1
|
Schwieters A, Ahmer BMM. Identification of new SdiA regulon members of Escherichia coli, Enterobacter cloacae, and Salmonella enterica serovars Typhimurium and Typhi. Microbiol Spectr 2024:e0192924. [PMID: 39436139 DOI: 10.1128/spectrum.01929-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Bacteria can coordinate behavior in response to population density through the production, release, and detection of small molecules, a phenomenon known as quorum sensing. Salmonella enterica is among a group of Enterobacteriaceae that can detect signaling molecules of the N-acyl homoserine lactone (AHL) type but lack the ability to produce them. The AHLs are detected by the LuxR-type transcription factor, SdiA. This enables a behavior known as eavesdropping, where organisms can sense the signaling molecules of other species of bacteria. The role of SdiA remains largely unknown. Here, we use RNA-seq to more completely identify the sdiA regulons of two clinically significant serovars of Salmonella enterica: Typhimurium and Typhi. We find that their sdiA regulons are largely conserved despite the significant differences in pathogenic strategy and host range of these two serovars. Previous studies identified sdiA-regulated genes in Escherichia coli and Enterobacter cloacae, but there is surprisingly no overlap in regulon membership between the different species. This led us to individually test orthologs of each regulon member in the other species and determine that there is indeed some overlap. Unfortunately, the functions of most sdiA-regulated genes are unknown, with the overall function of eavesdropping in these organisms remaining unclear. IMPORTANCE Many bacterial species detect their own population density through the production, release, and detection of small molecules (quorum sensing). Salmonella and other Enterobacteriaceae have a modified system that detects the N-acyl-homoserine lactones of other bacteria through the solo quorum sensing receptor SdiA, a behavior known as eavesdropping. The roles of sdiA-dependent eavesdropping in the lifecycles of these bacteria are unknown. In this study, we identify sdiA-dependent transcriptional responses in two clinically relevant serovars of Salmonella, Typhimurium and Typhi, and note that their responses are partially conserved. We also demonstrate for the first time that sdiA-dependent regulation of genes is partially conserved in Enterobacter cloacae and Escherichia coli as well, indicating a degree of commonality in eavesdropping among the Enterobacteriaceae.
Collapse
Affiliation(s)
- Andrew Schwieters
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Brian M M Ahmer
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Zhu J, Chen G, Tang S, Cheng K, Wu K, Cai Z, Zhou J. The micro-ecological feature of colonies is a potential strategy for Phaeocystis globosa bloom formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174134. [PMID: 38909792 DOI: 10.1016/j.scitotenv.2024.174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Phaeocystis globosa is among the dominant microalgae associated with harmful algal blooms. P. globosa has a polymorphic life cycle and its ecological success has been attributed to algal colony formation, however, few studies have assessed differences in microbial communities and their functional profiles between intra- and extra-colonies during P. globosa blooms. To address this, environmental and metagenomics tools were used to conduct a time-series analysis of the bacterial composition and metabolic characteristics of intra- and extra-colonies during a natural P. globosa bloom. The results show that bacterial composition, biodiversity, and network interactions differed significantly between intra- and extra-colonies. Dominant extra-colonial bacteria were Bacteroidia and Saccharimonadis, while dominant intra-colonial bacteria included Alphaproteobacteria and Gammaproteobacteria. Despite the lower richness and diversity observed in the intra-colonial bacterial community, relative to extra-colonies, the complexity and interconnectedness of the intra-colonial networks were higher. Regarding bacterial function, more functional genes were enriched in substance metabolism (polysaccharides, iron element and dimethylsulfoniopropionate) and signal communication (quorum sensing, indoleacetic acid-IAA) pathways in intra- than in extra-colonies. Conceptual model construction showed that microbial cooperative synthesis of ammonium, vitamin B12, IAA, and siderophores were strongly related to the P. globosa bloom, particularly in the intra-colonial environment. Overall, our data highlight the differences in bacterial structure and functions within and outside the colony during P. globosa blooms. These findings represent fundamental information indicating that phenotypic heterogeneity is a selective strategy that improves microbial population competitiveness and environmental adaptation, benefiting P. globosa bloom formation and persistence.
Collapse
Affiliation(s)
- Jianming Zhu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Si Tang
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Kebi Wu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
3
|
Zhang R, Bai D, Zhen W, Hu X, Zhang H, Zhong J, Zhang Y, Ito K, Zhang B, Yang Y, Li J, Ma Y. Aspirin eugenol ester affects ileal barrier function, inflammatory response and microbiota in broilers under lipopolysaccharide-induced immune stress conditions. Front Vet Sci 2024; 11:1401909. [PMID: 38872795 PMCID: PMC11169880 DOI: 10.3389/fvets.2024.1401909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Aims The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on ileal immune function in broilers under lipopolysaccharide (LPS)-induced immune stress. Methods Two hundred and forty one-day-old male Arbor Acres chicks were randomly divided into four groups (saline, LPS, saline + AEE and LPS + AEE) with six replicates of ten broilers each. The saline group and LPS group were fed the normal diet, while the other two groups received normal diet plus 0.1 g/kg AEE. Broilers in the LPS and LPS + AEE groups were injected intraperitoneally with 0.5 mg/kg B.W LPS in saline for seven consecutive days beginning at 14 days of age, while broilers in the saline and saline + AEE groups were injected with saline only. Results The results showed that AEE improved the ileal morphology and increased the ratio of villus height to crypt depth of immune-stressed broilers. LPS-induced immune stress significantly reduced the expression of the genes for the tight junction proteins occludin, zonula occludens-1 (ZO-1), claudin-1 and claudin-2, in the ileum, while AEE significantly up-regulated the expression of these genes. Compared with the saline group, the LPS-treated chickens showed significantly increased mRNA expression of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), and microsomal Prostaglandin E Synthesase-1 (mPGES-1) in the ileum, while they were significantly decreased by AEE supplementation. In addition, analysis of the ileal bacterial composition showed that compared with saline and LPS + AEE groups, the proportion of Firmicutes and Lactobacillus in the LPS group was lower, while the proportion of Proteobacteria and Escherichia-Shigella was higher. Similarly, Line Discriminant Analysis Effect Size (LEfSe) analysis showed that compared with the LPS group, Brevibacillus was dominant in the saline group, while the LPS + AEE group was rich in Rhizobium, Lachnoclostridium, Ruminococcaceae, Faecalibacterium, Negativibacillus, Oscillospiraceae, and Flavonifractor. Conclusion These results indicate that dietary supplementation with 0.1 g/kg AEE could protect the intestinal health by improving the intestinal villus morphology, enhancing the expression of tight junction genes and alleviating inflammation to resist the immune stress caused by LPS stimulation in broilers, and the mechanism may involve COX-2-related signal transduction and improved intestinal microbiota composition.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haojie Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jiale Zhong
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science and Technology Innovation Center for Completed Set Equipment, Luoyang, China
| |
Collapse
|
4
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
5
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Harnpicharnchai P, Siriarchawatana P, Mayteeworakoon S, Ingsrisawang L, Likhitrattanapisal S, Eurwilaichitr L, Ingsriswang S. Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. ENVIRONMENTAL RESEARCH 2024; 247:118269. [PMID: 38246293 DOI: 10.1016/j.envres.2024.118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV.
Collapse
Affiliation(s)
- Piyanun Harnpicharnchai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Paopit Siriarchawatana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Ingsrisawang
- Department of Statistics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Jonkergouw C, Savola P, Osmekhina E, van Strien J, Batys P, Linder MB. Exploration of Chemical Diversity in Intercellular Quorum Sensing Signalling Systems in Prokaryotes. Angew Chem Int Ed Engl 2024; 63:e202314469. [PMID: 37877232 DOI: 10.1002/anie.202314469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Quorum sensing (QS) serves as a vital means of intercellular signalling in a variety of prokaryotes, which enables single cells to act in multicellular configurations. The potential to control community-wide responses has also sparked numerous recent biotechnological innovations. However, our capacity to utilize intercellular communication is hindered due to a scarcity of complementary signalling systems and a restricted comprehension of interconnections between these systems caused by variations in their dynamic range. In this study, we utilize uniform manifold approximation and projection and extended-connectivity fingerprints to explore the available chemical space of QS signalling molecules. We investigate and experimentally characterize a set of closely related QS signalling ligands, consisting of N-acyl homoserine lactones and the aryl homoserine lactone p-coumaroyl, as well as a set of more widely diverging QS ligands, consisting of photopyrones, dialkylresorcinols, 3,5-dimethylpyrazin-2-ol and autoinducer-2, and define their performance. We report on a set of six signal- and promoter-orthogonal intercellular QS signalling systems, significantly expanding the toolkit for engineering community-wide behaviour. Furthermore, we demonstrate that ligand diversity can serve as a statistically significant tool to predict much more complicated ligand-receptor interactions. This approach highlights the potential of dimensionality reduction to explore chemical diversity in microbial dynamics.
Collapse
Affiliation(s)
- Christopher Jonkergouw
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Pihla Savola
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Ekaterina Osmekhina
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Joeri van Strien
- Medical BioSciences Department, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Markus B Linder
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
8
|
Xiang Y, Jia M, Xu R, Xu J, He L, Peng H, Sun W, Wang D, Xiong W, Yang Z. Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation. BIORESOURCE TECHNOLOGY 2024; 391:129983. [PMID: 37931760 DOI: 10.1016/j.biortech.2023.129983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Antimicrobial resistance is a global health security issue of widespread concern. Recent studies have unveiled the potential contribution of non-antibiotics to the emergence of antimicrobial resistance. This study investigated the effect of carbamazepine, a non-antibiotic pharmaceutical, on the fate of antibiotic resistance genes (ARGs) during anaerobic digestion. The results, as revealed by both metagenomic sequencing and absolute quantification, demonstrated that carbamazepine induced the enrichment of ARGs and increased the abundance of ARGs hosts by 1.2-2.1 times. Carbamazepine facilitated microbial aggregation and intercellular communication by upregulating functional genes associated with two-component systems, quorum sensing and type IV secretion systems, thereby increasing the frequency of ARGs conjugation. Furthermore, carbamazepine induced the acquisition of ARGs by pathogens and elevated the overall pathogenic abundance. This study revealed the mechanisms of microbial self-regulation and ARGs transmission under carbamazepine stress, highlighting the potential health risks posed by non-antibiotic pharmaceuticals during the safe disposal of sludge.
Collapse
Affiliation(s)
- Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jialu Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weimin Sun
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou 510650, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
9
|
Mir IA, Goreau TJF, Campe J, Jerden J. India's biogeochemical capacity to attain food security and remediate climate. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:17. [PMID: 38147234 DOI: 10.1007/s10653-023-01827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
In order to supply wholesome food and slow down climate change, this paper covers India's agrogeological resources. The soils are the result of the weathering of rocks with ages ranging from more than a billion years to the most recent Holocene. Because they are severely deficient in vital minerals, many soils have low agricultural production. In addition to helping to fertilise soils, reduce atmospheric carbon dioxide levels, and stop the acidification of the Indian Ocean, rock powder weathering and biochar have significant positive effects on the productivity of Indian soils. The nutrient density of food is also increased which improves health and lowers the demand for and cost of medical treatment. Remineralization may help to solve Indian soil issues including soil infertility and texture. To improve soil and plant nutrition, dusts of carbonate, basic, and ultrabasic rocks are readily available at mining sites in India combined with biochar. Adding different grain sizes to the soil helps improve the texture of the soil. Silicate and carbonate rock powders enhance soil structure by promoting the creation of soil organic matter and fostering the growth of advantageous microbial communities. These processes offer a low-cost method of remineralizing soils with important macro- and micronutrients. For each significant soil/crop/climate system, an optimised application of India's rock powder resources must be determined through a national research and development programme. India's capacity to adapt to the mounting challenges of population expansion and climate change would be significantly improved by the findings of this study programme.
Collapse
Affiliation(s)
- Ishfaq Ahmad Mir
- Geological Survey of India, State Unit: Karnataka and Goa, Bengaluru, Karnataka, 560111, India.
| | - Thomas J F Goreau
- Global Coral Reef Alliance, 37 Pleasant Street, Cambridge, MA, 02139, USA
- Remineralize the Earth, Inc, 152 South Street, Northampton, MA, 01060, USA
| | - Joanna Campe
- Remineralize the Earth, Inc, 152 South Street, Northampton, MA, 01060, USA
| | - James Jerden
- Remineralize the Earth, Inc, 152 South Street, Northampton, MA, 01060, USA
| |
Collapse
|
10
|
Miranda SW, Greenberg EP. A balancing act: investigations on the impact of altered signal sensitivity in bacterial quorum sensing. J Bacteriol 2023; 205:e0024923. [PMID: 38009926 PMCID: PMC10729764 DOI: 10.1128/jb.00249-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Quorum sensing (QS) is a widespread form of cell-cell signaling that regulates group behaviors important for competition and cooperation within bacterial communities. The QS systems from different bacterial species have diverse properties, but the functional consequences of this diversity are largely unknown. Taking advantage of hyper- and hypo-sensitive QS receptor variants in the opportunistic pathogen Pseudomonas aeruginosa, we examine the costs and benefits of altered signal sensitivity. We find that the sensitivity of a model QS receptor, LasR, impacts the timing and level of quorum gene expression, and fitness during intra- and interspecies competition. These findings suggest competition with kin and with other bacterial species work together to tune signal sensitivity.
Collapse
Affiliation(s)
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Liao J, Li Z, Xiong D, Shen D, Wang L, Lin L, Shao X, Liao L, Li P, Zhang LQ, Wang HH, Qian G. Quorum quenching by a type IVA secretion system effector. THE ISME JOURNAL 2023; 17:1564-1577. [PMID: 37340074 PMCID: PMC10504344 DOI: 10.1038/s41396-023-01457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Proteobacteria primarily utilize acyl-homoserine lactones (AHLs) as quorum-sensing signals for intra-/interspecies communication to control pathogen infections. Enzymatic degradation of AHL represents the major quorum-quenching mechanism that has been developed as a promising approach to prevent bacterial infections. Here we identified a novel quorum-quenching mechanism revealed by an effector of the type IVA secretion system (T4ASS) in bacterial interspecies competition. We found that the soil antifungal bacterium Lysobacter enzymogenes OH11 (OH11) could use T4ASS to deliver the effector protein Le1288 into the cytoplasm of another soil microbiome bacterium Pseudomonas fluorescens 2P24 (2P24). Le1288 did not degrade AHL, whereas its delivery to strain 2P24 significantly impaired AHL production through binding to the AHL synthase PcoI. Therefore, we defined Le1288 as LqqE1 (Lysobacter quorum-quenching effector 1). Formation of the LqqE1-PcoI complex enabled LqqE1 to block the ability of PcoI to recognize/bind S-adenosy-L-methionine, a substrate required for AHL synthesis. This LqqE1-triggered interspecies quorum-quenching in bacteria seemed to be of key ecological significance, as it conferred strain OH11 a better competitive advantage in killing strain 2P24 via cell-to-cell contact. This novel quorum-quenching also appeared to be adopted by other T4ASS-production bacteria. Our findings suggest a novel quorum-quenching that occurred naturally in bacterial interspecies interactions within the soil microbiome by effector translocation. Finally, we presented two case studies showing the application potential of LqqE1 to block AHL signaling in the human pathogen Pseudomonas aeruginosa and the plant pathogen Ralstonia solanacearum.
Collapse
Affiliation(s)
- Jinxing Liao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Zihan Li
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Dan Xiong
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Limin Wang
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Xiaolong Shao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Lisheng Liao
- Integrative Microbiology Research Centre, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
12
|
Wongdee J, Piromyou P, Songwattana P, Greetatorn T, Boonkerd N, Teaumroong N, Giraud E, Gully D, Nouwen N, Kiatponglarp W, Tanthanuch W, Tittabutr P. Exploring the cellular surface polysaccharide and root nodule symbiosis characteristics of the rpoN mutants of Bradyrhizobium sp. DOA9 using synchrotron-based Fourier transform infrared microspectroscopy in conjunction with X-ray absorption spectroscopy. Microbiol Spectr 2023; 11:e0194723. [PMID: 37681944 PMCID: PMC10581086 DOI: 10.1128/spectrum.01947-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/09/2023] [Indexed: 09/09/2023] Open
Abstract
The functional significance of rpoN genes that encode two sigma factors in the Bradyrhizobium sp. strain DOA9 has been reported to affect colony formation, root nodulation characteristics, and symbiotic interactions with Aeschynomene americana. rpoN mutant strains are defective in cellular surface polysaccharide (CSP) production compared with the wild-type (WT) strain, and they accordingly exhibit smaller colonies and diminished symbiotic effectiveness. To gain deeper insights into the changes in CSP composition and the nodules of rpoN mutants, we employed synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy. FTIR analysis of the CSP revealed the absence of specific components in the rpoN mutants, including lipids, carboxylic groups, polysaccharide-pyranose rings, and β-galactopyranosyl residues. Nodules formed by DOA9WT exhibited a uniform distribution of lipids, proteins, and carbohydrates; mutant strains, particularly DOA9∆rpoNp:ΩrpoNc, exhibited decreased distribution uniformity and a lower concentration of C=O groups. Furthermore, Fe K-edge X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses revealed deficiencies in the nitrogenase enzyme in the nodules of DOA9∆rpoNc and DOA9∆rpoNp:ΩrpoNc mutants; nodules from DOA9WT and DOA9∆rpoNp exhibited both leghemoglobin and the nitrogenase enzyme. IMPORTANCE This work provides valuable insights into how two rpoN genes affect the composition of cellular surface polysaccharides (CSPs) in Bradyrhizobium sp., which subsequently dictates root nodule chemical characteristics and nitrogenase production. We used advanced synchrotron methods, including synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy (XAS), for the first time in this field to analyze CSP components and reveal the biochemical changes occurring within nodules. These cutting-edge techniques confer significant advantages by providing detailed molecular information, enabling the identification of specific functional groups, chemical bonds, and biomolecule changes. This research not only contributes to our understanding of plant-microbe interactions but also establishes a foundation for future investigations and potential applications in this field. The combined use of the synchrotron-based FTIR and XAS techniques represents a significant advancement in facilitating a comprehensive exploration of bacterial CSPs and their implications in plant-microbe interactions.
Collapse
Affiliation(s)
- Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Eric Giraud
- IRD, IRD/CIRAD/INRAE/Université de Montpellier/SupAgro, Plant Health Institute of Montpellier, UMR-PHIM, Montpellier, France
| | - Djamel Gully
- IRD, IRD/CIRAD/INRAE/Université de Montpellier/SupAgro, Plant Health Institute of Montpellier, UMR-PHIM, Montpellier, France
| | - Nico Nouwen
- IRD, IRD/CIRAD/INRAE/Université de Montpellier/SupAgro, Plant Health Institute of Montpellier, UMR-PHIM, Montpellier, France
| | - Worawikunya Kiatponglarp
- Thai wah public company limited @CU innovation hub, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Waraporn Tanthanuch
- Synchrotron Light Research Institute (Public Organization), Muang, Nakhon Ratchasima, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| |
Collapse
|
13
|
Suo Z, Cummings DA, Puri AW, Schaefer AL, Greenberg EP. A Mesorhizobium japonicum quorum sensing circuit that involves three linked genes and an unusual acyl-homoserine lactone signal. mBio 2023; 14:e0101023. [PMID: 37227303 PMCID: PMC10470506 DOI: 10.1128/mbio.01010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Members of the genus Mesorhizobium, which are core components of the rhizosphere and specific symbionts of legume plants, possess genes for acyl-homoserine lactone (AHL) quorum sensing (QS). Here we show Mesorhizobium japonicum MAFF 303099 (formerly M. loti) synthesizes and responds to N-[(2E, 4E)-2,4-dodecadienoyl] homoserine lactone (2E, 4E-C12:2-HSL). We show that the 2E, 4E-C12:2-HSL QS circuit involves one of four luxR-luxI-type genes found in the sequenced genome of MAFF 303099. We refer to this circuit, which appears to be conserved among Mesorhizobium species, as R1-I1. We show that two other Mesorhizobium strains also produce 2E, 4E-C12:2-HSL. The 2E, 4E-C12:2-HSL is unique among known AHLs in its arrangement of two trans double bonds. The R1 response to 2E, 4E-C12:2-HSL is extremely selective in comparison with other LuxR homologs, and the trans double bonds appear critical for R1 signal recognition. Most well-studied LuxI-like proteins use S-adenosylmethionine and an acyl-acyl carrier protein as substrates for synthesis of AHLs. Others that form a subgroup of LuxI-type proteins use acyl-coenzyme A substrates rather than acyl-acyl carrier proteins. I1 clusters with the acyl-coenzyme A-type AHL synthases. We show that a gene linked to the I1 AHL synthase is involved in the production of the QS signal. The discovery of the unique I1 product enforces the view that further study of acyl-coenzyme A-dependent LuxI homologs will expand our knowledge of AHL diversity. The involvement of an additional enzyme in AHL generation leads us to consider this system a three-component QS circuit. IMPORTANCE We report a Mesorhizobium japonicum quorum sensing (QS) system involving a novel acyl-homoserine lactone (AHL) signal. This system is known to be involved in root nodule symbiosis with host plants. The chemistry of the newly described QS signal indicated that there may be a dedicated cellular enzyme involved in its synthesis in addition to the types known for production of other AHLs. Indeed, we report that an additional gene is required for synthesis of the unique signal, and we propose that this is a three-component QS circuit as opposed to the canonical two-component AHL QS circuits. The signaling system is exquisitely selective. The selectivity may be important when this species resides in the complex microbial communities around host plants and may make this system useful in various synthetic biology applications of QS circuits.
Collapse
Affiliation(s)
- Zehui Suo
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Dale A. Cummings
- Department of Chemistry and the Henry Eyring Center for Cell and Genomes Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Aaron W. Puri
- Department of Chemistry and the Henry Eyring Center for Cell and Genomes Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Amy L. Schaefer
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Cell-Cell Signaling Proteobacterial LuxR Solos: a Treasure Trove of Subgroups Having Different Origins, Ligands, and Ecological Roles. mSystems 2023; 8:e0103922. [PMID: 36802056 PMCID: PMC10134790 DOI: 10.1128/msystems.01039-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.
Collapse
|
15
|
Nezamivand-Chegini M, Metzger S, Moghadam A, Tahmasebi A, Koprivova A, Eshghi S, Mohammadi-Dehchesmeh M, Kopriva S, Niazi A, Ebrahimie E. Integration of transcriptomic and metabolomic analyses provides insights into response mechanisms to nitrogen and phosphorus deficiencies in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111498. [PMID: 36252857 DOI: 10.1016/j.plantsci.2022.111498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two essential plant macronutrients that can limit plant growth by different mechanisms. We aimed to shed light on how soybean respond to low nitrogen (LN), low phosphorus (LP) and their combined deficiency (LNP). Generally, these conditions triggered changes in gene expression of the same processes, including cell wall organization, defense response, response to oxidative stress, and photosynthesis, however, response was different in each condition. A typical primary response to LN and LP was detected also in soybean, i.e., the enhanced uptake of N and P, respectively, by upregulation of genes for the corresponding transporters. The regulation of genes involved in cell wall organization showed that in LP roots tended to produce more casparian strip, in LN more secondary wall biosynthesis occurred, and in LNP reduction in expression of genes involved in secondary wall production accompanied by cell wall loosening was observed. Flavonoid biosynthesis also showed distinct pattern of regulation in different conditions: more anthocyanin production in LP, and more isoflavonoid production in LN and LNP, which we confirmed also on the metabolite level. Interestingly, in soybean the nutrient deficiencies reduced defense response by lowering expression of genes involved in defense response, suggesting a role of N and P nutrition in plant disease resistance. In conclusion, we provide detailed information on how LN, LP, and LNP affect different processes in soybean roots on the molecular and physiological levels.
Collapse
Affiliation(s)
| | - Sabine Metzger
- MS Platform, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany; Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide SA 5371, Australia; La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
16
|
Collective decision-making in Pseudomonas aeruginosa involves transient segregation of quorum-sensing activities across cells. Curr Biol 2022; 32:5250-5261.e6. [PMID: 36417904 DOI: 10.1016/j.cub.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
A hallmark of bacterial sociality is that groups can coordinate cooperative actions through a cell-to-cell communication process called quorum sensing (QS). QS regulates key bacterial phenotypes such as virulence in infections and digestion of extracellular compounds in the environment. Although QS responses are typically studied as group-level phenotypes, it is unclear whether individuals coordinate their actions at the single-cell level or whether group phenotypes simply reflect the sum of their noisy members. Here, we studied the behavior of Pseudomonas aeruginosa individuals by tracking their temporal commitments to the two intertwined Las and Rhl-QS systems, from low to high population density. Using chromosomally integrated fluorescent gene reporters, we found that QS gene expression (signal, receptor, and cooperative exoproduct) was noisy with heterogeneity peaking during the build-up phase of QS. Moreover, we observed the formation of discrete subgroups of cells that transiently segregate into two gene expression states: low Las-receptor expressers that instantly activate exoproduct production and high Las-receptor expressers with delayed exoproduct production. Later, gene expression activities converged with all cells fully committing to QS. We developed general mathematical models to show that gene expression segregation can mechanistically be spurred by molecular resource limitations during the initiation phase of regulatory cascades such as QS. Moreover, our models indicate that gene expression segregation across cells can operate as a built-in brake enabling a temporary bet-hedging strategy in unpredictable environments. Altogether, our work reveals that studying the behavior of bacterial individuals is key to understanding emergent collective actions at the group level.
Collapse
|
17
|
Denison RF, Muller KE. An evolutionary perspective on increasing net benefits to crops from symbiotic microbes. Evol Appl 2022; 15:1490-1504. [PMID: 36330301 PMCID: PMC9624085 DOI: 10.1111/eva.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Plant-imposed, fitness-reducing sanctions against less-beneficial symbionts have been documented for rhizobia, mycorrhizal fungi, and fig wasps. Although most of our examples are for rhizobia, we argue that the evolutionary persistence of mutualism in any symbiosis would require such sanctions, if there are multiple symbiont genotypes per host plant. We therefore discuss methods that could be used to develop and assess crops with stricter sanctions. These include methods to screen strains for greater mutualism as resources to identify crop genotypes that impose stronger selection for mutualism. Single-strain experiments that measure costs as well as benefits have shown that diversion of resources by rhizobia can reduce nitrogen-fixation efficiency (N per C) and that some legumes can increase this efficiency by manipulating their symbionts. Plants in the field always host multiple strains with possible synergistic interactions, so benefits from different strains might best be compared by regressing plant growth or yield on each strain's abundance in a mixture. However, results from this approach have not yet been published. To measure legacy effects of stronger sanctions on future crops, single-genotype test crops could be planted in a field that recently had replicated plots with different genotypes of the sanction-imposing crop. Enhancing agricultural benefits from symbiosis may require accepting tradeoffs that constrained past natural selection, including tradeoffs between current and future benefits.
Collapse
Affiliation(s)
- R. Ford Denison
- Ecology, Evolution, & BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | | |
Collapse
|
18
|
Biţă A, Scorei IR, Bălşeanu TA, Ciocîlteu MV, Bejenaru C, Radu A, Bejenaru LE, Rău G, Mogoşanu GD, Neamţu J, Benner SA. New Insights into Boron Essentiality in Humans and Animals. Int J Mol Sci 2022; 23:ijms23169147. [PMID: 36012416 PMCID: PMC9409115 DOI: 10.3390/ijms23169147] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
Boron (B) is considered a prebiotic chemical element with a role in both the origin and evolution of life, as well as an essential micronutrient for some bacteria, plants, fungi, and algae. B has beneficial effects on the biological functions of humans and animals, such as reproduction, growth, calcium metabolism, bone formation, energy metabolism, immunity, and brain function. Naturally organic B (NOB) species may become promising novel prebiotic candidates. NOB-containing compounds have been shown to be essential for the symbiosis between organisms from different kingdoms. New insights into the key role of NOB species in the symbiosis between human/animal hosts and their microbiota will influence the use of natural B-based colon-targeting nutraceuticals. The mechanism of action (MoA) of NOB species is related to the B signaling molecule (autoinducer-2-borate (AI-2B)) as well as the fortification of the colonic mucus gel layer with NOB species from B-rich prebiotic diets. Both the microbiota and the colonic mucus gel layer can become NOB targets. This paper reviews the evidence supporting the essentiality of the NOB species in the symbiosis between the microbiota and the human/animal hosts, with the stated aim of highlighting the MoA and targets of these species.
Collapse
Affiliation(s)
- Andrei Biţă
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
- Correspondence: ; Tel.: +40-351-407-543
| | - Tudor Adrian Bălşeanu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Gabriela Rău
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Johny Neamţu
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Avenue, Room N112, Alachua, FL 32615, USA
| |
Collapse
|
19
|
Abdul Hamid NW, Nadarajah K. Microbe Related Chemical Signalling and Its Application in Agriculture. Int J Mol Sci 2022; 23:ijms23168998. [PMID: 36012261 PMCID: PMC9409198 DOI: 10.3390/ijms23168998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The agriculture sector has been put under tremendous strain by the world’s growing population. The use of fertilizers and pesticides in conventional farming has had a negative impact on the environment and human health. Sustainable agriculture attempts to maintain productivity, while protecting the environment and feeding the global population. The importance of soil-dwelling microbial populations in overcoming these issues cannot be overstated. Various processes such as rhizospheric competence, antibiosis, release of enzymes, and induction of systemic resistance in host plants are all used by microbes to influence plant-microbe interactions. These processes are largely founded on chemical signalling. Producing, releasing, detecting, and responding to chemicals are all part of chemical signalling. Different microbes released distinct sorts of chemical signal molecules which interacts with the environment and hosts. Microbial chemicals affect symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm growth, to name a few. We present an in-depth overview of chemical signalling between bacteria-bacteria, bacteria-fungi, and plant-microbe and the diverse roles played by these compounds in plant microbe interactions. These compounds’ current and potential uses and significance in agriculture have been highlighted.
Collapse
|
20
|
Burghardt LT, Epstein B, Hoge M, Trujillo DI, Tiffin P. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype. Appl Environ Microbiol 2022; 88:e0052622. [PMID: 35852362 PMCID: PMC9361818 DOI: 10.1128/aem.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.
Collapse
Affiliation(s)
- Liana T. Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Plant Science Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Michelle Hoge
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Diana I. Trujillo
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
21
|
Bano N, Fakhrah S, Nayak SP, Bag SK, Mohanty CS. Identification of miRNA and their target genes in Cestrum nocturnum L. and Cestrum diurnum L. in stress responses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:31-49. [PMID: 35221570 PMCID: PMC8847519 DOI: 10.1007/s12298-022-01127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules and products of primary miRNAs that regulate the target gene expression. Homology-based approaches were employed to identify miRNAs and their targets in Cestrum nocturnum L. and Cestrum diurnum L. A total of 32 and 12 miRNA candidates were identified in C. nocturnum and C. diurnum. These miRNAs belong to 26 and 10 miRNA families and regulate 1024 and 1007 target genes in C. nocturnum, and C. diurnum, respectively. The functional roles of these miRNAs have not been earlier elucidated in Cestrum. MiR815a, miR849, miR1089 and miR172 have a strong propensity to target genes controlling phytochrome-interacting factor 1 (PIF1), ubiquitin-specific protease 12 (UBP12), leucine-rich repeat (LRR) protein kinase and GAI, RGA, SCR (GRAS) family transcription factor in C. nocturnum. While miR5205a, miR1436 and miR530 regulate PATATIN-like protein 6 (PLP6), PHD finger transcription factor and myb domain protein 48 (MYB48) in C. diurnum. Overall, these miRNAs have regulatory responses in biotic and abiotic stresses in both plant species. Eight putative miRNAs and their target genes were selected for qRT-PCR validation. The validated results suggested the importance of miR815a, miR849, miR5205a, miR1089, miR172, miR1436, and miR530 in exerting control over stress responses in C. nocturnum and C. diurnum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01127-1.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh 226007 India
| | - Sagar Prasad Nayak
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
22
|
Mohr W, Lehnen N, Ahmerkamp S, Marchant HK, Graf JS, Tschitschko B, Yilmaz P, Littmann S, Gruber-Vodicka H, Leisch N, Weber M, Lott C, Schubert CJ, Milucka J, Kuypers MMM. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature 2021; 600:105-109. [PMID: 34732889 PMCID: PMC8636270 DOI: 10.1038/s41586-021-04063-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/22/2021] [Indexed: 01/23/2023]
Abstract
Symbiotic N2-fixing microorganisms have a crucial role in the assimilation of nitrogen by eukaryotes in nitrogen-limited environments1-3. Particularly among land plants, N2-fixing symbionts occur in a variety of distantly related plant lineages and often involve an intimate association between host and symbiont2,4. Descriptions of such intimate symbioses are lacking for seagrasses, which evolved around 100 million years ago from terrestrial flowering plants that migrated back to the sea5. Here we describe an N2-fixing symbiont, 'Candidatus Celerinatantimonas neptuna', that lives inside seagrass root tissue, where it provides ammonia and amino acids to its host in exchange for sugars. As such, this symbiosis is reminiscent of terrestrial N2-fixing plant symbioses. The symbiosis between Ca. C. neptuna and its host Posidonia oceanica enables highly productive seagrass meadows to thrive in the nitrogen-limited Mediterranean Sea. Relatives of Ca. C. neptuna occur worldwide in coastal ecosystems, in which they may form similar symbioses with other seagrasses and saltmarsh plants. Just like N2-fixing microorganisms might have aided the colonization of nitrogen-poor soils by early land plants6, the ancestors of Ca. C. neptuna and its relatives probably enabled flowering plants to invade nitrogen-poor marine habitats, where they formed extremely efficient blue carbon ecosystems7.
Collapse
Affiliation(s)
- Wiebke Mohr
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Nadine Lehnen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | - Jon S Graf
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Pelin Yilmaz
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Data Science Research Group, Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | - Carsten J Schubert
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Department of Surface Waters-Research and Management, Kastanienbaum, Switzerland
| | - Jana Milucka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
23
|
Fields B, Moffat EK, Harrison E, Andersen SU, Young JPW, Friman VP. Genetic variation is associated with differences in facilitative and competitive interactions in the Rhizobium leguminosarum species complex. Environ Microbiol 2021; 24:3463-3485. [PMID: 34398510 DOI: 10.1111/1462-2920.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
Competitive and facilitative interactions influence bacterial community composition, diversity and functioning. However, the role of genetic diversity for determining interactions between coexisting strains of the same, or closely related, species remains poorly understood. Here, we investigated the type (facilitative/inhibitory) and potential underlying mechanisms of pairwise interactions between 24 genetically diverse bacterial strains belonging to three genospecies (gsA,C,E) of the Rhizobium leguminosarum species complex. Interactions were determined indirectly, based on secreted compounds in cell-free supernatants, and directly, as growth inhibition in cocultures. We found supernatants mediated both facilitative and inhibitory interactions that varied greatly between strains and genospecies. Overall, gsE strains indirectly suppressed growth of gsA strains, while their own growth was facilitated by other genospecies' supernatants. Similar genospecies-level patterns were observed in direct competition, where gsA showed the highest susceptibility and gsE the highest inhibition capacity. At the genetic level, increased gsA susceptibility was associated with a non-random distribution of quorum sensing and secondary metabolite genes across genospecies. Together, our results suggest that genetic variation is associated with facilitative and competitive interactions, which could be important ecological mechanisms explaining R. leguminosarum diversity.
Collapse
Affiliation(s)
| | - Emma K Moffat
- Department of Biology, University of York, York, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
24
|
Bourigault Y, Rodrigues S, Crépin A, Chane A, Taupin L, Bouteiller M, Dupont C, Merieau A, Konto-Ghiorghi Y, Boukerb AM, Turner M, Hamon C, Dufour A, Barbey C, Latour X. Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. Int J Mol Sci 2021; 22:ijms22158241. [PMID: 34361010 PMCID: PMC8347015 DOI: 10.3390/ijms22158241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.
Collapse
Affiliation(s)
- Yvann Bourigault
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Alexandre Crépin
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, F-86073 Poitiers, France;
| | - Andrea Chane
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Mathilde Bouteiller
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Amine M. Boukerb
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Marie Turner
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
- Biocontrol Consortium, F-75007 Paris, France
| | - Céline Hamon
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Corinne Barbey
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
- Biocontrol Consortium, F-75007 Paris, France
- Correspondence: ; +33-235-146-000
| |
Collapse
|
25
|
Alencar VC, Silva JDFDS, Vilas Boas RO, Farnézio VM, de Maria YNLF, Aciole Barbosa D, Almeida AT, de Souza EM, Müller-Santos M, Jabes DL, Menegidio FB, Costa de Oliveira R, Rodrigues T, Tersariol ILDS, Walmsley AR, Nunes LR. The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis. Int J Mol Sci 2021; 22:ijms22115628. [PMID: 34073173 PMCID: PMC8198075 DOI: 10.3390/ijms22115628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N2 fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N2 fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants.
Collapse
Affiliation(s)
- Valquíria Campos Alencar
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, SP, Brazil; (V.C.A.); (J.d.F.d.S.S.); (V.M.F.); (T.R.)
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes 08780-911, SP, Brazil; (R.O.V.B.); (Y.N.L.F.d.M.); (D.A.B.); (D.L.J.); (F.B.M.); (R.C.d.O.)
| | - Juliana de Fátima dos Santos Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, SP, Brazil; (V.C.A.); (J.d.F.d.S.S.); (V.M.F.); (T.R.)
| | - Renata Ozelami Vilas Boas
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes 08780-911, SP, Brazil; (R.O.V.B.); (Y.N.L.F.d.M.); (D.A.B.); (D.L.J.); (F.B.M.); (R.C.d.O.)
| | - Vinícius Manganaro Farnézio
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, SP, Brazil; (V.C.A.); (J.d.F.d.S.S.); (V.M.F.); (T.R.)
| | - Yara N. L. F. de Maria
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes 08780-911, SP, Brazil; (R.O.V.B.); (Y.N.L.F.d.M.); (D.A.B.); (D.L.J.); (F.B.M.); (R.C.d.O.)
| | - David Aciole Barbosa
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes 08780-911, SP, Brazil; (R.O.V.B.); (Y.N.L.F.d.M.); (D.A.B.); (D.L.J.); (F.B.M.); (R.C.d.O.)
| | - Alex Tramontin Almeida
- Setor de Ciências Biológicas-Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, 100, Curitiba 81531-980, PR, Brazil; (A.T.A.); (E.M.d.S.); (M.M.-S.)
| | - Emanuel Maltempi de Souza
- Setor de Ciências Biológicas-Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, 100, Curitiba 81531-980, PR, Brazil; (A.T.A.); (E.M.d.S.); (M.M.-S.)
| | - Marcelo Müller-Santos
- Setor de Ciências Biológicas-Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, 100, Curitiba 81531-980, PR, Brazil; (A.T.A.); (E.M.d.S.); (M.M.-S.)
| | - Daniela L. Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes 08780-911, SP, Brazil; (R.O.V.B.); (Y.N.L.F.d.M.); (D.A.B.); (D.L.J.); (F.B.M.); (R.C.d.O.)
| | - Fabiano B. Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes 08780-911, SP, Brazil; (R.O.V.B.); (Y.N.L.F.d.M.); (D.A.B.); (D.L.J.); (F.B.M.); (R.C.d.O.)
| | - Regina Costa de Oliveira
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes 08780-911, SP, Brazil; (R.O.V.B.); (Y.N.L.F.d.M.); (D.A.B.); (D.L.J.); (F.B.M.); (R.C.d.O.)
| | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, SP, Brazil; (V.C.A.); (J.d.F.d.S.S.); (V.M.F.); (T.R.)
| | - Ivarne Luis dos Santos Tersariol
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, 100, São Paulo 04044-020, SP, Brazil;
| | - Adrian R. Walmsley
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK;
| | - Luiz R. Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, SP, Brazil; (V.C.A.); (J.d.F.d.S.S.); (V.M.F.); (T.R.)
- Correspondence: ; Tel.: +55-11-4996-8371 (ext. 4996-3166)
| |
Collapse
|
26
|
Cai W, Ou F, Staehelin C, Dai W. Bradyrhizobium sp. strain ORS278 promotes rice growth and its quorum sensing system is required for optimal root colonization. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:656-666. [PMID: 32929871 DOI: 10.1111/1758-2229.12885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/10/2020] [Indexed: 05/25/2023]
Abstract
Many Gram-negative bacteria communicate by using homoserine lactones (HSLs) as quorum sensing (QS) signals in a cell density-dependent manner. In addition to fatty acyl-HSL (acyl-HSL) signals, certain strains, most of them associated with plants, produce non-canonical aryl-HSLs such as cinnamoyl-HSL. However, the role of aryl-HSL in endophytic associations remained elusive. Bradyrhizobium sp. strain ORS278 possesses a LuxI-LuxR type QS system and produces cinnamoyl-HSL as a QS signal. Here, we report that strain ORS278 promotes growth of domesticated rice (Oryza sativa). QS mutants unable to produce cinnamoyl-HSL exhibited reduced plant-growth promoting activity in comparison to the parent strain ORS278. Likewise, the QS mutants were impaired in their ability to colonize rice roots. These findings suggest that genes controlled by cinnamoyl-HSL play an important role in the association between rice and ORS278. However, biofilm production was not visibly altered in these mutants. In conclusion, our study highlights the importance of aryl-HSLs in endophytic plant-bacteria interactions.
Collapse
Affiliation(s)
- Wenjie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Fuwen Ou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Bioresources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
27
|
Yang LL, Jiang Z, Li Y, Wang ET, Zhi XY. Plasmids Related to the Symbiotic Nitrogen Fixation Are Not Only Cooperated Functionally but Also May Have Evolved over a Time Span in Family Rhizobiaceae. Genome Biol Evol 2020; 12:2002-2014. [PMID: 32687170 PMCID: PMC7719263 DOI: 10.1093/gbe/evaa152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Ling-Ling Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, PR China
| | - Zhao Jiang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, PR China
| | - Yan Li
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, PR China
| | - En-Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City D.F., México
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, PR China
| |
Collapse
|
28
|
Nawaz MS, Arshad A, Rajput L, Fatima K, Ullah S, Ahmad M, Imran A. Growth-Stimulatory Effect of Quorum Sensing Signal Molecule N-Acyl-Homoserine Lactone-Producing Multi-Trait Aeromonas spp. on Wheat Genotypes Under Salt Stress. Front Microbiol 2020; 11:553621. [PMID: 33117303 PMCID: PMC7550764 DOI: 10.3389/fmicb.2020.553621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023] Open
Abstract
Salinity is one of the major threats to agricultural productivity worldwide. Soil and plant management practices, along with inoculation with plant-beneficial bacteria, play a key role in the plant’s tolerance toward salinity stress. The present study demonstrates the potential of acyl homoserine lactone (AHL)-producing plant growth promoting rhizobacteria (PGPR) strains of Aeromonas sp., namely, SAL-17 (accession no. HG763857) and SAL-21 (accession no. HG763858), for growth promotion of two wheat genotypes inherently different for salt tolerance potential. AHLs are the bacterial signal molecules that regulate the expression of various genes in bacteria and plants. Both Aeromonas spp., along with innate plant-growth-promoting (PGP) and salt tolerance traits, showed AHL production which was identified on tandem mass spectrometry as C6-HSL, 3-OH-C5-HSL, 3-OH-C6-HSL, 3-oxo-C7-HSL C10-HSL, 3-oxo-C10-HSL, 3-OH-C10-HSL, 3-oxo-C12-HSL and C6-HSL, and 3-oxo-C10-HSL. The exogenous application of purified AHLs (mix) significantly improved various root parameters at 200 mM NaCl in both salt-sensitive (SSG) and salt-tolerant (STG) genotypes, where the highest increase (≈80%) was observed where a mixture of both strains of AHLs was used. Confocal microscopic observations and root overlay assay revealed a strong root colonization potential of the two strains under salt stress. The inoculation response of both STG and SSG genotypes was evaluated with two AHL-producing strains (SAL-17 and SAL-21) and compared to non-AHL-producing Aeromonas sp. SAL-12 (accession no. HG763856) in saline (EC = 7.63 ms/cm2) and non-saline soil. The data reveal that plants inoculated with the bacterial consortium (SAL-21 + SAL-17) showed a maximum increase in leaf proline content, nitrate reductase activity, chlorophyll a/b, stomatal conductance, transpiration rate, root length, shoot length, and grain weight over non-inoculated plants grown in saline soil. Both STG and SSG showed relative effectiveness toward inoculation (percent increase for STG: 165–16%; SSG: 283–14%) and showed a positive correlation of grain yield with proline and nitrate reductase activity. Furthermore, principal component analysis (PCA) and categorical PCA analysis clearly showed an inoculation response in both genotypes, revealing the effectiveness of AHL-producing Aeromonas spp. than the non-AHL-producing strain. The present study documents that the consortium of salt-tolerant AHL-producing Aeromonas spp. is equally effective for sustaining the growth of STG as well as SSG wheat genotypes in saline soil, but biosafety should be fully ensured before field release.
Collapse
Affiliation(s)
- Muhammad Shoib Nawaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Ayesha Arshad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Lubna Rajput
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Plant Physiology and Biotechnology Institute, Agriculture Research Centre, Tandojam, Pakistan
| | - Kaneez Fatima
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sami Ullah
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Botany, Women University of Azad Jammu & Kashmir, Bagh, Bagh, Pakistan
| | - Muhammad Ahmad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
29
|
Hansen BL, Pessotti RDC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxler MF. Cooperation, Competition, and Specialized Metabolism in a Simplified Root Nodule Microbiome. mBio 2020; 11:e01917-20. [PMID: 32843548 PMCID: PMC7448283 DOI: 10.1128/mbio.01917-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Microbiomes associated with various plant structures often contain members with the potential to make specialized metabolites, e.g., molecules with antibacterial, antifungal, or siderophore activities. However, when and where microbes associated with plants produce specialized metabolites, and the potential role of these molecules in mediating intramicrobiome interactions, is not well understood. Root nodules of legume plants are organs devoted to hosting symbiotic bacteria that fix atmospheric nitrogen and have recently been shown to harbor a relatively simple accessory microbiome containing members with the ability to produce specialized metabolites in vitro On the basis of these observations, we sought to develop a model nodule microbiome system for evaluating specialized microbial metabolism in planta Starting with an inoculum derived from field-grown Medicago sativa nodules, serial passaging through gnotobiotic nodules yielded a simplified accessory community composed of four members: Brevibacillus brevis, Paenibacillus sp., Pantoea agglomerans, and Pseudomonas sp. Some members of this community exhibited clear cooperation in planta, while others were antagonistic and capable of disrupting cooperation between other partners. Using matrix-assisted laser desorption ionization-imaging mass spectrometry, we found that metabolites associated with individual taxa had unique distributions, indicating that some members of the nodule community were spatially segregated. Finally, we identified two families of molecules produced by B. brevisin planta as the antibacterial tyrocidines and a novel set of gramicidin-type molecules, which we term the britacidins. Collectively, these results indicate that in addition to nitrogen fixation, legume root nodules are likely also sites of active antimicrobial production.
Collapse
Affiliation(s)
- Bridget L Hansen
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Rita de Cassia Pessotti
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Monika S Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Alyssa Collins
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Laila El-Hifnawi
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Mira D Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
30
|
Veliz-Vallejos DF, Kawasaki A, Mathesius U. The Presence of Plant-Associated Bacteria Alters Responses to N-acyl Homoserine Lactone Quorum Sensing Signals that Modulate Nodulation in Medicago Truncatula. PLANTS 2020; 9:plants9060777. [PMID: 32580337 PMCID: PMC7357121 DOI: 10.3390/plants9060777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Bacteria use quorum sensing signaling for cell-to-cell communication, which is also important for their interactions with plant hosts. Quorum sensing via N-acyl-homoserine lactones (AHLs) is important for successful symbioses between legumes and nitrogen-fixing rhizobia. Previous studies have shown that plant hosts can recognize and respond to AHLs. Here, we tested whether the response of the model legume Medicago truncatula to AHLs from its symbiont and other bacteria could be modulated by the abundance and composition of plant-associated microbial communities. Temporary antibiotic treatment of the seeds removed the majority of bacterial taxa associated with M. truncatula roots and significantly altered the effect of AHLs on nodule numbers, but lateral root density, biomass, and root length responses were much less affected. The AHL 3-oxo-C14-HSL (homoserine lactone) specifically increased nodule numbers but only after the treatment of seeds with antibiotics. This increase was associated with increased expression of the early nodulation genes RIP1 and ENOD11 at 24 h after infection. A 454 pyrosequencing analysis of the plant-associated bacteria showed that antibiotic treatment had the biggest effect on bacterial community composition. However, we also found distinct effects of 3-oxo-C14-HSL on the abundance of specific bacterial taxa. Our results revealed a complex interaction between plants and their associated microbiome that could modify plant responses to AHLs.
Collapse
Affiliation(s)
- Debora F. Veliz-Vallejos
- Division of Plant Sciences, Research School of Biology, Canberra, ACT 2601, Australia; (D.F.V.-V.); (A.K.)
| | - Akitomo Kawasaki
- Division of Plant Sciences, Research School of Biology, Canberra, ACT 2601, Australia; (D.F.V.-V.); (A.K.)
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Canberra, ACT 2601, Australia; (D.F.V.-V.); (A.K.)
- Correspondence: ; Tel.: +61-2-6125-2840
| |
Collapse
|
31
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
32
|
Ullah H, Yasmin H, Mumtaz S, Jabeen Z, Naz R, Nosheen A, Hassan MN. Multitrait Pseudomonas spp. Isolated from Monocropped Wheat ( Triticum aestivum) Suppress Fusarium Root and Crown Rot. PHYTOPATHOLOGY 2020; 110:582-592. [PMID: 31799901 DOI: 10.1094/phyto-10-19-0383-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium root and crown rot is the most common disease of wheat, especially wheat grown in arid zones where drought is a common issue. The development of environmentally safe approaches to manage diseases of food crops is important for humans. The monocropping system recruits beneficial bacteria that promote plant growth through nutrient solubilization and pathogen suppression. In this study, a field where wheat was monocropped for 5 successive years under rainfed conditions was identified. A total of 29 bacterial isolates were obtained from the rhizosphere, endosphere, and phyllosphere of wheat at its harvesting stage. The Gram-negative bacteria were less prevalent (41%) but the majority (75%) exhibited plant growth-promoting traits. The ability of strains to solubilize nutrients (solubilization index = 2.3 to 4), inhibit pathogenic fungi (25 to 56%), and produce antifungal compounds was highly variable. The rhizobacteria significantly promoted the growth and disease resistance of wheat varieties such as Pirsbak-2015 and Galaxy-2013 by inducing antioxidant enzyme activity (0.2- to 2.1-fold). The bacterial strains were identified as Ochrobactrum spp., Acinetobacter spp., and Pseudomonas mediterranea by 16S rRNA and rpoD sequence analysis. The endophytic bacterium P. mediterranea HU-9 exhibited maximum biocontrol efficacy against wheat root and crown rot diseases with a disease score/disease index from 1.8 to 3.1. The monocropping systems of rainfed agriculture are an ideal source of beneficial bacteria to use as bioinoculants for different crops.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
33
|
Deciphering the Symbiotic Significance of Quorum Sensing Systems of Sinorhizobium fredii HH103. Microorganisms 2020; 8:microorganisms8010068. [PMID: 31906451 PMCID: PMC7022240 DOI: 10.3390/microorganisms8010068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 01/21/2023] Open
Abstract
Quorum sensing (QS) is a bacterial cell-to-cell signaling mechanism that collectively regulates and synchronizes behaviors by means of small diffusible chemical molecules. In rhizobia, QS systems usually relies on the synthesis and detection of N-acyl-homoserine lactones (AHLs). In the model bacterium Sinorhizobium meliloti functions regulated by the QS systems TraI-TraR and SinI-SinR(-ExpR) include plasmid transfer, production of surface polysaccharides, motility, growth rate and nodulation. These systems are also present in other bacteria of the Sinorhizobium genus, with variations at the species and strain level. In Sinorhizobium fredii NGR234 phenotypes regulated by QS are plasmid transfer, growth rate, sedimentation, motility, biofilm formation, EPS production and copy number of the symbiotic plasmid (pSym). The analysis of the S. fredii HH103 genomes reveal also the presence of both QS systems. In this manuscript we characterized the QS systems of S. fredii HH103, determining that both TraI and SinI AHL-synthases proteins are responsible of the production of short- and long-chain AHLs, respectively, at very low and not physiological concentrations. Interestingly, the main HH103 luxR-type genes, expR and traR, are split into two ORFs, suggesting that in S. fredii HH103 the corresponding carboxy-terminal proteins, which contain the DNA-binding motives, may control target genes in an AHL-independent manner. The presence of a split traR gene is common in other S. fredii strains.
Collapse
|
34
|
Nag P, Shriti S, Das S. Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes. J Appl Microbiol 2020; 129:186-198. [PMID: 31858682 DOI: 10.1111/jam.14557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/17/2023]
Abstract
In an agro-ecosystem, industrially produced nitrogenous fertilizers are the principal sources of nitrogen for plant growth; unfortunately these also serve as the leading sources of pollution. Hence, it becomes imperative to find pollution-free methods of providing nitrogen to crop plants. A diverse group of free-living, plant associative and symbiotic prokaryotes are able to perform biological nitrogen fixation (BNF). BNF is a two component process involving the nitrogen fixing diazotrophs and the host plant. Symbiotic nitrogen fixation is most efficient as it can fix nitrogen inside the nodule formed on the roots of the plant; delivering nitrogen directly to the host. However, most of the important crop plants are nonleguminous and are unable to form symbiotic associations. In this context, the plant associative and endophytic diazotrophs assume importance. BNF in nonlegumes can be encouraged either through the transfer of BNF traits from legumes or by elevating the nitrogen fixing capacity of the associative and endophytic diazotrophs. In this review we discuss mainly the microbiological strategies which may be used in nonleguminous crops for enhancement of BNF.
Collapse
Affiliation(s)
- P Nag
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - S Shriti
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - S Das
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
35
|
Gosai J, Anandhan S, Bhattacharjee A, Archana G. Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in Ensifer nodulating pigeon pea. Microbiol Res 2020; 231:126354. [DOI: 10.1016/j.micres.2019.126354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/12/2019] [Accepted: 10/13/2019] [Indexed: 11/15/2022]
|
36
|
Zaytseva YV, Sidorov AV, Marakaev OA, Khmel IA. Plant-Microbial Interactions Involving Quorum Sensing Regulation. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Haque S, Yadav DK, Bisht SC, Yadav N, Singh V, Dubey KK, Jawed A, Wahid M, Dar SA. Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. J Chemother 2019; 31:161-187. [DOI: 10.1080/1120009x.2019.1599175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gene Expression Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Dinesh K. Yadav
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Shekhar C. Bisht
- Department of Biotechnology, H.N.B Garhwal University, Srinagar, Uttarakhand, India
| | - Neelam Yadav
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Vineeta Singh
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kashyap Kumar Dubey
- Industrial Biotechnology Laboratory, University Institute of Engineering and Technology, M.D. University, Rohtak, Haryana, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Departments of Microbiology, University College of Medical Sciences (University of Delhi), Delhi, India
| |
Collapse
|
38
|
Torres M, Hong KW, Chong TM, Reina JC, Chan KG, Dessaux Y, Llamas I. Genomic analyses of two Alteromonas stellipolaris strains reveal traits with potential biotechnological applications. Sci Rep 2019; 9:1215. [PMID: 30718637 PMCID: PMC6361997 DOI: 10.1038/s41598-018-37720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 11/08/2022] Open
Abstract
The Alteromonas stellipolaris strains PQQ-42 and PQQ-44, previously isolated from a fish hatchery, have been selected on the basis of their strong quorum quenching (QQ) activity, as well as their ability to reduce Vibrio-induced mortality on the coral Oculina patagonica. In this study, the genome sequences of both strains were determined and analyzed in order to identify the mechanism responsible for QQ activity. Both PQQ-42 and PQQ-44 were found to degrade a wide range of N-acylhomoserine lactone (AHL) QS signals, possibly due to the presence of an aac gene which encodes an AHL amidohydrolase. In addition, the different colony morphologies exhibited by the strains could be related to the differences observed in genes encoding cell wall biosynthesis and exopolysaccharide (EPS) production. The PQQ-42 strain produces more EPS (0.36 g l-1) than the PQQ-44 strain (0.15 g l-1), whose chemical compositions also differ. Remarkably, PQQ-44 EPS contains large amounts of fucose, a sugar used in high-value biotechnological applications. Furthermore, the genome of strain PQQ-42 contained a large non-ribosomal peptide synthase (NRPS) cluster with a previously unknown genetic structure. The synthesis of enzymes and other bioactive compounds were also identified, indicating that PQQ-42 and PQQ-44 could have biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
| | - Kar-Wai Hong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teik-Min Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
39
|
Dos Santos Lima Fagotti D, Abrantes JLF, Cerezini P, Fukami J, Nogueira MA, Del Cerro P, Valderrama-Fernández R, Ollero FJ, Megías M, Hungria M. Quorum sensing communication: Bradyrhizobium-Azospirillum interaction via N-acyl-homoserine lactones in the promotion of soybean symbiosis. J Basic Microbiol 2019; 59:38-53. [PMID: 30320901 DOI: 10.1002/jobm.201800324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 11/11/2022]
Abstract
Quorum-sensing (QS) mechanisms are important in intra- and inter-specific communication among bacteria. We investigated QS mechanisms in Bradyrhizobium japonicum strain CPAC 15 and Azospirillum brasilense strains Ab-V5 and Ab-V6, used in commercial co-inoculants for the soybean crop in Brazil. A transconjugant of CPAC 15-QS with partial inactivation of N-acyl-homoserine lactones (AHLs) was obtained and several parameters were evaluated; in vitro, CPAC 15 and the transconjugant differed in growth, but not in biofilm formation, and no differences were observed in the symbiotic performance in vivo. The genome of CPAC 15 carries functional luxI and luxR genes and low amounts of three AHL molecules were detected: 3-OH-C12-AHL, 3-OH-C14-AHL, and 3-oxo-C14-AHL. Multiple copies of luxR-like genes, but not of luxI are present in the genomes of Ab-V5 and Ab-V6, and differences in gene expression were observed when the strains were co-cultured with B. japonicum; we may infer that the luxR-genes of A. brasilense may perceive the AHL molecules of B. japonicum. Soybean symbiotic performance was improved especially by co-inoculation with Ab-V6, which, contrarily to Ab-V5, did not respond to the AHLs of CPAC 15. We concluded that A. brasilense Ab-V5, but not Ab-V6, responded to the QS signals of CPAC 15, and that the synergistic interaction may be credited, at least partially, to the QS interaction. In addition, we confirmed inter- and intra-species QS communication between B. japonicum and A. brasilense and, for Azospirillum, at the strain level, impacting several steps of the symbiosis, from cell growth to plant nodulation and growth.
Collapse
Affiliation(s)
- Dáfila Dos Santos Lima Fagotti
- Embrapa Soja, Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Distrito Federal, Brazil
| | - Julia Laura Fernandes Abrantes
- Embrapa Soja, Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Distrito Federal, Brazil
| | - Paula Cerezini
- Embrapa Soja, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Brasília, Distrito Federal, Brazil
| | - Josiane Fukami
- Embrapa Soja, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Brasília, Distrito Federal, Brazil
| | - Marco A Nogueira
- Embrapa Soja, Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Distrito Federal, Brazil
| | - Pablo Del Cerro
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | | | - Francisco J Ollero
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Megías
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | - Mariangela Hungria
- Embrapa Soja, Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Distrito Federal, Brazil
| |
Collapse
|
40
|
Quorum Sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: Role in Virulence and Interspecies Interactions in the Olive Knot. Appl Environ Microbiol 2018; 84:AEM.00950-18. [PMID: 30006401 DOI: 10.1128/aem.00950-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
The olive knot disease (Olea europea L.) is caused by the bacterium Pseudomonas savastanoi pv. savastanoi. P. savastanoi pv. savastanoi in the olive knot undergoes interspecies interactions with the harmless endophyte Erwinia toletana; P. savastanoi pv. savastanoi and E. toletana colocalize and form a stable community, resulting in a more aggressive disease. P. savastanoi pv. savastanoi and Etoletana produce the same type of the N-acylhomoserine lactone (AHL) quorum sensing (QS) signal, and they share AHLs in planta In this work, we have further studied the AHL QS systems of P. savastanoi pv. savastanoi and Etoletana in order to determine possible molecular mechanism(s) involved in this bacterial interspecies interaction/cooperation. The AHL QS regulons of P. savastanoi pv. savastanoi and Etoletana were determined, allowing the identification of several QS-regulated genes. Surprisingly, the P. savastanoi pv. savastanoi QS regulon consisted of only a few loci whereas in Etoletana many putative metabolic genes were regulated by QS, among which are several involved in carbohydrate metabolism. One of these loci was the aldolase-encoding gene garL, which was found to be essential for both colocalization of P. savastanoi pv. savastanoi and Etoletana cells inside olive knots as well as knot development. This study further highlighted that pathogens can cooperate with commensal members of the plant microbiome.IMPORTANCE This is a report on studies of the quorum sensing (QS) systems of the olive knot pathogen Pseudomonas savastanoi pv. savastanoi and olive knot cooperator Erwinia toletana These two bacterial species form a stable community in the olive knot, share QS signals, and cooperate, resulting in a more aggressive disease. In this work we further studied the QS systems by determining their regulons as well as by studying QS-regulated genes which might play a role in this cooperation. This represents a unique in vivo interspecies bacterial virulence model and highlights the importance of bacterial interspecies interaction in disease.
Collapse
|
41
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
42
|
Torres M, Reina JC, Fuentes-Monteverde JC, Fernández G, Rodríguez J, Jiménez C, Llamas I. AHL-lactonase expression in three marine emerging pathogenic Vibrio spp. reduces virulence and mortality in brine shrimp (Artemia salina) and Manila clam (Venerupis philippinarum). PLoS One 2018; 13:e0195176. [PMID: 29664914 PMCID: PMC5903640 DOI: 10.1371/journal.pone.0195176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/16/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial infectious diseases produced by Vibrio are the main cause of economic losses in aquaculture. During recent years it has been shown that the expression of virulence genes in some Vibrio species is controlled by a population-density dependent gene-expression mechanism known as quorum sensing (QS), which is mediated by the diffusion of signal molecules such as N-acylhomoserine lactones (AHLs). QS disruption, especially the enzymatic degradation of signalling molecules, known as quorum quenching (QQ), is one of the novel therapeutic strategies for the treatment of bacterial infections. In this study, we present the detection of AHLs in 34 marine Vibrionaceae strains. Three aquaculture-related pathogenic Vibrio strains, V. mediterranei VibC-Oc-097, V. owensii VibC-Oc-106 and V. coralliilyticus VibC-Oc-193 were selected for further studies based on their virulence and high production of AHLs. This is the first report where the signal molecules have been characterized in these emerging marine pathogens and correlated to the expression of virulence factors. Moreover, the results of AHL inactivation in the three selected strains have been confirmed in vivo against brine shrimps (Artemia salina) and Manila clams (Venerupis philippinarum). This research contributes to the development of future therapies based on AHL disruption, the most promising alternatives for fighting infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Juan Carlos Fuentes-Monteverde
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Gerardo Fernández
- Research Support Service (SAI), Central Services (ESCI) University of A Coruña, A Coruña, Spain
| | - Jaime Rodríguez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Carlos Jiménez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
43
|
Miao J, Zhang N, Liu H, Wang H, Zhong Z, Zhu J. Soil commensal rhizobia promote Rhizobium etli nodulation efficiency through CinR-mediated quorum sensing. Arch Microbiol 2018; 200:685-694. [DOI: 10.1007/s00203-018-1478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
|
44
|
Kumar Thota G, Tamilarasan D, Balamurugan R. Synthesis of Highly Functionalized Pyrrolidine Derivatives from Easily Accessible Diethyl (E
)-4-Oxohex-2-enedioate. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ganesh Kumar Thota
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| | | | - Rengarajan Balamurugan
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| |
Collapse
|
45
|
Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A. Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains. Front Microbiol 2017; 8:2207. [PMID: 29170661 PMCID: PMC5684177 DOI: 10.3389/fmicb.2017.02207] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 01/12/2023] Open
Abstract
Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | | | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Fuller AW, Young P, Pierce BD, Kitson-Finuff J, Jain P, Schneider K, Lazar S, Taran O, Palmer AG, Lynn DG. Redox-mediated quorum sensing in plants. PLoS One 2017; 12:e0182655. [PMID: 28902851 PMCID: PMC5597120 DOI: 10.1371/journal.pone.0182655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere's chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs). The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS) production regulates similar redox circuits related to root recognition, broadening xenognosins' role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ) between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction-diffusion network laying the foundation for the precise temporal and spatial control underlying rhizosphere architecture.
Collapse
Affiliation(s)
- Alexandra W. Fuller
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
| | - Phoebe Young
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
| | - B. Daniel Pierce
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
- Gottwald Science Center, University of Richmond, Richmond, VA, United States of America
| | - Jamie Kitson-Finuff
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Purvi Jain
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Karl Schneider
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Stephen Lazar
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Olga Taran
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
| | - Andrew G. Palmer
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - David G. Lynn
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
47
|
Bauer M, Knebel J, Lechner M, Pickl P, Frey E. Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers. eLife 2017; 6. [PMID: 28741470 PMCID: PMC5526673 DOI: 10.7554/elife.25773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI:http://dx.doi.org/10.7554/eLife.25773.001 Bacteria and other microbes can communicate with each other using chemical languages. They release small signaling molecules called autoinducers into their surroundings and sense the levels of the autoinducers in the environment. The response to these autoinducers – known as quorum sensing – can regulate how whole communities of microbes grow and behave; for example, autoinducers can alter the ability of microbes to infect humans or enable the microbes to collectively switch on light production. Recent experiments suggest that, in a population of genetically identical microbes, some individuals may produce autoinducers while others do not. The coexistence of these different “phenotypes” in one population may enable different individuals to perform different roles, or act as a “bet-hedging” strategy that helps the population to survive if it is later exposed to a stressful situation. It is not clear how microbes regulate autoinducer production so that only some individuals produce these molecules. Bauer, Knebel et al. developed a theoretical model to address this question. In the model, the microbes shape their environment by producing autoinducers and can respond to this self-shaped environment by changing their level of autoinducer production. Bauer, Knebel et al. found that this establishes a feedback loop that can result in autoinducers being produced by some individuals but not others. The next step following on from this work is to carry out experiments to test the assumptions and predictions made by the theoretical model. These findings may help to understand how the coexistence of different phenotypes affects collective behaviors, and vice versa, in populations of microbes that use quorum-sensing. DOI:http://dx.doi.org/10.7554/eLife.25773.002
Collapse
Affiliation(s)
- Matthias Bauer
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Johannes Knebel
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Matthias Lechner
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Peter Pickl
- Department of Mathematics, Ludwig-Maximilians-Universität München, München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
48
|
Pankratov TA, Kachalkin AV, Korchikov ES, Dobrovol’skaya TG. Microbial communities of lichens. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717030134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Dubert J, Barja JL, Romalde JL. New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects. Front Microbiol 2017; 8:762. [PMID: 28515714 PMCID: PMC5413579 DOI: 10.3389/fmicb.2017.00762] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022] Open
Abstract
Hatcheries constitute nowadays the only viable solution to support the husbandry of bivalve molluscs due to the depletion and/or overexploitation of their natural beds. Hatchery activities include the broodstock conditioning and spawning, rearing larvae and spat, and the production of microalgae to feed all stages of the production cycle. However, outbreaks of disease continue to be the main bottleneck for successful larval and spat production, most of them caused by different representatives of the genus Vibrio. Therefore, attention must be paid on preventive and management measures that allow the control of such undesirable bacterial populations. The present review provides an updated picture of the recently characterized Vibrio species associated with disease of bivalve molluscs during early stages of development, including the controversial taxonomic affiliation of some of them and relevant advances in the knowledge of their virulence determinants. The problematic use of antibiotics, as well as its eco-friendly alternatives are also critically discussed.
Collapse
Affiliation(s)
- Javier Dubert
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Juan L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| |
Collapse
|
50
|
Torres M, Uroz S, Salto R, Fauchery L, Quesada E, Llamas I. HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family. Sci Rep 2017; 7:943. [PMID: 28424524 PMCID: PMC5430456 DOI: 10.1038/s41598-017-01176-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 11/09/2022] Open
Abstract
The screening of a metagenomic library of 250,000 clones generated from a hypersaline soil (Spain) allowed us to identify a single positive clone which confers the ability to degrade N-acyl homoserine lactones (AHLs). The sequencing of the fosmid revealed a 42,318 bp environmental insert characterized by 46 ORFs. The subcloning of these ORFs demonstrated that a single gene (hqiA) allowed AHL degradation. Enzymatic analysis using purified HqiA and HPLC/MS revealed that this protein has lactonase activity on a broad range of AHLs. The introduction of hqiA in the plant pathogen Pectobacterium carotovorum efficiently interfered with both the synthesis of AHLs and quorum-sensing regulated functions, such as swarming motility and the production of maceration enzymes. Bioinformatic analyses highlighted that HqiA showed no sequence homology with the known prototypic AHL lactonases or acylases, thus expanding the AHL-degrading enzymes with a new family related to the cysteine hydrolase (CHase) group. The complete sequence analysis of the fosmid showed that 31 ORFs out of the 46 identified were related to Deltaproteobacteria, whilst many intercalated ORFs presented high homology with other taxa. In this sense, hqiA appeared to be assigned to the Hyphomonas genus (Alphaproteobacteria), suggesting that horizontal gene transfer had occurred.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Stéphane Uroz
- UMR 1136 INRA-Université de Lorraine Interactions Arbres-Microorganismes, Centre INRA de Nancy, Champenoux, France
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Laure Fauchery
- UMR 1136 INRA-Université de Lorraine Interactions Arbres-Microorganismes, Centre INRA de Nancy, Champenoux, France
| | - Emilia Quesada
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain. .,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.
| |
Collapse
|