1
|
Gallichotte EN, Bashor L, Erbeck K, Croft L, Stache K, Long J, VandeWoude S, Johnson JC, Pabilonia KL, Ebel GD. SARS-CoV-2 outbreak in lions, tigers, and hyenas at Denver Zoo. mSphere 2025; 10:e0098924. [PMID: 39912638 PMCID: PMC11853051 DOI: 10.1128/msphere.00989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
In late 2019, SARS-CoV-2 spilled over from an animal host into humans, where it efficiently spread, resulting in the COVID-19 pandemic. Through both natural and experimental infections, we learned that many animal species are susceptible to SARS-CoV-2. Importantly, animals in close proximity to humans, including companion, farmed, and those at zoos and aquariums, became infected, and many studies demonstrated transmission to/from humans in these settings. In this study, we first review the literature of SARS-CoV-2 infections in tigers and lions and compare species, sex, age, virus and antibody detection assay, and types, frequency, and length of clinical signs, demonstrating broad heterogeneity among infections. We then describe a SARS-CoV-2 outbreak in lions, tigers, and hyenas at Denver Zoo in late 2021. Animals were tested for viral RNA (vRNA) for 4 months. Lions had significantly more vRNA in nasal swabs than both tigers and hyenas, and many individual lions experienced viral recrudescence after weeks of undetectable vRNA. Infectious virus was correlated with high levels of vRNA and was more likely to be detected earlier during infection. Four months post-infection, all tested animals generated robust neutralizing antibody titers. Animals were infected with Delta lineage AY.20 identical to a variant circulating at less than 1% in Colorado humans at that time, suggesting a single spillover event from an infected human spread within and between species housed at the zoo. Better understanding of epidemiology and susceptibility of SARS-CoV-2 infections in animals is critical to limit the current and future spread and protect animal and human health.IMPORTANCESurveillance and experimental testing have shown many animal species, including companion, wildlife, and conservatory, are susceptible to SARS-CoV-2. Early in the COVID-19 pandemic, big cats at zoological institutions were among the first documented cases of naturally infected animals; however, challenges in the ability to collect longitudinal samples in zoo animals have limited our understanding of SARS-CoV-2 kinetics and clearance in these settings. We measured SARS-CoV-2 infections over 4 months in lions, tigers, and hyenas at Denver Zoo and detected viral RNA, infectious virus, neutralizing antibodies, and recrudescence after initial clearance. We found lions had longer and higher levels of virus compared to the other species. All animals were infected by a rare viral lineage circulating in the human population, suggesting a single spillover followed by interspecies transmission. These data are important in better understanding natural SARS-CoV-2 spillover, spread, and infection kinetics within multiple species of zoo animals.
Collapse
Affiliation(s)
- Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Laura Bashor
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Katelyn Erbeck
- Veterinary Diagnostic Laboratories, Colorado State University, Colorado, Fort Collins, USA
| | | | | | | | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Kristy L. Pabilonia
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Veterinary Diagnostic Laboratories, Colorado State University, Colorado, Fort Collins, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Castillo AP, Miranda JVO, Fonseca PLC, Moreira RG, de Araújo E Santos LCG, Queiroz DC, Bonfim DM, Coelho CM, Lima PCS, Motta ROC, Tinoco HP, da Silveira JAG, Aguiar RS. SARS-CoV-2 surveillance in captive animals at the belo horizonte zoo, Minas Gerais, Brazil. Virol J 2024; 21:297. [PMID: 39563414 PMCID: PMC11575034 DOI: 10.1186/s12985-024-02505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The pandemic caused by SARS-CoV-2 has not only affected humans but also raised concerns about its transmission to wild animals, potentially creating natural reservoirs. Understanding these dynamics is critical for preventing future pandemics and developing control strategies. This study aims to investigate the presence of SARS-CoV-2 in wild mammals at the Belo Horizonte Zoo in Brazil, analyzing the virus's evolution and zoonotic potential. METHODS The study was conducted at the Belo Horizonte Zoo, Minas Gerais, Brazil, covering a diverse population of mammals. Oropharyngeal, rectal, and nasal swabs were collected from 47 captive animals between November 2021 and March 2023. SARS-CoV-2 presence was determined using RT-PCR, and positive samples were sequenced for phylogenetic analysis. Consensus genomes were classified using Pangolin and NextClade tools, and a maximum likelihood phylogeny was inferred using IQ-Tree. RESULTS Of the 47 animals tested, nine (19.1%) were positive for SARS-CoV-2. Positive samples included rectal, oropharyngeal, and nasal swabs, with the highest positivity in rectal samples. Three genomes were successfully sequenced, revealing two variants: VOC Alpha in a maned wolf (Chrysocyon brachyurus) and a fallow deer (Dama dama), and VOC Omicron in a western lowland gorilla (Gorilla gorilla gorilla). Phylogenetic analysis indicated potential human-to-animal transmission, with animal genomes clustering close to human samples from the same region. CONCLUSIONS This study highlights the presence of SARS-CoV-2 in various wild mammal species at the Belo Horizonte Zoo, emphasizing the virus's zoonotic potential and the complexity of interspecies transmission. The detection of different variants suggests ongoing viral evolution and adaptation in new hosts. Continuous monitoring and genomic surveillance of SARS-CoV-2 in wildlife are essential for understanding its transmission dynamics and preventing future zoonotic outbreaks. These findings underscore the need for integrated public health strategies that include wildlife monitoring to mitigate the risks posed by emerging infectious diseases.
Collapse
Affiliation(s)
- Anisleidy Pérez Castillo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Victor Oliveira Miranda
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Luize Camargos Fonseca
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rennan Garcias Moreira
- Centro de Laboratórios Multiusuários, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza Campos Guerra de Araújo E Santos
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego Menezes Bonfim
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlyle Mendes Coelho
- Fundação de Parques Municipais E Zoobotânica - FPMZB, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Herlandes Penha Tinoco
- Fundação de Parques Municipais E Zoobotânica - FPMZB, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Angélica Gonçalves da Silveira
- Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Renato Santana Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Bashor L, Gallichotte EN, Galvan M, Erbeck K, Croft L, Stache K, Stenglein M, Johnson JG, Pabilonia K, VandeWoude S. SARS-CoV-2 within-host population expansion, diversification and adaptation in zoo tigers, lions and hyenas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620075. [PMID: 39484504 PMCID: PMC11527109 DOI: 10.1101/2024.10.24.620075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
SARS-CoV-2 rapidly adapts to new hosts following cross-species transmission; this is highly relevant as novel within-host variants have emerged following infection of susceptible wild and domestic animal species. Furthermore, SARS-CoV-2 transmission from animals (e.g., white-tailed deer, mink, domestic cats, and others) back to humans has also been observed, documenting the potential of novel animal-derived variants to infect humans. We investigated SARS-CoV-2 evolution and host-specific adaptation during an outbreak in Amur tigers (Panthera tigris altaica), African lions (Panthera leo), and spotted hyenas (Crocuta crocuta) at Denver Zoo in late 2021. SARS-CoV-2 genomes from longitudinal samples collected from 16 individuals were evaluated for within-host variation and genomic signatures of selection. The outbreak was likely initiated by a single spillover of a rare Delta sublineage subsequently transmitted from tigers to lions to hyenas. Within-host virus populations rapidly expanded and diversified. We detected signatures of purifying and positive selection, including strong positive selection in hyenas and in the nucleocapsid (N) gene in all animals. Four candidate species-specific adaptive mutations were identified: N A254V in lions and hyenas, and ORF1a E1724D, spike T274I, and N P326L in hyenas. These results reveal accelerated SARS-CoV-2 adaptation following host shifts in three non-domestic species in daily contact with humans.
Collapse
Affiliation(s)
- Laura Bashor
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Michelle Galvan
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Colorado State University Veterinary Diagnostic Laboratories
| | | | | | - Mark Stenglein
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | | | - Sue VandeWoude
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
4
|
Gallichotte EN, Bashor L, Erbeck K, Croft L, Stache K, Long J, VandeWoude S, Johnson JG, Pabilonia KL, Ebel GD. SARS-CoV-2 outbreak in lions, tigers and hyenas at Denver Zoo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617443. [PMID: 39464021 PMCID: PMC11507794 DOI: 10.1101/2024.10.14.617443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In late 2019, SARS-CoV-2 spilled-over from an animal host into humans, where it efficiently spread, resulting in the COVID-19 pandemic. Through both natural and experimental infections, we learned that many animal species are susceptible to SARS-CoV-2. Importantly, animals in close proximity to humans, including companion, farmed, and those at zoos and aquariums, became infected, and many studies demonstrated transmission to/from humans in these settings. In this study, we first review the literature of SARS-CoV-2 infections in tigers and lions, and compare species, sex, age, virus and antibody detection assay, and types, frequency and length of clinical signs, demonstrating broad heterogeneity amongst infections. We then describe a SARS-CoV-2 outbreak in lions, tigers and hyenas at Denver Zoo in late 2021. Animals were tested for viral RNA (vRNA) for four months. Lions had significantly more viral RNA in nasal swabs than both tigers and hyenas, and many individual lions experienced viral recrudescence after weeks of undetectable vRNA. Infectious virus was correlated with high levels of vRNA and was more likely to be detected earlier during infection. Four months post-infection, all tested animals generated robust neutralizing antibody titers. Animals were infected with Delta lineage AY.20 identical to a variant circulating at less than 1% in Colorado humans at that time, suggesting a single spillover event from an infected human spread within and between species housed at the zoo. Better understanding of epidemiology and susceptibility of SARS-CoV-2 infections in animals is critical to limit the current and future spread and protect animal and human health.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | - Laura Bashor
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Veterinary Diagnostic Laboratories, Colorado State University
| | | | | | | | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Kristy L Pabilonia
- Department of Microbiology, Immunology and Pathology, Colorado State University
- Veterinary Diagnostic Laboratories, Colorado State University
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
5
|
Yaglom HD, Roth A, Alvarez C, Corbus E, Ghai RR, Ferguson S, Ritter JM, Hecht G, Rekant S, Engelthaler DM, Venkat H, Tygielski S. DETECTION OF SARS-COV-2 IN A SQUIRREL MONKEY ( SAIMIRI SCIUREUS): A ONE HEALTH INVESTIGATION AND RESPONSE. J Zoo Wildl Med 2024; 55:471-478. [PMID: 38875205 PMCID: PMC11247420 DOI: 10.1638/2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 06/16/2024] Open
Abstract
Through collaborative efforts, One Health partners have responded to outbreaks of COVID-19 among animals, including those in human care at zoos. Zoos have been faced with numerous challenges, including the susceptibility of many mammalian species, and therefore the need to heighten biosecurity measures rapidly. Robust One Health collaborations already exist in Arizona to address endemic and emerging zoonoses, but these have rarely included zoos. The pandemic shed light on this, and Arizona subsequently expanded its SARS-CoV-2 surveillance efforts to include zoo animals. Testing and epidemiologic support was provided to expedite the detection of and response to zoonotic SARS-CoV-2 infection in zoo animals, as well as to understand possible transmission events. Resulting from this program, SARS-CoV-2 was detected from a rectal swab collected from an 8-yr-old squirrel monkey (Saimiri sciureus) from a zoo in Southern Arizona. The animal had rapidly become ill with nonrespiratory symptoms and died in July 2022. Genomic sequencing from the swab revealed mutations consistent with the Omicron (BA.2) lineage. An epidemiologic investigation identified an animal caretaker in close proximity to the affected squirrel monkey who tested positive for COVID-19 the same day the squirrel monkey died. Critical One Health partners provided support to the zoo through engagement of local, state, and federal agencies. Necropsy and pathologic evaluation showed significant necrotizing colitis; the overall clinical and histopathological findings did not implicate SARS-CoV-2 infection alone as a causal or contributing factor in the squirrel monkey's illness and death. This report documents the first identification of SARS-CoV-2 in a squirrel monkey and highlights a successful and timely One Health investigation conducted through multisectoral collaboration.
Collapse
Affiliation(s)
- Hayley D Yaglom
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA,
| | | | | | | | - Ria R Ghai
- One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sylvia Ferguson
- Veterinary Diagnostic Pathology Center, Midwestern University, Glendale, AZ 85308, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Gavriella Hecht
- Arizona Department of Health Services, Office of Infectious Disease Control, Phoenix, AZ 85007, USA
| | - Steven Rekant
- Office of Interagency Coordination, United States Department of Agriculture, Animal and Plant Health Inspection Service, Riverdale, MD 20737, USA
| | - David M Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA
| | - Heather Venkat
- Arizona Department of Health Services, Office of Infectious Disease Control, Phoenix, AZ 85007, USA
- Center for Preparedness and Response, Career Epidemiology Field Officer Program, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | |
Collapse
|
6
|
Yang R, Han P, Han P, Li D, Zhao R, Niu S, Liu K, Li S, Tian WX, Gao GF. Molecular basis of hippopotamus ACE2 binding to SARS-CoV-2. J Virol 2024; 98:e0045124. [PMID: 38591877 PMCID: PMC11092335 DOI: 10.1128/jvi.00451-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide range of hosts, including hippopotami, which are semi-aquatic mammals and phylogenetically closely related to Cetacea. In this study, we characterized the binding properties of hippopotamus angiotensin-converting enzyme 2 (hiACE2) to the spike (S) protein receptor binding domains (RBDs) of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs). Furthermore, the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 PT S protein complexed with hiACE2 was resolved. Structural and mutational analyses revealed that L30 and F83, which are specific to hiACE2, played a crucial role in the hiACE2/SARS-CoV-2 RBD interaction. In addition, comparative and structural analysis of ACE2 orthologs suggested that the cetaceans may have the potential to be infected by SARS-CoV-2. These results provide crucial molecular insights into the susceptibility of hippopotami to SARS-CoV-2 and suggest the potential risk of SARS-CoV-2 VOCs spillover and the necessity for surveillance. IMPORTANCE The hippopotami are the first semi-aquatic artiodactyl mammals wherein SARS-CoV-2 infection has been reported. Exploration of the invasion mechanism of SARS-CoV-2 will provide important information for the surveillance of SARS-CoV-2 in hippopotami, as well as other semi-aquatic mammals and cetaceans. Here, we found that hippopotamus ACE2 (hiACE2) could efficiently bind to the RBDs of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs) and facilitate the transduction of SARS-CoV-2 PT and VOCs pseudoviruses into hiACE2-expressing cells. The cryo-EM structure of the SARS-CoV-2 PT S protein complexed with hiACE2 elucidated a few critical residues in the RBD/hiACE2 interface, especially L30 and F83 of hiACE2 which are unique to hiACE2 and contributed to the decreased binding affinity to PT RBD compared to human ACE2. Our work provides insight into cross-species transmission and highlights the necessity for monitoring host jumps and spillover events on SARS-CoV-2 in semi-aquatic/aquatic mammals.
Collapse
Affiliation(s)
- Ruirui Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengcheng Han
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runchu Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - George Fu Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
7
|
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet Sci 2024; 11:78. [PMID: 38393096 PMCID: PMC10893009 DOI: 10.3390/vetsci11020078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases. Clinical symptoms tend to be mild across taxa; although, certain species exhibit increased susceptibility to disease. A variety of diagnostic tools are available, allowing for initial diagnostics and for the monitoring of infectious risk. Whilst supportive therapy proves sufficient in most cases, monoclonal antibody therapy has emerged as a promising additional treatment option. Effective transmission of SARS-CoV-2 in some species raises concerns over potential spillover and the formation of reservoirs. The occurrence of SARS-CoV-2 in a variety of animal species may contribute to the emergence of variants of concern due to altered viral evolutionary constraints. Consequently, this review emphasizes the need for effective biosecurity measures and surveillance strategies to prevent and control SARS-CoV-2 infections in zoological institutions.
Collapse
Affiliation(s)
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
8
|
Miller MR, Braun E, Ip HS, Tyson GH. Domestic and wild animal samples and diagnostic testing for SARS-CoV-2. Vet Q 2023; 43:1-11. [PMID: 37779468 PMCID: PMC10614713 DOI: 10.1080/01652176.2023.2263864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
From the first cases in 2019, COVID-19 infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have resulted in over 6 million human deaths in a worldwide pandemic. SARS-CoV-2 is commonly spread from human to human through close contact and is capable of infecting both humans and animals. Worldwide, there have been over 675 animal outbreaks reported that resulted in over 2000 animal infections including domestic and wild animals. As the role of animal infections in the transmission, pathogenesis, and evolution of SARS-CoV-2 is still unfolding, accurate and reliable animal diagnostic tests are critical to aid in managing both human and animal health. This review highlights key animal samples and the three main diagnostic approaches used for animal testing: PCR, serology, and Next Generation Sequencing. Diagnostic results help inform (often difficult) clinical decision-making, but also possible ways to mitigate spread among pets, food supplies, or wildlife. A One Health approach has been key to monitoring the SARS-CoV-2 pandemic, as consistent human-animal interactions can lead to novel variants. Having multiple animal diagnostic tests for SARS-CoV-2 available is critical to ensure human, animal, and environmental health.
Collapse
Affiliation(s)
- Megan R. Miller
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Elias Braun
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
- School of Veterinary Medicine, University of PA, Philadelphia, PA, USA
| | - Hon S. Ip
- National Wildlife Health Center, U.S. Geological Survey, Madison, WI, USA
| | - Gregory H. Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
9
|
Liu B, Zhao P, Xu P, Han Y, Wang Y, Chen L, Wu Z, Yang J. A comprehensive dataset of animal-associated sarbecoviruses. Sci Data 2023; 10:681. [PMID: 37805633 PMCID: PMC10560225 DOI: 10.1038/s41597-023-02558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023] Open
Abstract
Zoonotic spillover of sarbecoviruses (SarbeCoVs) from non-human animals to humans under natural conditions has led to two large-scale pandemics, the severe acute respiratory syndrome (SARS) pandemic in 2003 and the ongoing COVID-19 pandemic. Knowledge of the genetic diversity, geographical distribution, and host specificity of SarbeCoVs is therefore of interest for pandemic surveillance and origin tracing of SARS-CoV and SARS-CoV-2. This study presents a comprehensive repository of publicly available animal-associated SarbeCoVs, covering 1,535 viruses identified from 63 animal species distributed in 43 countries worldwide (as of February 14,2023). Relevant meta-information, such as host species, sampling time and location, was manually curated and included in the dataset to facilitate further research on the potential patterns of viral diversity and ecological characteristics. In addition, the dataset also provides well-annotated sequence sets of receptor-binding domains (RBDs) and receptor-binding motifs (RBMs) for the scientific community to highlight the potential determinants of successful cross-species transmission that could be aid in risk estimation and strategic design for future emerging infectious disease control and prevention.
Collapse
Affiliation(s)
- Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| |
Collapse
|
10
|
Poonsuk K, Loy D, Birn R, Buss B, Donahue M, Nordeen T, Sinclair K, Meduna L, Brodersen B, Loy JD. DETECTION OF SARS-COV-2 NEUTRALIZING ANTIBODIES IN RETROPHARYNGEAL LYMPH NODE EXUDATES OF WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS) FROM NEBRASKA, USA. J Wildl Dis 2023; 59:702-708. [PMID: 37768779 PMCID: PMC10913095 DOI: 10.7589/jwd-d-23-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/30/2023]
Abstract
Disease surveillance testing for emerging zoonotic pathogens in wildlife is a key component in understanding the epidemiology of these agents and potential risk to human populations. Recent emergence of SARS-CoV-2 in humans, and subsequent detection of this virus in wildlife, highlights the need for developing new One Health surveillance strategies. We used lymph node exudate, a sample type that is routinely collected in hunter-harvested white-tailed deer (WTD, Odocoileus virginianus) for surveillance of chronic wasting disease, to assess anti-SARS-CoV-2 neutralizing antibodies. A total of 132 pairs of retropharyngeal lymph nodes collected from Nebraska WTD harvested in Nebraska, US, in 2019 (pre-SARS-CoV-2 pandemic) and 2021 (post-SARS-CoV-2 pandemic) were tested for SARS-CoV-2 with reverse transcription PCR. Thereafter, exudates obtained from these same lymph nodes were tested for SARS-CoV-2 neutralizing antibodies using a surrogate virus neutralization test. Neutralizing antibodies were detected in the exudates with high diagnostic specificity (100% at proposed cutoff of 40% inhibition). Application of this testing approach to samples collected for use in other disease surveillance activities may provide additional epidemiological data on SARS-CoV-2 exposure, and there is further potential to apply this sample type to detection of other pathogens of interest.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Duan Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Rachael Birn
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Council State and Territorial Epidemiologists, 2635 Century Pkwy NE no. 700, Atlanta, Georgia 30345, USA
| | - Bryan Buss
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Division of State and Local Readiness, Center for Preparedness and Response, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, USA
| | - Matthew Donahue
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
| | - Todd Nordeen
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Kylie Sinclair
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Luke Meduna
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Bruce Brodersen
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - John Dustin Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| |
Collapse
|
11
|
Bartlett SL, Koeppel KN, Cushing AC, Bellon HF, Almagro V, Gyimesi ZS, Thies T, Hård T, Denitton D, Fox KZ, Vodička R, Wang L, Calle PP. GLOBAL RETROSPECTIVE REVIEW OF SEVERE ACUTE RESPIRATORY SYNDROME SARS COV-2 INFECTIONS IN NONDOMESTIC FELIDS: MARCH 2020-FEBRUARY 2021. J Zoo Wildl Med 2023; 54:607-616. [PMID: 37817628 DOI: 10.1638/2022-0141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 10/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in nondomestic felids have been documented in North America, South America, Africa, Europe, and Asia. Between March 2020 and February 2021, at nine institutions across three continents, infection was confirmed in 16 tigers (Panthera tigris), 14 lions (Panthera leo), three snow leopards (Panthera uncia), one cougar (Puma concolor), and one Amur leopard cat (Prionailurus bengalensis euptilurus) ranging from 2 to 21 yr old (average, 10 yr). Infection was suspected in an additional 12 tigers, 4 lions, and 9 cougars. Clinical signs (in order of most to least common) included coughing, ocular and/or nasal discharge, wheezing, sneezing, decreased appetite, lethargy, diarrhea, and vomiting. Most felids recovered uneventfully, but one geriatric tiger with comorbidities developed severe dyspnea and neurologic signs necessitating euthanasia. Clinical signs lasted 1-19 d (average, 8 d); one tiger was asymptomatic. Infection was confirmed by various methods, including antigen tests and/or polymerase chain reaction (PCR) of nasal or oral swabs, tracheal wash, and feces, or virus isolation from feces or tracheal wash. Infection status and resolution were determined by testing nasal swabs from awake animals, fecal PCR, and observation of clinical signs. Shedding of fecal viral RNA was significantly longer than duration of clinical signs. Postinfection seropositivity was confirmed by four institutions including 11 felids (5 lions, 6 tigers). In most instances, asymptomatic or presymptomatic keepers were the presumed or confirmed source of infection, although in some instances the infection source remains uncertain. Almost all infections occurred despite using cloth facemasks and disposable gloves when in proximity to the felids and during food preparation. Although transmission may have occurred during momentary lapses in personal protective equipment compliance, it seems probable that cloth masks are insufficient at preventing transmission of SARS-CoV-2 from humans to nondomestic felids. Surgical or higher grade masks may be warranted when working with nondomestic felids.
Collapse
Affiliation(s)
- Susan L Bartlett
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY 10460, USA,
| | - Katja N Koeppel
- Department of Production Animal Studies and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Andrew C Cushing
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | - Tammy Thies
- The Wildcat Sanctuary, Sandstone, MN 55072, USA
| | | | | | - Kami Z Fox
- Fort Wayne Children's Zoo, Fort Wayne, IN 46808, USA
| | - Roman Vodička
- Zoologická zahrada hl. m. Prahy, Prague Zoo, 171 00 Praha 7-Trója, Czech Republic
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Paul P Calle
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY 10460, USA
| |
Collapse
|
12
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
13
|
Correia J, de Lima M, Silva R, Anselmo D, Vasconcelos M, Viswanathan G. Multifractal analysis of coronavirus sequences. CHAOS, SOLITONS & FRACTALS 2023; 174:113843. [DOI: 10.1016/j.chaos.2023.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Porter AF, Purcell DFJ, Howden BP, Duchene S. Evolutionary rate of SARS-CoV-2 increases during zoonotic infection of farmed mink. Virus Evol 2023; 9:vead002. [PMID: 36751428 PMCID: PMC9896948 DOI: 10.1093/ve/vead002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/11/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.
Collapse
Affiliation(s)
- Ashleigh F Porter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
16
|
Anderson BD, Barnes AN, Umar S, Guo X, Thongthum T, Gray GC. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:25-87. [DOI: 10.1007/978-3-031-27164-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Carmona G, Burgos T, Barrientos R, Martin-Garcia S, Muñoz C, Sánchez-Sánchez M, Hernández-Hernández J, Palacín C, Quiles P, Moraga-Fernández A, Bandeira V, Virgós E, Gortázar C, Fernandez de Mera IG. Lack of SARS-CoV-2 RNA evidence in the lungs from wild European polecats ( Mustela putorius) from Spain. EUR J WILDLIFE RES 2023; 69:33. [PMID: 36937052 PMCID: PMC10006546 DOI: 10.1007/s10344-023-01662-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
Data on SARS-CoV-2 infection in wildlife species is limited. The high prevalences found in mustelid species such as free-ranging American minks (Neovison vison) and domestic ferrets (Mustela putorius furo) justify the study of this virus in the closely related autochthonous free-ranging European polecat (Mustela putorius). We analysed lung samples from 48 roadkilled polecats collected when the human infection reached its highest levels in Spain (2020-2021). We did not detect infections by SARS-CoV-2; however, surveillance in wild carnivores and particularly in mustelids is still warranted, due to their susceptibility to this virus.
Collapse
Affiliation(s)
- Guillermo Carmona
- Road Ecology Lab, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Tamara Burgos
- Department of Biology and Geology, King Juan Carlos University, Madrid, Spain
| | - Rafael Barrientos
- Road Ecology Lab, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Sara Martin-Garcia
- Department of Biology and Geology, King Juan Carlos University, Madrid, Spain
| | - Clara Muñoz
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ciudad Real, Spain
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Marta Sánchez-Sánchez
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Javier Hernández-Hernández
- Road Ecology Lab, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos Palacín
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Pablo Quiles
- Road Ecology Lab, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Alberto Moraga-Fernández
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Victor Bandeira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Emilio Virgós
- Department of Biology and Geology, King Juan Carlos University, Madrid, Spain
| | - Christian Gortázar
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Isabel G. Fernandez de Mera
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ciudad Real, Spain
| |
Collapse
|
18
|
Li R, Shao G, Xie Z, Hu Z, Feng K, He J, Wang H, Fu J, Zhang X, Xie Q. Construction and Immunogenicity of a Recombinant Pseudorabies Virus Expressing SARS-CoV-2-S and SARS-CoV-2-N. Front Vet Sci 2022; 9:920087. [PMID: 35982925 PMCID: PMC9380597 DOI: 10.3389/fvets.2022.920087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Coronavirus (CoV) is an important pathogen of humans and animals, which can infect humans or animals through the respiratory mucosal route. Syndrome coronavirus 2 (SARS-CoV-2) is quite similar to syndrome coronavirus (SARS-CoV) with the same receptor, angiotensin-converting enzyme 2 (ACE2). The S and N proteins are the most important protective antigens of the SARS-CoV-2. The S protein on the viral membrane mediates the virus attachment with the host cells, and the N protein is the most abundant expression during infection. In this study, the recombinant viruses expressing the S and N proteins of SARS-CoV-2 were successfully constructed by Red/ET recombinant technology using Pseudorabies virus (PRV) strain Bartha-K61 as a vector. Genetic stability and growth kinetics analysis showed that the recombinant viruses rPRV-SARS-CoV-2-S and rPRV-SARS-CoV-2-N had similar genetic stability and proliferation characteristics to the parental PRV. The immunoassay results showed that mice immunized with recombinant viruses could produce total IgG antibodies. Therefore, PRV is feasible and promising as a viral vector to express SARS-CoV-2-S and SARS-CoV-2-N genes. This study can provide a reference for future research on live vector vaccines for domestic animals, pets, and wild animals.
Collapse
Affiliation(s)
- Ruoying Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zezhong Hu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahui He
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Jinan, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Jinan, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Qingmei Xie
| |
Collapse
|
19
|
Fagre AC, Cohen LE, Eskew EA, Farrell M, Glennon E, Joseph MB, Frank HK, Ryan SJ, Carlson CJ, Albery GF. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. Ecol Lett 2022; 25:1534-1549. [PMID: 35318793 PMCID: PMC9313783 DOI: 10.1111/ele.14003] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
The SARS-CoV-2 pandemic has led to increased concern over transmission of pathogens from humans to animals, and its potential to threaten conservation and public health. To assess this threat, we reviewed published evidence of human-to-wildlife transmission events, with a focus on how such events could threaten animal and human health. We identified 97 verified examples, involving a wide range of pathogens; however, reported hosts were mostly non-human primates or large, long-lived captive animals. Relatively few documented examples resulted in morbidity and mortality, and very few led to maintenance of a human pathogen in a new reservoir or subsequent "secondary spillover" back into humans. We discuss limitations in the literature surrounding these phenomena, including strong evidence of sampling bias towards non-human primates and human-proximate mammals and the possibility of systematic bias against reporting human parasites in wildlife, both of which limit our ability to assess the risk of human-to-wildlife pathogen transmission. We outline how researchers can collect experimental and observational evidence that will expand our capacity for risk assessment for human-to-wildlife pathogen transmission.
Collapse
Affiliation(s)
- Anna C. Fagre
- Department of Microbiology, Immunology, and PathologyCollege of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
- Bat Health FoundationFort CollinsColoradoUSA
| | - Lily E. Cohen
- Icahn School of Medicine at Mount SinaiNew YorkNew York CityUSA
| | - Evan A. Eskew
- Department of BiologyPacific Lutheran UniversityTacomaWashingtonUSA
| | - Max Farrell
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Emma Glennon
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - Hannah K. Frank
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisinaUSA
| | - Sadie J. Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab GroupDepartment of GeographyUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Colin J Carlson
- Center for Global Health Science and SecurityGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Gregory F. Albery
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
20
|
Mathavarajah S, Melin A, Dellaire G. SARS-CoV-2 and wastewater: What does it mean for non-human primates? Am J Primatol 2022; 84:e23340. [PMID: 34662463 PMCID: PMC8646409 DOI: 10.1002/ajp.23340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
In most of our lifetimes, we have not faced a global pandemic such as the novel coronavirus disease 2019. The world has changed as a result. However, it is not only humans who are affected by a pandemic of this scale. Our closest relatives, the non-human primates (NHPs) who encounter researchers, sanctuary/zoo employees, and tourists, are also potentially at risk of contracting the virus from humans due to similar genetic susceptibility. "Anthropozoonosis"-the transmission of diseases from humans to other species-has occurred historically, resulting in infection of NHPs with human pathogens that have led to disastrous outbreaks. Recent studies have assessed the susceptibility of NHPs and predict that catarrhine primates and some lemurs are potentially highly susceptible to infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. There is accumulating evidence that a new factor to consider with the spread of the virus is fecal-oral transmission. The virus has been detected in the watersheds of countries with underdeveloped infrastructure where raw sewage enters the environment directly without processing. This may expose NHPs, and other animals, to SARS-CoV-2 through wastewater contact. Here, we address these concerns and discuss recent evidence. Overall, we suggest that the risk of transmission of SARS-CoV-2 via wastewater is low. Nonetheless, tracking of viral RNA in wastewater does provide a unique testing approach to help protect NHPs at zoos and wildlife sanctuaries. A One Health approach going forward is perhaps the best way to protect these animals from a novel virus, the same way that we would protect ourselves.
Collapse
Affiliation(s)
| | - Amanda Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Graham Dellaire
- Department of Pathology, Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Biochemistry and Molecular Biology, Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
21
|
COVID-19: A Veterinary and One Health Perspective. J Indian Inst Sci 2022; 102:689-709. [PMID: 35968231 PMCID: PMC9364302 DOI: 10.1007/s41745-022-00318-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/21/2022] [Indexed: 10/30/2022]
Abstract
Interface with animals has been responsible for the occurrence of a major proportion of human diseases for the past several decades. Recent outbreaks of respiratory, haemorrhagic, encephalitic, arthropod-borne and other viral diseases have underlined the role of animals in the transmission of pathogens to humans. The on-going coronavirus disease-2019 (COVID-19) pandemic is one among them and is thought to have originated from bats and jumped to humans through an intermediate animal host. Indeed, the aetiology, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect and cause disease in cats, ferrets and minks, as well as be transmitted from one animal to another. The seriousness of the pandemic along with the zoonotic origin of the virus has been a red alert on the critical need for collaboration and cooperation among human and animal health professionals, as well as stakeholders from various other disciplines that study planetary health parameters and the well-being of the biosphere. It is therefore imminent that One Health principles are applied across the board for human infectious diseases so that we can be better prepared for future zoonotic disease outbreaks and pandemics.
Collapse
|
22
|
Common SM, Shadbolt T, Walsh K, Sainsbury AW. The risk from SARS-CoV-2 to bat species in england and mitigation options for conservation field workers. Transbound Emerg Dis 2022; 69:694-705. [PMID: 33570837 PMCID: PMC8014681 DOI: 10.1111/tbed.14035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 01/08/2023]
Abstract
The newly evolved coronavirus, SARS-CoV-2, which has precipitated a global COVID-19 pandemic among the human population, has been shown to be associated with disease in captive wild animals. Bats (Chiroptera) have been shown to be susceptible to experimental infection and therefore may be at risk from disease when in contact with infected people. Numerous conservation fieldwork activities are undertaken across the United Kingdom bringing potentially infected people into close proximity with bats. In this study, we analysed the risks of disease from SARS-CoV-2 to free-living bat species in England through fieldworkers undertaking conservation activities and ecological survey work, using a qualitative, transparent method devised for assessing threats of disease to free-living wild animals. The probability of exposure of bats to SARS-CoV-2 through fieldwork activities was estimated to range from negligible to high, depending on the proximity between bats and people during the activity. The likelihood of infection after exposure was estimated to be high and the probability of dissemination of the virus through bat populations medium. The likelihood of clinical disease occurring in infected bats was low, and therefore, the ecological, economic and environmental consequences were predicted to be low. The overall risk estimation was low, and therefore, mitigation measures are advisable. There is uncertainty in the pathogenicity of SARS-CoV-2 in bats and therefore in the risk estimation. Disease risk management measures are suggested, including the use of personal protective equipment, good hand hygiene and following the existing government advice. The disease risk analysis should be updated as information on the epidemiology of SARS-CoV-2 and related viruses in bats improves. The re-analysis may be informed by health surveillance of free-living bats.
Collapse
Affiliation(s)
| | - Tammy Shadbolt
- Institute of ZoologyZoological Society of LondonLondonUK
| | | | | |
Collapse
|
23
|
Jacob Machado D, White RA, Kofsky J, Janies DA. Fundamentals of genomic epidemiology, lessons learned from the coronavirus disease 2019 (COVID-19) pandemic, and new directions. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2021; 1:e60. [PMID: 36168505 PMCID: PMC9495640 DOI: 10.1017/ash.2021.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 04/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic was one of the significant causes of death worldwide in 2020. The disease is caused by severe acute coronavirus syndrome (SARS) coronavirus 2 (SARS-CoV-2), an RNA virus of the subfamily Orthocoronavirinae related to 2 other clinically relevant coronaviruses, SARS-CoV and MERS-CoV. Like other coronaviruses and several other viruses, SARS-CoV-2 originated in bats. However, unlike other coronaviruses, SARS-CoV-2 resulted in a devastating pandemic. The SARS-CoV-2 pandemic rages on due to viral evolution that leads to more transmissible and immune evasive variants. Technology such as genomic sequencing has driven the shift from syndromic to molecular epidemiology and promises better understanding of variants. The COVID-19 pandemic has exposed critical impediments that must be addressed to develop the science of pandemics. Much of the progress is being applied in the developed world. However, barriers to the use of molecular epidemiology in low- and middle-income countries (LMICs) remain, including lack of logistics for equipment and reagents and lack of training in analysis. We review the molecular epidemiology literature to understand its origins from the SARS epidemic (2002-2003) through influenza events and the current COVID-19 pandemic. We advocate for improved genomic surveillance of SARS-CoV and understanding the pathogen diversity in potential zoonotic hosts. This work will require training in phylogenetic and high-performance computing to improve analyses of the origin and spread of pathogens. The overarching goals are to understand and abate zoonosis risk through interdisciplinary collaboration and lowering logistical barriers.
Collapse
Affiliation(s)
- Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| | - Richard Allen White
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
- University of North Carolina at Charlotte, North Carolina Research Campus (NCRC), Kannapolis, North Carolina
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| | - Daniel A. Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| |
Collapse
|
24
|
Sharun K, Dhama K, Pawde AM, Gortázar C, Tiwari R, Bonilla-Aldana DK, Rodriguez-Morales AJ, de la Fuente J, Michalak I, Attia YA. SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications. Vet Q 2021; 41:181-201. [PMID: 33892621 PMCID: PMC8128218 DOI: 10.1080/01652176.2021.1921311] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously 2019-nCoV) is suspected of having originated in 2019 in China from a coronavirus infected bat of the genus Rhinolophus. Following the initial emergence, possibly facilitated by a mammalian bridge host, SARS-CoV-2 is currently transmitted across the globe via efficient human-to-human transmission. Results obtained from experimental studies indicate that animal species such as cats, ferrets, raccoon dogs, cynomolgus macaques, rhesus macaques, white-tailed deer, rabbits, Egyptian fruit bats, and Syrian hamsters are susceptible to SARS-CoV-2 infection, and that cat-to-cat and ferret-to-ferret transmission can take place via contact and air. However, natural infections of SARS-CoV-2 have been reported only in pet dogs and cats, tigers, lions, snow leopards, pumas, and gorillas at zoos, and farmed mink and ferrets. Even though human-to-animal spillover has been reported at several instances, SARS-CoV-2 transmission from animals-to-humans has only been reported from mink-to-humans in mink farms. Following the rapid transmission of SARS-CoV-2 within the mink population, a new mink-associated SARS-CoV-2 variant emerged that was identified in both humans and mink. The increasing reports of SARS-CoV-2 in carnivores indicate the higher susceptibility of animal species belonging to this order. The sporadic reports of SARS-CoV-2 infection in domestic and wild animal species require further investigation to determine if SARS-CoV-2 or related Betacoronaviruses can get established in kept, feral or wild animal populations, which may eventually act as viral reservoirs. This review analyzes the current evidence of SARS-CoV-2 natural infection in domestic and wild animal species and their possible implications on public health.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Abhijit M. Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Christian Gortázar
- SaBio IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-Universidad de Castilla-La Mancha), Ciudad Real, Spain
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - D. Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigacion BIOECOS, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Faculty of Health Sciences, Public Health and Infection Research Group, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Public Health and Infection Research Group, Universidad Tecnologica de Pereira, Pereira, Colombia
- Faculty of Medicine, Grupo de Investigacion Biomedicina, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Colombia
- School of Medicine, Universidad Privada Franz Tamayo, (UNIFRANZ), Cochabamba, Bolivia
| | - José de la Fuente
- SaBio IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-Universidad de Castilla-La Mancha), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Youssef A. Attia
- Faculty of Environmental Sciences, Department of Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Agriculture, Animal and Poultry Production Department, Damanhour University, Damanhour, Egypt
| |
Collapse
|
25
|
Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain. Biochem J 2021; 478:3671-3684. [PMID: 34558627 DOI: 10.1042/bcj20200908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
COVID-19, the clinical syndrome caused by the SARS-CoV-2 virus, has rapidly spread globally causing hundreds of millions of infections and over two million deaths. The potential animal reservoirs for SARS-CoV-2 are currently unknown, however sequence analysis has provided plausible potential candidate species. SARS-CoV-2 binds to the angiotensin I converting enzyme 2 (ACE2) to enable its entry into host cells and establish infection. We analyzed the binding surface of ACE2 from several important animal species to begin to understand the parameters for the ACE2 recognition by the SARS-CoV-2 spike protein receptor binding domain (RBD). We employed Shannon entropy analysis to determine the variability of ACE2 across its sequence and particularly in its RBD interacting region, and assessed differences between various species' ACE2 and human ACE2. Recombinant ACE2 from human, hamster, horseshoe bat, cat, ferret, and cow were evaluated for RBD binding. A gradient of binding affinities were seen where human and hamster ACE2 were similarly in the low nanomolar range, followed by cat and cow. Surprisingly, horseshoe bat (Rhinolophus sinicus) and ferret (Mustela putorius) ACE2s had poor binding activity compared with the other species' ACE2. The residue differences and binding properties between the species' variants provide a framework for understanding ACE2-RBD binding and virus tropism.
Collapse
|
26
|
Goryoka GW, Cossaboom CM, Gharpure R, Dawson P, Tansey C, Rossow J, Mrotz V, Rooney J, Torchetti M, Loiacono CM, Killian ML, Jenkins-Moore M, Lim A, Poulsen K, Christensen D, Sweet E, Peterson D, Sangster AL, Young EL, Oakeson KF, Taylor D, Price A, Kiphibane T, Klos R, Konkle D, Bhattacharyya S, Dasu T, Chu VT, Lewis NM, Queen K, Zhang J, Uehara A, Dietrich EA, Tong S, Kirking HL, Doty JB, Murrell LS, Spengler JR, Straily A, Wallace R, Barton Behravesh C. One Health Investigation of SARS-CoV-2 Infection and Seropositivity among Pets in Households with Confirmed Human COVID-19 Cases-Utah and Wisconsin, 2020. Viruses 2021; 13:1813. [PMID: 34578394 PMCID: PMC8472995 DOI: 10.3390/v13091813] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 67% of U.S. households have pets. Limited data are available on SARS-CoV-2 in pets. We assessed SARS-CoV-2 infection in pets during a COVID-19 household transmission investigation. Pets from households with ≥1 person with laboratory-confirmed COVID-19 were eligible for inclusion from April-May 2020. We enrolled 37 dogs and 19 cats from 34 households. All oropharyngeal, nasal, and rectal swabs tested negative by rRT-PCR; one dog's fur swabs (2%) tested positive by rRT-PCR at the first sampling. Among 47 pets with serological results, eight (17%) pets (four dogs, four cats) from 6/30 (20%) households had detectable SARS-CoV-2 neutralizing antibodies. In households with a seropositive pet, the proportion of people with laboratory-confirmed COVID-19 was greater (median 79%; range: 40-100%) compared to households with no seropositive pet (median 37%; range: 13-100%) (p = 0.01). Thirty-three pets with serologic results had frequent daily contact (≥1 h) with the index patient before the person's COVID-19 diagnosis. Of these 33 pets, 14 (42%) had decreased contact with the index patient after diagnosis and none were seropositive; of the 19 (58%) pets with continued contact, four (21%) were seropositive. Seropositive pets likely acquired infection after contact with people with COVID-19. People with COVID-19 should restrict contact with pets and other animals.
Collapse
Affiliation(s)
- Grace W. Goryoka
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Caitlin M. Cossaboom
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Radhika Gharpure
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Patrick Dawson
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Cassandra Tansey
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - John Rossow
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Victoria Mrotz
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Jane Rooney
- Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, 2150 Centre Avenue, Bldg B., Fort Collins, CO 80526, USA;
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010, USA; (M.T.); (C.M.L.); (M.L.K.); (M.J.-M.)
| | - Christina M. Loiacono
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010, USA; (M.T.); (C.M.L.); (M.L.K.); (M.J.-M.)
| | - Mary L. Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010, USA; (M.T.); (C.M.L.); (M.L.K.); (M.J.-M.)
| | - Melinda Jenkins-Moore
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010, USA; (M.T.); (C.M.L.); (M.L.K.); (M.J.-M.)
| | - Ailam Lim
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, 445 Easterday Ln, Madison, WI 53706, USA; (A.L.); (K.P.); (D.C.); (E.S.)
| | - Keith Poulsen
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, 445 Easterday Ln, Madison, WI 53706, USA; (A.L.); (K.P.); (D.C.); (E.S.)
| | - Dan Christensen
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, 445 Easterday Ln, Madison, WI 53706, USA; (A.L.); (K.P.); (D.C.); (E.S.)
| | - Emma Sweet
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, 445 Easterday Ln, Madison, WI 53706, USA; (A.L.); (K.P.); (D.C.); (E.S.)
| | - Dallin Peterson
- Utah Department of Health, 288 N 1460 W, Salt Lake City, UT 84116, USA; (D.P.); (A.L.S.); (E.L.Y.); (K.F.O.)
| | - Anna L. Sangster
- Utah Department of Health, 288 N 1460 W, Salt Lake City, UT 84116, USA; (D.P.); (A.L.S.); (E.L.Y.); (K.F.O.)
| | - Erin L. Young
- Utah Department of Health, 288 N 1460 W, Salt Lake City, UT 84116, USA; (D.P.); (A.L.S.); (E.L.Y.); (K.F.O.)
| | - Kelly F. Oakeson
- Utah Department of Health, 288 N 1460 W, Salt Lake City, UT 84116, USA; (D.P.); (A.L.S.); (E.L.Y.); (K.F.O.)
| | - Dean Taylor
- Utah Department of Agriculture and Food, 350 N Redwood Rd, Salt Lake City, UT 84116, USA; (D.T.); (A.P.)
| | - Amanda Price
- Utah Department of Agriculture and Food, 350 N Redwood Rd, Salt Lake City, UT 84116, USA; (D.T.); (A.P.)
| | - Tair Kiphibane
- Salt Lake County Health Department, 788 Woodoak Ln, Murray, UT 84107, USA;
| | - Rachel Klos
- Wisconsin Department of Health Services, 1 W Wilson St, Madison, WI 53703, USA;
| | - Darlene Konkle
- Wisconsin Department of Agriculture, Trade and Consumer Protection, 2811 Agriculture Dr, Madison, WI 53718, USA;
| | - Sanjib Bhattacharyya
- City of Milwaukee Health Department Laboratory, 841 N Broadway, Milwaukee, WI 53202, USA; (S.B.); (T.D.)
| | - Trivikram Dasu
- City of Milwaukee Health Department Laboratory, 841 N Broadway, Milwaukee, WI 53202, USA; (S.B.); (T.D.)
| | - Victoria T. Chu
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Nathaniel M. Lewis
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Krista Queen
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Jing Zhang
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Anna Uehara
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Elizabeth A. Dietrich
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Suxiang Tong
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Hannah L. Kirking
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Jeffrey B. Doty
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Laura S. Murrell
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Jessica R. Spengler
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Anne Straily
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Ryan Wallace
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| | - Casey Barton Behravesh
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (C.M.C.); (R.G.); (P.D.); (C.T.); (J.R.); (V.M.); (V.T.C.); (N.M.L.); (K.Q.); (J.Z.); (A.U.); (E.A.D.); (S.T.); (H.L.K.); (J.B.D.); (L.S.M.); (J.R.S.); (A.S.); (R.W.); (C.B.B.)
| |
Collapse
|
27
|
Jara LM, Ferradas C, Schiaffino F, Sánchez-Carrión C, Martínez-Vela A, Ulloa A, Isasi-Rivas G, Montalván A, Sarmiento LG, Fernández M, Zimic M. Evidence of neutralizing antibodies against SARS-CoV-2 in domestic cats living with owners with a history of COVID-19 in Lima - Peru. One Health 2021; 13:100318. [PMID: 34462726 PMCID: PMC8388143 DOI: 10.1016/j.onehlt.2021.100318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 can infect a variety of wild and domestic animals worldwide. Of these, domestic cats are highly susceptible species and potential viral reservoirs. As such, it is important to investigate disease exposure in domestic cats in areas with active community transmission and high disease prevalence. In this report we demonstrate the presence of serum neutralizing antibodies against the receptor binding-domain (RBD) of the SARS-CoV-2 in cats whose owners had been infected with SARS-CoV-2 in Lima, Peru, using a commercial competitive ELISA SARS-CoV-2 Surrogate Virus Neutralization Test. Out of 41 samples, 17.1% (7/41) and 31.7% (13/41) were positive, using the cut-off inhibition value of 30% and 20%, respectively. Not all cats living in a single house had detectable neutralizing antibodies showing heterogenous exposure and immunity among cohabiting animals. This is the first report of SARS-COV-2 exposure of domestic cats in Lima, Peru. Further studies are required to ascertain the prevalence of SARS-COV-2 exposure among domestic cats.
Collapse
Affiliation(s)
- Luis M Jara
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cusi Ferradas
- Unidad de Investigación en Enfermedades Emergentes y Cambio Climático (Emerge), Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Schiaffino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | | | | | | | | | - Mirko Zimic
- Farmacológicos Veterinarios (FARVET), Chincha, Peru.,Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
28
|
Niu S, Wang J, Bai B, Wu L, Zheng A, Chen Q, Du P, Han P, Zhang Y, Jia Y, Qiao C, Qi J, Tian W, Wang H, Wang Q, Gao GF. Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. EMBO J 2021; 40:e107786. [PMID: 34018203 PMCID: PMC8209949 DOI: 10.15252/embj.2021107786] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
Pangolins have been suggested as potential reservoir of zoonotic viruses, including SARS-CoV-2 causing the global COVID-19 outbreak. Here, we study the binding of two SARS-CoV-2-like viruses isolated from pangolins, GX/P2V/2017 and GD/1/2019, to human angiotensin-converting enzyme 2 (hACE2), the receptor of SARS-CoV-2. We find that the spike protein receptor-binding domain (RBD) of pangolin CoVs binds to hACE2 as efficiently as the SARS-CoV-2 RBD in vitro. Furthermore, incorporation of pangolin CoV RBDs allows entry of pseudotyped VSV particles into hACE2-expressing cells. A screen for binding of pangolin CoV RBDs to ACE2 orthologs from various species suggests a broader host range than that of SARS-CoV-2. Additionally, cryo-EM structures of GX/P2V/2017 and GD/1/2019 RBDs in complex with hACE2 show their molecular binding in modes similar to SARS-CoV-2 RBD. Introducing the Q498H substitution found in pangolin CoVs into the SARS-CoV-2 RBD expands its binding capacity to ACE2 homologs of mouse, rat, and European hedgehog. These findings suggest that these two pangolin CoVs may infect humans, highlighting the necessity of further surveillance of pangolin CoVs.
Collapse
Affiliation(s)
- Sheng Niu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein SciencesTsinghua‐Peking Joint Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructuresSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Qian Chen
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Institute of Physical Science and InformationAnhui UniversityHefeiChina
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Pengcheng Han
- Department of biomedical engineeringEmory UniversityAtlantaGAUSA
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Laboratory of Protein Engineering and VaccinesTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Yunfei Jia
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Chengpeng Qiao
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Wen‐xia Tian
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Hong‐Wei Wang
- Ministry of Education Key Laboratory of Protein SciencesTsinghua‐Peking Joint Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructuresSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Qihui Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Institute of Physical Science and InformationAnhui UniversityHefeiChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - George Fu Gao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
29
|
Bowsher G, McNamara T, Bernard R, Sullivan R. Veterinary intelligence: integrating zoonotic threats into global health security. J R Soc Med 2021; 114:545-548. [PMID: 34352180 PMCID: PMC8722781 DOI: 10.1177/01410768211035355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Gemma Bowsher
- Conflict and Health Research Group, King's College London, London WC2R 2LS, UK
| | - Tracey McNamara
- Western University of Health Sciences College of Veterinary Medicine, Pomona, CA 91766, USA
| | - Rose Bernard
- Conflict and Health Research Group, King's College London, London WC2R 2LS, UK
| | - Richard Sullivan
- Conflict and Health Research Group, King's College London, London WC2R 2LS, UK
| |
Collapse
|
30
|
Deng K, Uhlig S, Ip HS, Lea Killian M, Goodman LB, Nemser S, Ulaszek J, Pickens S, Newkirk R, Kmet M, Frost K, Hettwer K, Colson B, Nichani K, Schlierf A, Tkachenko A, Reddy R, Reimschuessel R. Interlaboratory comparison of SARS-CoV2 molecular detection assays in use by U.S. veterinary diagnostic laboratories. J Vet Diagn Invest 2021; 33:1039-1051. [PMID: 34293974 PMCID: PMC8532215 DOI: 10.1177/10406387211029913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The continued search for intermediate hosts and potential reservoirs for
SARS-CoV2 makes it clear that animal surveillance is critical in outbreak
response and prevention. Real-time RT-PCR assays for SARS-CoV2 detection can
easily be adapted to different host species. U.S. veterinary diagnostic
laboratories have used the CDC assays or other national reference laboratory
methods to test animal samples. However, these methods have only been evaluated
using internal validation protocols. To help the laboratories evaluate their
SARS-CoV2 test methods, an interlaboratory comparison (ILC) was performed in
collaboration with multiple organizations. Forty-four sets of 19 blind-coded RNA
samples in Tris-EDTA (TE) buffer or PrimeStore transport medium were shipped to
42 laboratories. Results were analyzed according to the principles of the
International Organization for Standardization (ISO) 16140-2:2016 standard.
Qualitative assessment of PrimeStore samples revealed that, in approximately
two-thirds of the laboratories, the limit of detection with a probability of
0.95 (LOD95) for detecting the RNA was ≤20 copies per PCR reaction, close to the
theoretical LOD of 3 copies per reaction. This level of sensitivity is not
expected in clinical samples because of additional factors, such as sample
collection, transport, and extraction of RNA from the clinical matrix.
Quantitative assessment of Ct values indicated that reproducibility standard
deviations for testing the RNA with assays reported as N1 were slightly lower
than those for N2, and they were higher for the RNA in PrimeStore medium than
those in TE buffer. Analyst experience and the use of either a singleplex or
multiplex PCR also affected the quantitative ILC test results.
Collapse
Affiliation(s)
- Kaiping Deng
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | | | - Hon S Ip
- National Wildlife Health Center, U.S. Geological Survey, Madison, WI, USA
| | - Mary Lea Killian
- National Animal and Plant Health Inspection Service Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, IA, USA
| | - Laura B Goodman
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sarah Nemser
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Jodie Ulaszek
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | | | - Robert Newkirk
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Matthew Kmet
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | | | | | | | | | | | - Andriy Tkachenko
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Ravinder Reddy
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | | |
Collapse
|
31
|
Giraldo-Ramirez S, Rendon-Marin S, Jaimes JA, Martinez-Gutierrez M, Ruiz-Saenz J. SARS-CoV-2 Clinical Outcome in Domestic and Wild Cats: A Systematic Review. Animals (Basel) 2021; 11:2056. [PMID: 34359182 PMCID: PMC8300124 DOI: 10.3390/ani11072056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, it has been proved that SARS-CoV-2 has the ability to infect multiple species. This work was aimed at identifying the clinical signs of SARS-CoV-2 infection in domestic and wild felids. A PRISMA-based systematic review was performed on case reports on domestic and wild cats, reports on experimental infections, case reports in databases, preprints and published press releases. Descriptive statistical analysis of the data was performed. A total of 256 articles, 63 detailed official reports and 2 press articles on SARS-CoV-2 infection in domestic and wild cats were analyzed, of which 19 articles and 65 reports were finally included. In domestic cats, most cats' infections are likely to be asymptomatic, and 46% of the reported infected animals were symptomatic and predominantly presented respiratory signs such as sneezing and coughing. In wild felines, respiratory clinical signs were most frequent, and up to 96.5% of the reported affected animals presented coughing. It is noteworthy that, to date, symptomatic animals with SARS-CoV-2 infection have been reported to belong to two different subfamilies (Phanterinae and Felinae), with up to five different felid species affected within the Felidae family. Reported results evince that the signs developed in felids show similar progression to those occurring in humans, suggesting a relationship between the viral cycle and target tissues of the virus in different species. While viral transmission to humans in contact with animal populations has not been reported, spill-back could result in the emergence of immune-escape mutants that might pose a risk to public health. Despite the clear results in the identification of the typical clinical picture of SARS-CoV-2 infection in felines, the number of detailed academic reports and papers on the subject is scarce. Therefore, further description of these cases will allow for more accurate and statistically robust clinical approaches in the future.
Collapse
Affiliation(s)
- Sebastian Giraldo-Ramirez
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (S.G.-R.); (S.R.-M.); (M.M.-G.)
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (S.G.-R.); (S.R.-M.); (M.M.-G.)
| | - Javier A. Jaimes
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (S.G.-R.); (S.R.-M.); (M.M.-G.)
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050012, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (S.G.-R.); (S.R.-M.); (M.M.-G.)
| |
Collapse
|
32
|
Wernike K, Aebischer A, Michelitsch A, Hoffmann D, Freuling C, Balkema‐Buschmann A, Graaf A, Müller T, Osterrieder N, Rissmann M, Rubbenstroth D, Schön J, Schulz C, Trimpert J, Ulrich L, Volz A, Mettenleiter T, Beer M. Multi-species ELISA for the detection of antibodies against SARS-CoV-2 in animals. Transbound Emerg Dis 2021; 68:1779-1785. [PMID: 33191578 PMCID: PMC7753575 DOI: 10.1111/tbed.13926] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of infected humans and hundreds of thousands of fatalities. As the novel disease - referred to as COVID-19 - unfolded, occasional anthropozoonotic infections of animals by owners or caretakers were reported in dogs, felid species and farmed mink. Further species were shown to be susceptible under experimental conditions. The extent of natural infections of animals, however, is still largely unknown. Serological methods will be useful tools for tracing SARS-CoV-2 infections in animals once test systems are evaluated for use in different species. Here, we developed an indirect multi-species ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The newly established ELISA was evaluated using 59 sera of infected or vaccinated animals, including ferrets, raccoon dogs, hamsters, rabbits, chickens, cattle and a cat, and a total of 220 antibody-negative sera of the same animal species. Overall, a diagnostic specificity of 100.0% and sensitivity of 98.31% were achieved, and the functionality with every species included in this study could be demonstrated. Hence, a versatile and reliable ELISA protocol was established that enables high-throughput antibody detection in a broad range of animal species, which may be used for outbreak investigations, to assess the seroprevalence in susceptible species or to screen for reservoir or intermediate hosts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Annika Graaf
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| | - Thomas Müller
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| | - Nikolaus Osterrieder
- Institut für VirologieFreie Universität BerlinBerlinGermany
- Jockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloon TongHong Kong
| | | | | | - Jacob Schön
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| | - Claudia Schulz
- University of Veterinary Medicine HannoverHanoverGermany
| | - Jakob Trimpert
- Institut für VirologieFreie Universität BerlinBerlinGermany
| | - Lorenz Ulrich
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| | - Asisa Volz
- University of Veterinary Medicine HannoverHanoverGermany
| | | | - Martin Beer
- Friedrich‐Loeffler‐InstitutGreifswald ‐ Insel RiemsGermany
| |
Collapse
|
33
|
Fischhoff IR, Castellanos AA, Rodrigues JP, Varsani A, Han BA. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.18.431844. [PMID: 33619481 PMCID: PMC7899445 DOI: 10.1101/2021.02.18.431844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Back and forth transmission of SARS-CoV-2 between humans and animals may lead to wild reservoirs of virus that can endanger efforts toward long-term control of COVID-19 in people, and protecting vulnerable animal populations that are particularly susceptible to lethal disease. Predicting high risk host species is key to targeting field surveillance and lab experiments that validate host zoonotic potential. A major bottleneck to predicting animal hosts is the small number of species with available molecular information about the structure of ACE2, a key cellular receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with 3D modeling of virus and host cell protein interactions using machine learning methods. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for over 5,000 mammals - an order of magnitude more species than previously possible. The high accuracy predictions achieved by this approach are strongly corroborated by in vivo empirical studies. We identify numerous common mammal species whose predicted zoonotic capacity and close proximity to humans may further enhance the risk of spillover and spillback transmission of SARS-CoV-2. Our results reveal high priority areas of geographic overlap between global COVID-19 hotspots and potential new mammal hosts of SARS-CoV-2. With molecular sequence data available for only a small fraction of potential host species, predictive modeling integrating data across multiple biological scales offers a conceptual advance that may expand our predictive capacity for zoonotic viruses with similarly unknown and potentially broad host ranges.
Collapse
Affiliation(s)
- Ilya R. Fischhoff
- Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA
| | | | - João P.G.L.M. Rodrigues
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700, Cape Town, South Africa
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA
| |
Collapse
|
34
|
Goraichuk IV, Arefiev V, Stegniy BT, Gerilovych AP. Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Res 2021; 302:198473. [PMID: 34118360 PMCID: PMC8188804 DOI: 10.1016/j.virusres.2021.198473] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) is the first known pandemic caused by a coronavirus. Its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appears to be capable of infecting different mammalian species. Recent detections of this virus in pet, zoo, wild, and farm animals have compelled inquiry regarding the zoonotic (animal-to-human) and reverse zoonotic (human-to-animal) transmissibility of SARS-CoV-2 with the potential of COVID-19 pandemic evolving into a panzootic. It is important to monitor the global spread of disease and to assess the significance of genomic changes to support prevention and control efforts during a pandemic. An understanding of the SARS-CoV-2 epidemiology provides opportunities to prevent the risk of repeated re-infection of humans and requires a robust One Health-based investigation. This review paper describes the known properties and the existing gaps in scientific knowledge about the zoonotic and reverse zoonotic transmissibility of the novel virus SARS-CoV-2 and the COVID-19 disease it causes.
Collapse
Affiliation(s)
- Iryna V Goraichuk
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Vasiliy Arefiev
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Borys T Stegniy
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Anton P Gerilovych
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| |
Collapse
|
35
|
Jara LM, Ferradas C, Schiaffino F, Sánchez-Carrión C, Martinez A, Ulloa A, Isasi-Rivas G, Montalván A, Sarmiento LG, Fernández M, Zimic M. Evidence of neutralizing antibodies against SARS-CoV-2 in domestic cats living with owners with a history of COVID-19 in Lima - Peru. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.26.445880. [PMID: 34075379 PMCID: PMC8168392 DOI: 10.1101/2021.05.26.445880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 can infect a variety of wild and domestic animals worldwide. Of these, domestic cats are highly susceptible species and potential viral reservoirs. As such, it is important to investigate disease exposure in areas with active community transmission and high disease prevalence. In this report we demonstrate the presence of serum neutralizing antibodies against the receptor binding-domain (RBD) of the SARS-CoV-2 in cats whose owners had been infected with SARS-CoV-2 in Lima, Peru, using a commercial competitive ELISA SARS-CoV-2 Surrogate Virus Neutralization Test. Out of 41 samples, 17.1% (7/41) and 31.7% (13/41) were positive, using the cut-off inhibition value of 30% and 20%, respectively. Not all cats living in a single house had detectable neutralizing antibodies showing that heterogenous exposure and immune among cohabiting animals. This is the first report of SARS-COV-2 exposure of domestic cats in Lima, Peru. Further studies are required to ascertain the prevalence of SARS-COV-2 exposure among domestic cats of Lima, Peru.
Collapse
Affiliation(s)
- Luis M. Jara
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cusi Ferradas
- Unidad de Investigación en Enfermedades Emergentes y Cambio Climático (Emerge), Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Schiaffino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | | | | | | | | | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
36
|
Hamer SA, Pauvolid-Corrêa A, Zecca IB, Davila E, Auckland LD, Roundy CM, Tang W, Torchetti MK, Killian ML, Jenkins-Moore M, Mozingo K, Akpalu Y, Ghai RR, Spengler JR, Barton Behravesh C, Fischer RSB, Hamer GL. SARS-CoV-2 Infections and Viral Isolations among Serially Tested Cats and Dogs in Households with Infected Owners in Texas, USA. Viruses 2021; 13:938. [PMID: 34069453 PMCID: PMC8159091 DOI: 10.3390/v13050938] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/23/2022] Open
Abstract
Understanding the ecological and epidemiological roles of pets in the transmission of SARS-CoV-2 is critical for animal and human health, identifying household reservoirs, and predicting the potential enzootic maintenance of the virus. We conducted a longitudinal household transmission study of 76 dogs and cats living with at least one SARS-CoV-2-infected human in Texas and found that 17 pets from 25.6% of 39 households met the national case definition for SARS-CoV-2 infections in animals. This includes three out of seventeen (17.6%) cats and one out of fifty-nine (1.7%) dogs that were positive by RT-PCR and sequencing, with the virus successfully isolated from the respiratory swabs of one cat and one dog. Whole-genome sequences of SARS-CoV-2 obtained from all four PCR-positive animals were unique variants grouping with genomes circulating among people with COVID-19 in Texas. Re-sampling showed persistence of viral RNA for at least 25 d-post initial test. Additionally, seven out of sixteen (43.8%) cats and seven out of fifty-nine (11.9%) dogs harbored SARS-CoV-2 neutralizing antibodies upon initial sampling, with relatively stable or increasing titers over the 2-3 months of follow-up and no evidence of seroreversion. The majority (82.4%) of infected pets were asymptomatic. 'Reverse zoonotic' transmission of SARS-CoV-2 from infected people to animals may occur more frequently than recognized.
Collapse
Affiliation(s)
- Sarah A. Hamer
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (A.P.-C.); (I.B.Z.); (E.D.); (L.D.A.)
| | - Alex Pauvolid-Corrêa
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (A.P.-C.); (I.B.Z.); (E.D.); (L.D.A.)
- Laboratory of Respiratory Viruses and Measles, SARS-CoV-2 National Reference Laboratory and Regional Reference Laboratory in the Americas (PAHO/WHO), Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Italo B. Zecca
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (A.P.-C.); (I.B.Z.); (E.D.); (L.D.A.)
| | - Edward Davila
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (A.P.-C.); (I.B.Z.); (E.D.); (L.D.A.)
| | - Lisa D. Auckland
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (A.P.-C.); (I.B.Z.); (E.D.); (L.D.A.)
| | - Christopher M. Roundy
- Department of Entomology, Texas A&M University and AgriLife Research, College Station, TX 77843, USA; (C.M.R.); (W.T.); (G.L.H.)
| | - Wendy Tang
- Department of Entomology, Texas A&M University and AgriLife Research, College Station, TX 77843, USA; (C.M.R.); (W.T.); (G.L.H.)
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, USDA APHIS VS, Ames, IA 50010, USA; (M.K.T.); (M.L.K.); (M.J.-M.); (K.M.)
| | - Mary Lea Killian
- National Veterinary Services Laboratories, USDA APHIS VS, Ames, IA 50010, USA; (M.K.T.); (M.L.K.); (M.J.-M.); (K.M.)
| | - Melinda Jenkins-Moore
- National Veterinary Services Laboratories, USDA APHIS VS, Ames, IA 50010, USA; (M.K.T.); (M.L.K.); (M.J.-M.); (K.M.)
| | - Katie Mozingo
- National Veterinary Services Laboratories, USDA APHIS VS, Ames, IA 50010, USA; (M.K.T.); (M.L.K.); (M.J.-M.); (K.M.)
| | - Yao Akpalu
- Brazos County Health Department, Bryan, TX 77803, USA;
| | - Ria R. Ghai
- National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.R.G.); (J.R.S.); (C.B.B.)
| | - Jessica R. Spengler
- National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.R.G.); (J.R.S.); (C.B.B.)
| | - Casey Barton Behravesh
- National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.R.G.); (J.R.S.); (C.B.B.)
| | | | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University and AgriLife Research, College Station, TX 77843, USA; (C.M.R.); (W.T.); (G.L.H.)
| |
Collapse
|
37
|
Du H, Chen F, Liu H, Hong P. Network-based virus-host interaction prediction with application to SARS-CoV-2. PATTERNS (NEW YORK, N.Y.) 2021; 2:100242. [PMID: 33817672 PMCID: PMC8006187 DOI: 10.1016/j.patter.2021.100242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has quickly become a global health crisis since the first report of infection in December of 2019. However, the infection spectrum of SARS-CoV-2 and its comprehensive protein-level interactions with hosts remain unclear. There is a massive amount of underutilized data and knowledge about RNA viruses highly relevant to SARS-CoV-2 and proteins of their hosts. More in-depth and more comprehensive analyses of that knowledge and data can shed new light on the molecular mechanisms underlying the COVID-19 pandemic and reveal potential risks. In this work, we constructed a multi-layer virus-host interaction network to incorporate these data and knowledge. We developed a machine-learning-based method to predict virus-host interactions at both protein and organism levels. Our approach revealed five potential infection targets of SARS-CoV-2 and 19 highly possible interactions between SARS-CoV-2 proteins and human proteins in the innate immune pathway.
Collapse
Affiliation(s)
- Hangyu Du
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA
| | - Feng Chen
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA
| | - Hongfu Liu
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
38
|
Jia W, Wang J, Sun B, Zhou J, Shi Y, Zhou Z. The Mechanisms and Animal Models of SARS-CoV-2 Infection. Front Cell Dev Biol 2021; 9:578825. [PMID: 33987176 PMCID: PMC8111004 DOI: 10.3389/fcell.2021.578825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has aroused great public health concern worldwide. Currently, COVID-19 epidemic is spreading in many countries and regions around the world. However, the study of SARS-CoV-2 is still in its infancy, and there is no specific therapeutics. Here, we summarize the genomic characteristics of SARS-CoV-2. In addition, we focus on the mechanisms of SARS-CoV-2 infection, including the roles of angiotensin converting enzyme II (ACE2) in cell entry, COVID-19 susceptibility and COVID-19 symptoms, as well as immunopathology such as antibody responses, lymphocyte dysregulation, and cytokine storm. Finally, we introduce the research progress of animal models of COVID-19, aiming at a better understanding of the pathogenesis of COVID-19 and providing new ideas for the treatment of this contagious disease.
Collapse
Affiliation(s)
- Wenrui Jia
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiecan Zhou
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yamin Shi
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Maurin M, Fenollar F, Mediannikov O, Davoust B, Devaux C, Raoult D. Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms 2021; 9:868. [PMID: 33920724 PMCID: PMC8072559 DOI: 10.3390/microorganisms9040868] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.
Collapse
Affiliation(s)
- Max Maurin
- University Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France;
| | - Florence Fenollar
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Bernard Davoust
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Christian Devaux
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
- Centre National de la Recherche Scientifique, 13005 Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
40
|
FELINE CORONAVIRUS AND FELINE INFECTIOUS PERITONITIS IN NONDOMESTIC FELID SPECIES. J Zoo Wildl Med 2021; 52:14-27. [PMID: 33827157 DOI: 10.1638/2020-0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 11/21/2022] Open
Abstract
Feline coronavirus (FCoV) is reported worldwide and known to cause disease in domestic and nondomestic felid species. Although FCoV often results in mild to inapparent disease, a small subset of cats succumb to the fatal, systemic disease feline infectious peritonitis (FIP). An outbreak of FIP in Cheetahs (Acinonyx jubatus) in a zoological collection demonstrated the devastating effect of FCoV introduction into a naïve group of animals. In addition to cheetahs, FIP has been described in European wildcats (Felis silvestris), a tiger (Panthera tigris), a mountain lion (Puma concolor), and lion (Panthera leo). This paper reviews the reported cases of FIP in nondomestic felid species and highlights the surveys of FCoV in populations of nondomestic felids.
Collapse
|
41
|
Klaus J, Palizzotto C, Zini E, Meli ML, Leo C, Egberink H, Zhao S, Hofmann-Lehmann R. SARS-CoV-2 Infection and Antibody Response in a Symptomatic Cat from Italy with Intestinal B-Cell Lymphoma. Viruses 2021; 13:527. [PMID: 33806922 PMCID: PMC8004793 DOI: 10.3390/v13030527] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Since the coronavirus disease (COVID-19) pandemic was first identified in early 2020, rare cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pet cats have been reported worldwide. Some reports of cats with SARS-CoV-2 showed self-limiting respiratory or gastrointestinal disease after suspected human-to-feline transmission via close contact with humans with SARS-CoV-2. In the present study, we investigated a cat with SARS-CoV-2 that was presented to a private animal clinic in Northern Italy in May 2020 in a weak clinical condition due to an underlying intestinal B-cell lymphoma. The cat developed signs of respiratory tract disease, including a sneeze, a cough and ocular discharge, three days after an oropharyngeal swab tested positive for SARS-CoV-2 viral RNA using two real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays for the envelope (E) and RNA-dependent RNA polymerase (RdRp) gene. Thus, SARS-CoV-2 viral RNA was detectable prior to the onset of clinical signs. Five and six months after positive molecular results, the serological testing substantiated the presence of a SARS-CoV-2 infection in the cat with the detection of anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin (IgG) antibodies and neutralizing activity in a surrogate virus neutralization assay (sVNT). To the best of our knowledge, this extends the known duration of seropositivity of SARS-CoV-2 in a cat. Our study provides further evidence that cats are susceptible to SARS-CoV-2 under natural conditions and strengthens the assumption that comorbidities may play a role in the development of clinical disease.
Collapse
Affiliation(s)
- Julia Klaus
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| | - Chiara Leo
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| |
Collapse
|
42
|
Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study. Viruses 2021; 13:494. [PMID: 33802857 PMCID: PMC8002747 DOI: 10.3390/v13030494] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has brought many questions over the origin of the virus, the threat it poses to animals both in the wild and captivity, and the risks of a permanent viral reservoir developing in animals. Animal experiments have shown that a variety of animals can become infected with the virus. While coronaviruses have been known to infect animals for decades, the true intermediate host of the virus has not been identified, with no cases of SARS-CoV-2 in wild animals. The screening of wild, farmed, and domesticated animals is necessary to help us understand the virus and its origins and prevent future outbreaks of both COVID-19 and other diseases. There is intriguing evidence that farmed mink infections (acquired from humans) have led to infection of other farm workers in turn, with a recent outbreak of a mink variant in humans in Denmark. A thorough examination of the current knowledge and evidence of the ability of SARS-CoV-2 to infect different animal species is therefore vital to evaluate the threat of animal to human transmission and reverse zoonosis.
Collapse
Affiliation(s)
- Tessa Prince
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Shirley L. Smith
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Alan D. Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Tom Solomon
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Grant L. Hughes
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Edward I. Patterson
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
43
|
Mathavarajah S, Stoddart AK, Gagnon GA, Dellaire G. Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143346. [PMID: 33160659 PMCID: PMC7598747 DOI: 10.1016/j.scitotenv.2020.143346] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 05/09/2023]
Abstract
We are in unprecedented times with the ongoing COVID-19 pandemic. The pandemic has impacted public health, the economy and our society on a global scale. In addition, the impacts of COVID-19 permeate into our environment and wildlife as well. Here, we discuss the essential role of wastewater treatment and management during these times. A consequence of poor wastewater management is the discharge of untreated wastewater carrying infectious SARS-CoV-2 into natural water systems that are home to marine mammals. Here, we predict the susceptibility of marine mammal species using a modelling approach. We identified that many species of whale, dolphin and seal, as well as otters, are predicted to be highly susceptible to infection by the SARS-CoV-2 virus. In addition, geo-mapping highlights how current wastewater management in Alaska may lead to susceptible marine mammal populations being exposed to the virus. Localities such as Cold Bay, Naknek, Dillingham and Palmer may require additional treatment of their wastewater to prevent virus spillover through sewage. Since over half of these susceptibility species are already at risk worldwide, the release of the virus via untreated wastewater could have devastating consequences for their already declining populations. For these reasons, we discuss approaches that can be taken by the public, policymakers and wastewater treatment facilities to reduce the risk of virus spillover in our natural water systems. Thus, we indicate the potential for reverse zoonotic transmission of COVID-19 and its impact on marine wildlife; impacts that can be mitigated with appropriate action to prevent further damage to these vulnerable populations.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amina K Stoddart
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham A Gagnon
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
44
|
Hancock JT, Rouse RC, Stone E, Greenhough A. Interacting Proteins, Polymorphisms and the Susceptibility of Animals to SARS-CoV-2. Animals (Basel) 2021; 11:797. [PMID: 33809265 PMCID: PMC8000148 DOI: 10.3390/ani11030797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a world-wide problem for the human population. It is known that some animal species, such as mink, can become infected and transmit the virus. However, the susceptibility of most animals is not known. Here, we review the use of sequence analysis of the proteins which are known to interact with SARS-CoV-2 as a way to estimate an animal's susceptibility. Although most such work concentrates on the angiotensin-converting enzyme 2 receptor (ACE2), here TMPRSS2 (Transmembrane Serine Protease 2), neuropilin-1 and furin are also considered. Polymorphisms, especially ones which are known to alter viral/host interactions are also discussed. Analysis of ACE2 and TMPRSS2 protein sequences across species suggests this approach may be of some utility in predicting susceptibility; however, this analysis fails to highlight some susceptible animals such as mink. However, combined with observational data which emerges over time about which animals actually become infected, this may, in the future, be a useful tool to assist the management of risks associated with human/animal contact and support conservation and animal welfare measures.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| | - Ros C. Rouse
- Research, Business and Innovation, University of the West of England, Bristol BS16 1QY, UK;
| | - Emma Stone
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| | - Alexander Greenhough
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| |
Collapse
|
45
|
Calistri P, Decaro N, Lorusso A. SARS-CoV-2 Pandemic: Not the First, Not the Last. Microorganisms 2021; 9:microorganisms9020433. [PMID: 33669805 PMCID: PMC7923159 DOI: 10.3390/microorganisms9020433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
The common trait among the betacoronaviruses that emerged during the past two decades (the severe acute respiratory syndrome coronavirus-SARS-CoV, the Middle East respiratory syndrome coronavirus-MERS-CoV, and the recent SARS coronavirus 2-SARS-CoV-2) is their probable animal origin, all deriving from viruses present in bat species. Bats have arisen the attention of the scientific community as reservoir of emerging viruses, given their wide geographical distribution, their biological diversity (around 1400 species, 21 different families and over 200 genera), and their peculiar ecological and physiological characteristics which seem to facilitate them in harbouring a high viral diversity. Several human activities may enable the viral spill-over from bats to humans, such as deforestation, land-use changes, increased livestock grazing or intensive production of vegetal cultures. In addition, the globalization of trade and high global human mobility allow these viruses to be disseminated in few hours in many parts of the World. In order to avoid the emergence of new pandemic threats in the future we need to substantially change our global models of social and economic development, posing the conservation of biodiversity and the preservation of natural ecosystems as a pillar for the protection of global human health.
Collapse
Affiliation(s)
- Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy;
- Correspondence:
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, 70129 Bari, Italy;
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy;
| |
Collapse
|
46
|
Aguirre AA, Gore ML, Kammer-Kerwick M, Curtin KM, Heyns A, Preiser W, Shelley LI. Opportunities for Transdisciplinary Science to Mitigate Biosecurity Risks From the Intersectionality of Illegal Wildlife Trade With Emerging Zoonotic Pathogens. Front Ecol Evol 2021; 9. [DOI: 10.3389/fevo.2021.604929] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Existing collaborations among public health practitioners, veterinarians, and ecologists do not sufficiently consider illegal wildlife trade in their surveillance, biosafety, and security (SB&S) efforts even though the risks to health and biodiversity from these threats are significant. We highlight multiple cases to illustrate the risks posed by existing gaps in understanding the intersectionality of the illegal wildlife trade and zoonotic disease transmission. We argue for more integrative science in support of decision-making using the One Health approach. Opportunities abound to apply transdisciplinary science to sustainable wildlife trade policy and programming, such as combining on-the-ground monitoring of health, environmental, and social conditions with an understanding of the operational and spatial dynamics of illicit wildlife trade. We advocate for (1) a surveillance sample management system for enhanced diagnostic efficiency in collaboration with diverse and local partners that can help establish new or link existing surveillance networks, outbreak analysis, and risk mitigation strategies; (2) novel analytical tools and decision support models that can enhance self-directed local livelihoods by addressing monitoring, detection, prevention, interdiction, and remediation; (3) enhanced capacity to promote joint SB&S efforts that can encourage improved human and animal health, timely reporting, emerging disease detection, and outbreak response; and, (4) enhanced monitoring of illicit wildlife trade and supply chains across the heterogeneous context within which they occur. By integrating more diverse scientific disciplines, and their respective scientists with indigenous people and local community insight and risk assessment data, we can help promote a more sustainable and equitable wildlife trade.
Collapse
|
47
|
Cui H, Zhang L. Key Components of Inflammasome and Pyroptosis Pathways Are Deficient in Canines and Felines, Possibly Affecting Their Response to SARS-CoV-2 Infection. Front Immunol 2021; 11:592622. [PMID: 33584656 PMCID: PMC7876337 DOI: 10.3389/fimmu.2020.592622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 causes the ongoing COVID-19 pandemic. Natural SARS-COV-2 infection has been detected in dogs, cats and tigers. However, the symptoms in canines and felines were mild. The underlying mechanisms are unknown. Excessive activation of inflammasome pathways can trigger cytokine storm and severe damage to host. In current study, we performed a comparative genomics study of key components of inflammasome and pyroptosis pathways in dogs, cats and tigers. Cats and tigers do not have AIM2 and NLRP1. Dogs do not contain AIM2, and encode a short form of NLRC4. The activation sites in GSDMB were absent in dogs, cats and tigers, while GSDME activation sites in cats and tigers were abolished. We propose that deficiencies of inflammasome and pyroptosis pathways might provide an evolutionary advantage against SARS-CoV-2 by reducing cytokine storm-induced host damage. Our findings will shed important lights on the mild symptoms in canines and felines infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Haoran Cui
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
48
|
Epigenetic Evolution of ACE2 and IL-6 Genes: Non-Canonical Interferon-Stimulated Genes Correlate to COVID-19 Susceptibility in Vertebrates. Genes (Basel) 2021; 12:genes12020154. [PMID: 33503821 PMCID: PMC7912275 DOI: 10.3390/genes12020154] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
The current novel coronavirus disease (COVID-19) has spread globally within a matter of months. The virus establishes a success in balancing its deadliness and contagiousness, and causes substantial differences in susceptibility and disease progression in people of different ages, genders and pre-existing comorbidities. These host factors are subjected to epigenetic regulation; therefore, relevant analyses on some key genes underlying COVID-19 pathogenesis were performed to longitudinally decipher their epigenetic correlation to COVID-19 susceptibility. The genes of host angiotensin-converting enzyme 2 (ACE2, as the major virus receptor) and interleukin (IL)-6 (a key immuno-pathological factor triggering cytokine storm) were shown to evince active epigenetic evolution via histone modification and cis/trans-factors interaction across different vertebrate species. Extensive analyses revealed that ACE2 ad IL-6 genes are among a subset of non-canonical interferon-stimulated genes (non-ISGs), which have been designated for their unconventional responses to interferons (IFNs) and inflammatory stimuli through an epigenetic cascade. Furthermore, significantly higher positive histone modification markers and position weight matrix (PWM) scores of key cis-elements corresponding to inflammatory and IFN signaling, were discovered in both ACE2 and IL6 gene promoters across representative COVID-19-susceptible species compared to unsusceptible ones. The findings characterize ACE2 and IL-6 genes as non-ISGs that respond differently to inflammatory and IFN signaling from the canonical ISGs. The epigenetic properties ACE2 and IL-6 genes may serve as biomarkers to longitudinally predict COVID-19 susceptibility in vertebrates and partially explain COVID-19 inequality in people of different subgroups.
Collapse
|
49
|
do Vale B, Lopes AP, Fontes MDC, Silvestre M, Cardoso L, Coelho AC. Bats, pangolins, minks and other animals - villains or victims of SARS-CoV-2? Vet Res Commun 2021; 45:1-19. [PMID: 33464439 PMCID: PMC7813668 DOI: 10.1007/s11259-021-09787-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease-19 (COVID-19) is caused by the severe acute Respiratory syndrome coronavirus-2 (SARS-CoV-2), which has become unstoppable, spreading rapidly worldwide and, consequently, reaching a pandemic level. This review aims to provide the information available so far on the likely animal origin of SARS-CoV-2 and its possible hosts/reservoirs as well as all natural animal infections and experimental evidence using animal models. Horseshoe bats from the species Rhinolophus affinis seem to be a natural reservoir and pangolins (Manis javanica) appear to be an intermediate host of SARS-CoV-2. Humans remain the most likely spreading source of SARS-CoV-2 to other humans and also to domestic, zoo and farm animals. Indeed, human-to-animal transmission has been reported in cats, dogs, tigers, lions, a puma and minks. Animal-to-human transmission is not a sustained pathway, although mink-to-human transmission remains to be elucidated. Through experimental infections, other animals seem also to be susceptible hosts for SARS-CoV-2, namely ferrets, some non-human primate species, hamsters and transgenic mice, while dogs, pigs and poultry are resistant. A One Health perspective must be implemented in order to develop epidemiological surveillance and establish disease control mechanisms to limit zoonotic transmission. Moreover, research in this field is important to better understand SARS-CoV-2 and to obtain the long-awaited vaccine and specific treatment.
Collapse
Affiliation(s)
- Beatriz do Vale
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Ana Patrícia Lopes
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Animal and Veterinary Research Centre, UTAD, Vila Real, Portugal
| | - Maria da Conceição Fontes
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Animal and Veterinary Research Centre, UTAD, Vila Real, Portugal
| | - Mário Silvestre
- Animal and Veterinary Research Centre, UTAD, Vila Real, Portugal
- Department of Zootechnics, ECAV, UTAD, Vila Real, Portugal
| | - Luís Cardoso
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Animal and Veterinary Research Centre, UTAD, Vila Real, Portugal
| | - Ana Cláudia Coelho
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
- Animal and Veterinary Research Centre, UTAD, Vila Real, Portugal.
| |
Collapse
|
50
|
Li P, Guo R, Liu Y, Zhang Y, Hu J, Ou X, Mi D, Chen T, Mu Z, Han Y, Chen Z, Cui Z, Zhang L, Wang X, Wu Z, Wang J, Jin Q, Qian Z. The Rhinolophus affinis bat ACE2 and multiple animal orthologs are functional receptors for bat coronavirus RaTG13 and SARS-CoV-2. Sci Bull (Beijing) 2021; 66:1215-1227. [PMID: 33495713 PMCID: PMC7816560 DOI: 10.1016/j.scib.2021.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/15/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Bat coronavirus (CoV) RaTG13 shares the highest genome sequence identity with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among all known coronaviruses, and also uses human angiotensin converting enzyme 2 (hACE2) for virus entry. Thus, SARS-CoV-2 is thought to have originated from bat. However, whether SARS-CoV-2 emerged from bats directly or through an intermediate host remains elusive. Here, we found that Rhinolophus affinis bat ACE2 (RaACE2) is an entry receptor for both SARS-CoV-2 and RaTG13, although the binding of RaACE2 to the receptor-binding domain (RBD) of SARS-CoV-2 is markedly weaker than that of hACE2. We further evaluated the receptor activities of ACE2s from additional 16 diverse animal species for RaTG13, SARS-CoV, and SARS-CoV-2 in terms of S protein binding, membrane fusion, and pseudovirus entry. We found that the RaTG13 spike (S) protein is significantly less fusogenic than SARS-CoV and SARS-CoV-2, and seven out of sixteen different ACE2s function as entry receptors for all three viruses, indicating that all three viruses might have broad host rages. Of note, RaTG13 S pseudovirions can use mouse, but not pangolin ACE2, for virus entry, whereas SARS-CoV-2 S pseudovirions can use pangolin, but not mouse, ACE2 enter cells efficiently. Mutagenesis analysis revealed that residues 484 and 498 in RaTG13 and SARS-CoV-2 S proteins play critical roles in recognition of mouse and human ACE2s. Finally, two polymorphous Rhinolophous sinicus bat ACE2s showed different susceptibilities to virus entry by RaTG13 and SARS-CoV-2 S pseudovirions, suggesting possible coevolution. Our results offer better understanding of the mechanism of coronavirus entry, host range, and virus-host coevolution.
Collapse
Affiliation(s)
- Pei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Ruixuan Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Yan Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Yingtao Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiaxin Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Xiuyuan Ou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Dan Mi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Ting Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Zihan Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Zhewei Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Leiliang Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| |
Collapse
|