1
|
Zenkov AV, Sushko ES, Mogilnaya OA, Volochaev MN, Shabanov AV, Kamnev AA, Tugarova AV, Kudryasheva NS. Application of the luminous bacterium Photobacterium phosphoreum for toxicity monitoring of selenite and its reduction to selenium(0) nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125078. [PMID: 39250849 DOI: 10.1016/j.saa.2024.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Luminous marine bacteria are traditionally used as a bioassay due to the convenience and high rate of registering the intensity of their physiological function - luminescence. This study aimed to develop the application of Photobacterium phosphoreum in traditional and novel fields - toxicity monitoring and biotechnology. We demonstrated (1) effects of selenite ions on bioluminescence, and (2) biotransformation of selenite to selenium(0) in the form of nanoparticles. The effects of selenite (SeO32-) on the intensity of bacterial bioluminescence were studied, and its dependencies on exposure time and concentration of Na2SeO3 were analyzed. Bioluminescence activation and inhibition were revealed; dose-effect dependencies corresponded to the hormesis model. The toxicity of SeO32- was characterized by an effective concentration of 10-3 M. Effects of SeO32- on reactive oxygen species (ROS) in bacterial suspensions were studied. High positive correlations were found between the bioluminescence intensity and ROS content, which indicates the decisive role of ROS and associated redox processes in the bioeffects of selenite ions. Scanning and transmission electron microscopy revealed the presence of nano-structures in the bacteria exposed to selenite. The energy dispersion spectrum detected a high content of selenium in the nanoparticles. The particle size distribution depended on Na2SeO3 concentration; maxima of the distribution varied within 45-55 nm.
Collapse
Affiliation(s)
- Andrei V Zenkov
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Ekaterina S Sushko
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia; Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia.
| | - Olga A Mogilnaya
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia
| | - Mikhail N Volochaev
- Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia
| | - Alexandr V Shabanov
- Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia
| | - Alexander A Kamnev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Scientific Center of the Russian Academy of Sciences, 410049 Saratov, Russia
| | - Anna V Tugarova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Scientific Center of the Russian Academy of Sciences, 410049 Saratov, Russia
| | - Nadezhda S Kudryasheva
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia.
| |
Collapse
|
2
|
Wen J, Huang B, Huang Z, Jian H, Cao Y, Tang C, Zeng F, Li T, Fang H, Du H. Isotopes unveil overestimation of nutrient-driven oxygen deficit in the tidal rivers of Pearl River Delta during the wet season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178052. [PMID: 39708740 DOI: 10.1016/j.scitotenv.2024.178052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
A low dissolved oxygen (DO) concentration in summer has been observed in river-estuary systems worldwide. Many studies have caused our stereotype that biochemical oxygen depletion was higher in summer than in winter; however, there was no direct evidence particularly in the tidal river with complex hydrological and biochemical processes. This study employed natural-abundance and labeled isotopes to quantify seasonal apportionment of biochemical oxygen depletion. In this study, apparent oxygen utilization (AOU) and carbon (C) and nitrogen (N) turnover potentials (nitrification rates and δ13C signals) were higher in the wet season than in the dry season. However, calculation results of the nitrification flux demonstrated that actual N turnover was constrained by shorter river residence time in the wet season. Similarly, the δ13C end-member mixing and Rayleigh fractionation models revealed that the conservative C behavior was more pronounced than degradation in situ in the river channel. Overall, C- and N-driven oxygen depletion accounted only for ~8% of AOU in the wet season. This substantiated that the hydrological control regulated C and N behaviors to "the conservative transport" to mitigate O2 depletion in the wet season. In contrast, a good correspondence between C and N turnover and low oxygen was recorded in the dry season. Therefore, the "nutrient- and non-nutrient-constrained DO cold spots" during the dry and wet seasons provided new insights into oxygen deficits in tidal rivers. Our study provided compelling evidence that seasonal apportionment of C- and N-driven oxygen depletion in situ has changed in tidal rivers. Biochemical oxygen depletion was more evident in the dry season than in the wet season; thus, it had been previously overestimated in the wet season, which will provide implications for using different water management strategies in different seasons.
Collapse
Affiliation(s)
- Jing Wen
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Bangjie Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Zhiwei Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Hongxian Jian
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Changyuan Tang
- Department of Horticulture, Chiba University, Matsudo 648, Japan
| | - Fantang Zeng
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Tong Li
- Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510635, China
| | - Huaiyang Fang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China.
| | - Hongwei Du
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China.
| |
Collapse
|
3
|
Liu LY, Dang CC, Tan X, Liu BF, Lu Y, Zhao ZC, Wang X, Wang XW, Xing DF, Ren NQ, Xie GJ. Thermophilic anaerobic ethane oxidation coupled with selenate and selenite reduction. BIORESOURCE TECHNOLOGY 2024; 418:131934. [PMID: 39638008 DOI: 10.1016/j.biortech.2024.131934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Anaerobic microorganisms are critical in regulating ethane in geothermal environments, where selenate and selenite are common contaminants. Although coupling ethane oxidation with selenate reduction has been demonstrated as feasible, such processes remain poorly explored in geothermal environments. This study addressed this gap by successfully enriching thermophilic anaerobic cultures capable of coupling ethane oxidation with selenate/selenite reduction, achieving selenate and selenite removal rate of 2.7 mg Se/L/d and 2.1 mg Se/L/d, respectively. Metagenomic analysis revealed a novel genus 'Candidatus Ethanivorans selenatireducens', which accounted for 16.0 % and 32.6 % of microbial communities in selenate- and selenite-dependent systems, respectively. This microorganism encoded pathways for anaerobic ethane oxidation via fumarate addition and genes required for the sequential reduction of selenate to elemental selenium. These findings unveiled a novel microbial mechanism linking ethane oxidation and selenate reduction in geothermal systems, providing new insights into the biogeochemical interaction between carbon and selenium in thermophilic environments.
Collapse
Affiliation(s)
- Lu-Yao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yang Lu
- Water Innovation and Smart Environment Laboratory, School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Zhi-Cheng Zhao
- National Engineering Research Center for Ecological Environment of Yangtze River Economic Belt. Wuhan 430014, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Bennett AE, Kelsey S, Saup C, Wilkins M, Malacrinò A. Selenium alters the gene content but not the taxonomic composition of the soil microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:92. [PMID: 39558431 PMCID: PMC11575018 DOI: 10.1186/s40793-024-00641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Microbiomes, essential to ecosystem processes, face strong selective forces that can drive rapid evolutionary adaptation. However, our understanding of evolutionary processes within natural systems remains limited. We investigated evolution in response to naturally occurring selenium in soils of different geological parental materials on the Western Slope of Colorado. Our study focused on examining changes in gene frequencies within microbial communities in response to selenium exposure. RESULTS Despite expectations of taxonomic composition shifts and increased gene content changes at high-selenium sites, we found no significant alterations in microbial diversity or community composition. Surprisingly, we observed a significant increase in differentially abundant genes within high-selenium sites. CONCLUSIONS These findings are suggestive that selection within microbiomes primarily drives the accumulation of genes among existing microbial taxa, rather than microbial species turnover, in response to strong stressors like selenium. Our study highlights an unusual system that allows us to examine evolution in response to the same stressor annually in a non-model system, contributing to understanding microbiome evolution beyond model systems.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Scott Kelsey
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Casey Saup
- School of Earth Sciences, The Ohio State University, Columbus, OH, USA
| | - Mike Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy.
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
5
|
Chavez Varias D, Moon SH, Shin SH, Ryu BY. Selenium protects mouse spermatogonia against ivermectin-induced apoptosis by alleviating endoplasmic reticulum stress in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117307. [PMID: 39520749 DOI: 10.1016/j.ecoenv.2024.117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Ivermectin (IVM) is a widely used anthelmintic in human and veterinary medicine. However, the increasing use of IVM raises concerns about its potential harm against non-targeted organisms. This study demonstrates a novel mechanism where IVM triggers apoptosis via endoplasmic reticulum (ER) stress in GC-1 spg in vitro. The inhibitory effects of selenium (Se) against the toxicological mechanism were also explored. IVM dose-dependently induces oxidative stress, dysregulated Ca2+ levels, and intracellular protein aggregation. Increased mitochondria-associated ER membrane (MAM) activity through Glucose-regulated Protein 75 (Grp75) overloads the mitochondria with Ca2+, causing mitochondrial dysfunction. These simultaneous stressors lead to unfolded protein response and apoptosis. Se reverses all these subcellular events by promoting the expression of selenoprotein-encoding genes to maintain the ER and redox homeostasis. The testis-enriched Glutathione Peroxidase 4 (Gpx4) and the testis-specific Selenoprotein V (Selenov) are only upregulated in the IVM and Se co-treatment group, suggesting their potential role in stress response. These findings confirm that toxic doses of IVM lead to programmed cell death in type B spermatogonia through redox imbalance-associated ER stress. This study provides valuable insights into refining male reproductive toxicity evaluation, targeting of ER stress to protect male germ cells, and maintaining male fertility from IVM-induced toxicity.
Collapse
Affiliation(s)
- Daniel Chavez Varias
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea.
| |
Collapse
|
6
|
Zhu L, Long P, Hu M, Wang L, Shao Y, Cheng S, Dong X, He Y. Insight into selenium biofortification and the selenite metabolic mechanism of Monascus ruber M7. Food Chem 2024; 455:139740. [PMID: 38843715 DOI: 10.1016/j.foodchem.2024.139740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 07/10/2024]
Abstract
Monascus species are functional fermentation fungi with great potential for selenium (Se) supplementation. This study investigated the effects of Se bio-fortification on the growth, morphology, and biosynthesis of Monascus ruber M7. The results demonstrated a significant increase in the yield of orange and red Monascus pigments (MPs) in red yeast rice (RYR) by 38.52% and 36.57%, respectively, under 20 μg/mL of selenite pressure. Meanwhile, the production of citrinin (CIT), a mycotoxin, decreased from 244.47 μg/g to 175.01 μg/g. Transcriptome analysis revealed significant upregulation of twelve genes involved in MPs biosynthesis, specifically MpigE, MpigF, and MpigN, and downregulation of four genes (mrr3, mrr4, mrr7, and mrr8) associated with CIT biosynthesis. Additionally, three genes encoding cysteine synthase cysK (Log2FC = 1.6), methionine synthase metH (Log2FC = 2.2), and methionyl-tRNA synthetase metG (Log2FC = 1.8) in selenocompound metabolism showed significantly upregulated. These findings provide insights into Se biotransformation and metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Lisha Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Pengcheng Long
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Man Hu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Liling Wang
- College of Food Science and Engineering, Tarim University, Alar 843300, PR China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
7
|
Jiang Z, Wang Z, Zhao Y, Peng M. Unveiling the vital role of soil microorganisms in selenium cycling: a review. Front Microbiol 2024; 15:1448539. [PMID: 39323878 PMCID: PMC11422209 DOI: 10.3389/fmicb.2024.1448539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Selenium (Se) is a vital trace element integral to numerous biological processes in both plants and animals, with significant impacts on soil health and ecosystem stability. This review explores how soil microorganisms facilitate Se transformations through reduction, oxidation, methylation, and demethylation processes, thereby influencing the bioavailability and ecological functions of Se. The microbial reduction of Se compounds, particularly the conversion of selenate and selenite to elemental Se nanoparticles (SeNPs), enhances Se assimilation by plants and impacts soil productivity. Key microbial taxa, including bacteria such as Pseudomonas and Bacillus, exhibit diverse mechanisms for Se reduction and play a substantial role in the global Se cycle. Understanding these microbial processes is essential for advancing soil management practices and improving ecosystem health. This review underscores the intricate interactions between Se and soil microorganisms, emphasizing their significance in maintaining ecological balance and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhihui Jiang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Yong Zhao
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| |
Collapse
|
8
|
Yan S, Cheng KY, Bohu T, Ginige MP, Morris C, Lomheim L, Yang I, Edwards E, Zheng G, Zhou L, Kaksonen AH. Changes in microbial communities during high-rate microbial selenate reduction in an up-flow anaerobic fluidized bed reactor. CHEMOSPHERE 2024; 364:143224. [PMID: 39218266 DOI: 10.1016/j.chemosphere.2024.143224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Biological fluidized bed reactor (FBR) is a promising treatment option for removing selenium oxyanions from wastewater by converting them into elemental selenium. The process can achieve high rates and be efficiently operated at low hydraulic retention times (HRT). However, the effects of HRT on the changes in microbial community in the FBR process have not been previously explored. In this study, dynamic changes of microbial communities both on biofilm carrier and in suspension of a selenate-reducing FBR were explored at various HRTs (0.3-120 h). Based on partial 16S rRNA gene sequencing of the microbial communities, alpha diversity of microbial communities in suspension rather than in the biofilm were impacted by low HRTs (0.3 h-3 h). Members from genera Geobacter, Geoalkalibacter, and Geovibrio were the main selenate-reducing bacteria on carrier throughout the FBR process. Genus Geobacter was dominant in FBR carrier at HRT of 24 h-120 h, whereas Geoalkalibacter and Geovibrio dominated at low HRT of 0.3 h-6 h. Suspended microbial communities detected in the FBR effluent were more sensitive to HRT changes than that in biofilm. "Shock loading" at HRT of 0.3 h had a great impact on microbial community compositions both in the biofilm and effluent. Reactor operation in batch mode and long HRT of 24 h helped recover the community from "shock loading" and improved selenite reduction and ethanol oxidation. Redundancy analysis revealed that HRT, influent pH and selenate loading were key operational parameters impacting both the FBR performance and the composition of microbial communities associated with both the FBR carrier and effluent. Overall, the microbial communities in FBR biofilm flexibly responded to the changes of HRT and showed resilience to the temporary shock loading, enabling efficient selenate removal.
Collapse
Affiliation(s)
- Su Yan
- CSIRO Environment, 147 Underwood Avenue, Floreat, WA, 6014, Australia; College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ka Yu Cheng
- CSIRO Environment, 147 Underwood Avenue, Floreat, WA, 6014, Australia; School of Engineering & Energy, Murdoch University, WA 6150, Australia
| | - Tsing Bohu
- CSIRO Mineral Resources, Australian Resources and Research Centre, Kensington, WA, 6151, Australia
| | - Maneesha P Ginige
- CSIRO Environment, 147 Underwood Avenue, Floreat, WA, 6014, Australia
| | - Christina Morris
- CSIRO Environment, 147 Underwood Avenue, Floreat, WA, 6014, Australia
| | - Line Lomheim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Elizabeth Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anna H Kaksonen
- CSIRO Environment, 147 Underwood Avenue, Floreat, WA, 6014, Australia; Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Faculty of Science and Engineering, Curtin University, Bentley, Australia; School of Engineering, The University of Western Australia, Crawley, Western Australia, 6009, Australia.
| |
Collapse
|
9
|
Zhou J, Zeng X, Shi J, Liu S, Zhao X, Zhang J, Li W, Xi Y, Wang S, Wang X, Jia Y. Aerobic Se(IV) reducing bacteria and their reducing characteristics in estuarine sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173680. [PMID: 38844212 DOI: 10.1016/j.scitotenv.2024.173680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Microorganisms play a critical role in the biogeochemical cycling of selenium in natural ecosystems, particularly in reducing selenite (Se(IV)) to element selenium (Se(0)) which reduces its mobility and bioavailability. However, Se(IV)-reducing bacteria and their reducing characteristics in estuarine sediments remain inadequately understood. In this study, the reduction of Se(IV) was confirmed to be microbially driven through the cultivation of a mixture of estuarine sediment and Se(IV) under aerobic conditions. Community analysis indicates that Bacillus was primarily involved in the reduction of Se(IV). A strain with high salt tolerance (7.5 % NaCl) and Se(IV) resistance (up to 200 mM), Bacillus cereus SD1, was isolated from an estuarine sediment. The reduction of Se(IV) occurred concomitantly with the onset of microbial growth, and reduction capacity increased approximately 5-fold by adjusting the pH. In addition, Se(IV) reduction in Bacillus cereus SD1 was significantly inhibited by sulfite, and the key enzyme activity tests revealed the possible presence of a sulfite reductase-mediated Se(IV) reduction pathway. These research findings provide new insights into the bioreducing characteristics and the biogeochemical cycling of selenium in estuarine environments.
Collapse
Affiliation(s)
- Jiaxing Zhou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China.
| | - Junyi Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Sijia Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Xiaoming Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Jiaxi Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Weiming Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xin Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
10
|
Liu P, Long H, He S, Cheng H, Li E, Cheng S, Liang M, Liu Z, Guo Z, Shi H. Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from Bacillus paramycoides. J Zhejiang Univ Sci B 2024; 25:789-795. [PMID: 39308068 PMCID: PMC11422800 DOI: 10.1631/jzus.b2300738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/26/2023] [Indexed: 08/20/2024]
Abstract
Selenium nanoparticles (SeNPs) have garnered extensive research interest and shown promising applications across diverse fields owing to their distinctive properties, including antioxidant, anticancer, and antibacterial activity (Ojeda et al., 2020; Qu et al., 2023; Zambonino et al., 2021, 2023). Among the various approaches employed for SeNP synthesis, green synthesis has emerged as a noteworthy and eco-friendly methodology. Keshtmand et al. (2023) underscored the significance of green-synthesized SeNPs, presenting a compelling avenue in this domain. This innovative strategy harnesses the potential of natural resources, such as plant extracts or microorganisms, to facilitate the production of SeNPs.
Collapse
Affiliation(s)
- Pei Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Haiyu Long
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shuai He
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Han Cheng
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Erdong Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Siyu Cheng
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Mengdi Liang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhengwei Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhen Guo
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
11
|
Zhao X, Lu Y, Dai L, Wang L, Zhou G, Liang T. Selenium spatial distribution and bioavailability of soil-plant systems in China: a comprehensive review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:341. [PMID: 39073467 DOI: 10.1007/s10653-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Selenium (Se) has a dual nature, with beneficial and harmful effects on plants, essential for both humans and animals, playing a crucial role in ecosystem regulation. Insufficient Se in specific terrestrial environments raises concerns due to its potential to cause diseases, while excess Se can lead to severe toxicity. Thus, maintaining an optimal Se level is essential for living organisms. This review focuses first on Se transformation, speciation, and geochemical properties in soil, and then provides a concise overview of Se distribution in Chinese soil and crops, with a focus on the relationship between soil Se levels and parent materials. Additionally, this paper explores Se bioavailability, considering parent materials and soil physicochemical properties, using partial least squares path modeling for analysis. This paper aimed to be a valuable resource for effectively managing Se-enriched soil resources, contributing to a better understanding of Se role in ecosystems.
Collapse
Affiliation(s)
- Xiaoyuan Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiqing Lu
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjin Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Ruiz-Fresneda MA, Lazúen-López G, Pérez-Muelas E, Peña-Martín J, Linares-Jiménez RE, Newman-Portela AM, Merroun ML. Identification of a multi-modal mechanism for Se(VI) reduction and Se(0) allotropic transition by Stenotrophomonas bentonitica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34256-z. [PMID: 38995337 DOI: 10.1007/s11356-024-34256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Microorganisms can play a key role in selenium (Se) bioremediation and the fabrication of Se-based nanomaterials by reducing toxic forms (Se(VI) and Se(IV)) into Se(0). In recent years, omics have become a useful tool in understanding the metabolic pathways involved in the reduction process. This paper aims to elucidate the specific molecular mechanisms involved in Se(VI) reduction by the bacterium Stenotrophomonas bentonitica. Both cytoplasmic and membrane fractions were able to reduce Se(VI) to Se(0) nanoparticles (NPs) with different morphologies (nanospheres and nanorods) and allotropes (amorphous, monoclinic, and trigonal). Proteomic analyses indicated an adaptive response against Se(VI) through the alteration of several metabolic pathways including those related to energy acquisition, synthesis of proteins and nucleic acids, and transport systems. Whilst the thioredoxin system and the Painter reactions were identified to play a crucial role in Se reduction, flagellin may also be involved in the allotropic transformation of Se. These findings suggest a multi-modal reduction mechanism is involved, providing new insights for developing novel strategies in bioremediation and nanoparticle synthesis for the recovery of critical materials within the concept of circular economy.
Collapse
Affiliation(s)
| | - Guillermo Lazúen-López
- Department of Microbiology, University of Granada, Campus Fuentenueva, 18071, Granada, Spain
| | - Eduardo Pérez-Muelas
- Department of Microbiology, University of Granada, Campus Fuentenueva, 18071, Granada, Spain
| | - Jesús Peña-Martín
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100, Granada, Spain
| | - Raúl Eduardo Linares-Jiménez
- Department of Microbiology, University of Granada, Campus Fuentenueva, 18071, Granada, Spain
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Mohamed Larbi Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva, 18071, Granada, Spain
| |
Collapse
|
13
|
Hendry MJ, Kirk L, Warner J, Shaw S, Peyton BM, Schmeling E, Barbour SL. Selenate bioreduction in a large in situ field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172869. [PMID: 38697548 DOI: 10.1016/j.scitotenv.2024.172869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/06/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Removing selenium (Se) from mine effluent is a common challenge. A long-term, in situ experiment was conducted to bioremediate large volumes (up to 7500 mc d-1) of Se(VI)-contaminated water (mean 87 μg L-1) by injecting the water into a saturated waste rock fill (SRF) at a coal mining operation in Elk Valley, British Columbia, Canada. To stimulate/maintain biofilm growth in the SRF, labile organic carbon (methanol) and nutrients were added to the water prior to its injection. A conservative tracer (Br-) was also added to track the migration of injected water across the SRF, identify wells with minimal dilution and used to quantify the extent of bioreduction. The evolution of the Se species through the SRF was monitored in time and space for 201 d. Selenium concentrations of <3.8 μg L-1 were attained in monitoring wells located 38 m from the injection wells after 114 to 141 d of operation. Concentrations of Se species in water samples from complementary long-term (351-498 d) column experiments using influent Se(VI) concentrations of 1.0 mg L-1 were consistent with the results of the in situ experiment. Solid samples collected at the completion of the column experiments confirmed the presence of indigenous Se-reducing bacteria and that the sequestered Se was present as insoluble Se(0), likely in Se-S ring compounds. Based on the success of this ongoing bioremediation experiment, this technology is being applied at other mine sites.
Collapse
Affiliation(s)
- M Jim Hendry
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Lisa Kirk
- Enviromin, Inc., 524 Professional Drive, Bozeman, MT 59715, USA.
| | - Jeff Warner
- Canadian Light Source Inc., University of Saskatchewan, 101 Perimeter Road, Saskatoon, SK S7N 0X4, Canada.
| | - Shannon Shaw
- SRK Consulting, 1066 W. Hastings St., Vancouver, BC V6E 3X2, Canada.
| | - Brent M Peyton
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, 305 Cobleigh Hall, Montana State University, Bozeman, MT, USA.
| | - Erin Schmeling
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - S Lee Barbour
- Department of Civil and Geological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
14
|
Ge M, Zhou S, Li D, Song D, Yang S, Xu M. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134491. [PMID: 38703686 DOI: 10.1016/j.jhazmat.2024.134491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se0 may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.
Collapse
Affiliation(s)
- Meng Ge
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Da Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.
| |
Collapse
|
15
|
Si B, Yang Y, Naveed M, Wang F, Chan MWH. Characterizations of biogenic selenium nanoparticles and their anti-biofilm potential against Streptococcus mutans ATCC 25175. J Trace Elem Med Biol 2024; 84:127448. [PMID: 38626650 DOI: 10.1016/j.jtemb.2024.127448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION S. mutans has been identified as the primary pathogenic bacterium in biofilm-mediated dental caries. The biogenic selenium nanoparticles (SeNPs) produced by L. plantarum KNF-5 were used in this study against S. mutans ATCC 25175. OBJECTIVES The aims of this study were: (1) the biosynthesis of SeNPs by L. plantarum KNF-5, (2) the characterization of SeNPs, (3) the investigation of the inhibitory effect of biogenic SeNPs against S. mutans ATCC 25175, and (4) the determination of the anti-biofilm potential of SeNPS against S. mutans ATCC 25175. METHODOLOGY 3 mL of the culture was added to 100 mL of MRS medium and incubated. After 4 h, Na2SeO3 solution (concentration 100 μg/mL) was added and incubated at 37 °C for 36 h. The color of the culture solution changed from brownish-yellow to reddish, indicating the formation of SeNPs. The characterization of SeNPs was confirmed by UV-Vis spectrophotometry, FTIR, SEM-EDS and a particle size analyzer. The antibacterial activity was determined by the disk diffusion method, the MIC by the micro-double dilution method, and the biofilm inhibitory potential by the crystal violet method and the MTT assay. The effect of SeNPs on S. mutans ATCC 25175 was determined using SEM and CLSM spectrometry techniques. The sulfate-anthrone method was used to analyze the effect of SeNPs on insoluble extracellular polysaccharides. The expression of genes in S. mutans ATCC 25175 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). PREPARATION OF NANOPARTICLES SeNPs produced by probiotic bacteria are considered a safe method. In this study, L. plantarum KNF-5 (probiotic strain) was used for the production of SeNPs. RESULTS The biogenic SeNPs were spherical and coated with proteins and polysaccharides and had a diameter of about 270 nm. The MIC of the SeNPs against S. mutans ATCC 25175 was 3.125 mg/mL. Biofilm growth was also significantly suppressed at this concentration. The expression of genes responsible for biofilm formation (GtfB, GtfC, BrpA and GbpB,) was reduced when S. mutans ATCC 25175 was treated with SeNPs. CONCLUSION It was concluded that the biogenic SeNPs produced by L. plantarum KNF-5 was highly effective to inhibit the growth of S. mutans ATCC 25175. NOVELTY STATEMENT The application of biogenic SeNPs, a natural anti-biofilm agent against S. mutans ATCC 25175. In the future, this study will provide a new option for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Binbin Si
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Muhammad Naveed
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Malik Wajid Hussain Chan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
16
|
Sakr EAE, Khater DZ, El-Khatib KM. Electroactive Brevundimonas diminuta consortium mediated selenite bioreduction, biogenesis of selenium nanoparticles and bio-electricity generation. J Nanobiotechnology 2024; 22:352. [PMID: 38902695 PMCID: PMC11188503 DOI: 10.1186/s12951-024-02577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL-1 microbial growth, 99.08% Se(IV) reduction, and 89.94% chemical oxygen demand (COD) removal were observed. Moreover, the UV-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the synthesis of elemental selenium nanoparticles (SeNPs). In addition, transmission electron microscopy (TEM) and scanning electron microscope (SEM) revealed the formation of SeNPs nano-spheres. Besides, the bioelectrochemical performance of B. diminuta in the SCMFC illustrated that the maximum power density was higher in the case of selenite SCMFCs than those of the sterile control SCMFCs. Additionally, the bioelectrochemical impedance spectroscopy and cyclic voltammetry characterization illustrated the production of definite extracellular redox mediators that might be involved in the electron transfer progression during the reduction of selenite. In conclusion, B. diminuta whose electrochemical activity has never previously been reported could be a suitable and robust biocatalyst for selenite bioreduction along with wastewater treatment, bioelectricity generation, and economical synthesis of SeNPs in MFCs.
Collapse
Affiliation(s)
- Ebtehag A E Sakr
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Dena Z Khater
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre (NRC), El Buhouth St, Dokki, Cairo, 12622, Egypt
| | - Kamel M El-Khatib
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre (NRC), El Buhouth St, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
17
|
Morris S, Quispe-Arpasi D, Lens PNL. Effect of Rhodococcus opacus PD630 on selenium phytoremediation by Brassica oleracea. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1280-1290. [PMID: 38348969 DOI: 10.1080/15226514.2024.2311725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The purpose of this study was to evaluate the potential of microbial-enhanced Brassica oleracea for the phytoremediation of seleniferous soils. The effect of selenite (Se(IV)) and selenate (Se(VI)) on B. oleracea (1-100 mg.L-1) was examined through germination (7 d) and pot (30 d) trials. Microbial analysis was conducted to verify the toxic effect of various Se concentrations (1-500 mg.L-1) on Rhodococcus opacus PD360, and to determine if it exhibits plant growth promoter traits. R. opacus PD630 was found to tolerate high concentrations of both Se(IV) and Se(VI), above 100 mg.L-1. R. opacus PD630 reduced Se(IV) and Se(VI) over 7 days, with a Se conversion efficiency between 60 and 80%. Germination results indicated lower concentrations (0-10 mg.L-1) of Se(IV) and Se(VI) gave a higher shoot length (> 4 cm). B. oleracea accumulated 600-1,000 mg.kg-1 dry weight (DW) of Se(IV) and Se(VI), making it a secondary accumulator of Se. Moreover, seeds inoculated with R. opacus PD360 showed increased Se uptake (up to 1,200 mg Se.kg-1 DW). In addition, bioconcentration and translocation factors were greater than one. The results indicate a synergistic effect between R. opacus PD630 and B. oleracea for Se phytoextraction from polluted soils.
Collapse
Affiliation(s)
- Sinead Morris
- University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Diana Quispe-Arpasi
- University of Galway, University Road, H91 TK33, Galway, Ireland
- Department of Microbiology, Universidad Tecnológica del Perú, Campus Ate, Carretera Central km 11.6, Ate, Lima, Peru
| | - Piet N L Lens
- University of Galway, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
18
|
Williamson AJ, Binet M, Sergeant C. Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents. Crit Rev Biotechnol 2024; 44:698-716. [PMID: 37258417 DOI: 10.1080/07388551.2023.2194505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/07/2022] [Accepted: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Civilian and military nuclear programs of several nations over more than 70 years have led to significant quantities of heterogenous solid, organic, and aqueous radioactive wastes bearing actinides, fission products, and activation products. While many physicochemical treatments have been developed to remediate, decontaminate and reduce waste volumes, they can involve high costs (energy input, expensive sorbants, ion exchange resins, chemical reducing/precipitation agents) or can lead to further secondary waste forms. Microorganisms can directly influence radionuclide solubility, via sorption, accumulation, precipitation, redox, and volatilization pathways, thus offering a more sustainable approach to remediation or effluent treatments. Much work to date has focused on fundamentals or laboratory-scale remediation trials, but there is a paucity of information toward field-scale bioremediation and, to a lesser extent, toward biological liquid effluent treatments. From the few biostimulation studies that have been conducted at legacy weapon production/test sites and uranium mining and milling sites, some marked success via bioreduction and biomineralisation has been observed. However, rebounding of radionuclide mobility from (a)biotic scale-up factors are often encountered. Radionuclide, heavy metal, co-contaminant, and/or matrix effects provide more challenging conditions than traditional industrial wastewater systems, thus innovative solutions via indirect interactions with stable element biogeochemical cycles, natural or engineered cultures or communities of metal and irradiation tolerant strains and reactor design inspirations from existing metal wastewater technologies, are required. This review encompasses the current state of the art in radionuclide biogeochemistry fundamentals and bioremediation and establishes links toward transitioning these concepts toward future radioactive effluent treatments.
Collapse
Affiliation(s)
| | - Marie Binet
- EDF R&D, LNHE (Laboratoire National d'Hydraulique et Environnement), Chatou, France
| | | |
Collapse
|
19
|
Li K, Zhu Y, Zhang S, Xu Q, Guo Y. Nitrate reductase involves in selenite reduction in Rahnella aquatilis HX2 and the characterization and anticancer activity of the biogenic selenium nanoparticles. J Trace Elem Med Biol 2024; 83:127387. [PMID: 38237425 DOI: 10.1016/j.jtemb.2024.127387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Biogenic selenium nanoparticles (SeNPs) show numerous advantages including their high stability, low toxicity, and high bioactivity. While metabolism of SeNPs remains not well studied and need more investigation to reveal the process. PURPOSE The objective of the study was to investigate the relationship between nitrate reductase and selenite reduction in Rahnella aquatilis HX2, characterize the properties of HX2 produced SeNPs, and explore their potential applications, particularly their anticancer activity. PROCEDURES Selenium species were measured by high-performance liquid chromatography coupled to inductively coupled plasma - Mass spectrometry (HPLC-ICP-MS). Transcription level of nitrate reductase was determined by Real-time quantitative PCR. Morphology, particle size, crystal structure and surface chemistry of SeNPs were determined by electron microscopy, dynamic light scattering method, Raman scattering, X-ray photoelectron spectroscopy, respectively. Anti cancer cell activity was measured by CCK-8 assay. MAIN FINDINGS SeNP production in R. aquatilis HX2 was correlated with the cell growth. The products of selenite reduction in HX2 detected by HPLC-ICP-MS included SeNPs, selenocysteine (SeCys), Se-Methylselenocysteine (MeSeCys), and 7 unknown compounds. Nitrate addition experiments suggested the involvement of nitrate reductase in selenite reduction in HX2. Both the cellular membrane and cytoplasm of HX2 exhibited selenite-reducing ability, indicating that membrane-associated nitrate reductase was not the sole selenite reductase in HX2. Characterization of the biogenic SeNPs revealed a spherical morphology and amorphous structure of them. Surface chemistry analysis implicated the binding of extracellular polymeric substances to the biogenic SeNPs, and the presence of Se0, Se2-, and electron-rich Se atoms on the surface of SeNPs. Finally, the IC50 values of the biogenic SeNPs were 36.49 μM for HepG2 and 3.70 μM for HeLa cells. CONCLUSIONS The study first revealed that the nitrate reductase is involving in selenite reduction in R. aquatilis HX2. The biogenic SeNPs coordinated with organic substances in the surface. And SeNPs produced by R. aquatilis HX2 showed excellent anticancer activities on HepG2 and HeLa cells.
Collapse
Affiliation(s)
- Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanyun Zhu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences; Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Zhong B, Xu W, Gong M, Xian W, Xie H, Wu Z. Molecular mechanisms of selenite reduction by Lactiplantibacillus plantarum BSe: An integrated genomic and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133850. [PMID: 38401219 DOI: 10.1016/j.jhazmat.2024.133850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The reduction of selenite [Se(Ⅳ)] by microorganisms is a green and efficient detoxification strategy. We found that Se(Ⅳ) inhibited exopolysaccharide and protein secretion by Lactiplantibacillus plantarum BSe and compromised cell integrity. In this study, L. plantarum BSe reduced Se(Ⅳ) by increasing related enzyme activity and electron transfer. Genomic analysis demonstrated that L. plantarum BSe should be able to reduce Se(Ⅳ). Further transcriptome analysis showed that L. plantarum BSe enhanced its tolerance to Se(Ⅳ) by upregulating the expression of surface proteins and transporters, thus reducing the extracellular Se(Ⅳ) concentration through related enzymatic reactions and siderophore-mediated pathways. Lactiplantibacillus plantarum BSe was able to regulate the expression of related genes involved in quorum sensing and a two-component system and then select appropriate strategies for Se(Ⅳ) transformation in response to varying environmental Se(Ⅳ) concentrations. In addition, azo reductase was linked to the reduction of Se(Ⅳ) for the first time. The present study established a multipath model for the reduction of Se(Ⅳ) by L. plantarum, providing new insights into the biological reduction of Se(Ⅳ) and the biogeochemical cycle of selenium.
Collapse
Affiliation(s)
- Bin Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Weijun Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China
| | - Ming Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Yiweyi Biological Manufacturing (Jiangmen) Co., LTD, Jiangmen 529080, China
| | - Wei Xian
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hanyi Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| |
Collapse
|
21
|
Firrincieli A, Tornatore E, Piacenza E, Cappelletti M, Saiano F, Pavia FC, Alduina R, Zannoni D, Presentato A. The actinomycete Kitasatospora sp. SeTe27, subjected to adaptive laboratory evolution (ALE) in the presence of selenite, varies its cellular morphology, redox stability, and tolerance to the toxic oxyanion. CHEMOSPHERE 2024; 354:141712. [PMID: 38484991 DOI: 10.1016/j.chemosphere.2024.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.
Collapse
Affiliation(s)
- Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100, Viterbo, Italy.
| | - Enrico Tornatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Filippo Saiano
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze Ed. 4, 90128, Palermo, Italy.
| | - Francesco Carfì Pavia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128, Palermo, Italy.
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| |
Collapse
|
22
|
He Z, Shen J, Zhao Y, Ru Y, Zhang D, Pan X. Microbial antagonistic mechanisms of Hg(II) and Se(IV) in efficient wastewater treatment using granular sludge. WATER RESEARCH 2024; 253:121311. [PMID: 38367382 DOI: 10.1016/j.watres.2024.121311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The antagonistic effects of mercury (Hg) and selenium (Se) have been extensively studied in higher animals and plants. In this study, the microbial antagonistic effects of Hg and Se were utilized for wastewater treatment. We developed and optimized a new granular sludge approach to efficiently remove Hg(II) and Se(IV) from wastewater. Under anaerobic-oxic-anaerobic (AOA) conditions, the removal rates of Hg(II) and Se(IV) reached up to 99.91±0.07 % and 97.7 ± 0.8 %, respectively. The wastewater Hg(II) was mostly (97.43±0.01 %) converted to an inert mineral called tiemannite (HgSe) in the sludge, and no methylmercury (MeHg) was detected. The HgSe in sludge is less toxic, with almost no risk of secondary release, and it can be recovered with high purity. An inhibition experiment of mercury reduction and the high expression of the mer operon indicated that most Hg(II) (∼71 %) was first reduced to Hg0, and then Hg0 reacted with Se0 to synthesize HgSe. Metagenomic results showed that the final sludge (day 182) was dominated by two unclassified bacteria in the orders Rhodospirillales (27.7 %) and Xanthomonadales (6.3 %). Their metagenome-assembled genomes (MAGs) were recovered, suggesting that both of them can reduce Hg(II) and Se(IV). Metatranscriptomic analyses indicate that they can independently and cooperatively synthesize HgSe. In summary, granular sludge under AOA conditions is an efficient method for removing and recovering Hg from wastewater. The microbial transformation of Hg2+to Hg0 to HgSe may occur widely in both engineering and natural ecosystems.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yuanhai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yulong Ru
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
23
|
Crespo L, Sede Lucena B, Martínez FG, Mozzi F, Pescuma M. Selenium bioactive compounds produced by beneficial microbes. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:63-92. [PMID: 38637107 DOI: 10.1016/bs.aambs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Selenium (Se) is an essential trace element present as selenocysteine (SeCys) in selenoproteins, which have an important role in thyroid metabolism and the redox system in humans. Se deficiency affects between 500 and 1000 million people worldwide. Increasing Se intake can prevent from bacterial and viral infections. Se deficiency has been associated with cancer, Alzheimer, Parkinson, decreased thyroid function, and male infertility. Se intake depends on the food consumed which is directly related to the amount of Se in the soil as well as on its availability. Se is unevenly distributed on the earth's crust, being scarce in some regions and in excess in others. The easiest way to counteract the symptoms of Se deficiency is to enhance the Se status of the human diet. Se salts are the most toxic form of Se, while Se amino acids and Se-nanoparticles (SeNPs) are the least toxic and most bio-available forms. Some bacteria transform Se salts into these Se species. Generally accepted as safe selenized microorganisms can be directly used in the manufacture of selenized fermented and/or probiotic foods. On the other hand, plant growth-promoting bacteria and/or the SeNPs produced by them can be used to promote plant growth and produce crops enriched with Se. In this chapter we discuss bacterial Se metabolism, the effect of Se on human health, the applications of SeNPs and Se-enriched bacteria, as well as their effect on food fortification. Different strategies to counteract Se deficiency by enriching foods using sustainable strategies and their possible implications for improving human health are discussed.
Collapse
Affiliation(s)
- L Crespo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - B Sede Lucena
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - F G Martínez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - F Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - M Pescuma
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Li K, Li J, Zhang S, Zhang J, Xu Q, Xu Z, Guo Y. Amorphous structure and crystal stability determine the bioavailability of selenium nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133287. [PMID: 38141318 DOI: 10.1016/j.jhazmat.2023.133287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Microorganisms play a critical role in the biogeochemical cycling of selenium, often reducing selenite/selenate to elemental selenium nanoparticles (SeNPs). These SeNPs typically exist in an amorphous structure but can transform into a trigonal allotrope. However, the crystal structural transition process and its impact on selenium bioavailability have not been well studied. To shed light on this, we prepared chemosynthetic and biogenic SeNPs and investigated the stability of their crystal structure. We found that biogenic SeNPs exhibited a highly stable amorphous structure in various conditions, such as lyophilization, washing, and laser irradiation, whereas chemosynthetic SeNPs transformed into a trigonal structure in the same conditions. Additionally, a core-shell structure was observed in biogenic SeNPs after electron beam irradiation. Further analysis revealed that biogenic SeNPs showed a coordination reaction between Se atoms and surface binding biomacromolecules, indicating that the outer layer of Se-biomacromolecules complex prevented the SeNPs from crystallizing. We also investigated the effects of SeNPs crystal structures on the bioavailability in bacteria, yeast, and plants, finding that the amorphous structure of SeNPs determined Se bioavailability.
Collapse
Affiliation(s)
- Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jing Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jingrui Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zhongnan Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Lan Y, Luo X, Fan X, Wang G, Zheng S, Shi K. Arsenite Mediates Selenite Resistance and Reduction in Enterobacter sp. Z1, Thereby Enhancing Bacterial Survival in Selenium Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4204-4213. [PMID: 38373240 DOI: 10.1021/acs.est.3c08346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.
Collapse
Affiliation(s)
- Yan Lan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiong Luo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Fan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, Hubei, China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
26
|
Gao H, Ji Y, Chen W. Selenite resistance and biotransformation to SeNPs in Sinorhizobium meliloti 1021 and the synthetic promotion on alfalfa growth. Microbiol Res 2024; 280:127568. [PMID: 38118306 DOI: 10.1016/j.micres.2023.127568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Toxic selenite, commonly found in soil and water, can be transformed by microorganisms into selenium nanoparticles (SeNPs) as part of a detoxification process. In this study, a comprehensive investigation was conducted on the resistance and biotransformation of selenite in Sinorhizobium meliloti 1021 and the synergistic impact of SeNPs and the strain on alfalfa growth promotion was explored. Strain 1021 reduced 46% of 5 mM selenite into SeNPs within 72 h. The SeNPs, composed of proteins, lipids and polysaccharides, were primarily located outside rhizobial cells and had a tendency to aggregate. Under selenite stress, many genes participated in multidrug efflux, sulfur metabolism and redox processes were significantly upregulated. Of them, four genes, namely gmc, yedE, dsh3 and mfs, were firstly identified in strain 1021 that played crucial roles in selenite biotransformation and resistance. Biotoxic evaluations showed that selenite had toxic effects on roots and seedlings of alfalfa, while SeNPs exhibited antioxidant properties, promoted growth, and enhanced plant's tolerance to salt stress. Overall, our research provides novel insights into selenite biotransformation and resistance mechanisms in rhizobium and highlights the potential of SeNPs-rhizobium complex as biofertilizer to promote legume growth and salt tolerance.
Collapse
Affiliation(s)
- Huali Gao
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Yingrui Ji
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Wenfeng Chen
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024; 10:e26023. [PMID: 38390045 PMCID: PMC10881343 DOI: 10.1016/j.heliyon.2024.e26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
28
|
Jing J, Sun L, Chen Z, Guo X, Qu Y. Simultaneous selenite reduction and nitrogen removal using Paracoccus sp.: Reactor performance, microbial community, and mechanism. ENVIRONMENTAL RESEARCH 2024; 240:117564. [PMID: 37918763 DOI: 10.1016/j.envres.2023.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Selenium-containing wastewater has a high concentration of nitrogen compounds (ammonia nitrogen [NH4+-N]), leading to water pollution. Thus, the simultaneous reduction of selenium and removal of nitrogen compounds during wastewater treatment has become the top priority. However, the exogenous bacteria that can simultaneously reduce selenite and remove ammonia nitrogen and colonize in the wastewater treatment systems have not been reported. Additionally, the effects and the underlying mechanism of biofortification on the reduction and removal efficiency of the microorganisms remain unclear. In this study, we investigated the simultaneous selenite reduction and nitrogen removal efficiency of Paracoccus sp. (strain SSJ) isolated from selenium-contaminated soil and explored biofortification effects on the composition and structure of the microbial community. Using sequencing biofilm batch reactors (SBBRs), the structural and functional characteristics of the microbial community were systematically compared between the control (group A) and biofortified (group B) groups. Strain SSJ could simultaneously reduce 63.28% of selenite and remove 93.05% of NH4+-N within 24 h. Moreover, no accumulation of nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) was observed in the reaction process. The performance and stability of the SBBRs enhanced by strain SSJ were greatly improved. Illumina sequencing results showed that strain SSJ was surprisingly colonized, and Paracoccus was the predominant genus in group B (relative abundance: 13.93%). Moreover, PICRUSt2 analysis results suggested that the microbial community in group B demonstrated increased rates of ammonia nitrogen removal through ammonia assimilation and selenite reduction through sulfur metabolism and glutathione-mediated selenite reduction pathway. In summary, our findings shed light on the mechanism for simultaneous selenite reduction and nitrogen removal by biofortification and provide novel microbial resources for the treatment of selenite-containing wastewater.
Collapse
Affiliation(s)
- Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lu Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xinyu Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
29
|
Thombre D, Shelar A, Nakhale S, Khairnar B, Karale N, Sangshetti J, Nile SH, Patil R. Green synthesis of biogenic selenium nanoparticles functionalized with ginger dietary extract targeting virulence factor and biofilm formation in Candida albicans. Microb Pathog 2024; 186:106462. [PMID: 38030019 DOI: 10.1016/j.micpath.2023.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
To treat the systemic infections caused by Candida albicans (C. albicans), various drugs have been used, however, infections still persisted due to virulence factors and increasing antifungal resistance. As a solution to this problem, we synthesized selenium nanoparticles (SeNPs) by using Bacillus cereus bacteria. This is the first study to report a higher (70 %) reduction of selenite ions into SeNPs in under 6 h. The as-synthesized, biogenic SeNPs were used to deliver bioactive constituents of aqueous extract of ginger for inhibiting the growth and biofilm (virulence factors) in C. albicans. UV-visible spectroscopy revealed a characteristic absorption at 280 nm, and Raman spectroscopy showed a characteristic peak shift at 253 cm-1 for the biogenic SeNPs. The synthesized SeNPs are spherical with 240-250 nm in size as determined by electron microscopy. Fourier transform infrared spectroscopy confirmed the functionalization of antifungal constituents of ginger over the SeNPs (formation of Ginger@SeNPs nanoconjugates). In contrast to biogenic SeNPs, nanoconjugates were active against C. albicans for inhibiting growth and biofilm formation. In order to reveal antifungal mechanism of nanoconjugates', real-time polymerase chain reaction (RT-PCR) analysis was performed, according to RT-PCR analysis, the nanoconjugates target virulence genes involved in C. albicans hyphae and biofilm formation. Nanoconjugates inhibited 25 % growth of human embryonic kidney (HEK) 293 cell line, indicating moderate cytotoxicity of active nanoconjugates in an in-vitro cytotoxicity study. Therefore, biogenic SeNPs conjugated with ginger dietary extract may be a potential antifungal agent and drug carrier for inhibiting C. albicans growth and biofilm formation.
Collapse
Affiliation(s)
- Dipalee Thombre
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, 411007, India
| | - Sweta Nakhale
- PES's Modern College of Arts, Science and Commerce Ganeshkhind. Pune, Maharashtra, 411053, India
| | - Bhushan Khairnar
- Interdisciplinary School of Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Netaji Karale
- Vidya Pratishthan's Arts, Science and Commerce College, Baramati, 413133, Maharashtra, India
| | | | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, DBT-National Agri-Food Biotechnology Institute (NABI), Sector-81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
30
|
Wang Y, Wu M, Lai CY, Lu X, Guo J. Methane Oxidation Coupled to Selenate Reduction in a Membrane Bioreactor under Oxygen-Limiting Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21715-21726. [PMID: 38079577 DOI: 10.1021/acs.est.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Microbial methane oxidation coupled to a selenate reduction process has been proposed as a promising solution to treat contaminated water, yet the underlying microbial mechanisms are still unclear. In this study, a novel methane-based membrane bioreactor system integrating hollow fiber membranes for efficient gas delivery and ultrafiltration membranes for biomass retention was established to successfully enrich abundant suspended cultures able to perform methane-dependent selenate reduction under oxygen-limiting conditions. The microbial metabolic mechanisms were then systematically investigated through a combination of short-term batch tests, DNA-based stable isotope probing (SIP) microcosm incubation, and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA and narG). We confirmed that the methane-supported selenate reduction process was accomplished by a microbial consortia consisting of type-II aerobic methanotrophs and several heterotrophic selenate reducers. The mass balance and validation tests on possible intermediates suggested that methane was partially oxidized into acetate under oxygen-limiting conditions, which was consumed as a carbon source for selenate-reducing bacteria. High-throughput 16S rRNA gene sequencing, DNA-SIP incubation with 13CH4, and subsequent functional gene (pmoA and narG) sequencing results collectively proved that Methylocystis actively executed partial methane oxidation and Acidovorax and Denitratisoma were dominant selenate-reducing bacteria, thus forming a syntrophic partnership to drive selenate reduction. The findings not only advance our understanding of methane oxidation coupled to selenate reduction under oxygen-limiting conditions but also offer useful information on developing methane-based biotechnology for bioremediation of selenate-contaminated water.
Collapse
Affiliation(s)
- Yulu Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xuanyu Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
31
|
Hachemi MA, Cardoso D, De Marco M, Geraert PA, Briens M. Inorganic and Organic Selenium Speciation of Seleno-Yeasts Used as Feed Additives: New Insights from Elemental Selenium Determination. Biol Trace Elem Res 2023; 201:5839-5847. [PMID: 36934195 PMCID: PMC10620252 DOI: 10.1007/s12011-023-03633-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/12/2023] [Indexed: 03/20/2023]
Abstract
Seleno-Yeasts (SY) used as feed additives are known to contain different Selenium (Se) species. Seleno-Yeasts has been shown, on previous analytical methods, to contain selenomethionine (SeMet), selenocysteine (SeCys), selenate (SeIV) and selenite (SeVI), and various other organic and inorganic Se forms identified but rarely quantified. A new advanced method has allowed elemental Se (Se0), an inorganic Se species, to be quantified, thereby obtaining better insight into the proportion of inorganic Se in SY products. The study aimed to quantify the Se0 in SY products and assess the proportion of inorganic Se in SY. The Se speciation of 13 fresh commercials SY from different suppliers and batches, was assayed for the total Se, inorganic Se species (SeIV, SeVI and Se0), and organic Se species (SeMet and SeCys). Results on total Se were in line with the expected Se concentrations for all evaluated samples. The proportion of Se present as Se0 ranged from 3.6% to 51.8%. The quantity of Se0 in the SY products, added to SeIV and SeVI, indicated an average proportion of inorganic Se of 14.2% for the 13 analyzed SY products. The proportion of Se as SeMet ranged from 19.0% to 71.8%, (average of 55.8%), and a large variability in the SeMet content was observed. The SeCys content was also variable, with an average of 3.8%, relative to the total Se. In conclusion, advances in the analytical characterization have revealed that SY products can have a significantly high proportion of inorganic Se, which could affect the bioavailability of Se from SY supplements and explain their variable and lower bio-efficacy than pure SeMet supplements, such as hydroxy-selenomethionine.
Collapse
Affiliation(s)
- Mohammed A Hachemi
- Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160, Antony, France.
| | - Denise Cardoso
- Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160, Antony, France
| | - Michele De Marco
- Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160, Antony, France
| | | | - Mickael Briens
- Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160, Antony, France
| |
Collapse
|
32
|
Yang Y, Jing J, Fan S, Chen Z, Qu Y. Unraveling the molecular mechanisms of selenite reduction: transcriptomic analysis of Bacillus reveals the key role of sulfur assimilation. Biotechnol Lett 2023; 45:1513-1520. [PMID: 37864746 DOI: 10.1007/s10529-023-03439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Selenite biotransformation by microorganisms is an effective detoxification and assimilation process. However, current knowledge of the molecular mechanisms of selenite reduction remains circumscribed. Here, the reduction of Se(IV) by a highly selenite-resistant Bacillus sp. SL (up to 50 mM) was systematically analyzed, and the molecular mechanisms of selenite reduction were investigated. Remarkably, 10 mM selenite was entirely transformed by the strain SL within 20 h, demonstrating a faster conversion rate compared to other microorganisms. Furthermore, glutathione (GSH) and exopolysaccharides (EPS) changes were also monitored during the process. Transcriptomic analysis revealed that the genes of ferredoxin-sulfite oxidoreductase (6.82) and sulfate adenylyltransferase (6.32) were significantly upregulated, indicating that the sulfur assimilation pathway is the primary reducing pathway involved in selenite reduction by strain SL. Moreover, key genes associated with NAD(P)/FAD-dependent oxidoreductases and thioredoxin were significantly upregulated. The reduction of Se(IV) was mediated by multiple pathways in strain SL. To our knowledge, this is the initial report to identify the involvement of sulfur assimilation pathway in selenite reduction for bacillus, which is rare in aerobic bacteria.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Jiawei Jing
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Shuling Fan
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Zhuo Chen
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yuanyuan Qu
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| |
Collapse
|
33
|
Gao Y, Guo T, Shi W, Lu C, Song Y, Hou Y, Liu W, Guo J. Multifaceted synergistic facilitation mechanism of conductive polymers in promoting selenite bioreduction and biological detoxification. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132470. [PMID: 37683341 DOI: 10.1016/j.jhazmat.2023.132470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Here, polypyrrole (PPY) was first used to the bioreduction of toxic selenite, while the acceleration effect and mechanism were explored. Experiment results suggested that PPY could enhance the selenite bioreduction from 0.42 to 1.04 mg/(L·h). The tests of electrochemical analysis and cytochrome c (cyt-c) content confirmed that PPY promoted the intracellular/intracellular electron transfer of Shewanella oneidensis·MR-1 in selenite bioreduction process. The enhancement of metabolic activity by PPY contributed to biological detoxification, which was manifested in the increased extracellular polymeric substances (EPS), adenosine triphosphate (ATP), electron transfer system activity (ETSA), membrane permeability and enzyme activity. Transcriptome analysis of DEGs, KEGG pathway enrichment and GO functional classification verified that the environmental adaptability of Shewanella oneidensis·MR-1 was enhanced with the addition of PPY. The transmission electron microscopy (TEM) images indicated that PPY promoted the biosynthesis of selenium nanoparticles (SeNPs), which was beneficial to reduce cell damage. Combined with the above results, a multifaceted synergistic facilitation mechanism based on "conductive cross-linking network" was elaborated from electron transfer, microbial metabolism and environmental adaptability. This study shed light the effect of conductive polymers (CPs) on selenite bioreduction and provided new insights into the bioremediation of toxic pollutants.
Collapse
Affiliation(s)
- Ying Gao
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Tingting Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Wenda Shi
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Caicai Lu
- Experimental and practical innovation education center, Beijing Normal University, Jinfeng Road 18, Zhuhai 519000, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Wenli Liu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
34
|
Yadav P, Pandey S, Dubey SK. Selenite bioreduction with concomitant green synthesis of selenium nanoparticles by a selenite resistant EPS and siderophore producing terrestrial bacterium. Biometals 2023; 36:1027-1045. [PMID: 37119424 DOI: 10.1007/s10534-023-00503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Environmental bacterial isolates play a very important role in bioremediation of metals and toxic metalloids. A bacterial strain with high selenite (SeO32-) tolerance and reducing capability was isolated from electronic waste dump site in Banaras Hindu University, Varanasi, India. Based on 16 S rRNA sequencing and BLAST search, this bacterial isolate was identified as Bacillus paramycoides and designated as strain MF-14. It tolerated Sodium selenite up to 110 mM when grown aerobically in LB broth and reduced selenite into elemental selenium (Se0) significantly within 24 h with concomitant biosynthesis of selenium nanoparticles as clearly revealed by brick red precipitate and specific surface plasmon resonance peak at 210 nm using UV-Visible spectrophotometer. Scanning electron microscopy (SEM) analysis of this bacterial strain exposed to 1mM and 5 mM selenite also demonstrated morphological alterations as cell enlargement due to accumulation and bioprecipitation of elemental selenium (Se0). The FTIR analysis clearly demonstrated that functional groups present on the surface of biogenic selenium nanoparticles (SeNPs) play a significant role in the stabilization and capping of SeNPs. Furthermore, these SeNPs were characterized using spectroscopic analysis involving Dynamic light scattering, zeta potential, XPS, FTIR, XRD and Raman spectroscopy which clearly revealed particle size 10-700 nm, amorphous nature, stability as well as it's oxidation state. The biochemical studies have demonstrated that membrane bound reductase enzyme may be responsible for significant reduction of selenite into elemental selenium. Therefore, we may employ Bacillus paramycoides strain MF-14 successfully for bioremediation of selenite contaminated environmental sites with concomitant green synthesis of SeNPs.
Collapse
Affiliation(s)
- Pooja Yadav
- G. E. Fogg Laboratory of Algal Biology, CAS in Botany, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Shraddha Pandey
- G. E. Fogg Laboratory of Algal Biology, CAS in Botany, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Santosh Kumar Dubey
- G. E. Fogg Laboratory of Algal Biology, CAS in Botany, Banaras Hindu University, Varanasi, 221005, U.P, India.
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
35
|
Gullett KL, Ford CL, Garvey IJ, Miller TJ, Leahy CA, Awaitey LN, Hofmann DM, Woods TJ, Fout AR. Formation of Red Elemental Selenium from Seleniferous Oxyanions: Deoxygenation by a Homogeneous Iron Catalyst. J Am Chem Soc 2023; 145:20868-20873. [PMID: 37712762 DOI: 10.1021/jacs.3c05981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Seleniferous oxyanions are groundwater contaminants from both anthropogenic and natural sources, while pure amorphous selenium nanoparticles have a variety of industrial applications. Biology can achieve the multicomponent 6 e-/8 H+ reduction of selenate to amorphous selenium using multiple metalloenzymes, like selenate and selenite reductase. Inspired by biology, we developed a new homogeneous system that can generate pure elemental selenium with no caustic waste. The stoichiometric reductions of selenate, selenite, and selenium dioxide with an iron(II) complex produced an iron(III)-oxo and red elemental selenium, the latter of which has been characterized by a variety of spectroscopic techniques. The catalytic reduction of SeO42- and SeO32- directly to amorphous Se and isolated as Se=PPh3 is reported with a turnover number of 12 and 7, respectively.
Collapse
Affiliation(s)
- Kelly L Gullett
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Courtney L Ford
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Ian J Garvey
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Tabitha J Miller
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Clare A Leahy
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Lisa N Awaitey
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel M Hofmann
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Alison R Fout
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
36
|
Zhang Y, Liu Z, Xiao G, Shi J, Liu B, Xiao N, Sun Z. Simultaneous DHA and organic selenium production by Schizochytrium sp.: a theoretical basis. Sci Rep 2023; 13:15607. [PMID: 37731016 PMCID: PMC10511486 DOI: 10.1038/s41598-023-42900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Docosahexaenoic acid (DHA) and selenium (Se) are nutrients that confer several health benefits to both humans and animals. Widespread use of DHA in milk powder and health products requires large-scale mass production via Schizochytrium sp., while Se intended for human consumption is produced as organic Se via yeast. However, producing these nutrients on an industrial scale is constrained by various factors. We found that supplementing Schizochytrium sp. with Na2SeO3 (0.5 mg/L) improves its biomass and DHA production and also provides organic Se. De novo assembled transcriptome and biochemical indicators showed that Na2SeO3 promotes forming acetyl coenzyme A and L-cysteine via the glycerol kinase and cysteine synthase pathways, promoting DHA synthesis through the polyketide synthase pathway. However, high doses of Na2SeO3 (5 mg/L) limited the biomass of Schizochytrium sp. and DHA content. This study provided a theoretical basis for the simultaneous production of organic Se and DHA via Schizochytrium sp.
Collapse
Affiliation(s)
- Yunqiang Zhang
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Zikui Liu
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Gang Xiao
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
| | - Jiawei Shi
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Baili Liu
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Ning Xiao
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
| | - Zhiliang Sun
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China.
| |
Collapse
|
37
|
Liu P, Li D, Wang F, Xie L, Chen H. Transfer of Se from sediments to the western mosquitofish Gambusia affinis: Tissue distribution, accumulation, and effects on the antioxidant physiology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106663. [PMID: 37598521 DOI: 10.1016/j.aquatox.2023.106663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Selenium (Se) has been shown to cause various toxicities in predatory species (i.e., fish and birds) in Se-contaminated aquatic environments. However, trophic transfer of Se from abiotic environments to freshwater fish has been relatively less addressed. In this study, 2-month-old mosquitofish (Gambusia affinis) were fed Se-enriched oligochaete (Lumbriculus variegatus, exposed to different concentrations of Se(IV) at 0.0, 3.0, 10.0, and 30.0 µg/g dry weight for 7 days) for 45 days. Tissue distribution, Se speciation, and effects on the antioxidant physiology in G. affinis were assessed. The results showed Se was rapidly accumulated in the oligochaete, with 6.30 ± 1.20, 16.20 ± 2.10, and 34.50 ± 2.40 µg/g dw of total Se levels in the worms exposed to 3.0, 10.0, and 30.0 µg/g of Se(IV), respectively. Total Se levels were increased in a dose-dependent manner in fish tissues and Se(IV) from sediments was maternally transferred to the fish embryos. Se-Met-and Se-Cys-were the predominant Se species in the worm and fish tissues, accounting for a minimum of 91.01% of the total Se. Furthermore, increased lipid peroxidation and altered the activities of antioxidant enzymes and levels of GSH were noticed in G. affinis fed the Se-enriched L. variegatus. This study has demonstrated that Se(IV) is transferred from an abiotic vector to freshwater organisms, disturbing the antioxidant physiology in G. affinis and potentially their offspring. This study highlights the importance of dietary exposure on the accumulation and toxicity of Se in aquatic organisms.
Collapse
Affiliation(s)
- Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Feifan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Xiao H, Tan J, Li M, Yuan Z, Zhou H. The mechanism of Se(IV) multisystem resistance in Stenotrophomonas sp. EGS12 and its prospect in selenium-contaminated environment remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131358. [PMID: 37027916 DOI: 10.1016/j.jhazmat.2023.131358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Human activities have led to elevated levels of selenium (Se) in the environment, which poses a threat to ecosystems and human health. Stenotrophomonas sp. EGS12 (EGS12) has been identified as a potential candidate for the bioremediation of repair selenium-contaminated environment because of its ability to efficiently reduce Se(IV) to form selenium nanospheres (SeNPs). To better understand the molecular mechanism of EGS12 in response to Se(IV) stress, a combination of transmission electron microscopy (TEM), genome sequencing techniques, metabolomics and transcriptomics were employed. The results indicated that under 2 mM Se(IV) stress, 132 differential metabolites (DEMs) were identified, and they were significantly enriched in metabolic pathways such as glutathione metabolism and amino acid metabolism. Under the Se(IV) stress of 2 mM, 662 differential genes (DEGs) involved in heavy metal transport, stress response, and toxin synthesis were identified in EGS12. These findings suggest that EGS12 may respond to Se(IV) stress by engaging various mechanisms such as forming biofilms, repairing damaged cell walls/cell membranes, reducing Se(IV) translocation into cells, increasing Se(IV) efflux, multiplying Se(IV) reduction pathways and expelling SeNPs through cell lysis and vesicular transport. The study also discusses the potential of EGS12 to repair Se contamination alone and co-repair with Se-tolerant plants (e.g. Cardamine enshiensis). Our work provides new insights into microbial tolerance to heavy metals and offers valuable information for bio-remediation techniques on Se(IV) contamination.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China
| | - Jun Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Mengjia Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China
| | - Zhihui Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling, Yongzhou 425199, China.
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China.
| |
Collapse
|
40
|
Xu R, Kolton M, Tao W, Sun X, Su P, Huang D, Zhang M, Yang Z, Guo Z, Gao H, Wang Q, Li B, Chen C, Sun W. Anaerobic selenite-reducing bacteria and their metabolic potentials in Se-rich sediment revealed by the combination of DNA-stable isotope probing, metagenomic binning, and metatranscriptomics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131834. [PMID: 37327607 DOI: 10.1016/j.jhazmat.2023.131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms play a critical role in the biogeochemical cycling of selenium (Se) in aquatic environments, particularly in reducing the toxicity and bioavailability of selenite (Se(IV)). This study aimed to identify putative Se(IV)-reducing bacteria (SeIVRB) and investigate the genetic mechanisms underlying Se(IV) reduction in anoxic Se-rich sediment. Initial microcosm incubation confirmed that Se(IV) reduction was driven by heterotrophic microorganisms. DNA stable-isotope probing (DNA-SIP) analysis identified Pseudomonas, Geobacter, Comamonas, and Anaeromyxobacter as putative SeIVRB. High-quality metagenome-assembled genomes (MAGs) affiliated with these four putative SeIVRB were retrieved. Annotation of functional gene indicated that these MAGs contained putative Se(IV)-reducing genes such as DMSO reductase family, fumarate and sulfite reductases. Metatranscriptomic analysis of active Se(IV)-reducing cultures revealed significantly higher transcriptional levels of genes associated with DMSO reductase (serA/PHGDH), fumarate reductase (sdhCD/frdCD), and sulfite reductase (cysDIH) compared to those in cultures not amended with Se(IV), suggesting that these genes played important roles in Se(IV) reduction. The current study expands our knowledge of the genetic mechanisms involved in less-understood anaerobic Se(IV) bio-reduction. Additinally, the complementary abilities of DNA-SIP, metagenomics, and metatranscriptomics analyses are demonstrated in elucidating the microbial mechanisms of biogeochemical processes in anoxic sediment.
Collapse
Affiliation(s)
- Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Wan Tao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Pingzhou Su
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Duanyi Huang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Miaomiao Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
41
|
Padariya C, Rutkowska M, Konieczka P. The accessibility, necessity, and significance of certified reference materials for total selenium content and its species to improve food laboratories' performance. Food Chem 2023; 425:136460. [PMID: 37290235 DOI: 10.1016/j.foodchem.2023.136460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Micronutrients are one of the most important groups of nutrients that our body needs daily in trace amounts to tackle deficiencies. Selenium (Se) is a mineral that occurs naturally in foods and is an essential component of selenoproteins that support the healthy functioning of the human body. Therefore, monitoring dietary Se concentrations must be a higher priority to meet daily intakes. Fulfillment can be addressed through applying various analytical techniques, and the certified reference materials (CRMs) tool plays a crucial role in quality assurance/quality control (QA/QC). The availability of certified CRMs for total Se content with addition to their species is presented. The review emphasizes the necessity of incorporating more food matrix CRMs certifying Se species, apart from total Se content, to meet method validation requirements for food analysis laboratories. This would help CRM producers bridge the gap between available food matrix materials that are not certified for Se species.
Collapse
Affiliation(s)
- Chintankumar Padariya
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Magorzata Rutkowska
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Piotr Konieczka
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
42
|
Lashani E, Moghimi H, J Turner R, Amoozegar MA. Selenite bioreduction by a consortium of halophilic/halotolerant bacteria and/or yeasts in saline media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121948. [PMID: 37270053 DOI: 10.1016/j.envpol.2023.121948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Selenium oxyanions are released into environments by natural and anthropogenic activities and are present in agricultural and glass manufacturing wastewater in several locations worldwide. Excessive amounts of this metalloid have adverse effects on the health of living organisms. Halophilic and halotolerant microorganisms were selected for selenium oxyanions remediation due to presence of significant amount of salt in selenium-containing wastewater. Effects of aeration, carbon sources, competitive electron acceptors, and reductase inhibitors were investigated on SeO32- bio-removal. Additionally, NO3--containing wastewater were exploited to investigate SeO32- remediation in synthetic agricultural effluents. The results showed that the SeO32- removal extent is maximum in aerobic conditions with succinate as a carbon source. SO42- and PO43- do not significantly interfere with SeO32- reduction, while WO42- and TeO32- decrease the SeO32- removal percentage (up to 35 and 37%, respectively). Furthermore, NO3- had an adverse effect on SeO32- biotransformation by our consortia. All consortia reduced SeO32- in synthetic agricultural wastewaters with a 45-53% removal within 120 h. This study suggests that consortia of halophilic/halotolerant bacteria and yeasts could be applied to treat SeO32--contaminated drainage water. In addition, sulphates, and phosphates do not interfere with selenite bioreduction by these consortia, which makes them suitable candidates for the bioremediation of selenium-containing wastewater.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Raymond J Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
43
|
Santelli CM, Sabuda MC, Rosenfeld CE. Time-Resolved Examination of Fungal Selenium Redox Transformations. ACS EARTH & SPACE CHEMISTRY 2023; 7:960-971. [PMID: 37228623 PMCID: PMC10204728 DOI: 10.1021/acsearthspacechem.2c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Selenium (Se) is both a micronutrient required for most life and an element of environmental concern due to its toxicity at high concentrations, and both bioavailability and toxicity are largely influenced by the Se oxidation state. Environmentally relevant fungi have been shown to aerobically reduce Se(IV) and Se(VI), the generally more toxic and bioavailable Se forms. The goal of this study was to shed light on fungal Se(IV) reduction pathways and biotransformation products over time and fungal growth stages. Two Ascomycete fungi were grown with moderate (0.1 mM) and high (0.5 mM) Se(IV) concentrations in batch culture over 1 month. Fungal growth was measured throughout the experiments, and aqueous and biomass-associated Se was quantified and speciated using analytical geochemistry, transmission electron microscopy (TEM), and synchrotron-based X-ray absorption spectroscopy (XAS) approaches. The results show that Se transformation products were largely Se(0) nanoparticles, with a smaller proportion of volatile, methylated Se compounds and Se-containing amino acids. Interestingly, the relative proportions of these products were consistent throughout all fungal growth stages, and the products appeared stable over time even as growth and Se(IV) concentration declined. This time-series experiment showing different biotransformation products throughout the different growth phases suggests that multiple mechanisms are responsible for Se detoxification, but some of these mechanisms might be independent of Se presence and serve other cellular functions. Knowing and predicting fungal Se transformation products has important implications for environmental and biological health as well as for biotechnology applications such as bioremediation, nanobiosensors, and chemotherapeutic agents.
Collapse
Affiliation(s)
- Cara M Santelli
- Department of Earth and Environmental Sciences, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Carla E Rosenfeld
- Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
44
|
Sudharsan G, Sarvajith M, Nancharaiah YV. Selenite reduction and biogenesis of selenium-nanoparticles by different size groups of aerobic granular sludge under aerobic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117482. [PMID: 36801684 DOI: 10.1016/j.jenvman.2023.117482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Microbial transformations play a vital role in Se cycle in the environment and decrease the solubility and toxicity of Se oxyanions by converting to elemental selenium (Se0) nanostructures. Aerobic granular sludge (AGS) has attracted interest due to efficient reduction of selenite to biogenic Se0 (Bio-Se0) and retention in bioreactors. Here, selenite removal, biogenesis of Bio-Se0 and entrapment of Bio-Se0 by different size groups of aerobic granules were investigated to optimize biological treatment process for Se-laden wastewaters. Furthermore, a bacterial strain showing high selenite tolerance and reduction was isolated and characterized. Removal of selenite and conversion to Bio-Se0 were achieved by all the size groups of granules ranging from 0.12 mm to 2 mm and above. However, selenite reduction and Bio-Se0 formation were rapid and more efficient with large aerobic granules (≥0.5 mm). The formed Bio-Se0 was majorly associated with the large granules, due to better entrapment capabilities. In contrast, the Bio-Se0 formed by the small granules (≤0.2 mm) was distributed both in the granules and aqueous phase because of ineffective entrapment. Scanning electron microscope and energy dispersive X-ray (SEM-EDX) analysis confirmed formation of Se0 spheres and association with the granules. Efficient selenite reduction and entrapment of Bio-Se0 was related to prevalent anoxic/anaerobic zones in the large granules. A bacterial strain showing efficient SeO32- reduction of up to 15 mM SeO32- under aerobic conditions was identified as Microbacterium azadirachtae. SEM-EDX analysis confirmed the formation and entrapment of Se0 nanospheres (size: 100 ± 5 nm) in the extracellular matrix. The cells immobilized in alginate beads showed effective SeO32- reduction and Bio-Se0 entrapment. Efficient reduction and immobilization of bio-transformed metalloids by large AGS and AGS-borne bacteria implicates prospective use in bioremediation of metal(loid) oxyanions and bio-recovery.
Collapse
Affiliation(s)
- G Sudharsan
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India
| | - M Sarvajith
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
45
|
Feng Z, Sun H, Qin Y, Zhou Y, Zhu H, Yao Q. A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162076. [PMID: 36758687 DOI: 10.1016/j.scitotenv.2023.162076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Dietary selenium (Se) is an effective strategy to meet Se requirement of human body, and Se biofortification in crops in seleniferous soils with selenobacteria represents an eco-friendly biotechnique. In this study, we tested the effectiveness of siderophore-producing bacterial (SPB) synthetic communities (SynComs) in promoting plant Se uptake in a subtropical seleniferous soil where the fixation of Se by ferric-oxides is severe. The results indicated that SPB SynComs drastically elevated soil bioavailable Se content by up to 68.7 %, and significantly increased plant Se concentration and uptake by up to 83.1 % and 92.2 %, respectively. Seven out of ten SPB isolates in the SynComs were enriched in soils after 120 days of inoculation. Additionally, variation partitioning analysis (VPA) revealed that the contribution of soil bacterial community (up to 42.8 %) to the increased plant Se uptake was much greater than that of soil bioavailable Se (up to 5.1 %), suggesting a direct pathway other than the pathway of mobilizing Se. The relative abundances of some operational taxonomic units (OTUs) showed significantly positive relationship with plant Se status but not with soil Se status, which supports the results of VPA. Network analysis indicates that some inoculated SPB isolates promoted plant Se uptake by regulating the native bacterial taxa. Taken together, this study demonstrates that SPB can be used in Se biofortification in crops, especially in subtropical soils.
Collapse
Affiliation(s)
- Zengwei Feng
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Sun
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yongqiang Qin
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
46
|
Ullah H, Lun L, Rashid A, Zada N, Chen B, Shahab A, Li P, Ali MU, Lin S, Wong MH. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1359-1389. [PMID: 35972610 PMCID: PMC9379879 DOI: 10.1007/s10653-022-01354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655 China
| | - Audil Rashid
- Faculty of Sciences, Department of Botany, University of Gujrat, Gujrat, 50700 Pakistan
| | - Noor Zada
- Department of Chemistry, Government Post Graduate College, Lower Dir, Timergara, 18300 Pakistan
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077 China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Zhang Y, Liu S, Zhang G, Peng Y, Wei Q, Jiang M, Zheng J. Evaluation of selenite reduction under salinity and sulfate stress in anaerobic membrane bioreactor. Front Bioeng Biotechnol 2023; 11:1133613. [PMID: 36970610 PMCID: PMC10036345 DOI: 10.3389/fbioe.2023.1133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Current microbial reduction technologies have been proven to be suitable for decontaminating industrial wastewaters containing high concentrations of selenium (Se) oxyanions, however, their application is strictly limited by the elemental Se (Se0) accumulation in the system effluents. In this work, a continuous-flow anaerobic membrane bioreactor (AnMBR) was employed for the first time to treat synthetic wastewater containing 0.2 mM soluble selenite (SeO3 2-). The SeO3 2- removal efficiency by the AnMBR was approachable to 100% in most of the time, regardless of the fluctuation in influent salinity and sulfate (SO4 2-) stress. Se0 particles were always undetectable in the system effluents, owing to their interception by the surface micropores and adhering cake layer of membranes. High salt stress led to the aggravated membrane fouling and diminished content ratio of protein to polysaccharide in the cake layer-contained microbial products. The results of physicochemical characterization suggested that the sludge-attached Se0 particles presented either sphere- or rod-like morphology, hexagonal crystalline structure and were entrapped by the organic capping layer. According to the microbial community analysis, increasing influent salinity led to the diminished population of non-halotolerant Se-reducer (Acinetobacter) and increased abundance of halotolerant sulfate reducing bacteria (Desulfomicrobium). In the absence of Acinetobacter, the efficient SeO3 2- abatement performance of the system could still be maintained, as a result of the abiotic reaction between SeO3 2- and S2- generated by Desulfomicrobium, which then gave rise to the production of Se0 and S0.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Shuang Liu
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Gaorong Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Yixiang Peng
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Qiaoyan Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| |
Collapse
|
48
|
Povedano-Priego C, Jroundi F, Solari PL, Guerra-Tschuschke I, Abad-Ortega MDM, Link A, Vilchez-Vargas R, Merroun ML. Unlocking the bentonite microbial diversity and its implications in selenium bioreduction and biotransformation: Advances in deep geological repositories. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130557. [PMID: 36502723 DOI: 10.1016/j.jhazmat.2022.130557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Selenium, 79Se, is one of the most critical radionuclides in radioactive waste disposed in future deep geological repositories (DGRs). Here, we investigate the impact of bentonite microbial communities on the allotropic transformation of Se(IV) bioreduction products under DGR relevant conditions. In addition, Se amendment-dependent shifts in the bentonite microbial populations are assessed. Microcosms of water-saturated bentonites were spiked with a bacterial consortium, treated with selenite and incubated anaerobically for six months. A combination of X-Ray Absorption Spectroscopy, Electron Microscopy, and Raman Spectroscopy was used to track the allotropic changes of the Se bioreduction products. Interestingly, the color of bentonite shifted from orange to black in the selenite-treated microcosms. In the orange layers, amorphous or monoclinic Se(0) were identified, whilst black precipitates consisted of stable trigonal Se(0) form. Illumina DNA sequencing indicated the distribution of strains with Se(IV) reducing and Se(0) allotropic biotransformation potential, like Pseudomonas, Stenotrophomonas, Desulfosporosinus, and unclassified-Desulfuromonadaceae. The archaea Methanosarcina decreased its abundance in the presence of Se(IV), probably caused by this oxyanion toxicity. These findings provide an understanding of the bentonite microbial strategies involved in the immobilization of Se(IV) by reduction processes, and prove their implication in the allotropic biotransformation from amorphous to trigonal Se(0) under DGR relevant conditions.
Collapse
Affiliation(s)
| | - Fadwa Jroundi
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Pier L Solari
- MARS Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette Cedex, France.
| | | | | | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Magdeburg, Magdeburg, Germany.
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Magdeburg, Magdeburg, Germany.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
49
|
Pescuma M, Aparicio F, Zysler RD, Lima E, Zapata C, Marfetán JA, Vélez M, Ordoñez OF. Biogenic selenium nanoparticles with antifungal activity against the wood-rotting fungus Oligoporus pelliculosus. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00787. [PMID: 36818378 PMCID: PMC9929205 DOI: 10.1016/j.btre.2023.e00787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Selenium nanoparticles (SeNPs) have antimicrobial and antifungal activity. SeNPs using Se resistant bacteria is a low cost and eco-friendly technology. Fungal contamination of wood during drying is one of the main causes of economic losses in the wood industry. The bacterium Delftia sp. 5 resistance to Se and its ability to produce SeNPs able to inhibit the growth of the wood brown-rotting fungus Oligoporus pelliculosus was analyzed. The strain showed an optimal SeNPs production when selenite concentration was 160 mg L -1. The SeNPs were spherical with an average size 192.33 ± 8.6 nm and a zeta potential of -41.4 ± 1.3 nm. The SeNPs produced by Delftia sp. 5 (33.6 ± 0.1 mg L -1 Se) inhibited the growth of O. pelliculosus in agar plates and in Nothofagus pumilio (Lenga) wood samples. Delftia sp. 5 SeNPs could be used for embedding lenga wood prior to drying for preventing the growth of the deteriorating fungi O. pelliculosus.
Collapse
Affiliation(s)
- Micaela Pescuma
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Francisca Aparicio
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Roberto D. Zysler
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Enio Lima
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Claudia Zapata
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Esquel, Chubut, Argentina
| | - Jorge A. Marfetán
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Esquel, Chubut, Argentina
| | - M.Laura Vélez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Esquel, Chubut, Argentina
| | - Omar F. Ordoñez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
- Corresponding author.
| |
Collapse
|
50
|
Guo Q, Ye J, Zeng J, Chen L, Korpelainen H, Li C. Selenium species transforming along soil-plant continuum and their beneficial roles for horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhac270. [PMID: 36789256 PMCID: PMC9923214 DOI: 10.1093/hr/uhac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/01/2022] [Indexed: 05/15/2023]
Abstract
Selenium (Se) acquirement from daily diet can help reduce the risk of many diseases. The edible parts of crop plants are the main source of dietary Se, while the Se content in crops is determined by Se bioavailability in soil. We summarize recent research on the biogeochemical cycle of Se driven by specific microorganisms and emphasize the oxidizing process in the Se cycle. Moreover, we discuss how plant root exudates and rhizosphere microorganisms affect soil Se availability. Finally, we cover beneficial microorganisms, including endophytes, that promote crop quality and improve crop tolerance to environmental stresses. Se availability to plants depends on the balance between adsorption and desorption, reduction, methylation and oxidation, which are determined by interactions among soil properties, microbial communities and plants. Reduction and methylation processes governed by bacteria or fungi lead to declined Se availability, while Se oxidation regulated by Se-oxidizing microorganisms increases Se availability to plants. Despite a much lower rate of Se oxidization compared to reduction and methylation, the potential roles of microbial communities in increasing Se bioavailability are probably largely underestimated. Enhancing Se oxidation and Se desorption are crucial for the promotion of Se bioavailability and uptake, particularly in Se-deficient soils. Beneficial roles of Se are reported in terms of improved crop growth and quality, and enhanced protection against fungal diseases and abiotic stress through improved photosynthetic traits, increased sugar and amino acid contents, and promoted defense systems. Understanding Se transformation along the plant-soil continuum is crucial for agricultural production and even for human health.
Collapse
Affiliation(s)
- Qingxue Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianhui Ye
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianming Zeng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|