1
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
2
|
To H, Tsutsumi N, Kon M, Kawashima N, Koike F, Lacouture S, Gottschalk M, Frey J, Nagai S. A new subtype of serovar 6, K6b:O3, of Actinobacillus pleuropneumoniae based on genotypic analysis. Vet Microbiol 2024; 298:110291. [PMID: 39488134 DOI: 10.1016/j.vetmic.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
We have analyzed the capsule (CPS) and the lipopolysaccharide O-Antigen (O-Ag) biosynthesis loci of fifteen field isolates of Actinobacillus pleuropneumoniae, including eleven North American and four Japanese ones, reactive to antisera against serovars 3, 6, 8 and/or 15. Ten North American isolates amplified a serovar 6-indicative fragment derived from the capsular loci, whereas one North American isolate and all four Japanese isolates amplified the serovar 6-indicative fragment as well as the serovar 3-indicative fragment. The five isolates producing a 3/6 banding pattern contain a type I CPS locus, named K6b, similar to serovar 6, but with differences in the cpxABCD and cpsABC gene sequences and the length of intergenic regions (modF-cpxA, and cpsC-cpsD). The main difference found between the K6 and K6b cps genes is a loss of function of a 113 AA UDP-glycosyltransferase found in type 6b due to the amino acid substitutions in the C-terminal domain of Cps6bA. Additionally, the isolates harbor a LPS O-Ag locus highly identical to those of field and reference strains of serovars 3, 8, 15, 17 and 19 but different from that of serovar 6. Taken together, our results indicate the existence of a subtype of A. pleuropneumoniae, serovar 6, that we called "K6b:O3'', and we propose isolate EH1248 as the reference strain.
Collapse
Affiliation(s)
- Ho To
- Nisseiken Co., Ltd., Tokyo, Japan; Faculty of Agriculture and Aquaculture, University of Cuu Long, Vinh Long, Viet Nam.
| | | | - Michiha Kon
- Nippon Institute for Biological Science, Tokyo, Japan
| | | | | | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Shinya Nagai
- Nisseiken Co., Ltd., Tokyo, Japan; Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
3
|
Karavaeva V, Sousa FL. Navigating the archaeal frontier: insights and projections from bioinformatic pipelines. Front Microbiol 2024; 15:1433224. [PMID: 39380680 PMCID: PMC11459464 DOI: 10.3389/fmicb.2024.1433224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Archaea continues to be one of the least investigated domains of life, and in recent years, the advent of metagenomics has led to the discovery of many new lineages at the phylum level. For the majority, only automatic genomic annotations can provide information regarding their metabolic potential and role in the environment. Here, genomic data from 2,978 archaeal genomes was used to perform automatic annotations using bioinformatics tools, alongside synteny analysis. These automatic classifications were done to assess how good these different tools perform in relation to archaeal data. Our study revealed that even with lowered cutoffs, several functional models do not capture the recently discovered archaeal diversity. Moreover, our investigation revealed that a significant portion of archaeal genomes, approximately 42%, remain uncharacterized. In comparison, within 3,235 bacterial genomes, a diverse range of unclassified proteins is obtained, with well-studied organisms like Escherichia coli having a substantially lower proportion of uncharacterized regions, ranging from <5 to 25%, and less studied lineages being comparable to archaea with the range of 35-40% of unclassified regions. Leveraging this analysis, we were able to identify metabolic protein markers, thereby providing insights into the metabolism of the archaea in our dataset. Our findings underscore a substantial gap between automatic classification tools and the comprehensive mapping of archaeal metabolism. Despite advances in computational approaches, a significant portion of archaeal genomes remains unexplored, highlighting the need for extensive experimental validation in this domain, as well as more refined annotation methods. This study contributes to a better understanding of archaeal metabolism and underscores the importance of further research in elucidating the functional potential of archaeal genomes.
Collapse
Affiliation(s)
- Val Karavaeva
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Dorado-Morales P, Lambérioux M, Mazel D. Unlocking the potential of microbiome editing: A review of conjugation-based delivery. Mol Microbiol 2024; 122:273-283. [PMID: 37658686 DOI: 10.1111/mmi.15147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
In recent decades, there has been a rapid increase in the prevalence of multidrug-resistant pathogens, posing a challenge to modern antibiotic-based medicine. This has highlighted the need for novel treatments that can specifically affect the target microorganism without disturbing other co-inhabiting species, thus preventing the development of dysbiosis in treated patients. Moreover, there is a pressing demand for tools to effectively manipulate complex microbial populations. One of the approaches suggested to address both issues was to use conjugation as a tool to modify the microbiome by either editing the genome of specific bacterial species and/or the removal of certain taxonomic groups. Conjugation involves the transfer of DNA from one bacterium to another, which opens up the possibility of introducing, modifying or deleting specific genes in the recipient. In response to this proposal, there has been a significant increase in the number of studies using this method for gene delivery in bacterial populations. This MicroReview aims to provide a detailed overview on the use of conjugation for microbiome engineering, and at the same time, to initiate a discussion on the potential, limitations and possible future directions of this approach.
Collapse
Affiliation(s)
- Pedro Dorado-Morales
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| | - Morgan Lambérioux
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| |
Collapse
|
5
|
Giordano I, Pasolli E, Mauriello G. Transcriptomic analysis reveals differential gene expression patterns of Lacticaseibacillus casei ATCC 393 in response to ultrasound stress. ULTRASONICS SONOCHEMISTRY 2024; 107:106939. [PMID: 38843696 PMCID: PMC11214525 DOI: 10.1016/j.ultsonch.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024]
Abstract
In recent years, there has been a growing interest in modulating the performance of probiotic, mainly Lactic Acid Bacteria (LAB), in the field of probiotic food. Attenuation, induced by sub-lethal stresses, delays the probiotic metabolism, and induces a metabolic shift as survival strategy. In this paper, RNA sequencing was used to uncover the transcriptional regulation in Lacticaseibacillus casei ATCC 393 after ultrasound-induced attenuation. Six (T) and 8 (ST) min of sonication induced a significant differential expression of 742 and 409 genes, respectively. We identified 198 up-regulated and 321 down-regulated genes in T, and similarly 321 up-regulated and 249 down-regulated in ST. These results revealed a strong defensive response at 6 min, followed by adaptation at 8 min. Ultrasound attenuation modified the expression of genes related to a series of crucial biomolecular processes including membrane transport, carbohydrate and purine metabolism, phage-related genes, and translation. Specifically, genes encoding PTS transporters and genes involved in the glycolytic pathway and pyruvate metabolism were up-regulated, indicating an increased need for energy supply, as also suggested by an increase in the transcription of purine biosynthetic genes. Instead, protein translation, a high-energy process, was inhibited with the down-regulation of ribosomal protein biosynthetic genes. Moreover, phage-related genes were down-regulated suggesting a tight transcriptional control on DNA structure. The observed phenomena highlight the cell need of ATP to cope with the multiple ultrasound stresses and the activation of processes to stabilize and preserve the DNA structure. Our work demonstrates that ultrasound has remarkable effects on the tested strain and elucidates the involvement of different pathways in its defensive stress-response and in the modification of its phenotype.
Collapse
Affiliation(s)
- Irene Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy.
| |
Collapse
|
6
|
Lavrov KV, Shemyakina AO, Grechishnikova EG, Gerasimova TV, Kalinina TI, Novikov AD, Leonova TE, Ryabchenko LE, Bayburdov TA, Yanenko AS. A new concept of biocatalytic synthesis of acrylic monomers for obtaining water-soluble acrylic heteropolymers. Metab Eng Commun 2024; 18:e00231. [PMID: 38222043 PMCID: PMC10787234 DOI: 10.1016/j.mec.2023.e00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Rhodococcus strains were designed as model biocatalysts (BCs) for the production of acrylic acid and mixtures of acrylic monomers consisting of acrylamide, acrylic acid, and N-alkylacrylamide (N-isopropylacrylamide). To obtain BC strains, we used, among other approaches, adaptive laboratory evolution (ALE), based on the use of the metabolic pathway of amide utilization. Whole genome sequencing of the strains obtained after ALE, as well as subsequent targeted gene disruption, identified candidate genes for three new amidases that are promising for the development of BCs for the production of acrylic acid from acrylamide. New BCs had two types of amidase activities, acrylamide-hydrolyzing and acrylamide-transferring, and by varying the ratio of these activities in BCs, it is possible to influence the ratio of monomers in the resulting mixtures. Based on these strains, a prototype of a new technological concept for the biocatalytic synthesis of acrylic monomers was developed for the production of water-soluble acrylic heteropolymers containing valuable N-alkylacrylamide units. In addition to the possibility of obtaining mixtures of different compositions, the advantages of the concept are a single starting reagent (acrylamide), more unification of processes (all processes are based on the same type of biocatalyst), and potentially greater safety for personnel and the environment compared to existing chemical technologies.
Collapse
Affiliation(s)
- Konstantin V. Lavrov
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Anna O. Shemyakina
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Elena G. Grechishnikova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana V. Gerasimova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana I. Kalinina
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Andrey D. Novikov
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana E. Leonova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Ludmila E. Ryabchenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Telman A. Bayburdov
- Saratov Chemical Plant of Acrylic Polymers “AKRYPOL”, 410059, Saratov, Russia
| | - Alexander S. Yanenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| |
Collapse
|
7
|
Otero-Olarra JE, Díaz-Cárdenas G, Aguilera-Arreola MG, Curiel-Quesada E, Pérez-Valdespino A. Aeromonas trota Is Highly Refractory to Acquire Exogenous Genetic Material. Microorganisms 2024; 12:1091. [PMID: 38930473 PMCID: PMC11206119 DOI: 10.3390/microorganisms12061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Aeromonas trota is sensitive to most antibiotics and the sole species of this genus susceptible to ampicillin. This susceptibility profile could be related to its inability to acquire exogenous DNA. In this study, A. trota isolates were analyzed to establish their capacity to incorporate foreign DNA. Fourteen strains were identified as A. trota by multilocus phylogenetic analysis (MLPA). Minimal inhibitory concentrations of antibiotics (MIC) were assessed, confirming the susceptibility to most antibiotics tested. To explore their capacity to be transformed, A. trota strains were used as recipients in different horizontal transfer assays. Results showed that around fifty percent of A. trota strains were able to incorporate pBAMD1-2 and pBBR1MCS-3 plasmids after conjugal transfer. In all instances, conjugation frequencies were very low. Interestingly, several isoforms of plasmid pBBR1MCS-3 were observed in transconjugants. Strains could not receive pAr-32, a native plasmid from A. salmonicida. A. trota strains were unable to receive DNA by means of electroporation, natural transformation or vesiduction. These results confirm that A. trota species are extremely refractory to horizontal gene transfer, which could be associated to plasmid instability resulting from oligomerization or to the presence of defense systems against exogenous genetic material in their genomes. To explain the poor results of horizontal gene transfer (HGT), selected genomes were sequenced and analyzed, revealing the presence of defense systems, which could prevent the stable incorporation of exogenous DNA in A. trota.
Collapse
Affiliation(s)
- Jorge Erick Otero-Olarra
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Gilda Díaz-Cárdenas
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Ma Guadalupe Aguilera-Arreola
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico;
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| |
Collapse
|
8
|
Mohammadizadeh-Heydari N, Tohidfar M, Maleki Zanjani B, Mohsenpour M, Ghanbari Moheb Seraj R, Esmaeilzadeh-Salestani K. Co-overexpression of chitinase and β-1,3-glucanase significantly enhanced the resistance of Iranian wheat cultivars to Fusarium. BMC Biotechnol 2024; 24:35. [PMID: 38790016 PMCID: PMC11127306 DOI: 10.1186/s12896-024-00859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and β-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and β-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 μg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.
Collapse
Affiliation(s)
| | - Masoud Tohidfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Bahram Maleki Zanjani
- Department of Agronomy and Plant Breading, Agriculture Faculty, Zanjan University, Zanjan, Iran
| | - Motahhareh Mohsenpour
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Rahele Ghanbari Moheb Seraj
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R.Kreutzwaldi 1, 51014, Tartu, Estonia
- Institute of Technology, University of Tartu, Nooruse 1, E-50411, Tartu, Estonia
| |
Collapse
|
9
|
Du H, Cheng JL, Li ZY, Zhong HN, Wei S, Gu YJ, Yao CC, Zhang M, Cai QY, Zhao HM, Mo CH. Molecular insights into the catabolism of dibutyl phthalate in Pseudomonas aeruginosa PS1 based on biochemical and multi-omics approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171852. [PMID: 38518818 DOI: 10.1016/j.scitotenv.2024.171852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
A comprehensive understanding of the molecular mechanisms underlying microbial catabolism of dibutyl phthalate (DBP) is still lacking. Here, we newly isolated a bacterial strain identified as Pseudomonas aeruginosa PS1 with high efficiency of DBP degradation. The degradation ratios of DBP at 100-1000 mg/L by this strain reached 80-99 % within 72 h without a lag phase. A rare DBP-degradation pathway containing two monobutyl phthalate-catabolism steps was proposed based on intermediates identified by HPLC-TOF-MS/MS. In combination with genomic and transcriptomic analyses, we identified 66 key genes involved in DBP biodegradation and revealed the genetic basis for a new complete catabolic pathway from DBP to Succinyl-CoA or Acetyl-CoA in the genus Pseudomonas for the first time. Notably, we found that a series of homologous genes in Pht and Pca clusters were simultaneously activated under DBP exposure and some key intermediate degradation related gene clusters including Pht, Pca, Xyl, Ben, and Cat exhibited a favorable coexisting pattern, which contributed the high-efficient DBP degradation ability and strong adaptability to this strain. Overall, these results broaden the knowledge of the catabolic diversity of DBP in microorganisms and enhance our understanding of the molecular mechanism underlying DBP biodegradation.
Collapse
Affiliation(s)
- Huan Du
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center for Statistical Science, Tsinghua University, Beijing 100084, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhi-Yong Li
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Huai-Ning Zhong
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Yu-Juan Gu
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Can-Can Yao
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Miaoyue Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Kohram M, Sanderson AE, Loui A, Thompson PV, Vashistha H, Shomar A, Oltvai ZN, Salman H. Nonlethal deleterious mutation-induced stress accelerates bacterial aging. Proc Natl Acad Sci U S A 2024; 121:e2316271121. [PMID: 38709929 PMCID: PMC11098108 DOI: 10.1073/pnas.2316271121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Random mutagenesis, including when it leads to loss of gene function, is a key mechanism enabling microorganisms' long-term adaptation to new environments. However, loss-of-function mutations are often deleterious, triggering, in turn, cellular stress and complex homeostatic stress responses, called "allostasis," to promote cell survival. Here, we characterize the differential impacts of 65 nonlethal, deleterious single-gene deletions on Escherichia coli growth in three different growth environments. Further assessments of select mutants, namely, those bearing single adenosine triphosphate (ATP) synthase subunit deletions, reveal that mutants display reorganized transcriptome profiles that reflect both the environment and the specific gene deletion. We also find that ATP synthase α-subunit deleted (ΔatpA) cells exhibit elevated metabolic rates while having slower growth compared to wild-type (wt) E. coli cells. At the single-cell level, compared to wt cells, individual ΔatpA cells display near normal proliferation profiles but enter a postreplicative state earlier and exhibit a distinct senescence phenotype. These results highlight the complex interplay between genomic diversity, adaptation, and stress response and uncover an "aging cost" to individual bacterial cells for maintaining population-level resilience to environmental and genetic stress; they also suggest potential bacteriostatic antibiotic targets and -as select human genetic diseases display highly similar phenotypes, - a bacterial origin of some human diseases.
Collapse
Affiliation(s)
- Maryam Kohram
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Amy E. Sanderson
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Alicia Loui
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | | | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Aseel Shomar
- Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa32000, Israel
| | - Zoltán N. Oltvai
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA15260
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA15260
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY14627
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| |
Collapse
|
11
|
Wang T, Shi Y, Zheng M, Zheng J. Comparative Genomics Unveils Functional Diversity, Pangenome Openness, and Underlying Biological Drivers among Bacillus subtilis Group. Microorganisms 2024; 12:986. [PMID: 38792815 PMCID: PMC11124052 DOI: 10.3390/microorganisms12050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The Bacillus subtilis group (Bs group), with Bacillus subtilis as its core species, holds significant research and economic value in various fields, including science, industrial production, food, and pharmaceuticals. However, most studies have been confined to comparative genomics analyses and exploration within individual genomes at the level of species, with few conducted within groups across different species. This study focused on Bacillus subtilis, the model of Gram-positive bacteria, and 14 other species with significant research value, employing comparative pangenomics as well as population enrichment analysis to ascertain the functional enrichment and diversity. Through the quantification of pangenome openness, this work revealed the underlying biological drivers and significant correlation between pangenome openness and various factors, including the distribution of toxin-antitoxin- and integrase-related genes, as well as the number of endonucleases, recombinases, repair system-related genes, prophages, integrases, and transfer mobile elements. Furthermore, the functional enrichment results indicated the potential for secondary metabolite, probiotic, and antibiotic exploration in Bacillus licheniformis, Bacillus paralicheniformis, and Bacillus spizizenii, respectively. In general, this work systematically exposed the quantification of pangenome openness, biological drivers, the pivotal role of genomic instability factors, and mobile elements, providing targeted exploration guidance for the Bs group.
Collapse
Affiliation(s)
- Taiquan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiling Shi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhuo Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Yang Y, Wang P, Qaidi SE, Hardwidge PR, Huang J, Zhu G. Loss to gain: pseudogenes in microorganisms, focusing on eubacteria, and their biological significance. Appl Microbiol Biotechnol 2024; 108:328. [PMID: 38717672 PMCID: PMC11078800 DOI: 10.1007/s00253-023-12971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 05/12/2024]
Abstract
Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- College of Bioscience and Biotechnology, Yangzhou University, 12 East Wenhui Road Yangzhou, Jiangsu, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Da Silva Morais E, Grimaud GM, Warda A, Stanton C, Ross P. Genome plasticity shapes the ecology and evolution of Phocaeicola dorei and Phocaeicola vulgatus. Sci Rep 2024; 14:10109. [PMID: 38698002 PMCID: PMC11066082 DOI: 10.1038/s41598-024-59148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Phocaeicola dorei and Phocaeicola vulgatus are very common and abundant members of the human gut microbiome and play an important role in the infant gut microbiome. These species are closely related and often confused for one another; yet, their genome comparison, interspecific diversity, and evolutionary relationships have not been studied in detail so far. Here, we perform phylogenetic analysis and comparative genomic analyses of these two Phocaeicola species. We report that P. dorei has a larger genome yet a smaller pan-genome than P. vulgatus. We found that this is likely because P. vulgatus is more plastic than P. dorei, with a larger repertoire of genetic mobile elements and fewer anti-phage defense systems. We also found that P. dorei directly descends from a clade of P. vulgatus¸ and experienced genome expansion through genetic drift and horizontal gene transfer. Overall, P. dorei and P. vulgatus have very different functional and carbohydrate utilisation profiles, hinting at different ecological strategies, yet they present similar antimicrobial resistance profiles.
Collapse
Affiliation(s)
- Emilene Da Silva Morais
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Microbiology Department, University College Cork, Co. Cork, Ireland
| | - Ghjuvan Micaelu Grimaud
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alicja Warda
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
- Microbiology Department, University College Cork, Co. Cork, Ireland.
| |
Collapse
|
14
|
Philipp LA, Bühler K, Ulber R, Gescher J. Beneficial applications of biofilms. Nat Rev Microbiol 2024; 22:276-290. [PMID: 37957398 DOI: 10.1038/s41579-023-00985-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Many microorganisms live in the form of a biofilm. Although they are feared in the medical sector, biofilms that are composed of non-pathogenic organisms can be highly beneficial in many applications, including the production of bulk and fine chemicals. Biofilm systems are natural retentostats in which the biocatalysts can adapt and optimize their metabolism to different conditions over time. The adherent nature of biofilms allows them to be used in continuous systems in which the hydraulic retention time is much shorter than the doubling time of the biocatalysts. Moreover, the resilience of organisms growing in biofilms, together with the potential of uncoupling growth from catalytic activity, offers a wide range of opportunities. The ability to work with continuous systems using a potentially self-advancing whole-cell biocatalyst is attracting interest from a range of disciplines, from applied microbiology to materials science and from bioengineering to process engineering. The field of beneficial biofilms is rapidly evolving, with an increasing number of applications being explored, and the surge in demand for sustainable and biobased solutions and processes is accelerating advances in the field. This Review provides an overview of the research topics, challenges, applications and future directions in beneficial and applied biofilm research.
Collapse
Affiliation(s)
- Laura-Alina Philipp
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Johannes Gescher
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany.
| |
Collapse
|
15
|
Atre M, Joshi B, Babu J, Sawant S, Sharma S, Sankar TS. Origin, evolution, and maintenance of gene-strand bias in bacteria. Nucleic Acids Res 2024; 52:3493-3509. [PMID: 38442257 DOI: 10.1093/nar/gkae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Gene-strand bias is a characteristic feature of bacterial genome organization wherein genes are preferentially encoded on the leading strand of replication, promoting co-orientation of replication and transcription. This co-orientation bias has evolved to protect gene essentiality, expression, and genomic stability from the harmful effects of head-on replication-transcription collisions. However, the origin, variation, and maintenance of gene-strand bias remain elusive. Here, we reveal that the frequency of inversions that alter gene orientation exhibits large variation across bacterial populations and negatively correlates with gene-strand bias. The density, distance, and distribution of inverted repeats show a similar negative relationship with gene-strand bias explaining the heterogeneity in inversions. Importantly, these observations are broadly evident across the entire bacterial kingdom uncovering inversions and inverted repeats as primary factors underlying the variation in gene-strand bias and its maintenance. The distinct catalytic subunits of replicative DNA polymerase have co-evolved with gene-strand bias, suggesting a close link between replication and the origin of gene-strand bias. Congruently, inversion frequencies and inverted repeats vary among bacteria with different DNA polymerases. In summary, we propose that the nature of replication determines the fitness cost of replication-transcription collisions, establishing a selection gradient on gene-strand bias by fine-tuning DNA sequence repeats and, thereby, gene inversions.
Collapse
Affiliation(s)
- Malhar Atre
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Bharat Joshi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Jebin Babu
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Shabduli Sawant
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Shreya Sharma
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - T Sabari Sankar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
16
|
Ramnarine SDBJ, Jayaraman J, Ramsubhag A. Crucifer Lesion-Associated Xanthomonas Strains Show Multi-Resistance to Heavy Metals and Antibiotics. Curr Microbiol 2024; 81:136. [PMID: 38598029 DOI: 10.1007/s00284-024-03646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.
Collapse
Affiliation(s)
- Stephen D B Jr Ramnarine
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
17
|
To H, Maldonado J, Tsutsumi N, Gottschalk M, Frey J, Nagai S. Characterization of Actinobacillus pleuropneumoniae biovar 2 isolates reportedly reacted with the serovar 4 antiserum, and development of a multiplex PCR for O-antigen typing. Vet Microbiol 2024; 291:110030. [PMID: 38428226 DOI: 10.1016/j.vetmic.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
We have analyzed the capsule (CPS) and the lipopolysaccharide O-Antigen (O-Ag) biosynthesis loci of twelve Spanish field isolates of Actinobacillus pleuropneumoniae biovar 2, eleven of them previously typed serologically as serovar 4 and one non-typable (NT) (Maldonado et al., 2009, 2011). These isolates have the common core genes of the type I CPS locus, sharing >98% identity with those of serovar 2. However, the former possesses the O-Ag locus as serovar 4, and the latter possesses the O-Ag locus as serovar 7. The main difference found between the CPS loci of the 11 isolates and that of serovar 2 reference strain S1536 are two deletions, one of an 8 bp sequence upstream of the coding sequence and one of 111 bp sequence at the 5' end of the cps2G gene. The deletion mutations mentioned lead to a defect in the production of CPS in these isolates, which contributed to their previous mis-identification. In order to complement the serotyping of A. pleuropneumoniae in diagnostics and epidemiology, we have developed a multiplex PCR for the comprehensive O-Ag typing of all A. pleuropneumoniae isolates.
Collapse
Affiliation(s)
- Ho To
- Nippon Institute for Biological Science, Tokyo, Japan; Faculty of Agriculture and Aquaculture, University of Cuu Long, Vinh Long, Viet Nam.
| | - Jaime Maldonado
- Diagnostic Laboratory, Laboratorios HIPRA S.A., Paratge Arbusset s/n, Girona 17170, Spain
| | | | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Shinya Nagai
- Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
18
|
Olanrewaju OS, Molale-Tom LG, Kritzinger RK, Bezuidenhout CC. Genome mining of Escherichia coli WG5D from drinking water source: unraveling antibiotic resistance genes, virulence factors, and pathogenicity. BMC Genomics 2024; 25:263. [PMID: 38459466 PMCID: PMC10924361 DOI: 10.1186/s12864-024-10110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Escherichia coli, a ubiquitous inhabitant of the gut microbiota, has been recognized as an indicator of fecal contamination and a potential reservoir for antibiotic resistance genes. Its prevalence in drinking water sources raises concerns about the potential dissemination of antibiotic resistance within aquatic ecosystems and the subsequent impact on public health. The ability of E. coli to acquire and transfer resistance genes, coupled with the constant exposure to low levels of antibiotics in the environment, underscores the need for comprehensive surveillance and rigorous antimicrobial stewardship strategies to safeguard the quality and safety of drinking water supplies, ultimately mitigating the escalation of antibiotic resistance and its implications for human well-being. METHODS WG5D strain, isolated from a drinking water distribution source in North-West Province, South Africa, underwent genomic analysis following isolation on nutrient agar, anaerobic cultivation, and DNA extraction. Paired-end Illumina sequencing with a Nextera XT Library Preparation kit was performed. The assembly, annotation, and subsequent genomic analyses, including phylogenetic analysis using TYGS, pairwise comparisons, and determination of genes related to antimicrobial resistance and virulence, were carried out following standard protocols and tools, ensuring comprehensive insights into the strain's genomic features. RESULTS This study explores the notable characteristics of E. coli strain WG5D. This strain stands out because it possesses multiple antibiotic resistance genes, encompassing tetracycline, cephalosporin, vancomycin, and aminoglycoside resistances. Additionally, virulence-associated genes indicate potential heightened pathogenicity, complemented by the identification of mobile genetic elements that underscore its adaptability. The intriguing possibility of bacteriophage involvement and factors contributing to pathogenicity further enriches our understanding. We identified E. coli WG5D as a potential human pathogen associated with a drinking water source in South Africa. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. It further identified WG5D as a potential human pathogen. The occurrence of E. coli WG5D raised the awareness of the potential pathogens and the carrying of antibiotic resistance in drinking water. CONCLUSIONS The findings of this study have highlighted the advantages of the genomic approach in identifying the bacterial species and antibiotic resistance genes of E. coli and its potential as a human pathogen.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Rinaldo K Kritzinger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Cornelius Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa.
| |
Collapse
|
19
|
Tang S, Liu Y, Zhu J, Cheng X, Liu L, Hammerschmidt K, Zhou J, Cai Z. Bet hedging in a unicellular microalga. Nat Commun 2024; 15:2063. [PMID: 38453919 PMCID: PMC10920660 DOI: 10.1038/s41467-024-46297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Understanding how organisms have adapted to persist in unpredictable environments is a fundamental goal in biology. Bet hedging, an evolutionary adaptation observed from microbes to humans, facilitates reproduction and population persistence in randomly fluctuating environments. Despite its prevalence, empirical evidence in microalgae, crucial primary producers and carbon sinks, is lacking. Here, we report a bet-hedging strategy in the unicellular microalga Haematococcus pluvialis. We show that isogenic populations reversibly diversify into heterophenotypic mobile and non-mobile cells independently of environmental conditions, likely driven by stochastic gene expression. Mobile cells grow faster but are stress-sensitive, while non-mobile cells prioritise stress resistance over growth. This is due to shifts from growth-promoting activities (cell division, photosynthesis) to resilience-promoting processes (thickened cell wall, cell enlargement, aggregation, accumulation of antioxidant and energy-storing compounds). Our results provide empirical evidence for bet hedging in a microalga, indicating the potential for adaptation to current and future environmental conditions and consequently conservation of ecosystem functions.
Collapse
Affiliation(s)
- Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Yaqing Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Xueyu Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Lu Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | | | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
- Technology Innovation Center for Marine Ecology and Human Factor Assessment of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
20
|
Li T, Jiang H, Zhu B, Wang L, Zhu D. Flanked Block-Interchange Distance on Strings. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:301-311. [PMID: 38194376 DOI: 10.1109/tcbb.2024.3351440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Rearrangement sorting problems impact profoundly in measuring genome similarities and tracing historic scenarios of species. However, recent studies on genome rearrangement mechanisms disclosed a statistically significant evidence, repeats are situated at the ends of rearrangement relevant segments and stay unchanged before and after rearrangements.To reflect the principle behind this evidence, we propose flanked block-interchange, an operation on strings that exchanges two substrings flanked by identical left and right symbols in a string. The flanked block-interchange distance problem is formulated as finding a shortest sequence of flanked block-interchanges to transform a string into the other. We propose a sufficient and necessary condition for deciding whether two strings can be transformed into each other by flanked block-interchanges. This condition is linear time verifiable. Under this condition for two strings, we present a [Formula: see text]-approximation algorithm for the flanked block-interchange distance problem where each symbol occurs at most k times in a string and a polynomial algorithm for this problem where each symbol occurs at most twice in a string. We show that the problem of flanked block-interchange distance is NP-hard at last.
Collapse
|
21
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
22
|
Umar M, Merlin TS, Puthiyedathu Sajeevan T. Genomic insights into symbiosis and host adaptation of sponge-associated novel bacterium, Rossellomorea orangium sp. nov. FEMS Microbiol Lett 2024; 371:fnae074. [PMID: 39304531 DOI: 10.1093/femsle/fnae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/26/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
Sponge-associated microorganisms play vital roles in marine sponge ecology. This study presents a genomic investigation of Rossellomorea sp. MCCB 382, isolated from Stelletta sp., reveals insights into its adaptations and symbiotic roles. Phylogenomic study and Overall Genomic Relatedness Index (OGRI) classify MCCB 382 as a novel species, Rossellomorea orangium sp. nov. The genome encodes numerous carbohydrate metabolism enzymes (CAZymes), likely aiding nutrient cycling in the sponge host. Unique eukaryotic-like protein domains hint at potential mechanisms of symbiosis. Defence mechanisms include CRISPR, restriction-modification systems, DNA phosphorothioation, toxin-antitoxin systems, and heavy metal and multidrug resistance genes, indicating adaptation to challenging marine environments. Unlike obligate mutualists, MCCB 382 shows no genome reduction. Furthermore, the presence of mobile genetic elements, horizontal gene transfer, and prophages suggest genetic versatility, implying flexible metabolic potential and capacity for rapid adaptation and symbiosis shifts. MCCB 382 possesses six biosynthetic gene clusters for secondary metabolites, including both type II and III polyketide synthases (PKS), terpenes, (NRPS), NRPS-independent-siderophore, and lassopeptide. Further genome mining using BiGScape revealed four distinct gene cluster families, T2PKS, NRPS-independent-siderophore, lasso peptide, and terpene, presenting opportunities for novel compound elucidation. Our study reveals a symbiotic lifestyle of MCCB 382 with the host sponge, highlighting symbiont factors that aid in establishing and sustaining this relationship. This is the pioneering genomic characterization of a novel Rossellomorea sp. within the sponge Stelletta sp. holobiont.
Collapse
Affiliation(s)
- Md Umar
- National Centre for Aquatic Animal Health, Lake Side Campus, Cochin University of Science and Technology, Fine Arts Avenue, Pallimukku, Kochi, Ernakulam 682016, Kerala, India
| | - Titus Susan Merlin
- National Centre for Aquatic Animal Health, Lake Side Campus, Cochin University of Science and Technology, Fine Arts Avenue, Pallimukku, Kochi, Ernakulam 682016, Kerala, India
| | - Thavarool Puthiyedathu Sajeevan
- Department of Marine Biology, Microbiology and Biochemistry, Lake Side Campus, Cochin University of Science and Technology, Fine Arts Avenue, Pallimukku, Kochi, Ernakulam 682016, Kerala, India
| |
Collapse
|
23
|
Martins PMM, Granato LM, Morgan T, Nalin JL, Takita MA, Alfenas-Zerbini P, de Souza AA. Analysis of CRISPR-Cas loci distribution in Xanthomonas citri and its possible control by the quorum sensing system. FEMS Microbiol Lett 2024; 371:fnae005. [PMID: 38244227 DOI: 10.1093/femsle/fnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Xanthomonas is an important genus of plant-associated bacteria that causes significant yield losses of economically important crops worldwide. Different approaches have assessed genetic diversity and evolutionary interrelationships among the Xanthomonas species. However, information from clustered regularly interspaced short palindromic repeats (CRISPRs) has yet to be explored. In this work, we analyzed the architecture of CRISPR-Cas loci and presented a sequence similarity-based clustering of conserved Cas proteins in different species of Xanthomonas. Although absent in many investigated genomes, Xanthomonas harbors subtype I-C and I-F CRISPR-Cas systems. The most represented species, Xanthomonas citri, presents a great diversity of genome sequences with an uneven distribution of the CRISPR-Cas systems among the subspecies/pathovars. Only X. citri subsp. citri and X. citri pv. punicae have these systems, exclusively of subtype I-C system. Moreover, the most likely targets of the X. citri CRISPR spacers are viruses (phages). At the same time, few are plasmids, indicating that CRISPR/Cas system is possibly a mechanism to control the invasion of foreign DNA. We also showed in X. citri susbp. citri that the cas genes are regulated by the diffusible signal factor, the quorum sensing (QS) signal molecule, according to cell density increases, and under environmental stress like starvation. These results suggest that the regulation of CRISPR-Cas by QS occurs to activate the gene expression only during phage infection or due to environmental stresses, avoiding a possible reduction in fitness. Although more studies are needed, CRISPR-Cas systems may have been selected in the Xanthomonas genus throughout evolution, according to the cost-benefit of protecting against biological threats and fitness maintenance in challenging conditions.
Collapse
Affiliation(s)
| | - Laís Moreira Granato
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Túlio Morgan
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Julia Lopes Nalin
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Poliane Alfenas-Zerbini
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Alessandra Alves de Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| |
Collapse
|
24
|
Shaikh SS, Jhala D, Patel A, Chettiar SS, Ghelani A, Malik A, Sengupta P. In-silico analysis of probiotic attributes and safety assessment of probiotic strain Bacillus coagulans BCP92 for human application. Lett Appl Microbiol 2024; 77:ovad145. [PMID: 38148133 DOI: 10.1093/lambio/ovad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
The whole genome sequence (WGS) of Bacillus coagulans BCP92 is reported along with its genomic analysis of probiotics and safety features. The identification of bacterial strain was carried out using the 16S rDNA sequencing method. Furthermore, gene-related probiotic features, safety assessment (by in vitro and in silico), and genome stability were also studied using the WGS analysis for the possible use of the bacterial strain as a probiotic. From the BLAST analysis, bacterial strain was identified as Bacillus (Heyndrickxia) coagulans. WGS analysis indicated that the genome consists of a 3 475 658 bp and a GC-content of 46.35%. Genome mining of BCP92 revealed that the strain is consist of coding sequences for d-lactate dehydrogenase and l-lactate dehydrogenases, 36 genes involved in fermentation activities, 29 stress-responsive as well as many adhesions related genes. The genome, also possessing genes, is encoded for the synthesis of novel circular bacteriocin. Using an in-silico approach for the bacterial genome study, it was possible to determine that the Bacillus (Heyndrickxia) coagulans strain BCP92 contains genes that are encoded for the probiotic abilities and did not harbour genes that are risk associated, thus confirming the strain's safety and suitability as a probiotic to be used for human application.
Collapse
Affiliation(s)
- Sohel S Shaikh
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| | - Devendrasinh Jhala
- Zoology Department, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Alpesh Patel
- Genexplore Diagnostics & Research Centre Pvt Ltd, 1201 to 1210, Iconic Shyamal, Shyamal, Ahmedabad 380015, India
| | - Shiva Shankaran Chettiar
- Genexplore Diagnostics & Research Centre Pvt Ltd, 1201 to 1210, Iconic Shyamal, Shyamal, Ahmedabad 380015, India
| | - Anjana Ghelani
- Shree Ramkrishna Institute of Computer Education and Applied Sciences, M.T.B. College Campus, B/h P.T. Science College, Opp. Chowpati, Athwalines, Surat 395001, India
| | - Anis Malik
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| | - Priyajit Sengupta
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| |
Collapse
|
25
|
Yang HW, Thapa R, Johnson K, DuPont ST, Khan A, Zhao Y. Examination of Large Chromosomal Inversions in the Genome of Erwinia amylovora Strains Reveals Worldwide Distribution and North America-Specific Types. PHYTOPATHOLOGY 2023; 113:2174-2186. [PMID: 36935376 DOI: 10.1094/phyto-01-23-0004-sa] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Erwinia amylovora is a relatively homogeneous species with low genetic diversity at the nucleotide level. However, phenotypic differences and genomic structural variations among E. amylovora strains have been documented. In this study, we identified 10 large chromosomal inversion (LCI) types in the Spiraeoideae-infecting (SI) E. amylovora strains by combining whole genome sequencing and PCR-based molecular markers. It was found that LCIs were mainly caused by homologous recombination events among seven rRNA operons (rrns) in SI E. amylovora strains. Although ribotyping results identified inter- and intra-variations in the internal transcribed spacer (ITS1 and ITS2) regions among rrns, LCIs tend to occur between rrns transcribed in the opposite directions and with the same tRNA content (tRNA-Glu or tRNA-Ile/Ala) in ITS1. Based on the LCI types, physical/estimated replichore imbalance (PRI/ERI) was examined and calculated. Among the 117 SI strains evaluated, the LCI types of Ea1189, CFBP1430, and Ea273 were the most common, with ERI values at 1.31, 7.87, and 4.47°, respectively. These three LCI types had worldwide distribution, whereas the remaining seven LCI types were restricted to North America (or certain regions of the United States). Our results indicated ongoing chromosomal recombination events in the SI E. amylovora population and showed that LCI events are mostly symmetrical, keeping the ERI less than 15°. These findings provide initial evidence about the prevalence of certain LCI types in E. amylovora strains, how LCI occurs, and its potential evolutionary advantage and history, which might help track the movement of the pathogen.
Collapse
Affiliation(s)
- Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - Ranjita Thapa
- School of Integrative Plant Science Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Kenneth Johnson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | | | - Awais Khan
- School of Integrative Plant Science Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- Department of Plant Pathology, WSU-IAREC, Prosser, WA 99350
| |
Collapse
|
26
|
Kenarkoohi A, Abdoli A, Rostamzad A, Rashnavadi M, Naserifar R, Abdi J, Shams M, Bozorgomid A, Saeb S, Al-Fahad D, Khezri K, Falahi S. Presence of CRISPR CAS-Like Sequences as a Proposed Mechanism for Horizontal Genetic Exchanges between Trichomonas vaginalis and Its Associated Virus: A Comparative Genomic Analysis with the First Report of a Putative CRISPR CAS Structures in Eukaryotic Cells. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8069559. [PMID: 38058394 PMCID: PMC10696477 DOI: 10.1155/2023/8069559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 12/08/2023]
Abstract
Introduction Trichomonas vaginalis genome is among the largest genome size and coding capacities. Combinations of gene duplications, transposon, repeated sequences, and lateral gene transfers (LGTs) have contributed to the unexpected large genomic size and diversity. This study is aimed at investigating genomic exchange and seeking for presence of the CRISPR CAS system as one of the possible mechanisms for some level of genetic exchange. Material and Methods. In this comparative analysis, 398 publicly available Trichomonas vaginalis complete genomes were investigated for the presence of CRISPR CAS. Spacer sequences were also analyzed for their origin using BLAST. Results We identified a CRISPR CAS (Cas3). CRISPR spacers are highly similar to transposable genetic elements such as viruses of protozoan parasites, especially megavirals, some transposons, and, interestingly, papillomavirus and HIV-1 in a few cases. Discussion. There is a striking similarity between the prokaryotes/Archaean CRISPR and what we find as eukaryotic CRISPR. About 5-10% of the 398 T. vaginalis possess a CRISPR structure. Conclusion According to sequences and their organization, we assume that these repeated sequences and spacer, along with their mentioned features, could be the eukaryotic homolog of prokaryotes and Archaean CRISPR systems and may involve in a process similar to the CRISPR function.
Collapse
Affiliation(s)
- Azra Kenarkoohi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Amir Abdoli
- Zoonoses Research Centre, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Arman Rostamzad
- Department of Biology, Faculty of Sciences, Ilam University, Ilam, Iran
| | | | - Razi Naserifar
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Jahangir Abdi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepideh Saeb
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Dhurgham Al-Fahad
- Pharmaceutical Department, College of Pharmacy, University of Thi-Qar, Iraq
| | - Kosar Khezri
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
27
|
Schwarz MGA, Corrêa PR, Mendonça-Lima L. Transcriptional Profiling of Homologous Recombination Pathway Genes in Mycobacterium bovis BCG Moreau. Microorganisms 2023; 11:2534. [PMID: 37894192 PMCID: PMC10609372 DOI: 10.3390/microorganisms11102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023] Open
Abstract
Mycobacterium bovis BCG Moreau is the main Brazilian strain for vaccination against tuberculosis. It is considered an early strain, more like the original BCG, whereas BCG Pasteur, largely used as a reference, belongs to the late strain clade. BCG Moreau, contrary to Pasteur, is naturally deficient in homologous recombination (HR). In this work, using a UV exposure test, we aimed to detect differences in the survival of various BCG strains after DNA damage. Transcription of core and regulatory HR genes was further analyzed using RT-qPCR, aiming to identify the molecular agent responsible for this phenotype. We show that early strains share the Moreau low survival rate after UV exposure, whereas late strains mimic the Pasteur phenotype, indicating that this increase in HR efficiency is linked to the evolutionary clade history. Additionally, RT-qPCR shows that BCG Moreau has an overall lower level of these transcripts than Pasteur, indicating a correlation between this gene expression profile and HR efficiency. Further assays should be performed to fully identify the molecular mechanism that may explain this differential phenotype between early and late BCG strains.
Collapse
Affiliation(s)
- Marcos Gustavo Araujo Schwarz
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (P.R.C.); (L.M.-L.)
| | | | | |
Collapse
|
28
|
Rajput A, Chauhan SM, Mohite OS, Hyun JC, Ardalani O, Jahn LJ, Sommer MO, Palsson BO. Pangenome analysis reveals the genetic basis for taxonomic classification of the Lactobacillaceae family. Food Microbiol 2023; 115:104334. [PMID: 37567624 DOI: 10.1016/j.fm.2023.104334] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
Lactobacillaceae represent a large family of important microbes that are foundational to the food industry. Many genome sequences of Lactobacillaceae strains are now available, enabling us to conduct a comprehensive pangenome analysis of this family. We collected 3591 high-quality genomes from public sources and found that: 1) they contained enough genomes for 26 species to perform a pangenomic analysis, 2) the normalized Heap's coefficient λ (a measure of pangenome openness) was found to have an average value of 0.27 (ranging from 0.07 to 0.37), 3) the pangenome openness was correlated with the abundance and genomic location of transposons and mobilomes, 4) the pangenome for each species was divided into core, accessory, and rare genomes, that highlight the species-specific properties (such as motility and restriction-modification systems), 5) the pangenome of Lactiplantibacillus plantarum (which contained the highest number of genomes found amongst the 26 species studied) contained nine distinct phylogroups, and 6) genome mining revealed a richness of detected biosynthetic gene clusters, with functions ranging from antimicrobial and probiotic to food preservation, but ∼93% were of unknown function. This study provides the first in-depth comparative pangenomics analysis of the Lactobacillaceae family.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Siddharth M Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Omkar S Mohite
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Jason C Hyun
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
| | - Omid Ardalani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Morten Oa Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
29
|
Porubiaková O, Havlík J, Indu, Šedý M, Přepechalová V, Bartas M, Bidula S, Šťastný J, Fojta M, Brázda V. Variability of Inverted Repeats in All Available Genomes of Bacteria. Microbiol Spectr 2023; 11:e0164823. [PMID: 37358458 PMCID: PMC10434271 DOI: 10.1128/spectrum.01648-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023] Open
Abstract
Noncanonical secondary structures in nucleic acids have been studied intensively in recent years. Important biological roles of cruciform structures formed by inverted repeats (IRs) have been demonstrated in diverse organisms, including humans. Using Palindrome analyser, we analyzed IRs in all accessible bacterial genome sequences to determine their frequencies, lengths, and localizations. IR sequences were identified in all species, but their frequencies differed significantly across various evolutionary groups. We detected 242,373,717 IRs in all 1,565 bacterial genomes. The highest mean IR frequency was detected in the Tenericutes (61.89 IRs/kbp) and the lowest mean frequency was found in the Alphaproteobacteria (27.08 IRs/kbp). IRs were abundant near genes and around regulatory, tRNA, transfer-messenger RNA (tmRNA), and rRNA regions, pointing to the importance of IRs in such basic cellular processes as genome maintenance, DNA replication, and transcription. Moreover, we found that organisms with high IR frequencies were more likely to be endosymbiotic, antibiotic producing, or pathogenic. On the other hand, those with low IR frequencies were far more likely to be thermophilic. This first comprehensive analysis of IRs in all available bacterial genomes demonstrates their genomic ubiquity, nonrandom distribution, and enrichment in genomic regulatory regions. IMPORTANCE Our manuscript reports for the first time a complete analysis of inverted repeats in all fully sequenced bacterial genomes. Thanks to the availability of unique computational resources, we were able to statistically evaluate the presence and localization of these important regulatory sequences in bacterial genomes. This work revealed a strong abundance of these sequences in regulatory regions and provides researchers with a valuable tool for their manipulation.
Collapse
Affiliation(s)
- Otília Porubiaková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Havlík
- Mendel University in Brno, Brno, Czech Republic
| | - Indu
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Šedý
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Veronika Přepechalová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jiří Šťastný
- Mendel University in Brno, Brno, Czech Republic
- Brno University of Technology, Faculty of Mechanical Engineering, Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| |
Collapse
|
30
|
Yang Z, Guarracino A, Biggs PJ, Black MA, Ismail N, Wold JR, Merriman TR, Prins P, Garrison E, de Ligt J. Pangenome graphs in infectious disease: a comprehensive genetic variation analysis of Neisseria meningitidis leveraging Oxford Nanopore long reads. Front Genet 2023; 14:1225248. [PMID: 37636268 PMCID: PMC10448961 DOI: 10.3389/fgene.2023.1225248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Whole genome sequencing has revolutionized infectious disease surveillance for tracking and monitoring the spread and evolution of pathogens. However, using a linear reference genome for genomic analyses may introduce biases, especially when studies are conducted on highly variable bacterial genomes of the same species. Pangenome graphs provide an efficient model for representing and analyzing multiple genomes and their variants as a graph structure that includes all types of variations. In this study, we present a practical bioinformatics pipeline that employs the PanGenome Graph Builder and the Variation Graph toolkit to build pangenomes from assembled genomes, align whole genome sequencing data and call variants against a graph reference. The pangenome graph enables the identification of structural variants, rearrangements, and small variants (e.g., single nucleotide polymorphisms and insertions/deletions) simultaneously. We demonstrate that using a pangenome graph, instead of a single linear reference genome, improves mapping rates and variant calling for both simulated and real datasets of the pathogen Neisseria meningitidis. Overall, pangenome graphs offer a promising approach for comparative genomics and comprehensive genetic variation analysis in infectious disease. Moreover, this innovative pipeline, leveraging pangenome graphs, can bridge variant analysis, genome assembly, population genetics, and evolutionary biology, expanding the reach of genomic understanding and applications.
Collapse
Affiliation(s)
- Zuyu Yang
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Patrick J. Biggs
- Molecular Biosciences Group, School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nuzla Ismail
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jana Renee Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tony R. Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joep de Ligt
- Institute of Environmental Science and Research, Porirua, New Zealand
| |
Collapse
|
31
|
Saroj DB, Ahire JJ, Shukla R. Genetic and phenotypic assessments for the safety of probiotic Bacillus clausii 088AE. 3 Biotech 2023; 13:238. [PMID: 37333714 PMCID: PMC10275836 DOI: 10.1007/s13205-023-03662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
In this study, we report on whole genome sequence analysis of clinically documented, commercial probiotic Bacillus clausii 088AE and genome features contributing to probiotic properties. The whole genome sequence of B. clausii 088AE generated a single scaffold of 4,598,457 bp with 44.74 mol% G + C. This assembled genome sequence annotated by the RAST resulted in 4371 coding genes, 75 tRNAs, and 22 rRNAs. Gene ontology classification indicated 39.5% proteins with molecular function, 44.24% cellular component, and 16.25% proteins involved in biological processes. In taxonomic analysis, B. clausii 088AE shared 99% identity with B. clausii DSM 8716. The gene sequences related to safety and genome stability such as antibiotic resistance (840), virulence factors (706), biogenic amines (1), enterotoxin (0), emetic toxin (0), lanthipeptides (4), prophage (4) and clustered regularly interspaced short palindromic repeats (CRISPR) sequences (11), were identified and evaluated for safety and functions. The absence of functional prophage sequences and the presence of CRISPR indicated an advantage in genome stability. Moreover, the presence of genome features contributing to probiotic characteristics such as acid, and bile salt tolerance, adhesion to the gut mucosa, and environmental resistance ensure the strains survivability when consumed as a probiotic. In conclusion, the absence of risks associated with sequences/genes in the B. clausii 088AE genome and the presence of essential probiotic traits confirm the strain to be safe for use as a probiotic.
Collapse
Affiliation(s)
- Dina B. Saroj
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Jayesh J. Ahire
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Rohit Shukla
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| |
Collapse
|
32
|
Gonzalez JM, Aranda B. Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms 2023; 11:1641. [PMID: 37512814 PMCID: PMC10383181 DOI: 10.3390/microorganisms11071641] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms rule the functioning of our planet and each one of the individual macroscopic living creature. Nevertheless, microbial activity and growth status have always been challenging tasks to determine both in situ and in vivo. Microbial activity is generally related to growth, and the growth rate is a result of the availability of nutrients under adequate or adverse conditions faced by microbial cells in a changing environment. Most studies on microorganisms have been carried out under optimum or near-optimum growth conditions, but scarce information is available about microorganisms at slow-growing states (i.e., near-zero growth and maintenance metabolism). This study aims to better understand microorganisms under growth-limiting conditions. This is expected to provide new perspectives on the functions and relevance of the microbial world. This is because (i) microorganisms in nature frequently face conditions of severe growth limitation, (ii) microorganisms activate singular pathways (mostly genes remaining to be functionally annotated), resulting in a broad range of secondary metabolites, and (iii) the response of microorganisms to slow-growth conditions remains to be understood, including persistence strategies, gene expression, and cell differentiation both within clonal populations and due to the complexity of the environment.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| | - Beatriz Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| |
Collapse
|
33
|
Max BL, Angolile CM, Raymond VG, Mashauri HL. The dawn of repurposing vitamins as potential novel antimicrobial agents: A call for global emergency response amidst AMR crisis. Health Sci Rep 2023; 6:e1276. [PMID: 37216052 PMCID: PMC10199457 DOI: 10.1002/hsr2.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Amidst, the global pandemic of antimicrobial resistance (AMR), the rate at which AMR increases overwhelms the increased efforts to discover new effective antimicrobials. There is a persistent need for alternative treatment modalities so as to keep up with the pace. AMR is the leading cause of death in the world and its health and economic consequences suggest the urgent need for sustainable interventions. Vitamins have consistently proven to have antimicrobial activity as well as slowing down the AMR rate by influencing the AMR genes even towards extensive multidrug resistant strains. Evidences suggest that the use of some vitamins on their own or in combination with existing antimicrobial agents could be a breakthrough towards combating AMR. This will widen the antimicrobial agents' options in the treatment arena, preserve the antimicrobial agents susceptible to develop resistant so that they can be used in severe infections only, reduce the tension and burden of the AMR crisis significantly and give enough room for development of new antimicrobial agents. Moreover, almost all viral, fungal, parasitic and bacterial resistant strains of concern as listed by World Health Organization have been found to be sensitive to several vitamins either synergistically with other antimicrobials or independently. Considering their widened spectrum of immunomodulatory and antimicrobial effect, some vitamins can further be repositioned as prophylactic antimicrobial agents in clinical situations like in presurgeries prophylaxis so as to avoid unnecessary use of antimicrobials especially antibiotics. Various relevant AMR stakeholders should invest in clinical trials and systematic reviews with available data to enable quick repositioning of some potential vitamins as antimicrobial agents as an emergency rapid response towards AMR Crisis. This includes the preparation of guidelines containing specificity of which vitamin to be used for treatment of which type of infection.
Collapse
Affiliation(s)
- Baraka L. Max
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Community Medicine, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Cornel M. Angolile
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Community Medicine, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of PhysiologyKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Vicky G. Raymond
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Internal MedicineKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Harold L. Mashauri
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of PhysiologyKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Internal MedicineKilimanjaro Christian Medical University CollegeMoshiTanzania
| |
Collapse
|
34
|
Qi Q, Ghaly TM, Penesyan A, Rajabal V, Stacey JA, Tetu SG, Gillings MR. Uncovering Bacterial Hosts of Class 1 Integrons in an Urban Coastal Aquatic Environment with a Single-Cell Fusion-Polymerase Chain Reaction Technology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4870-4879. [PMID: 36912846 DOI: 10.1021/acs.est.2c09739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Horizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage of robust, culture-free surveillance technologies for identifying uncultivated environmental taxa that harbor class 1 integrons. We developed a modified version of epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction (PCR)) that links class 1 integrons amplified from single bacterial cells to taxonomic markers from the same cells in emulsified aqueous droplets. Using this single-cell genomic approach and Nanopore sequencing, we successfully assigned class 1 integron gene cassette arrays containing mostly AMR genes to their hosts in coastal water samples that were affected by pollution. Our work presents the first application of epicPCR for targeting variable, multigene loci of interest. We also identified the Rhizobacter genus as novel hosts of class 1 integrons. These findings establish epicPCR as a powerful tool for linking taxa to class 1 integrons in environmental bacterial communities and offer the potential to direct mitigation efforts toward hotspots of class 1 integron-mediated dissemination of AMR.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeremy Ac Stacey
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
35
|
Colizzi ES, van Dijk B, Merks RMH, Rozen DE, Vroomans RMA. Evolution of genome fragility enables microbial division of labor. Mol Syst Biol 2023; 19:e11353. [PMID: 36727665 PMCID: PMC9996244 DOI: 10.15252/msb.202211353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Division of labor can evolve when social groups benefit from the functional specialization of its members. Recently, a novel means of coordinating the division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where specialized cells are generated through large-scale genomic re-organization. We investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multiscale computational model of bacterial evolution. In this model, bacterial behavior-antibiotic production or replication-is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes, and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves, which partitions growth-promoting genes and antibiotic-coding genes into distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating sterile, and antibiotic-producing mutants from weakly-producing progenitors, in agreement with experimental observations. This division of labor enhances the competition between colonies by promoting antibiotic diversity. These results show that genomic organization can co-evolve with genomic instabilities to enable reproductive division of labor.
Collapse
Affiliation(s)
- Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK
| | - Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Renske M A Vroomans
- Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK.,Informatic Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Lee K, Raguideau S, Sirén K, Asnicar F, Cumbo F, Hildebrand F, Segata N, Cha CJ, Quince C. Population-level impacts of antibiotic usage on the human gut microbiome. Nat Commun 2023; 14:1191. [PMID: 36864029 PMCID: PMC9981903 DOI: 10.1038/s41467-023-36633-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
The widespread usage of antimicrobials has driven the evolution of resistance in pathogenic microbes, both increased prevalence of antimicrobial resistance genes (ARGs) and their spread across species by horizontal gene transfer (HGT). However, the impact on the wider community of commensal microbes associated with the human body, the microbiome, is less well understood. Small-scale studies have determined the transient impacts of antibiotic consumption but we conduct an extensive survey of ARGs in 8972 metagenomes to determine the population-level impacts. Focusing on 3096 gut microbiomes from healthy individuals not taking antibiotics we demonstrate highly significant correlations between both the total ARG abundance and diversity and per capita antibiotic usage rates across ten countries spanning three continents. Samples from China were notable outliers. We use a collection of 154,723 human-associated metagenome assembled genomes (MAGs) to link these ARGs to taxa and detect HGT. This reveals that the correlations in ARG abundance are driven by multi-species mobile ARGs shared between pathogens and commensals, within a highly connected central component of the network of MAGs and ARGs. We also observe that individual human gut ARG profiles cluster into two types or resistotypes. The less frequent resistotype has higher overall ARG abundance, is associated with certain classes of resistance, and is linked to species-specific genes in the Proteobacteria on the periphery of the ARG network.
Collapse
Affiliation(s)
- Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17546, Republic of Korea
- CJ Bioscience, Seoul, 04527, Republic of Korea
| | | | - Kimmo Sirén
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Fabio Cumbo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Falk Hildebrand
- Organisms and Ecosystems, Earlham Institute, Norwich, NR4 7UZ, UK
- Gut Microbes and Health, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Christopher Quince
- Organisms and Ecosystems, Earlham Institute, Norwich, NR4 7UZ, UK.
- Gut Microbes and Health, Quadram Institute, Norwich, NR4 7UQ, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK.
| |
Collapse
|
37
|
Tang S, Pichugin Y, Hammerschmidt K. An environmentally induced multicellular life cycle of a unicellular cyanobacterium. Curr Biol 2023; 33:764-769.e5. [PMID: 36854263 DOI: 10.1016/j.cub.2023.01.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 03/02/2023]
Abstract
Understanding the evolutionary transition to multicellularity is a key problem in biology.1,2,3,4 Nevertheless, the ecological conditions driving such transitions are not well understood. The first known transition to multicellularity occurred 2.5 billion years ago in cyanobacteria,5,6,7 and today's cyanobacteria are characterized by enormous morphological diversity. They range from unicellular species; unicellular cyanobacteria with packet-like phenotypes, e.g., tetrads; and simple filamentous species to highly differentiated filamentous species.8,9,10 The cyanobacterium Cyanothece sp. ATCC 51142, an isolate from the intertidal zone of the U.S. Gulf Coast,11 was classified as a unicellular species.12 We report a facultative life cycle of Cyanothece sp. in which multicellular filaments alternate with unicellular stages. In a series of experiments, we identified salinity and population density as environmental factors triggering the phenotypic switch between the two morphologies. Then, we used numerical models to test hypotheses regarding the nature of the environmental cues and the mechanisms underlying filament dissolution. While the results predict that the observed response is likely caused by an excreted compound in the medium, we cannot fully exclude changes in nutrient availability (as in Tuomi et al.13 and Matz and Jürgens14). The best-fit modeling results show a nonlinear effect of the compound, which is characteristic of density-dependent sensing systems.15,16 Furthermore, filament fragmentation is predicted to occur by connection cleavage rather than cell death of each alternating cell, which is supported by fluorescent and scanning electron microscopy results. The switch between unicellular and multicellular morphology constitutes an environmentally dependent life cycle that is likely an important step en route to permanent multicellularity.
Collapse
Affiliation(s)
- Si Tang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Yuriy Pichugin
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | | |
Collapse
|
38
|
Kurpejović E, Burgardt A, Bastem GM, Junker N, Wendisch VF, Sariyar Akbulut B. Metabolic engineering of Corynebacterium glutamicum for l-tyrosine production from glucose and xylose. J Biotechnol 2023; 363:8-16. [PMID: 36566842 DOI: 10.1016/j.jbiotec.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Microbial production of aromatic compounds is an attractive and sustainable biotechnological approach. With this motivation, here metabolic engineering of Corynebacterium glutamicum for l-tyrosine (l-Tyr) overproduction was attempted by pushing the carbon flux more towards l-Tyr. Translational start codon exchanges of prephenate dehydratase (pheA), anthranilate synthase (trpE), and phenylalanine aminotransferase (pat) genes revealed that reduced expression of pheA was the major contributor to increased l-Tyr titer while codon exchange in trpE was effective to a lower extent. Overexpression of aroE and qsuC, encoding shikimate dehydrogenase and 3-dehydroquinate dehydratase, respectively, and of dapC (cg1253), which is predicted to encode prephenate aminotransferase, were futile to increase l-Tyr titer. Similarly, deletion of the qsuABD gene cluster had also not enhanced titer. As for increasing precursor supply, deletion of ptsG of glucose uptake and overexpression of inositol permease (iolT2) and glucokinase (glcK) were not effective, but with utilization of xylose, enabled by overexpression of xylose isomerase (xylA) and xylulokinase (xylB), titer improved. Highest l-Tyr titer using the construct was 3.1 g/L on glucose and 3.6 g/L on a 1:3 (w/v) mixture of glucose and xylose. This result displays the potential of the constructed strain to produce l-Tyr from lignocellulosic renewable carbon sources.
Collapse
Affiliation(s)
- Eldin Kurpejović
- Department of Bioengineering, Marmara University, Kadıköy, 34722 Istanbul, Turkey
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Gülsüm Merve Bastem
- Department of Bioengineering, Marmara University, Kadıköy, 34722 Istanbul, Turkey
| | - Nora Junker
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | | |
Collapse
|
39
|
Lowrey LC, Kent LA, Rios BM, Ocasio AB, Cotter PA. An IS-mediated, RecA-dependent, bet-hedging strategy in Burkholderia thailandensis. eLife 2023; 12:e84327. [PMID: 36715687 PMCID: PMC9946442 DOI: 10.7554/elife.84327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Adaptation to fluctuating environmental conditions is difficult to achieve. Phase variation mechanisms can overcome this difficulty by altering genomic architecture in a subset of individuals, creating a phenotypically heterogeneous population with subpopulations optimized to persist when conditions change, or are encountered, suddenly. We have identified a phase variation system in Burkholderia thailandensis that generates a genotypically and phenotypically heterogeneous population. Genetic analyses revealed that RecA-mediated homologous recombination between a pair of insertion sequence (IS) 2-like elements duplicates a 208.6 kb region of DNA that contains 157 coding sequences. RecA-mediated homologous recombination also resolves merodiploids, and hence copy number of the region is varied and dynamic within populations. We showed that the presence of two or more copies of the region is advantageous for growth in a biofilm, and a single copy is advantageous during planktonic growth. While IS elements are well known to contribute to evolution through gene inactivation, polar effects on downstream genes, and altering genomic architecture, we believe that this system represents a rare example of IS element-mediated evolution in which the IS elements provide homologous sequences for amplification of a chromosomal region that provides a selective advantage under specific growth conditions, thereby expanding the lifestyle repertoire of the species.
Collapse
Affiliation(s)
- Lillian C Lowrey
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Leslie A Kent
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Bridgett M Rios
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Angelica B Ocasio
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
40
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
41
|
Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains. Foods 2023; 12:foods12010223. [PMID: 36613437 PMCID: PMC9818903 DOI: 10.3390/foods12010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) is a nomadic lactic acid bacterium (LAB) that inhabits a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Many of the isolated L. paracasei strains have been used as single-strain probiotics or as part of a symbiotic consortium within formulations. The present study contributes to the exploration of different strains of L. paracasei derived from non-conventional isolation sources-the South African traditional fermented drink mahewu (strains MA2 and MA3) and kefir grains (strains KF1 and ABK). The performed microbiological, biochemical and genomic comparative analyses of the studied strains demonstrated correlation between properties of the strains and their isolation source, which suggests the presence of at least partial strain adaptation to the isolation environments. Additionally, for the studied strains, antagonistic activities against common pathogens and against each other were observed, and the ability to release bioactive peptides with antioxidant and angiotensin I-converting enzyme inhibitory (ACE-I) properties during milk fermentation was investigated. The obtained results may be useful for a deeper understanding of the nomadic lifestyle of L. paracasei and for the development of new starter cultures and probiotic preparations based on this LAB in the future.
Collapse
|
42
|
Pan-Genome Analysis of Staphylococcus aureus Reveals Key Factors Influencing Genomic Plasticity. Microbiol Spectr 2022; 10:e0311722. [PMID: 36318042 PMCID: PMC9769869 DOI: 10.1128/spectrum.03117-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The massive quantities of bacterial genomic data being generated have facilitated in-depth analyses of bacteria for pan-genomic studies. However, the pan-genome compositions of one species differed significantly between different studies, so we used Staphylococcus aureus as a model organism to explore the influences driving bacterial pan-genome composition. We selected a series of diverse strains for pan-genomic analysis to explore the pan-genomic composition of S. aureus at the species level and the actual contribution of influencing factors (sequence type [ST], source of isolation, country of isolation, and date of collection) to pan-genome composition. We found that the distribution of core genes in bacterial populations restrained under different conditions differed significantly and showed "local core gene regions" in the same ST. Therefore, we propose that ST may be a key factor driving the dynamic distribution of bacterial genomes and that phylogenetic analyses using whole-genome alignment are no longer appropriate in populations containing multiple ST strains. Pan-genomic analysis showed that some of the housekeeping genes of multilocus sequence typing (MLST) are carried at less than 60% in S. aureus strains. Consequently, we propose a new set of marker genes for the classification of S. aureus, which provides a reference for finding a new set of housekeeping genes to apply to MLST. In this study, we explored the role of driving factors influencing pan-genome composition, providing new insights into the study of bacterial pan-genomes. IMPORTANCE We sought to explore the impact of driving factors influencing pan-genome composition using Staphylococcus aureus as a model organism to provide new insights for the study of bacterial pan-genomes. We believe that the sequence type (ST) of the strains under consideration plays a significant role in the dynamic distribution of bacterial genes. Our findings indicate that there are a certain number of essential genes in Staphylococcus aureus; however, the number of core genes is not as high as previously thought. The new classification method proposed herein suggests that a new set of housekeeping genes more suitable for Staphylococcus aureus must be identified to improve the current classification status of this species.
Collapse
|
43
|
Shaskolskiy B, Kravtsov D, Kandinov I, Dementieva E, Gryadunov D. Genomic Diversity and Chromosomal Rearrangements in Neisseria gonorrhoeae and Neisseria meningitidis. Int J Mol Sci 2022; 23:ijms232415644. [PMID: 36555284 PMCID: PMC9778887 DOI: 10.3390/ijms232415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal rearrangements in N. gonorrhoeae and N. meningitidis were studied with the determination of mobile elements and their role in rearrangements. The results of whole-genome sequencing and de novo genome assembly for 50 N. gonorrhoeae isolates collected in Russia were compared with 96 genomes of N. gonorrhoeae and 138 genomes of N. meningitidis from the databases. Rearrangement events with the determination of the coordinates of syntenic blocks were analyzed using the SibeliaZ software v.1.2.5, the minimum number of events that allow one genome to pass into another was calculated using the DCJ-indel model using the UniMoG program v.1.0. Population-level analysis revealed a stronger correlation between changes in the gene order and phylogenetic proximity for N. meningitidis in contrast to N. gonorrhoeae. Mobile elements were identified, including Correa elements; Spencer-Smith elements (in N. gonorrhoeae); Neisserial intergenic mosaic elements; IS elements of IS5, IS30, IS110, IS1595 groups; Nf1-Nf3 prophages; NgoФ1-NgoФ9 prophages; and Mu-like prophages Pnm1, Pnm2, MuMenB (in N. meningitidis). More than 44% of the observed rearrangements most likely occurred with the participation of mobile elements, including prophages. No differences were found between the Russian and global N. gonorrhoeae population both in terms of rearrangement events and in the number of transposable elements in genomes.
Collapse
|
44
|
Verma A, Lin M, Smith D, Walker JC, Hewezi T, Davis EL, Hussey RS, Baum TJ, Mitchum MG. A novel sugar beet cyst nematode effector 2D01 targets the Arabidopsis HAESA receptor-like kinase. MOLECULAR PLANT PATHOLOGY 2022; 23:1765-1782. [PMID: 36069343 PMCID: PMC9644282 DOI: 10.1111/mpp.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.
Collapse
Affiliation(s)
- Anju Verma
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Boyle Frederickson Intellectual Property LawMilwaukeeWisconsinUSA
| | - Dante Smith
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Conagra Brands, Inc., Corporate Microbiology, Research and DevelopmentOmahaNebraskaUSA
| | - John C. Walker
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Richard S. Hussey
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
45
|
Dhaked HPS, Biswas I. Distribution of two-component signal transduction systems BlpRH and ComDE across streptococcal species. Front Microbiol 2022; 13:960994. [PMID: 36353461 PMCID: PMC9638458 DOI: 10.3389/fmicb.2022.960994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2023] Open
Abstract
Two-component signal transduction (TCS) systems are important regulatory pathways in streptococci. A typical TCS encodes a membrane-anchored sensor kinase (SK) and a cytoplasmic response regulator (RR). Approximately, 20 different types of TCSs are encoded by various streptococci. Among them, two TCSs, in particular BlpRH and ComDE, are required for bacteriocins production and competence development. The SK component of these two TCSs is highly similar and belongs to the protein kinase-10 (HPK-10) subfamily. While these two TCSs are present in streptococci, no systematic studies have been done to differentiate between these two TCSs, and the existence of these pathways in several species of the genus Streptococcus is also unknown. The lack of information about these pathways misguided researchers for decades into believing that the Streptococcus mutans BlpRH system is a ComDE system. Here, we have attempted to distinguish between the BlpRH and ComDE systems based on the location of the chromosome, genomic arrangement, and conserved residues. Using the SyntTax and NCBI databases, we investigated the presence of both TCS systems in the genome of several streptococcal species. We noticed that the NCBI database did not have proper annotations for these pathways in several species, and many of them were wrongly annotated, such as CitS or DpiB instead of BlpH. Nevertheless, our critical analyses led us to classify streptococci into two groups: class A (only the BlpRH system) and class B (both the BlpRH and ComDE systems). Most of the streptococcal groups, including bovis, pyogenic, mutans, salivarius, and suis, encode only the BlpRH system. In contrast, only in the mitis and anginosus groups were both the TCS systems present. The focus of this review is to identify and differentiate between the BlpRH and ComDE systems, and discuss these two pathways in various streptococci.
Collapse
|
46
|
Brown DC, Aggarwal N, Turner RJ. Exploration of the presence and abundance of multidrug resistance efflux genes in oil and gas environments. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36190831 DOI: 10.1099/mic.0.001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As sequencing technology improves and the cost of metagenome sequencing decreases, the number of sequenced environments increases. These metagenomes provide a wealth of data in the form of annotated and unannotated genes. The role of multidrug resistance efflux pumps (MDREPs) is the removal of antibiotics, biocides and toxic metabolites created during aromatic hydrocarbon metabolism. Due to their naturally occurring role in hydrocarbon metabolism and their role in biocide tolerance, MDREP genes are of particular importance for the protection of pipeline assets. However, the heterogeneity of MDREP genes creates a challenge during annotation and detection. Here we use a selection of primers designed to target MDREPs in six pure species and apply them to publicly available metagenomes associated with oil and gas environments. Using in silico PCR with relaxed primer binding conditions we probed the metagenomes of a shale reservoir, a heavy oil tailings pond, a civil wastewater treatment, two marine sediments exposed to hydrocarbons following the Deepwater Horizon oil spill and a non-exposed marine sediment to assess the presence and abundance of MDREP genes. Through relaxed primer binding conditions during in silico PCR, the prevalence of MDREPs was determined. The percentage of nucleotide sequences identified by the MDREP primers was partially augmented by exposure to hydrocarbons in marine sediment and in shale reservoir compared to hydrocarbon-free marine sediments while tailings ponds and wastewater had the highest percentages. We believe this approach lays the groundwork for a supervised method of identifying poorly conserved genes within metagenomes.
Collapse
|
47
|
Dong Z, Wang J, Wang L, Zhu L, Wang J, Zhao X, Kim YM. Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3343-3358. [PMID: 34559332 DOI: 10.1007/s10653-021-01102-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.
Collapse
Affiliation(s)
- Zikun Dong
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China.
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Xiang Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
48
|
Lopes AR, Bunin E, Viana AT, Froufe H, Muñoz-Merida A, Pinho D, Figueiredo J, Barroso C, Vaz-Moreira I, Bellanger X, Egas C, Nunes OC. In silico prediction of the enzymes involved in the degradation of the herbicide molinate by Gulosibacter molinativorax ON4T. Sci Rep 2022; 12:15502. [PMID: 36109598 PMCID: PMC9477822 DOI: 10.1038/s41598-022-18732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022] Open
Abstract
Gulosibacter molinativorax ON4T is the only known organism to produce molinate hydrolase (MolA), which catalyses the breakdown of the thiocarbamate herbicide into azepane-1-carboxylic acid (ACA) and ethanethiol. A combined genomic and transcriptomic strategy was used to fully characterize the strain ON4T genome, particularly the molA genetic environment, to identify the potential genes encoding ACA degradation enzymes. Genomic data revealed that molA is the only catabolic gene of a novel composite transposon (Tn6311), located in a novel low copy number plasmid (pARLON1) harbouring a putative T4SS of the class FATA. pARLON1 had an ANI value of 88.2% with contig 18 from Agrococcus casei LMG 22410T draft genome. Such results suggest that pARLON1 is related to genomic elements of other Actinobacteria, although Tn6311 was observed only in strain ON4T. Furthermore, genomic and transcriptomic data demonstrated that the genes involved in ACA degradation are chromosomal. Based on their overexpression when growing in the presence of molinate, the enzymes potentially involved in the heterocyclic ring breakdown were predicted. Among these, the activity of a protein related to caprolactone hydrolase was demonstrated using heterologous expression. However, further studies are needed to confirm the role of the other putative enzymes.
Collapse
|
49
|
Suria AM, Smith S, Speare L, Chen Y, Chien I, Clark EG, Krueger M, Warwick AM, Wilkins H, Septer AN. Prevalence and diversity of type VI secretion systems in a model beneficial symbiosis. Front Microbiol 2022; 13:988044. [PMID: 36187973 PMCID: PMC9515649 DOI: 10.3389/fmicb.2022.988044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The type VI secretion system (T6SS) is widely distributed in diverse bacterial species and habitats where it is required for interbacterial competition and interactions with eukaryotic cells. Previous work described the role of a T6SS in the beneficial symbiont, Vibrio fischeri, during colonization of the light organ of Euprymna scolopes squid. However, the prevalence and diversity of T6SSs found within the distinct symbiotic structures of this model host have not yet been determined. Here, we analyzed 73 genomes of isolates from squid light organs and accessory nidamental glands (ANGs) and 178 reference genomes. We found that the majority of these bacterial symbionts encode diverse T6SSs from four distinct classes, and most share homology with T6SSs from more distantly related species, including pathogens of animals and humans. These findings indicate that T6SSs with shared evolutionary histories can be integrated into the cellular systems of host-associated bacteria with different effects on host health. Furthermore, we found that one T6SS in V. fischeri is located within a genomic island with high genomic plasticity. Five distinct genomic island genotypes were identified, suggesting this region encodes diverse functional potential that natural selection can act on. Finally, analysis of newly described T6SSs in roseobacter clade ANG isolates revealed a novel predicted protein that appears to be a fusion of the TssB-TssC sheath components. This work underscores the importance of studying T6SSs in diverse organisms and natural habitats to better understand how T6SSs promote the propagation of bacterial populations and impact host health.
Collapse
Affiliation(s)
- Andrea M. Suria
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie Smith
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren Speare
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Yuzhou Chen
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Iris Chien
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emily Grace Clark
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Madelyn Krueger
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alexander M. Warwick
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hannah Wilkins
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alecia N. Septer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,*Correspondence: Alecia N. Septer,
| |
Collapse
|
50
|
Kushwaha SK, Narasimhan LP, Chithananthan C, Marathe SA. Clustered regularly interspaced short palindromic repeats-Cas system: diversity and regulation in Enterobacteriaceae. Future Microbiol 2022; 17:1249-1267. [PMID: 36006039 DOI: 10.2217/fmb-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Insights into the arms race between bacteria and invading mobile genetic elements have revealed the intricacies of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system and the counter-defenses of bacteriophages. Incredible spacer diversity but significant spacer conservation among species/subspecies dictates the specificity of the CRISPR-Cas system. Researchers have exploited this feature to type/subtype the bacterial strains, devise targeted antimicrobials and regulate gene expression. This review focuses on the nuances of the CRISPR-Cas systems in Enterobacteriaceae that predominantly harbor type I-E and I-F CRISPR systems. We discuss the systems' regulation by the global regulators, H-NS, LeuO, LRP, cAMP receptor protein and other regulators in response to environmental stress. We further discuss the regulation of noncanonical functions like DNA repair pathways, biofilm formation, quorum sensing and virulence by the CRISPR-Cas system. The review comprehends multiple facets of the CRISPR-Cas system in Enterobacteriaceae including its diverse attributes, association with genetic features, regulation and gene regulatory mechanisms.
Collapse
Affiliation(s)
- Simran K Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Lakshmi P Narasimhan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Chandrananthi Chithananthan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Sandhya A Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| |
Collapse
|