpS does not rely on O-glycan removal prior to extensive peptide backbone hydrolysis, the MdpS data challenges the current model of MUC5B degradation. These findings emphasize the necessity for further research in this field.
Collapse
Affiliation(s)
- Fredrik Leo
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Genovis AB, Kävlinge, Sweden
| | - Rolf Lood
- Genovis AB, Kävlinge, Sweden
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Kristina A. Thomsson
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Claes Wickström
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
26
|
Lv H, Zhang Z, Fu B, Li Z, Yin T, Liu C, Xu B, Wang D, Li B, Hao J, Zhang L, Wang J. Characteristics of the gut microbiota of patients with symptomatic carotid atherosclerotic plaques positive for bacterial genetic material. Front Cell Infect Microbiol 2024; 13:1296554. [PMID: 38282614 PMCID: PMC10811106 DOI: 10.3389/fcimb.2023.1296554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background The gut microbiota (GM) is believed to be closely associated with symptomatic carotid atherosclerosis (SCAS), yet more evidence is needed to substantiate the significant role of GM in SCAS. This study, based on the detection of bacterial DNA in carotid plaques, explores the characteristics of GM in SCAS patients with plaque bacterial genetic material positivity, aiming to provide a reference for subsequent research. Methods We enrolled 27 healthy individuals (NHF group) and 23 SCAS patients (PFBS group). We utilized 16S rDNA V3-V4 region gene sequencing to analyze the microbiota in fecal samples from both groups, as well as in plaque samples from the carotid bifurcation extending to the origin of the internal carotid artery in all patients. Results Our results indicate significant differences in the gut microbiota (GM) between SCAS patients and healthy individuals. The detection rate of bacterial DNA in plaque samples was approximately 26%. Compared to patients with negative plaques (PRSOPWNP group), those with positive plaques (PRSOPWPP group) exhibited significant alterations in their GM, particularly an upregulation of 11 bacterial genera (such as Klebsiella and Streptococcus) in the gut, which were also present in the plaques. In terms of microbial gene function prediction, pathways such as Fluorobenzoate degradation were significantly upregulated in the GM of patients with positive plaques. Conclusion In summary, our study is the first to identify significant alterations in the gut microbiota of patients with positive plaques, providing crucial microbial evidence for further exploration of the pathogenesis of SCAS.
Collapse
Affiliation(s)
- Hang Lv
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bo Fu
- Department of Precision Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chao Liu
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bin Xu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dawei Wang
- Department of Orthopedics, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Baojie Li
- Bio-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
27
|
Prokopovich LS, Ilyin VK, Drobyshev AY. [Prevention of periodontal inflammation in microgravity modeling]. STOMATOLOGIIA 2024; 103:23-28. [PMID: 39831670 DOI: 10.17116/stomat202410306223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
THE PURPOSE Of the study was to assess oral microbiocenosis changes in participants of microgravity modeling in a control group and using prophylaxis in the form of a probiotic supplement with 1.0·109 CFU of Streptococcus salivarius strain in one lozenge and a dairy product containing not less than 1·107 CFU of Streptococcus salivarius subsp. thermophilus strain in one gram. MATERIALS AND METHODS The study included 15 participants aged 25-40 years from the "Dry Immersion-2018" experiment. Five participants were included in the control group, while 10 participants were divided into 3 prophylactic groups: group I with 3 people (1 glass of dairy after evening teethbrushing and 1 glass of dairy after breakfast and teethbrushing). Group II with 3 people dissolving 1 probiotic lozenge at bedtime after teethbrushing and 1 lozenge after breakfast and teethbrushing. Group III with 4 people tested the synergism of protective streptococcus strains according to the scheme: 1 glass of dairy before nightsleep after teethbrushing and 2 probiotic lozenges under the tongue during the day. Changes were assessed by the dynamics of the Eubiotic Index and the Community Periodontal Index of Treatment Need (CPITN). RESULTS A significant deterioration of the periodontal condition was recorded in the control group: a growth of supragingival and subgingival tartar, bleeding gums, and a growth of pathogenic microflora. In all three prophylactic groups, a positive shift was detected in Eubiotic Index. In groups I and II there were no changes on CPITN index scale, and in group III an improvement in periodontal condition was recorded. CONCLUSION The probiotic drug showed a positive prophylactic effect and found synergy with the dairy product based on the Streptococcus salivarius subsp. thermophilus strain.
Collapse
Affiliation(s)
- L S Prokopovich
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - V K Ilyin
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - A Y Drobyshev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
28
|
Gimenes de Castro B, Mari Fredi B, Dos Santos Bezerra R, Alcantara QA, Milani Neme CE, Mascarelli DE, Carvalho Tahyra AS, Dos-Santos D, Nappi CR, Santos de Oliveira F, Pereira Freire F, Ballestero G, Menuci Lima JB, de Andrade Bolsoni J, Lourenço Gebenlian J, Lopes Bibo N, Soares Silva N, de Carvalho Santos N, Simionatto Zucherato V, Chagas Peronni K, Guariz Pinheiro D, Dias-Neto E, Gambero Gaspar G, Roberto Bollela V, da Silva Silveira V, Maria Fontes A, Maria Martinez-Rossi N, Nanev Slavov S, Paulo Bianchi Ximenez J, Barbosa F, Araújo Silva W. Metabarcoding approach to identify bacterial community profiling related to nosocomial infection and bacterial trafficking-routes in hospital environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:803-815. [PMID: 37565650 DOI: 10.1080/15287394.2023.2243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Nosocomial infections (NIs) appear in patients under medical care in the hospital. The surveillance of the bacterial communities employing high-resolution 16S rRNA profiling, known as metabarcoding, represents a reliable method to establish factors that may influence the composition of the bacterial population during NIs. The present study aimed to utilize high-resolution 16S rRNA profiling to identify high bacterial diversity by analyzing 11 inside and 10 outside environments from the General Hospital of Ribeirão Preto Medical School, Brazil. Our results identified a high bacterial diversity, and among these, the most abundant bacterial genera linked to NIs were Cutibacterium, Streptococcus, Staphylococcus, and Corynebacterium. A Acinetobacter was detected in cafeterias, bus stops, and adult and pediatric intensive care units (ICUs). Data suggest an association between transport and alimentation areas proximal to the hospital ICU environment. Interestingly, the correlation and clusterization analysis showed the potential of the external areas to directly influence the ICU pediatric department microbial community, including the outpatient's clinic, visitor halls, patient reception, and the closest cafeterias. Our results demonstrate that high-resolution 16S rRNA profiling is a robust and reliable tool for bacterial genomic surveillance. In addition, the metabarcoding approach might help elaborate decontamination policies, and consequently reduce NIs.
Collapse
Affiliation(s)
| | - Bruno Mari Fredi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Dos Santos Bezerra
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center, General Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Queren Apuque Alcantara
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics, General Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | - Douglas Dos-Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camilla Rizzo Nappi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Giulia Ballestero
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | - Naira Lopes Bibo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | - Kamila Chagas Peronni
- Department of the Research and Innovation, Institute for Cancer Research, Guarapuava, Parana, Brazil
| | - Daniel Guariz Pinheiro
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, International Research Center, A.C. Camargo Cancer Center, Jaboticabal, São Paulo, Brazil
| | - Gilberto Gambero Gaspar
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Valdes Roberto Bollela
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vanessa da Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aparecida Maria Fontes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Svetoslav Nanev Slavov
- Regional Blood Center, General Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Bianchi Ximenez
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center, General Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of the Research and Innovation, Institute for Cancer Research, Guarapuava, Parana, Brazil
| |
Collapse
|
29
|
Lambert C, d'Orfani A, Gaillard M, Zhang Q, Gloux K, Poyart C, Fouet A. Acyl-AcpB, a FabT corepressor in Streptococcus pyogenes. J Bacteriol 2023; 205:e0027423. [PMID: 37811985 PMCID: PMC10601718 DOI: 10.1128/jb.00274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Membranes are a universal barrier to all cells. Phospholipids, essential bacterial membrane components, are composed of a polar head and apolar fatty acid (FA) chains. Most bacterial FAs are synthesized by the Type II FA synthesis pathway (FASII). In Streptococcaceae, Enterococci, and Lactococcus lactis, a unique feedback mechanism controls the FASII gene expression. FabT, encoded in the FASII main locus, is the repressor, and it is activated by long-chain acyl-acyl carrier protein (acyl-ACP). Many Streptococci, Enterococcus faecalis, but not L. lactis, possess two ACPs. The AcpA-encoding gene is within the FASII locus and is coregulated with the FASII genes. Acyl-AcpA is the end product of FASII. The AcpB-encoding gene is in operon with plsX encoding an acyl-ACP:phosphate acyltransferase. The role of acyl-AcpB as FabT corepressor is controversial. Streptococcus pyogenes, which causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections, possesses AcpB. In this study, by comparing the expression of FabT-controlled genes in an acpB-deleted mutant with those in a wild-type and in a fabT mutant strain, grown in the presence or absence of exogenous FAs, we show that AcpB is the S. pyogenes FabT main corepressor. Its deletion impacts membrane FA composition and bacterial adhesion to eucaryotic cells, highlighting the importance of FASII control. Importance Membrane composition is crucial for bacterial growth or interaction with the environment. Bacteria synthesize fatty acids (FAs), membrane major constituents, via the Type II FAS (FASII) pathway. Streptococci control the expression of the FASII genes via a transcriptional repressor, FabT, with acyl-acyl carrier proteins (ACPs) as corepressor. Streptococcus pyogenes that causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections possesses two ACPs. acpA, but not acpB, is a FASII gene. In this study, we show that acyl-AcpBs are FabT main corepressors. Also, AcpB deletion has consequences on the membrane FA composition and bacterial adhesion to host cells. In addition to highlighting the importance of FASII control in the presence of exogeneous FAs for the adaptation of bacteria to their environment, our data indicate that FASII gene repression is mediated by a corepressor whose gene expression is not repressed in the presence of exogenous FAs.
Collapse
Affiliation(s)
- Clara Lambert
- Université Paris Cité, Institut Cochin, Paris, France
| | | | | | - Qiufen Zhang
- Université Paris Cité, Institut Cochin, Paris, France
| | - Karine Gloux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Claire Poyart
- Université Paris Cité, Institut Cochin, Paris, France
- AP-HP Centre-Université Paris Cité, Paris, France
| | - Agnes Fouet
- Université Paris Cité, Institut Cochin, Paris, France
| |
Collapse
|
30
|
Pei S, Feng L, Zhang Y, Liu J, Li J, Zheng Q, Liu X, Luo B, Ruan Y, Li H, Hu W, Niu J, Tian T. Effects of long-term metal exposure on the structure and co-occurrence patterns of the oral microbiota of residents around a mining area. Front Microbiol 2023; 14:1264619. [PMID: 37928665 PMCID: PMC10620801 DOI: 10.3389/fmicb.2023.1264619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Objectives The aim of our study was to investigate the impact of long-term exposure to heavy metals on the microbiome of the buccal mucosa, to unveil the link between environmental contamination and the oral microbial ecosystem, and to comprehend its potential health implications. Methods Subjects were divided into two groups: the exposure group and the control group. We collected samples of buccal mucosa, soil, and blood, and conducted microbial diversity analysis on both groups of oral samples using 16S rRNA gene sequencing. The concentrations of heavy metals in blood and soil samples were also determined. Additionally, microbial networks were constructed for the purpose of topological analysis. Results Due to long-term exposure to heavy metals, the relative abundance of Rhodococcus, Delftia, Fusobacterium, and Peptostreptococcus increased, while the abundance of Streptococcus, Gemella, Prevotella, Granulicatella, and Porphyromonas decreased. The concentrations of heavy metals in the blood (Pb, Cd, Hg, and Mo) were associated with the growth of Rhodococcus, Delftia, Porphyromonas, and Gemella. In addition, the relative abundances of some pathogenic bacteria, such as Streptococcus anginosus, S. gordonii, and S. mutans, were found to be enriched in the exposure group. Compared to the exposure group network, the control group network had a greater number of nodes, modules, interactive species, and keystone taxa. Module hubs and connectors in the control group converted into peripherals in the exposure group, indicating that keystone taxa changed. Metals in the blood (Pb, Cd, Hg, and Mo) were drivers of the microbial network of the buccal mucosa, which can have adverse effects on the network, thus providing conditions for the occurrence of certain diseases. Conclusion Long-term exposure to multiple metals perturbs normal bacterial communities in the buccal mucosa of residents in contaminated areas. This exposure reduces the complexity and stability of the microbial network and increases the risk of developing various diseases.
Collapse
Affiliation(s)
- Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Lu Feng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yonghua Zhang
- Child Health Department, Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
31
|
Li X, Yu C, Zhang B, Shan X, Mao W, Zhang Z, Wang C, Jin X, Wang J, Zhao H. The recovery of the microbial community after plaque removal depends on periodontal health status. NPJ Biofilms Microbiomes 2023; 9:75. [PMID: 37805507 PMCID: PMC10560279 DOI: 10.1038/s41522-023-00441-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Plaque accumulation and microbial community changes are important causes of periodontal disease. Cleaned plaque microorganisms will reattach to form biofilms, but the recovery and outcome of plaque microbial communities in different periodontal health states remain unknown. In this study, we tracked the biofilm remodeling process in 206 dental plaque samples from 40 healthy periodontal, gingivitis and periodontitis volunteers at 6 time points before and after supragingival scaling. We found that microbial communities of different periodontal states changed asynchronously during the process, and the more severe the periodontal disease condition, the more lagged the recovery of plaque microorganisms to their original state after cleaning; this reflected a higher degree of plaque development in periodontitis samples. The plaque index and bleeding index were significantly correlated with plaque recovery, especially the recovery of bacteria such as Abiotrophia and Capnocytophaga. Meanwhile, we found that the microbial community structure of different periodontal health states was most similar at the Day 3 after plaque cleaning, and the communities gradually differentiated and developed in different directions. Abiotrophia and other bacteria might play an important role in determining the development trend of plaque biofilms. The discovery of specific time points and bacteria was of great value in clarifying the pathogenesis of periodontal disease and in seeking targets for prevention and treatment.
Collapse
Affiliation(s)
- Xiaoqing Li
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Cheng Yu
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
- Jiangyin Stomatological Hospital/Jiangyin Oral Disease Preventive Treatment, Jiangyin, Jiangsu, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Shan
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Wenjun Mao
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Zicheng Zhang
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| | - Chunyan Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaoxia Jin
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Hui Zhao
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China.
| |
Collapse
|
32
|
Gong SG, El-Shennawy S, Choudhary P, Dufour D, Lévesque CM. Antimicrobial activity of probiotic Streptococcus salivarius LAB813 on in vitro cariogenic biofilms. Arch Oral Biol 2023; 154:105760. [PMID: 37421828 DOI: 10.1016/j.archoralbio.2023.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVE To investigate the antimicrobial activity of a novel commensal strain of Streptococcus salivarius, LAB813, against Streptococcus mutans biofilms. METHODS The inhibitory activity of LAB813 towards S. mutans was tested using mono-, dual-, and multi-species cariogenic biofilms formed on three types of orthodontic appliances (metal, ceramic, aligner). The activity of the commercially available probiotic, BLIS M18™ was used as control. RESULTS LAB813 significantly inhibited S. mutans biofilms with cell killing approximating 99% for all materials. LAB813 showed effectiveness at inhibiting S. mutans in more complex multi-species biofilms with cell killing approximating 90% for all three materials. When comparing the killing kinetics of the probiotics, LAB813 had a faster rate of killing biofilms than M18. Experiments conducted with cell-free culture supernatant confirmed the presence of an inhibitory substance of proteinaceous nature. The addition of xylitol, a common sugar substitute used for human consumption, potentiated the inhibitory effects of LAB813 against S. mutans embedded in a more complex fungal-bacterial biofilm. CONCLUSIONS LAB813 possesses strong antimicrobial activity, potent anti-biofilm properties, and enhanced antimicrobial activity in the presence of xylitol. The identification and characterization of strain LAB813 exhibiting antimicrobial activity towards S. mutans hold exciting promise for this novel strain to be developed as an oral probiotic for use in the prevention of dental caries.
Collapse
Affiliation(s)
- Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| | - Sally El-Shennawy
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Delphine Dufour
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Céline M Lévesque
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Vilhena C, Du S, Battista M, Westermann M, Kohler T, Hammerschmidt S, Zipfel PF. The choline-binding proteins PspA, PspC, and LytA of Streptococcus pneumoniae and their interaction with human endothelial and red blood cells. Infect Immun 2023; 91:e0015423. [PMID: 37551971 PMCID: PMC10501214 DOI: 10.1128/iai.00154-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-positive opportunistic pathogen that can colonize the upper respiratory tract. It is a leading cause of a wide range of infectious diseases, including community-acquired pneumonia and meningitis. Pneumococcal infections cause 1-2 million deaths per year, most of which occur in developing countries. Here, we focused on three choline-binding proteins (CBPs), i.e., PspC, PspA, and LytA. These pneumococcal proteins have different surface-exposed regions but share related choline-binding anchors. These surface-exposed pneumococcal proteins are in direct contact with host cells and have diverse functions. We explored the role of the three CBPs on adhesion and pathogenicity in a human host by performing relevant imaging and functional analyses, such as electron microscopy, confocal laser scanning microscopy, and functional quantitative assays, targeting biofilm formation and the hemolytic capacity of S. pneumoniae. In vitro biofilm formation assays and electron microscopy experiments were used to examine the ability of knockout mutant strains lacking the lytA, pspC, or pspA genes to adhere to surfaces. We found that LytA plays an important role in robust synthesis of the biofilm matrix. PspA and PspC appeared crucial for the hemolytic effects of S. pneumoniae on human red blood cells. Furthermore, all knockout mutants caused less damage to endothelial cells than wild-type bacteria, highlighting the significance of each CPB for the overall pathogenicity of S. pneumoniae. Hence, in addition to their structural function within the cell wall of S. pneumoniae, each of these three surface-exposed CBPs controls or mediates multiple steps during bacterial pathogenesis.
Collapse
Affiliation(s)
- Cláudia Vilhena
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Shanshan Du
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Miriana Battista
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Martin Westermann
- Centre for Electron Microscopy, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Thomas Kohler
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
34
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
35
|
Di Bari S, Mondi A, Pinnetti C, Mazzotta V, Carletti F, Matusali G, Vincenti D, Gagliardini R, Santoro R, Fontana C, Maggi F, Girardi E, Vaia F, Antinori A. A Case of Severe Mpox Complicated with Streptococcus pyogenes Sepsis in a Patient with HIV Infection. Pathogens 2023; 12:1073. [PMID: 37764881 PMCID: PMC10534985 DOI: 10.3390/pathogens12091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Since May 2022, a global outbreak of human Mpox has rapidly spread in non-endemic countries. We report a case of a 34-year-old man admitted to hospital for a six-day history of fever associated with vesiculo-pustular rash involving the face, limbs, trunk and perianal region, lymphadenopathy and severe proctitis and pharyngitis. He was HIV-positive and virologically suppressed by stable antiretroviral therapy. On admission, Mpox virus-specific RT-PCR was positive from multiple samples. Additionally, blood cultures yielded Streptococcus pyogenes, prompting a 14-day-course of penicillin G and clindamycin. Due to the worsening of proctitis along with right ocular mucosa involvement, tecovirimat treatment was started with a rapid improvement in both skin and mucosal involvement. The patient was discharged after 21 days of hospitalization and the complete clinical resolution occurred 38 days after symptom onset. This is a case of Mpox with extensive multi-mucosal (ocular, pharyngeal and rectal) and cutaneous extension and S. pyogenes bacteraemia probably related to bacterial translocation from the skin or oral cavity that was eased by Mpox lesions/inflammation. The HIVinfection, although well controlled by antiretroviral therapy, could have played a role in the severe course of Mpox, suggesting the importance of a prompt antiviral treatment in HIV-positive patients.
Collapse
|
36
|
Santacroce L, Passarelli PC, Azzolino D, Bottalico L, Charitos IA, Cazzolla AP, Colella M, Topi S, Godoy FG, D’Addona A. Oral microbiota in human health and disease: A perspective. Exp Biol Med (Maywood) 2023; 248:1288-1301. [PMID: 37688509 PMCID: PMC10625343 DOI: 10.1177/15353702231187645] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
The evolution of medical knowledge about oral microbiota has increased awareness of its important role for the entire human body health. A wide range of microbial species colonizing the oral cavity interact both with each other and with their host through complex pathways. Usually, these interactions lead to a harmonious coexistence (i.e. eubiosis). However, several factors - including diet, poor oral hygiene, tobacco smoking, and certain medications, among others - can disrupt this weak homeostatic balance (i.e. dysbiosis) with potential implications on both oral (i.e. development of caries and periodontal disease) and systemic health. This article is thus aimed at providing an overview on the importance of oral microbiota in mediating several physiological and pathological conditions affecting human health. In this context, strategies based on oral hygiene and diet as well as the role of probiotics supplementation are discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Pier Carmine Passarelli
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Ioannis Alexandros Charitos
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Bari 70124, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia 71122, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Franklin Garcia Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Antonio D’Addona
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
37
|
He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics 2023; 15:1837. [PMID: 37514024 PMCID: PMC10385394 DOI: 10.3390/pharmaceutics15071837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors' views for the future of the field are also presented.
Collapse
Affiliation(s)
- Yanping He
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
38
|
Tan L, Zhong MM, Liu Q, Chen Y, Zhao YQ, Zhao J, Dusenge MA, Feng Y, Ye Q, Hu J, Ou-Yang ZY, Zhou YH, Guo Y, Feng YZ. Potential interaction between the oral microbiota and COVID-19: a meta-analysis and bioinformatics prediction. Front Cell Infect Microbiol 2023; 13:1193340. [PMID: 37351182 PMCID: PMC10282655 DOI: 10.3389/fcimb.2023.1193340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Objectives The purpose of this study was to evaluate available evidence on the association between the human oral microbiota and coronavirus disease 2019 (COVID-19) and summarize relevant data obtained during the pandemic. Methods We searched EMBASE, PubMed, and the Cochrane Library for human studies published up to October 2022. The main outcomes of the study were the differences in the diversity (α and β) and composition of the oral microbiota at the phylum and genus levels between patients with laboratory-confirmed SARS-CoV-2 infection (CPs) and healthy controls (HCs). We used the Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA) database, Protein-protein interaction (PPI) network (STRING) and Gene enrichment analysis (Metascape) to evaluate the expression of dipeptidyl peptidase 4 (DPP4) (which is the cell receptor of SARS CoV-2) in oral tissues and evaluate its correlation with viral genes or changes in the oral microbiota. Results Out of 706 studies, a meta-analysis of 9 studies revealed a significantly lower alpha diversity (Shannon index) in CPs than in HCs (standardized mean difference (SMD): -0.53, 95% confidence intervals (95% CI): -0.97 to -0.09). Subgroup meta-analysis revealed a significantly lower alpha diversity (Shannon index) in older than younger individuals (SMD: -0.54, 95% CI: -0.86 to -0.23/SMD: -0.52, 95% CI: -1.18 to 0.14). At the genus level, the most significant changes were in Streptococcus and Neisseria, which had abundances that were significantly higher and lower in CPs than in HCs based on data obtained from six out of eleven and five out of eleven studies, respectively. DPP4 mRNA expression in the oral salivary gland was significantly lower in elderly individuals than in young individuals. Spearman correlation analysis showed that DPP4 expression was negatively correlated with the expression of viral genes. Gene enrichment analysis showed that DPP4-associated proteins were mainly enriched in biological processes, such as regulation of receptor-mediated endocytosis of viruses by host cells and bacterial invasion of epithelial cells. Conclusion The oral microbial composition in COVID-19 patients was significantly different from that in healthy individuals, especially among elderly individuals. DPP4 may be related to viral infection and dysbiosis of the oral microbiome in elderly individuals.
Collapse
Affiliation(s)
- Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Yu WL, Pan JG, Qin RX, Lu ZH, Bai XH, Sun Y. TCS01 Two-Component System Influenced the Virulence of Streptococcus pneumoniae by Regulating PcpA. Infect Immun 2023; 91:e0010023. [PMID: 37052497 PMCID: PMC10187121 DOI: 10.1128/iai.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023] Open
Abstract
Streptococcus pneumoniae relies on two-component systems (TCSs) to regulate the processes of pathogenicity, osmotic pressure, chemotaxis, and energy metabolism. The TCS01 system of S. pneumoniae is composed of HK01 (histidine kinase) and RR01 (response regulator). Previous studies have reported that an rr01 mutant reduced the pneumococcal virulence in rat pneumonia, bacteremia, a nasopharyngeal model, and infective endocarditis. However, the mechanism of TCS01 (HK/RR01) regulating pneumococcal virulence remains unclear. Here, pneumococcal mutant strains Δrr01, Δhk01, and Δrr01&hk01 were constructed, and bacterial adhesion and invasion to A549 cells were compared. RNA sequencing was performed in D39 wild-type and Δrr01 strains, and transcript profile changes were analyzed. Differentially expressed virulence genes in the Δrr01 strain were screened out and identified by quantitative real-time PCR (qRT-PCR). Our results showed that pneumococcal mutant strains exhibited attenuated adhesion and invasion to A549 cells and differential transcript profiles. Results of qRT-PCR identification showed that the differential virulence genes screened out were downregulated. Among those changed virulence genes in the Δrr01 strain, the downregulated expression level of choline binding protein pcpA was the most obvious. Complementation of rr01 and overexpression of pcpA in the Δrr01 strain partially restored both pneumococcal adhesion and invasion, and rr01 complementation made the expression of pcpA upregulated. These findings revealed that rr01 influenced pneumococcal virulence by regulating pcpA.
Collapse
Affiliation(s)
- Wei-Li Yu
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jin-Ge Pan
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ru-Xue Qin
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhong-Hua Lu
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Hui Bai
- College of Life and Environment Sciences, Huangshan University, Huangshan, Anhui, China
| | - Yun Sun
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
40
|
Woudstra S, Wente N, Zhang Y, Leimbach S, Kirkeby C, Gussmann MK, Krömker V. Reservoirs of Staphylococcus spp. and Streptococcus spp. Associated with Intramammary Infections of Dairy Cows. Pathogens 2023; 12:pathogens12050699. [PMID: 37242369 DOI: 10.3390/pathogens12050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
To design cost-effective prevention strategies against mastitis in dairy cow farms, knowledge about infection pathways of causative pathogens is necessary. Therefore, we investigated the reservoirs of bacterial strains causing intramammary infections in one dairy cow herd. Quarter foremilk samples (n = 8056) and milking- and housing-related samples (n = 251; from drinking troughs, bedding material, walking areas, cow brushes, fly traps, milking liners, and milker gloves), were collected and examined using culture-based methods. Species were identified with MALDI-TOF MS, and selected Staphylococcus and Streptococcus spp. typed with randomly amplified polymorphic DNA-PCR. Staphylococci were isolated from all and streptococci from most investigated locations. However, only for Staphylococcus aureus, matching strain types (n = 2) were isolated from milk and milking-related samples (milking liners and milker gloves). Staphylococcus epidermidis and Staphylococcus haemolyticus showed a large genetic diversity without any matches of strain types from milk and other samples. Streptococcus uberis was the only Streptococcus spp. isolated from milk and milking- or housing-related samples. However, no matching strains were found. This study underlines the importance of measures preventing the spread of Staphylococcus aureus between quarters during milking.
Collapse
Affiliation(s)
- Svenja Woudstra
- Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Nicole Wente
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany
| | - Yanchao Zhang
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany
| | - Stefanie Leimbach
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany
| | - Carsten Kirkeby
- Department of Veterinary and Animal Sciences, Section for Animal Welfare and Disease Control, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Maya Katrin Gussmann
- Department of Veterinary and Animal Sciences, Section for Animal Welfare and Disease Control, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Volker Krömker
- Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, University of Copenhagen, 1870 Frederiksberg, Denmark
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany
| |
Collapse
|
41
|
Alamiri F, André O, De S, Nordenfelt P, Hakansson AP. Role of serotype and virulence determinants of Streptococcus pyogenes biofilm bacteria in internalization and persistence in epithelial cells in vitro. Front Cell Infect Microbiol 2023; 13:1146431. [PMID: 37234777 PMCID: PMC10206268 DOI: 10.3389/fcimb.2023.1146431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Streptococcus pyogenes causes a multitude of local and systemic infections, the most common being pharyngitis in children. Recurrent pharyngeal infections are common and are thought to be due to the re-emergence of intracellular GAS upon completion of antibiotic treatment. The role of colonizing biofilm bacteria in this process is not fully clear. Here, live respiratory epithelial cells were inoculated with broth-grown or biofilm bacteria of different M-types, as well as with isogenic mutants lacking common virulence factors. All M-types tested adhered to and were internalized into epithelial cells. Interestingly, internalization and persistence of planktonic bacteria varied significantly between strains, whereas biofilm bacteria were internalized in similar and higher numbers, and all strains persisted beyond 44 hours, showing a more homogenous phenotype. The M3 protein, but not the M1 or M5 proteins, was required for optimal uptake and persistence of both planktonic and biofilm bacteria inside cells. Moreover, the high expression of capsule and SLO inhibited cellular uptake and capsule expression was required for intracellular survival. Streptolysin S was required for optimal uptake and persistence of M3 planktonic bacteria, whereas SpeB improved intracellular survival of biofilm bacteria. Microscopy of internalized bacteria showed that planktonic bacteria were internalized in lower numbers as individual or small clumps of bacteria in the cytoplasm, whereas GAS biofilm bacteria displayed a pattern of perinuclear localization of bacterial aggregates that affected actin structure. Using inhibitors targeting cellular uptake pathways, we confirmed that planktonic GAS mainly uses a clathrin-mediated uptake pathway that also required actin and dynamin. Clathrin was not involved in biofilm internalization, but internalization required actin rearrangement and PI3 kinase activity, possibly suggesting macropinocytosis. Together these results provide a better understanding of the potential mechanisms of uptake and survival of various phenotypes of GAS bacteria relevant for colonization and recurrent infection.
Collapse
Affiliation(s)
- Feiruz Alamiri
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Oscar André
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Supradipta De
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
42
|
Ke L, Wang J, Liu Y, Sun Z, Li Y, Xiao X. Identification of the antibacterial action mechanism of curcumin on Streptococcus mutans through transcriptome profiling. Arch Oral Biol 2023; 149:105655. [PMID: 36842372 DOI: 10.1016/j.archoralbio.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE The purpose of this study was to explore the effect and mechanism responsible for how curcumin affects the biofilm formation by Streptococcus mutans (S. mutans). DESIGN The antibacterial activity of curcumin was evaluated by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The mass of the biofilm was measured by crystal violet staining. Transcriptome sequencing was used to obtain all the transcript information associated with the biological activity of curcumin-treated S. mutans. Real-time quantitative PCR (qRT-PCR) was performed to examine the expression levels of related biofilm formation genes. RESULTS The MIC value for curcumin was 64 μM. Curcumin inhibited the formation of a biofilm by S. mutans and degraded mature biofilms. A gene ontology enrichment analysis showed that the DEGs were significantly relevant to biofilm formation. In addition, 17 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways (p ≤ 0.01) were identified and were potentially associated with the biochemical metabolic processes of S. mutans. DEGs associated with the biofilm formation of S. mutants, including gtfB, gtfC, rgpG, spaP, spxA1, spxA2, bacA, lrgB, and gshAB. The qRT-PCR results were consistent with transcriptome sequencing that the expression levels of gtfB, gtfC, rgpG, and spaP significantly decreased in the curcumin-treated group, whereas the expression levels of spx1, spx2, bacA, lrgB, and gshAB were up-regulated. CONCLUSIONS Curcumin showed marked inhibitory effects against the formation of biofilms by S. mutans and degradation of formed biofilms.
Collapse
Affiliation(s)
- Li Ke
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jiajun Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China; Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Science, Wuhan, China.
| | - Yanhua Liu
- Department of clinical laboratory, Hospital of China University of Geosciences, Wuhan, China.
| | - Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China; Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Science, Wuhan, China.
| | - Xiao Xiao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China; Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Science, Wuhan, China.
| |
Collapse
|
43
|
Budziaszek J, Pilarczyk-Zurek M, Dobosz E, Kozinska A, Nowicki D, Obszanska K, Szalewska-Pałasz A, Kern-Zdanowicz I, Sitkiewicz I, Koziel J. Studies of Streptococcus anginosus Virulence in Dictyostelium discoideum and Galleria mellonella Models. Infect Immun 2023; 91:e0001623. [PMID: 37097148 DOI: 10.1128/iai.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
For many years, Streptococcus anginosus has been considered a commensal colonizing the oral cavity, as well as the gastrointestinal and genitourinary tracts. However, recent epidemiological and clinical data designate this bacterium as an emerging opportunistic pathogen. Despite the reported pathogenicity of S. anginosus, the molecular mechanism underpinning its virulence is poorly described. Therefore, our goal was to develop and optimize efficient and simple infection models that can be applied to examine the virulence of S. anginosus and to study host-pathogen interactions. Using 23 S. anginosus isolates collected from different infections, including severe and superficial infections, as well as an attenuated strain devoid of CppA, we demonstrate for the first time that Dictyostelium discoideum is a suitable model for initial, fast, and large-scale screening of virulence. Furthermore, we found that another nonvertebrate animal model, Galleria mellonella, can be used to study the pathogenesis of S. anginosus infection, with an emphasis on the interactions between the pathogen and host innate immunity. Examining the profile of immune defense genes, including antimicrobial peptides, opsonins, regulators of nodulation, and inhibitors of proteases, by quantitative PCR (qPCR) we identified different immune response profiles depending on the S. anginosus strain. Using these models, we show that S. anginosus is resistant to the bactericidal activity of phagocytes, a phenomenon confirmed using human neutrophils. Notably, since we found that the data from these models corresponded to the clinical severity of infection, we propose their further application to studies of the virulence of S. anginosus.
Collapse
Affiliation(s)
- Joanna Budziaszek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pilarczyk-Zurek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kozinska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | - Dariusz Nowicki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Obszanska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | | | | | - Izabela Sitkiewicz
- Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
44
|
Zeng F, Wang L, Zhen H, Guo C, Liu A, Xia X, Pei H, Dong C, Ding J. Nanoplastics affect the growth of sea urchins (Strongylocentrotus intermedius) and damage gut health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161576. [PMID: 36640870 DOI: 10.1016/j.scitotenv.2023.161576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) are abundant and widespread throughout the ocean, not only causing severe environmental pollution, but also worsening the aquatic organisms. To elucidate the mechanism of biological toxic effects underlying the responses of marine invertebrates to NPs, Strongylocentrotus intermedius was stressed with three different NPs concentrations (0 particles/L, 102 particles/L and 104 particles/L). Specific growth rates, enzyme activity, gut tissue section observation and structural characteristics of the gut bacterial community were analyzed. After 28 days of exposure, the specific growth rate of S. intermedius decreased significantly with NPs groups. Further, both lysozyme, pepsin, lipase and amylase activities decreased, while the superoxide dismutase activity increased, indicating that NPs negatively affected digestive enzyme and immune enzyme activity. The analysis of gut tissue sections revealed that NPs caused atrophy and cytoplasmic reduction in the epithelial cells of the S. intermedius intestine. Moreover, the structural characterization of the gut bacterial community indicated significant changes in the abundances of members from Campylobacterota, Chlamydiae, and Firmicutes. Members from Arcobacteraceae, Christensenellaceae and Clostridia were endemic to the NPs treatment. The KEGG database analysis demonstrated that the metabolic pathways specific to the NPs treatment group were significantly associated with growth, energy metabolism, and immunity. In summary, NPs have negatively affected on physiological response and altered gut microecological environment.
Collapse
Affiliation(s)
- Fanshuang Zeng
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Hao Zhen
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Anzheng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xinglong Xia
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Honglin Pei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Changkun Dong
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
45
|
Choudhary P, Kraatz HB, Lévesque CM, Gong SG. Microencapsulation of Probiotic Streptococcus salivarius LAB813. ACS OMEGA 2023; 8:12011-12018. [PMID: 37033842 PMCID: PMC10077535 DOI: 10.1021/acsomega.2c07721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Probiotics are living microorganisms that confer a health benefit on the host when administered in adequate amounts. Streptococcus salivarius, a commensal bacterium found in the oral cavity, has been shown to secrete antimicrobial peptides and can be used as probiotics. This study aimed to develop a delivery system for the probiotic LAB813, a novel S. salivarius strain first identified in the laboratory. Probiotics can be delivered and protected through the encapsulation of biomaterials such as polysaccharides. Their biocompatibility, biodegradability, user-friendliness, and ease of access make polysaccharides useful for encapsulating probiotics. Alginate (Alg) and chitosan (Ch) are naturally obtained polysaccharides and, hence, tested for LAB813 encapsulation. An extrusion method of encapsulation was performed to form Alg microcapsules (Alg-LAB813), some of which were coated with Ch (Alg-LAB813-Ch) to provide dual-layered protection. Inhibitory assays of the Alg-LAB813 and Alg-LAB813-Ch microcapsules were assayed against an indicator strain. Alg-LAB813-Ch microcapsules showed superior antibacterial properties compared to Alg-LAB813 microcapsules over 24 h and when subject to temperatures ranging from 4 to 68 °C. In addition, Alg-LAB813-Ch microcapsules retained antibacterial activity for up to 28 days of storage at 4 °C. The strong and sustained inhibitory activities of Ch-coated Alg encapsulated LAB813 signify the potential for their use to improve oral health.
Collapse
Affiliation(s)
| | - Heinz-Bernhard Kraatz
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Céline M. Lévesque
- Faculty
of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Siew-Ging Gong
- Faculty
of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
46
|
Frost H, Excler JL, Sriskandan S, Fulurija A. Correlates of immunity to Group A Streptococcus: a pathway to vaccine development. NPJ Vaccines 2023; 8:1. [PMID: 36650164 PMCID: PMC9844947 DOI: 10.1038/s41541-022-00593-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023] Open
Abstract
Understanding immunity in humans to Group A Streptococcus (Strep A) is critical for the development of successful vaccines to prevent the morbidity and mortality attributed to Strep A infections. Despite decades of effort, no licensed vaccine against Strep A exists and immune correlates of protection are lacking; a major impediment to vaccine development. In the absence of a vaccine, we can take cues from the development of natural immunity to Strep A in humans to identify immune correlates of protection. The age stratification of incidence of acute Strep A infections, peaking in young children and waning in early adulthood, coincides with the development of specific immune responses. Therefore, understanding the immune mechanisms involved in natural protection from acute Strep A infection is critical to identifying immune correlates to inform vaccine development. This perspective summarises the findings from natural infection studies, existing assays of immunity to Strep A, and highlights the gaps in knowledge to guide the development of Strep A vaccines and associated correlates of protection.
Collapse
Affiliation(s)
- Hannah Frost
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, UK.
- MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK.
| | - Alma Fulurija
- Telethon Kid's Institute, Perth, WA, Australia.
- The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
47
|
Bacterial topography of the upper and lower respiratory tract in pigs. Anim Microbiome 2023; 5:5. [PMID: 36647171 PMCID: PMC9843957 DOI: 10.1186/s42523-023-00226-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/24/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Understanding the complex structures and interactions of the bacterial communities inhabiting the upper (URT) and lower (LRT) respiratory tract of pigs is at an early stage. The objective of this study was to characterize the bacterial topography of three URT (nostrils, choana, and tonsils) and LRT (proximal trachea, left caudal lobe and secondary bronchi) sites in pigs. Thirty-six post-mortem samples from six pigs were analysed by 16S rRNA gene quantification and sequencing, and the microbiota in nostrils and trachea was additionally profiled by shotgun sequencing. RESULTS The bacterial composition obtained by the two methods was congruent, although metagenomics recovered only a fraction of the diversity (32 metagenome-assembled genomes) due to the high proportion (85-98%) of host DNA. The highest abundance of 16S rRNA copies was observed in nostrils, followed by tonsils, trachea, bronchi, choana and lung. Bacterial richness and diversity were lower in the LRT compared to the URT. Overall, Firmicutes and Proteobacteria were identified as predominant taxa in all sample types. Glasserella (15.7%), Streptococcus (14.6%) and Clostridium (10.1%) were the most abundant genera but differences in microbiota composition were observed between the two tracts as well as between sampling sites within the same tract. Clear-cut differences were observed between nasal and tonsillar microbiomes (R-values 0.85-0.93), whereas bacterial communities inhabiting trachea and lung were similar (R-values 0.10-0.17). Moraxella and Streptococcus were more common in bronchial mucosal scraping than in lavage, probably because of mucosal adherence. The bacterial microbiota of the choana was less diverse than that of the nostrils and similar to the tracheal microbiota (R-value 0.24), suggesting that the posterior nasal cavity serves as the primary source of bacteria for the LRT. CONCLUSION We provide new knowledge on microbiota composition and species abundance in distinct ecological niches of the pig respiratory tract. Our results shed light on the distribution of opportunistic bacterial pathogens across the respiratory tract and support the hypothesis that bacteria present in the lungs originate from the posterior nasal cavity. Due to the high abundance of host DNA, high-resolution profiling of the pig respiratory microbiota by shotgun sequencing requires methods for host DNA depletion.
Collapse
|
48
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
49
|
Neilands J, Svensäter G, Boisen G, Robertsson C, Wickström C, Davies JR. Formation and Analysis of Mono-species and Polymicrobial Oral Biofilms in Flow-Cell Models. Methods Mol Biol 2023; 2674:33-54. [PMID: 37258958 DOI: 10.1007/978-1-0716-3243-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The oral microbiota, which is known to include at least 600 different bacterial species, is found on the teeth and mucosal surfaces as multi-species communities or biofilms. The oral surfaces are covered with a pellicle of proteins absorbed from saliva, and biofilm formation is initiated when primary colonizers, which express surface adhesins that bind to specific salivary components, attach to the oral tissues. Further development then proceeds through co-aggregation of additional species. Over time, the composition of oral biofilms, which varies between different sites throughout the oral cavity, is determined by a combination of environmental factors such as the properties of the underlying surface, nutrient availability and oxygen levels, and bacterial interactions within the community. A complex equilibrium between biofilm communities and the host is responsible for the maintenance of a healthy biofilm phenotype (eubiosis). In the face of sustained environmental perturbation, however, biofilm homeostasis can break down giving rise to dysbiosis, which is associated with the development of oral diseases such as caries and periodontitis.In vitro models have an important part to play in increasing our understanding of the complex processes involved in biofilm development in oral health and disease, and the requirements for experimental system, microbial complexity, and analysis techniques will necessarily vary depending on the question posed. In this chapter we describe some current and well-established methods used in our laboratory for studying oral bacteria in biofilm models which can be adapted to suit the needs of individual users.
Collapse
Affiliation(s)
- Jessica Neilands
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Gunnel Svensäter
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Gabriella Boisen
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Carolina Robertsson
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Claes Wickström
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.
| |
Collapse
|
50
|
Bawazir M, Dhall A, Lee J, Kim B, Hwang G. Effect of surface stiffness in initial adhesion of oral microorganisms under various environmental conditions. Colloids Surf B Biointerfaces 2023; 221:112952. [PMID: 36334517 PMCID: PMC11289856 DOI: 10.1016/j.colsurfb.2022.112952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Biofilms are three-dimensional structures formed as a result of microorganism's adhesion on a biotic or abiotic surface. Once a biofilm is established, it is onerous to eradicate it or kill the pathogens therein. Thus, targeting the microbial adhesion process, the initial stage of biofilm formation, is a reasonable approach to avoid challenges associated with subsequently formed biofilms. While many properties of interacting material that play significant roles in initial bacterial adhesion have been widely studied, the effect of surface stiffness on bacterial adhesion was relatively underexplored. In this study, we aimed to investigate the effect of surface stiffness on the adhesion of microbial species found in the oral cavity by employing representative oral bacteria, Streptococcus mutans and Streptococcus oralis, and the fungus, Candida albicans. We compared the adhesion behavior of these species alone or in combination toward various surface stiffness (0.06 - 3.01 MPa) by assessing the adhered and planktonic cell numbers at an early (4 h) adhesion stage under various carbon sources and the presence of conditioning film. Our data revealed that in general, a higher amount of microbial cells adhered to softer PDMS surfaces than stiffer ones, which indicates that surface stiffness plays a role in the adhesion of tested species (either single or co-cultured). This pattern was more obvious under sucrose conditions than glucose + fructose conditions. Interestingly, in monospecies, saliva coating did not alter the effect of surface stiffness on S. mutans adhesion while it diminished S. oralis and C. albicans adhesion. However, in the multispecies model, saliva coating rendered the percentage of all adhered microbes to varied PDMS not distinct. The data provide new insights into the role of surface stiffness on microbial mechanosensing and their initial adhesion behavior which may set a scientific foundation for future anti-adhesion strategies.
Collapse
Affiliation(s)
- Marwa Bawazir
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atul Dhall
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeewoo Lee
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett Kim
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|