1
|
Fritz P, Fritz R, Bóday P, Bóday Á, Bató E, Kesserű P, Oláh C. Gut microbiome composition: link between sports performance and protein absorption? J Int Soc Sports Nutr 2024; 21:2297992. [PMID: 38151716 PMCID: PMC10763846 DOI: 10.1080/15502783.2023.2297992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Sufficient protein intake is essential for adequate physical condition and athletic performance. However, numerous factors can influence the absorption of consumed protein, including timing, type of protein intake, and gut microbiota. In the present study, elite male water polo players consumed a plant-based, vegan protein supplement with (n = 10) or without (n = 10) pre- and probiotics daily during the 31-day study period. METHODS We determined the anthropometric characteristics and body composition, dietary habits, gut microbiota composition, and blood parameters of the players at the beginning and at the end of the study. Body composition parameters were analyzed using the InBody 970 bioimpedance analyzer. Gut microbiome composition was determined from stool samples by metagenome sequencing. Paired and unpaired t-tests were used to determine differences between body composition and blood parameters within the groups and between the two groups at the two different sampling times. The Wilcoxon test was used to determine the change in bacterial composition during the study. Correlations between changes in body composition, blood parameters, and taxonomic groups were analyzed using a linear correlation calculation. RESULTS Skeletal muscle mass (p < 0.001), body cell mass (p = 0.002), arm circumference (p = 0.003), and protein mass (p < 0.001) increased, while body fat mass (p = 0.004) decreased significantly in the intervention group which consumed pre- and probiotics in addition to protein supplement. Activated acetate (reductive TCA cycle I) and propionate (pyruvate fermentation to propanoate I) pathways correlated positively with increased skeletal muscle mass (p < 0.01 and p < 0.05), and the relative abundance of butyrate-producing species showed a significant positive correlation with changes in body fat mass in the intervention group (p < 0.05). These correlations were not observed in the control group without the intake of pre- and probiotics. CONCLUSIONS The composition of the gut microbiota may influence protein absorption and therefore body composition and consequently physical condition and sports performance.
Collapse
Affiliation(s)
- Péter Fritz
- Károli Gáspár University of the Reformed Church in Hungary, Faculty of Economics, Health Sciences and Social Studies, Budapest, Hungary
| | - Réka Fritz
- University of Szeged, Doctoral School of Clinical Medicine, Szeged, Hungary
| | - Pál Bóday
- Multi-domain Statistics Department, Hungarian Central Statistical Office, Budapest, Hungary
| | - Ádám Bóday
- Cordi R&D nonprofit Inc, Budapest, Hungary
| | | | - Péter Kesserű
- Eötvös Loránd Research Network, Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- University of Pannonia Nagykanizsa - University Center for Circular Economy, Soós Ernő Research and Development Center, Nagykanizsa, Hungary
| | - Csilla Oláh
- University of Duisburg-Essen, Department of Urology, Essen, Germany
| |
Collapse
|
2
|
Lindhaus JG, Reckels B, Chuppava B, Grone R, Visscher C, Hartung CB. Examination of Salmonella Prevalence in Pigs Through Rye-Based Feeding and Coarser Feed Structure Under Field Conditions. Vet Med Sci 2024; 10:e70041. [PMID: 39331487 PMCID: PMC11430175 DOI: 10.1002/vms3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
INTRODUCTION Salmonellosis is the second most commonly occurring bacterial zoonosis in Germany. Rye in pig feeding offers new possibilities for addressing that issue due to its high content of non-starch polysaccharides (NSPs). These are fermented in the intestinal tract to specific fermentation products, which seem to have bacteriolytic effects against Salmonella. A coarse feed structure can display synergistic effects. METHODS Seven conventional pig fattening farms increased the rye content (40%-70%) while limiting the amount of fine particles (maximum of 20% ≤0.25 mm). Samples from pigs were tested for Salmonella antibodies and compared with samples from 167 farms without any changes to the feed. RESULTS Rye-based diets had a significant (p < 0.05) impact on Salmonella antibody (percentage optical density [OD%]) detection. In this study, it became apparent that significantly fewer positive OD% values could be detected due to the increase in rye compared to farms that did not change the feed (Farm 6 P0: 35.45 ± 36.18; P1: 15.48 ± 16.98; P2: 9.36 ± 8.17). An elimination of Salmonella could not be achieved, but especially farms with high antibody counts were able to strongly reduce those in both phases consecutively (Farm 5 P0: 35.17 ± 35.53; P1: 18.56a ± 20.96; P2: 13.38a ± 18.99). That was different on farms without adapted feeding, where an increase in Salmonella antibodies was observed (P0: 17.38 ± 22.21; P1: 20.12 ± 25.39; P2: 18.12 ± 25.44). CONCLUSION By increasing the proportion of rye and limiting the proportion of fine particles in the feed, Salmonella antibodies (OD% values) in meat juice and blood can be significantly reduced, especially on farms with an initially high incidence of Salmonella. If that is implemented in feeding across the board on farms, an improvement in food safety and a decreased risk of zoonosis can be expected.
Collapse
Affiliation(s)
- Jens Gerrit Lindhaus
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | - Bernd Reckels
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | - Bussarakam Chuppava
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | | | - Christian Visscher
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | - Clara Berenike Hartung
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| |
Collapse
|
3
|
Zhou X, Shen S, Wang Z. Genetic evidence of bidirectional mendelian randomization study on the causality between gut microbiome and respiratory diseases contributes to gut-lung axis. Sci Rep 2024; 14:25550. [PMID: 39462039 PMCID: PMC11513010 DOI: 10.1038/s41598-024-77273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Observational studies and clinical trials have suggested the relationship between the gut microbiome and respiratory diseases, but the causality between them remains unclear. Firstly, we selected eight respiratory diseases Genome-wide association study (GWAS) datasets mainly from the FinnGen collaboration as outcomes. The exposure was based on GWAS statistics about the gut microbiome, sourced from the MiBioGen consortium, including gut microbial taxa. The causal link between the gut microbiome and respiratory illnesses was then estimated using a Two-sample Mendelian randomization (MR) analysis, including the inverse-variance weighted (IVW), weighted median, MR-Egger, simple mode, and weighted mode. To ensure reliability, F-statistics and sensitivity tests were conducted. Furthermore, we performed a reverse MR analysis of the pre-Mendelian positive findings to possible reverse causality. For the 196 gut microbe taxa, the IVW analysis suggested 88 potential associations with eight clinically prevalent respiratory diseases. Among them, 30 causal associations were found in more than one MR method. Multiple statistical corrections have confirmed three causal associations: genus Holdemanella was a risk factor for chronic obstructive pulmonary disease (COPD) (P = 1.3 × 10-4, OR = 1.18), family FamilyXIII was a protective factor for COPD (P = 1.3 × 10-3, OR = 0.75), and genus Oxalobacter was a risk factor for asthma (P = 2.1 × 10-4, OR = 1.09). Our MR analysis results indicate that there would be a causal relationship between the gut microbiome and respiratory diseases, contributing to the gut-lung axis. This finding offers new insights into the gut microbiome's roles in respiratory diseases' clinical prevention, pathogenesis, and improvement of clinical symptoms. Further randomized controlled trials are necessary to clarify the protective effect of probiotics and fecal microbial transplantation on respiratory health.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- The First Clinical College of Zhejiang Chinese Medical University, 548 Binwen, Hangzhou, Zhejiang, 310053, China
| | - Shuyan Shen
- The Second Clinical College of Zhejiang, Chinese Medical University, 548 Binwen, Hangzhou, Zhejiang, 310053, China
| | - Zhen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
4
|
Pacheco AP, Cedernaes J, Benedict C. Insomnia, OSA, and Mood Disorders: The Gut Connection. Curr Psychiatry Rep 2024:10.1007/s11920-024-01546-9. [PMID: 39400694 DOI: 10.1007/s11920-024-01546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW With the growing body of research examining the link between sleep disorders, including insomnia and obstructive sleep apnea (OSA), and the gut microbiome, this review seeks to offer a thorough overview of the most significant findings in this emerging field. RECENT FINDINGS Current evidence suggests a complex association between imbalances in the gut microbiome, insomnia, and OSA, with potential reciprocal interactions that may influence each other. Notably, specific gut microbiome species, whether over- or under-abundant, have been associated with variation in both sleep and mood in patients diagnosed with, e.g., major depressive disorder or bipolar disorder. Further studies are needed to explore the potential of targeting the gut microbiome as a therapeutic approach for insomnia and its possible effects on mood. The variability in current scientific literature highlights the importance of establishing standardized research methodologies.
Collapse
Affiliation(s)
- André P Pacheco
- Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Sognsvannsveien 21, Oslo, 0372, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden.
| |
Collapse
|
5
|
Ravikrishnan A, Wijaya I, Png E, Chng KR, Ho EXP, Ng AHQ, Mohamed Naim AN, Gounot JS, Guan SP, Hanqing JL, Guan L, Li C, Koh JY, de Sessions PF, Koh WP, Feng L, Ng TP, Larbi A, Maier AB, Kennedy BK, Nagarajan N. Gut metagenomes of Asian octogenarians reveal metabolic potential expansion and distinct microbial species associated with aging phenotypes. Nat Commun 2024; 15:7751. [PMID: 39237540 PMCID: PMC11377447 DOI: 10.1038/s41467-024-52097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
While rapid demographic changes in Asia are driving the incidence of chronic aging-related diseases, the limited availability of high-quality in vivo data hampers our ability to understand complex multi-factorial contributions, including gut microbial, to healthy aging. Leveraging a well-phenotyped cohort of community-living octogenarians in Singapore, we used deep shotgun-metagenomic sequencing for high-resolution taxonomic and functional characterization of their gut microbiomes (n = 234). Joint species-level analysis with other Asian cohorts identified distinct age-associated shifts characterized by reduction in microbial richness, and specific Alistipes and Bacteroides species enrichment (e.g., Alistipes shahii and Bacteroides xylanisolvens). Functional analysis confirmed these changes correspond to metabolic potential expansion in aging towards alternate pathways synthesizing and utilizing amino-acid precursors, vis-à-vis dominant microbial guilds producing butyrate in gut from pyruvate (e.g., Faecalibacterium prausnitzii, Roseburia inulinivorans). Extending these observations to key clinical markers helped identify >10 robust microbial associations to inflammation, cardiometabolic and liver health, including potential probiotic species (e.g., Parabacteroides goldsteinii) and pathobionts (e.g., Klebsiella pneumoniae), highlighting the microbiome's role as biomarkers and potential targets for promoting healthy aging.
Collapse
Affiliation(s)
- Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Indrik Wijaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eileen Png
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Kern Rei Chng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eliza Xin Pei Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Amanda Hui Qi Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jean-Sebastien Gounot
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Shou Ping Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jasinda Lee Hanqing
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Lihuan Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Chenhao Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jia Yu Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Paola Florez de Sessions
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Woon-Puay Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Brenner Centre for Molecular Medicine, Singapore, 117609, Republic of Singapore
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Tze Pin Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Anis Larbi
- Singapore Immunology Network (SigN), Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Andrea B Maier
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
6
|
Zhu H, Gu B, Zhao D, Ma Y, Mehmood MA, Li Y, Yang K, Wang Y, He M, Zheng J, Wang N. Wuliangye strong aroma baijiu promotes intestinal homeostasis by improving gut microbiota and regulating intestinal stem cell proliferation and differentiation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7417-7428. [PMID: 38760970 DOI: 10.1002/jsfa.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Wuliangye strong aroma baijiu (hereafter, Wuliangye baijiu) is a traditional Chinese grain liquor containing short-chain fatty acids, ethyl caproate, ethyl lactate, other trace components, and a large proportion of ethanol. The effects of Wuliangye baijiu on intestinal stem cells and intestinal epithelial development have not been elucidated. Here, the role of Wuliangye baijiu in intestinal epithelial regeneration and gut microbiota modulation was investigated by administering a Lieber-DeCarli chronic ethanol liquid diet in a mouse model to mimic long-term (8 weeks') light/moderate alcohol consumption (1.6 g kg-1 day-1) in healthy human adults. RESULTS Wuliangye baijiu promoted colonic crypt proliferation in mice. According to immunofluorescence and reverse transcription-quantitative polymerase chain reaction analyses, compared with the ethanol-only treatment, Wuliangye baijiu increased the number of intestinal stem cells and goblet cells and the expression of enteroendocrine cell differentiation markers in the mouse colon. Furthermore, gut microbiota analysis showed an increase in the relative abundance of microbiota related to intestinal homeostasis following Wuliangye baijiu administration. Notably, increased abundance of Bacteroidota, Faecalibaculum, Lachnospiraceae, and Blautia may play an essential role in promoting stem-cell-mediated intestinal epithelial development and maintaining intestinal homeostasis. CONCLUSIONS In summary, these findings suggest that Wuliangye baijiu can be used to regulate intestinal stem cell proliferation and differentiation in mice and to alter gut microbiota distributions, thereby promoting intestinal homeostasis. This research elucidates the mechanism by which Wuliangye baijiu promotes intestinal health. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
- Wuliangye Group Co., Ltd., Yibin, China
| | - Baoxiang Gu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Dong Zhao
- Wuliangye Group Co., Ltd., Yibin, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yuzhu Li
- Wuliangye Group Co., Ltd., Yibin, China
| | | | | | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Jia Zheng
- Wuliangye Group Co., Ltd., Yibin, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| |
Collapse
|
7
|
Salazar-Jaramillo L, de la Cuesta-Zuluaga J, Chica LA, Cadavid M, Ley RE, Reyes A, Escobar JS. Gut microbiome diversity within Clostridia is negatively associated with human obesity. mSystems 2024; 9:e0062724. [PMID: 39012154 PMCID: PMC11334427 DOI: 10.1128/msystems.00627-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Clostridia are abundant in the human gut and comprise families associated with host health such as Oscillospiraceae, which has been correlated with leanness. However, culturing bacteria within this family is challenging, leading to their detection primarily through 16S rRNA amplicon sequencing, which has a limited ability to unravel diversity at low taxonomic levels, or by shotgun metagenomics, which is hindered by its high costs and complexity. In this cross-sectional study involving 114 Colombian adults, we used an amplicon-based sequencing strategy with alternative markers-gyrase subunit B (gyrB) and DNA K chaperone heat protein 70 (dnaK)-that evolve faster than the 16S rRNA gene. Comparing the diversity and abundance observed with the three markers in our cohort, we found a reduction in the diversity of Clostridia, particularly within Lachnospiraceae and Oscillospiraceae among obese individuals [as measured by the body mass index (BMI)]. Within Lachnospiraceae, the diversity of Ruminococcus_A negatively correlated with BMI. Within Oscillospiraceae, the genera CAG-170 and Vescimonas also exhibited this negative correlation. In addition, the abundance of Vescimonas was negatively correlated with BMI. Leveraging shotgun metagenomic data, we conducted a phylogenetic and genomic characterization of 120 metagenome-assembled genomes from Vescimonas obtained from a larger sample of the same cohort. We identified 17 of the 72 reported species. The functional annotation of these genomes showed the presence of multiple carbohydrate-active enzymes, particularly glycosyl transferases and glycoside hydrolases, suggesting potential beneficial roles in fiber degradation, carbohydrate metabolism, and butyrate production. IMPORTANCE The gut microbiota is diverse across various taxonomic levels. At the intra-species level, it comprises multiple strains, some of which may be host-specific. However, our understanding of fine-grained diversity has been hindered by the use of the conserved 16S rRNA gene. While shotgun metagenomics offers higher resolution, it remains costly, may fail to identify specific microbes in complex samples, and requires extensive computational resources and expertise. To address this, we employed a simple and cost-effective analysis of alternative genetic markers to explore diversity within Clostridia, a crucial group within the human gut microbiota whose diversity may be underestimated. We found high intra-species diversity for certain groups and associations with obesity. Notably, we identified Vescimonas, an understudied group. Making use of metagenomic data, we inferred functionality, uncovering potential beneficial roles in dietary fiber and carbohydrate degradation, as well as in short-chain fatty acid production.
Collapse
Affiliation(s)
- Laura Salazar-Jaramillo
- Vidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | | | - Luis A. Chica
- Department of Biological Sciences, Max Planck Tandem Group in Computational Biology, Research Group in Computational Biology and Microbial Ecology (BCEM), Universidad de los Andes, Bogota, Colombia
| | - María Cadavid
- Vidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Alejandro Reyes
- Department of Biological Sciences, Max Planck Tandem Group in Computational Biology, Research Group in Computational Biology and Microbial Ecology (BCEM), Universidad de los Andes, Bogota, Colombia
- Department of Pathology and Immunology, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Juan S. Escobar
- Vidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| |
Collapse
|
8
|
Atzeni A, Díaz-López A, Cacho AH, Babio N, García-Gavilán JF, Cornejo-Pareja I, Belzer C, Fitó M, Tinahones FJ, Salas-Salvadó J. Gut microbiota dynamics and association with chronic kidney disease: A longitudinal study within the PREDIMED-Plus trial. Life Sci 2024; 351:122863. [PMID: 38908788 DOI: 10.1016/j.lfs.2024.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
AIMS Chronic kidney disease (CKD) represents a global health concern, disproportionately affecting the elderly with heightened cardiovascular risk. The emerging focus on the gut microbiota's role in CKD pathophysiology represents a pivotal area in nephrology; however, the evidence on this topic is limited. This observational prospective study, in the framework of the PREDIMED-Plus trial, investigates associations between gut microbiota composition and the 1-year trajectory of CKD in 343 participants aged 55-75 years with high cardiovascular risk. MATERIALS AND METHODS Kidney function was assessed at baseline and at 1-year of follow-up through the estimated glomerular filtration rate based on cystatin C (eGFR-CysC) and CKD defined by eGFR-CysC <60 mL/min/1.73 m2. Participants were grouped based on their 1-year CKD trajectory: Group 1 maintained normal status or improved from CKD to normal, while Group 2 maintained CKD or worsened from normal to CKD. Fecal microbiota composition was assessed through 16S sequencing. KEY FINDINGS We observed differences in gut microbiota composition between CKD trajectory groups. Notably, the baseline relative abundance of Lachnoclostridium and Lachnospira, both butyrate-producing genera, was lower in participants maintaining or progressing to CKD. Longitudinally, a decrease in Lachnospira abundance was associated with CKD progression. The improved Chao1 index after 1-year follow-up suggests a link between enhanced microbial richness and stable/better kidney function. SIGNIFICANCE The findings underscore the potential of gut microbiota analysis in non-invasively monitoring CKD, especially in older populations, and hint at future interventions targeting gut microbiota to manage CKD progression. Further research is needed for causal relationships and generalizability.
Collapse
Affiliation(s)
- Alessandro Atzeni
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Andrés Díaz-López
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, Reus, Spain
| | - Adrián Hernández Cacho
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Nancy Babio
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús F García-Gavilán
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Cornejo-Pareja
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Jordi Salas-Salvadó
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Coccia C, Bonomi F, Lo Cricchio A, Russo E, Peretti S, Bandini G, Lepri G, Bartoli F, Moggi-Pignone A, Guiducci S, Del Galdo F, Furst DE, Matucci Cerinic M, Bellando-Randone S. The Potential Role of Butyrate in the Pathogenesis and Treatment of Autoimmune Rheumatic Diseases. Biomedicines 2024; 12:1760. [PMID: 39200224 PMCID: PMC11351188 DOI: 10.3390/biomedicines12081760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The gut microbiota is a complex ecosystem of microorganisms residing in the human gastrointestinal tract, playing a crucial role in various biological processes and overall health maintenance. Dysbiosis, an imbalance in the composition and function of the gut microbiota, is linked to systemic autoimmune diseases (SAD). Short-chain fatty acids (SCFAs), especially butyrate, produced by the gut microbiota through the fermentation of dietary fibers, play a significant role in immunomodulation and maintaining intestinal homeostasis. Butyrate is essential for colonocyte energy, anti-inflammatory responses, and maintaining intestinal barrier integrity. Studies show reduced butyrate-producing bacteria in SAD patients, suggesting that increasing butyrate levels could have therapeutic benefits. Butyrate's anti-inflammatory effects and its potential therapeutic role have been studied in rheumatoid arthritis, Sjogren's syndrome, systemic lupus erythematosus, systemic sclerosis, and Behçet's disease. Despite promising in vitro and animal model results, human studies are limited, and the optimal strategies for modulating dysbiosis in SADs remain elusive. This review explores the current evidence on the immunoregulatory role of butyrate and its potential therapeutic effects in SAD.
Collapse
Affiliation(s)
- Carmela Coccia
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Scleroderma Unit, AOU Careggi, University of Florence, 50139 Florence, Italy; (C.C.); (F.B.); (S.P.); (G.L.); (F.B.); (S.G.)
| | - Francesco Bonomi
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Scleroderma Unit, AOU Careggi, University of Florence, 50139 Florence, Italy; (C.C.); (F.B.); (S.P.); (G.L.); (F.B.); (S.G.)
| | - Anna Lo Cricchio
- Department of Experimental and Clinical Medicine, Division of Internal Medicine AOUC, University of Florence, 50134 Florence, Italy; (A.L.C.); (G.B.); (A.M.-P.)
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
| | - Silvia Peretti
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Scleroderma Unit, AOU Careggi, University of Florence, 50139 Florence, Italy; (C.C.); (F.B.); (S.P.); (G.L.); (F.B.); (S.G.)
| | - Giulia Bandini
- Department of Experimental and Clinical Medicine, Division of Internal Medicine AOUC, University of Florence, 50134 Florence, Italy; (A.L.C.); (G.B.); (A.M.-P.)
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Scleroderma Unit, AOU Careggi, University of Florence, 50139 Florence, Italy; (C.C.); (F.B.); (S.P.); (G.L.); (F.B.); (S.G.)
| | - Francesca Bartoli
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Scleroderma Unit, AOU Careggi, University of Florence, 50139 Florence, Italy; (C.C.); (F.B.); (S.P.); (G.L.); (F.B.); (S.G.)
| | - Alberto Moggi-Pignone
- Department of Experimental and Clinical Medicine, Division of Internal Medicine AOUC, University of Florence, 50134 Florence, Italy; (A.L.C.); (G.B.); (A.M.-P.)
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Scleroderma Unit, AOU Careggi, University of Florence, 50139 Florence, Italy; (C.C.); (F.B.); (S.P.); (G.L.); (F.B.); (S.G.)
| | - Francesco Del Galdo
- Raynaud’s and Scleroderma Programme, NIHR Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK;
| | - Daniel E. Furst
- Department of Rheumatology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Marco Matucci Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy;
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Scleroderma Unit, AOU Careggi, University of Florence, 50139 Florence, Italy; (C.C.); (F.B.); (S.P.); (G.L.); (F.B.); (S.G.)
| |
Collapse
|
10
|
Pokrotnieks J, Sitkin S. He who controls Clostridia and Bacteroidia controls the gut microbiome: The concept of targeted probiotics to restore the balance of keystone taxa in irritable bowel syndrome. Neurogastroenterol Motil 2024; 36:e14805. [PMID: 38651671 DOI: 10.1111/nmo.14805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
This article describes the concept of probiotics for patients with irritable bowel syndrome to target functionally active bacteria predominantly belonging to the Clostridia and Bacteroidia, which play a key role in maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Juris Pokrotnieks
- Department of Internal Diseases, Rīga Stradiņš University, Riga, Latvia
- Centre of Gastroenterology, Hepatology and Nutrition, Pauls Stradiņš Clinical University Hospital, Riga, Latvia
| | - Stanislav Sitkin
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg, Russia
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- R&D Department, Elpis Ltd., Riga, Latvia
| |
Collapse
|
11
|
Van-Wehle T, Vital M. Investigating the response of the butyrate production potential to major fibers in dietary intervention studies. NPJ Biofilms Microbiomes 2024; 10:63. [PMID: 39080292 PMCID: PMC11289085 DOI: 10.1038/s41522-024-00533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Interventions involving dietary fibers are known to benefit host health. A leading contribution of gut microbiota is commonly recognized with production of short chain fatty acids (SCFA) suspected to play a key role. However, the detailed mechanisms are largely unknown, and apart from a well-described bifidogenic effect of some fibers, results for other bacterial taxa are often incongruent between studies. We performed pooled analyses of 16S rRNA gene data derived from intervention studies (n = 14) based on three fibers, namely, inulin-type fructans (ITF), resistant starch (RS), and arabinoxylan-oligosaccharides (AXOS), harmonizing the bioinformatics workflow to reveal taxa stimulated by those substrates, specifically focusing on the SCFA-production potential. The results showed an increased butyrate production potential after ITF (p < 0.05) and RS (p < 0.1) treatment via an increase in bacteria exhibiting the enzyme butyryl-CoA:acetate CoA-transferase (but) that was governed by Faecalibacterium, Anaerostipes (ITF) and Agathobacter (RS) respectively. AXOS did not promote an increase in butyrate producers, nor were pathways linked to propionate production stimulated by any intervention. A bifidogenic effect was observed for AXOS and ITF, which was only partly associated with the behavior of but-containing bacteria and largely represented a separate response. Low and high Ruminococcus abundances pre-intervention for ITF and RS, respectively, promoted an increase in but-containing taxa (p < 0.05) upon interventions, whereas initial Prevotella abundance was negatively associated with responses of butyrate producers for both fibers. Collectively, our data demonstrate targeted stimulation of specific taxa by individual fibers increasing the potential to synthesize butyrate, where gut microbiota composition pre-intervention strongly controlled outcomes.
Collapse
Affiliation(s)
- Thao Van-Wehle
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
12
|
Zhang W, Zheng L, Xie J, Su X, Zhang M, Huang H, Schmitz-Esser S, Du S, Yang Y, Xie J, Zhang Q, Yu S, Guo Q, Wang H, Zhang L, Yang K, Hou R. The giant panda gut harbors a high diversity of lactic acid bacteria revealed by a novel culturomics pipeline. mSystems 2024; 9:e0052024. [PMID: 38920380 PMCID: PMC11265448 DOI: 10.1128/msystems.00520-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Some lactic acid bacteria (LAB) can provide significant health benefits, which are critically important for the conservation of endangered animals, such as giant pandas. However, little is known about the diversity and culturability of LAB in the giant panda gut microbiota. To understand the roles of LAB in giant panda conservation, it is critical to culture bacterial strains of interest. In this study, we established a pipeline to culture bacterial strains using enrichment of target bacteria with different liquid media and growth conditions. Then, the strains were isolated in solid media to study their functions. Using 210 samples from the culture enrichment method and 138 culture-independent samples, we obtained 1120 amplicon sequencing variants (ASVs) belonging to Lactobacillales. Out of the 1120 ASVs, 812 ASVs from the culture enrichment approach were twofold more diverse than 336 ASVs from the culture-independent approach. Many ASVs of interest were not detected in the culture-independent approach. Using this pipeline, we isolated many relevant bacterial strains and established a giant panda gut bacteria strain collection that included strains with low-abundance in culture-independent samples and included most of the giant panda LAB described by other researchers. The strain collection consisted of 60 strains representing 35 species of 12 genera. Thus, our pipeline is powerful and provides guidance in culturing gut microbiota of interest in hosts such as the giant panda.IMPORTANCECultivation is necessary to screen strains to experimentally investigate microbial traits, and to confirm the activities of novel genes through functional characterization studies. In the long-term, such work can aid in the identification of potential health benefits conferred by bacteria and this could aid in the identification of bacterial candidate strains that can be applied as probiotics. In this study, we developed a pipeline with low-cost and user-friendly culture enrichment to reveal the diversity of LAB in giant pandas. We compared the difference between culture-independent and culture enrichment methods, screened strains of interest that produced high concentrations of short-chain fatty acids (SCFAs), and we investigated the catalog of virulence factors, antibiotic resistance, butyrate and lactate synthesis genes of the strains at a genomic level. This study will provide guidance for microbiota cultivation and a foundation for future research aiming to understand the functions of specific strains.
Collapse
Affiliation(s)
- Wenping Zhang
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas at Mianyang Teachers' College of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan, China
| | - Lijun Zheng
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Junjin Xie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Mingchun Zhang
- China Conservation and Research Center for the Giant Panda, Chengdu, Sichuan, China
| | - He Huang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | | | - Shizhang Du
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas at Mianyang Teachers' College of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan, China
| | - Yu Yang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Jiqin Xie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Qinrong Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Shuran Yu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Qiang Guo
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Hairui Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Kong Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Xu L, Gao G, Zhou Z, Wei Z, Sun W, Li Y, Jiang X, Gu J, Li X, Pi Y. Fermented Purslane ( Portulaca oleracea L.) Supplementation Enhances Growth and Immune Function Parallel to the Regulation of Gut Microbial Butyrate Production in Weaned Piglets. Microorganisms 2024; 12:1403. [PMID: 39065171 PMCID: PMC11278901 DOI: 10.3390/microorganisms12071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Weaning is a challenging period for piglets, characterized by stress-related growth checks, compromised immunity, and gut dysbiosis. Purslane (Portulaca oleracea L.), known for its rich content of antioxidants, has potential as a functional feed ingredient. This study investigates the effects of feeding fermented purslane (FP) on the growth performance, immune function, intestinal microbiota, and metabolic profiles of weaned piglets. Forty-eight weaned piglets were randomly divided into two groups, with eight pens in each group and three pigs in each pen: a control diet (CON group) and a diet supplemented with 0.20% FP (FP group). The experiment lasted 28 days. The results show that FP supplementation did not affect the average daily feed intake (ADFI) but significantly increased the average daily gain (ADG) during the initial 14 days post-weaning. FP supplementation decreased diarrhea occurrence, with a pronounced reduction from days 10 to 13 (p < 0.05). Immunologically, the FP group had a trend towards reduced serum IgA levels on day 14 (p < 0.10). Importantly, the serum concentrations of the pro-inflammatory cytokine IL-6 were significantly reduced on both days 14 and 28 post-weaning. The antioxidative analysis showed increased serum superoxide dismutase (SOD) and decreased catalase (CAT) activities on day 14 (p < 0.05). In addition, FP supplementation significantly decreased serum diamine oxidase (DAO) activity and D-lactate levels by day 28, indicating a potential improvement in gut integrity. Fecal microbiota assessment demonstrated a distinctive clustering of microbial communities between the FP and CON groups, with an increase in the abundance of Clostridium_sensu_stricto_1, Tyzzerella, and Prevotellaceae_NK3B31_group and a decrease in Lactobacillus, Bacillus, and Subdoligranulum in the FP group (p < 0.05). Functional predictions suggested that the relative abundance of microbial butyrate synthesis enzymes (EC 2.7.2.7 and EC 2.3.1.19) was significantly enhanced by FP treatment. This modulation was further corroborated by elevated fecal butyrate levels (p < 0.05). In summary, dietary supplementation with FP promotes early-growth performance and has beneficial effects on immune function and intestinal health in weaned piglets. The enhancements may be attributed to distinct microbiota compositional changes and targeted modulation of microbial butyrate metabolism, which are crucial for piglet post-weaning adaptation and overall health.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Zian Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (J.G.)
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Jingang Gu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (J.G.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| |
Collapse
|
14
|
Cao J, Qin L, Zhang L, Wang K, Yao M, Qu C, Miao J. Protective effect of cellulose and soluble dietary fiber from Saccharina japonica by-products on regulating inflammatory responses, gut microbiota, and SCFAs production in colitis mice. Int J Biol Macromol 2024; 267:131214. [PMID: 38580029 DOI: 10.1016/j.ijbiomac.2024.131214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 μm and 97.350 μm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.
Collapse
Affiliation(s)
- Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China.
| |
Collapse
|
15
|
Congues F, Wang P, Lee J, Lin D, Shahid A, Xie J, Huang Y. Targeting aryl hydrocarbon receptor to prevent cancer in barrier organs. Biochem Pharmacol 2024; 223:116156. [PMID: 38518996 PMCID: PMC11144369 DOI: 10.1016/j.bcp.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The skin, lung, and gut are important barrier organs that control how the body reacts to environmental stressors such as ultraviolet (UV) radiation, air pollutants, dietary components, and microorganisms. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays an important role in maintaining homeostasis of barrier organs. AhR was initially discovered as a receptor for environmental chemical carcinogens such as polycyclic aromatic hydrocarbons (PAHs). Activation of AhR pathways by PAHs leads to increased DNA damage and mutations which ultimately lead to carcinogenesis. Ongoing evidence reveals an ever-expanding role of AhR. Recently, AhR has been linked to immune systems by the interaction with the development of natural killer (NK) cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, as well as the production of immunosuppressive cytokines. However, the role of AhR in carcinogenesis is not as straightforward as we initially thought. Although AhR activation has been shown to promote carcinogenesis in some studies, others suggest that it may act as a tumor suppressor. In this review, we aim to explore the role of AhR in the development of cancer that originates from barrier organs. We also examined the preclinical efficacy data of AhR agonists and antagonists on carcinogenesis to determine whether AhR modulation can be a viable option for cancer chemoprevention.
Collapse
Affiliation(s)
- Francoise Congues
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Pengcheng Wang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Joshua Lee
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Daphne Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ayaz Shahid
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jianming Xie
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ying Huang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
16
|
Liu D, Xie LS, Lian S, Li K, Yang Y, Wang WZ, Hu S, Liu SJ, Liu C, He Z. Anaerostipes hadrus, a butyrate-producing bacterium capable of metabolizing 5-fluorouracil. mSphere 2024; 9:e0081623. [PMID: 38470044 PMCID: PMC11036815 DOI: 10.1128/msphere.00816-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Anaerostipes hadrus (A. hadrus) is a dominant species in the human gut microbiota and considered a beneficial bacterium for producing probiotic butyrate. However, recent studies have suggested that A. hadrus may negatively affect the host through synthesizing fatty acid and metabolizing the anticancer drug 5-fluorouracil, indicating that the impact of A. hadrus is complex and unclear. Therefore, comprehensive genomic studies on A. hadrus need to be performed. We integrated 527 high-quality public A. hadrus genomes and five distinct metagenomic cohorts. We analyzed these data using the approaches of comparative genomics, metagenomics, and protein structure prediction. We also performed validations with culture-based in vitro assays. We constructed the first large-scale pan-genome of A. hadrus (n = 527) and identified 5-fluorouracil metabolism genes as ubiquitous in A. hadrus genomes as butyrate-producing genes. Metagenomic analysis revealed the wide and stable distribution of A. hadrus in healthy individuals, patients with inflammatory bowel disease, and patients with colorectal cancer, with healthy individuals carrying more A. hadrus. The predicted high-quality protein structure indicated that A. hadrus might metabolize 5-fluorouracil by producing bacterial dihydropyrimidine dehydrogenase (encoded by the preTA operon). Through in vitro assays, we validated the short-chain fatty acid production and 5-fluorouracil metabolism abilities of A. hadrus. We observed for the first time that A. hadrus can convert 5-fluorouracil to α-fluoro-β-ureidopropionic acid, which may result from the combined action of the preTA operon and adjacent hydA (encoding bacterial dihydropyrimidinase). Our results offer novel understandings of A. hadrus, exceptionally functional features, and potential applications. IMPORTANCE This work provides new insights into the evolutionary relationships, functional characteristics, prevalence, and potential applications of Anaerostipes hadrus.
Collapse
Affiliation(s)
- Danping Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Li-Sheng Xie
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shitao Lian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Kexin Li
- Systems Biology and Bioinformatics (SBI), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Yun Yang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Wen-Zhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| |
Collapse
|
17
|
Zhang X, Guan F, Gou W, Wang Q, Du S, Su C, Zhang J, Zheng JS, Wang H, Zhang B. Multi-trajectories of body mass index, waist circumference, gut microbiota, and incident dyslipidemia: a 27-year prospective study. RESEARCH SQUARE 2024:rs.3.rs-4251069. [PMID: 38699314 PMCID: PMC11065060 DOI: 10.21203/rs.3.rs-4251069/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Evidence is insufficient to establish a longitudinal association between combined trajectories of body mass index (BMI) and waist circumference (WC) and dyslipidemia. Our study aimed to explore the association between multi-trajectories of BMI and WC and incident dyslipidemia and identify microbiota and metabolite signatures of these trajectories. Methods Stratified by sex, we used a group-based trajectory modeling approach to identify distinct multi-trajectories of BMI and WC among 10,678 participants from the China Health and Nutrition Survey over a 24-year period. For each sex, we examined the associations between these multi-trajectories (1991-2015) and the onset dyslipidemia (2018) using multivariable logistic regression adjusting for sociodemographic and lifestyles factors. We characterized the gut microbial composition and performed LASSO and logistic regression to identify gut microbial signatures associated with these multi-trajectories in males and females, respectively. Results We identified four multi-trajectories of BMI and WC among both males and females: Normal (Group 1), BMI&WC normal increasing (Group 2), BMI&WC overweight increasing (Group 3), and BMI&WC obesity increasing (Group 4). Among males, Group 2 (OR: 2.10, 95% CI: 1.28-3.46), Group 3 (OR: 2.69, 95% CI: 1.56-4.63) and Group 4 (OR: 3.56, 95% CI: 1.85-6.83) had higher odds of developing dyslipidemia. However, among females, only those in Group 2 (OR: 1.54, 95% CI: 1.03-2.30) were more likely to develop dyslipidemia. In males, compared with Group 1, we observed lower alpha-diversity within Groups 2,3, and 4, and significant beta-diversity differences within Groups 3 and 4 (p 0.001). We also identified 3, 8, and 4 characteristic bacterial genera in male Groups 2, 3 and 4, and 2 genera in female Group 2. A total of 23, 25 and 10 differential metabolites were significantly associated with the above genera, except for Group 2 in males. Conclusions The ascending combined trajectories of BMI and WC are associated with a higher risk of dyslipidemia, even with normal baseline levels, especially in males. Shared and unique gut microbial and metabolic signatures among these high-risk trajectories could enhance our understanding of the mechanisms connecting obesity to dyslipidemia.
Collapse
Affiliation(s)
- Xiaofan Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention
| | - Fangxu Guan
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention
| | - Wanglong Gou
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University
| | - Qi Wang
- Chaoyang District of Beijing Centre for Disease Control and Prevention
| | - Shufa Du
- Department of Nutrition and Carolina Population Center, University of North Carolina at Chapel Hill
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention
| | - Jiguo Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention
| | - Bing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention
| |
Collapse
|
18
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024:10.1038/s41577-024-01014-8. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Zeng Z, Tang W. Gut microbiota: A potential player in psychiatric symptoms during COVID-19. World J Biol Psychiatry 2024; 25:267-280. [PMID: 38607962 DOI: 10.1080/15622975.2024.2342846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVES This study aims to explore the potential interconnections among gut microbiota, COVID-19 infection, depression and anxiety disorder. Additionally, it tries to assess potential therapeutic interventions that may improve the dysbiosis of gut microbiota. METHODS To achieve these objectives, we reviewed existing literature, encompassing studies and critical reviews that intersect the domains of gut microbiota, COVID-19, depression and anxiety disorders. RESULTS The findings highlight a notable correlation between the dysbiosis of gut microbiota and psychiatric symptoms in the context of COVID-19. Specifically, there is a marked reduction in the populations of bacteria that generate anti-inflammatory short-chain fatty acids (SCFAs), alongside a rise in the prevalence of gut bacterial clusters linked to inflammatory processes. Furthermore, several potential treatment strategies were summarised for improving the dysbiosis. CONCLUSIONS Gut microbiota plays a significant role in psychiatric symptoms during COVID-19, which has significant implications for the study and prevention of psychiatric symptoms in major epidemic diseases.
Collapse
Affiliation(s)
- Zijie Zeng
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
20
|
Joldrichsen MR, Kim E, Steiner HE, Jeong YJ, Premanandan C, Hsueh W, Ziouzenkova O, Cormet-Boyaka E, Boyaka PN. Loss of Paneth cells dysregulates gut ILC subsets and enhances weight gain response to high fat diet in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587349. [PMID: 38617293 PMCID: PMC11014498 DOI: 10.1101/2024.03.29.587349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Obesity has been associated with dysbiosis, but innate mechanisms linking intestinal epithelial cell subsets and obesity remain poorly understood. Using mice lacking Paneth cells (Sox9 ΔIEC mice), small intestinal epithelial cells specialized in the production of antimicrobial products and cytokines, we show that dysbiosis alone does not induce obesity or metabolic disorders. Loss of Paneth cells reduced ILC3 and increased ILC2 numbers in the intestinal lamina propria. High-fat diet (HFD) induced higher weight gain and more severe metabolic disorders in Sox9 ΔIEC mice. Further, HFD enhances the number of ILC1 in the intestinal lamina propria of Sox9 ΔIEC mice and increases intestinal permeability and the accumulation of immune cells (inflammatory macrophages and T cells, and B cells) in abdominal fat tissues of obese Sox9 ΔIEC . Transplantation of fecal materials from Sox9 ΔIEC mice in germ-free mice before HFD further confirmed the regulatory role of Paneth cells for gut ILC subsets and the development of obesity.
Collapse
|
21
|
Wu Z, Li Y, Jiang M, Sang L, Chang B. Selenium Yeast Alleviates Dextran Sulfate Sodium-Induced Chronic Colitis in Mice by Reducing Proinflammatory Cytokines and Regulating the Gut Microbiota and Their Metabolites. J Inflamm Res 2024; 17:2023-2037. [PMID: 38577691 PMCID: PMC10992675 DOI: 10.2147/jir.s449335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal inflammatory disease. Selenium has been reported to have therapeutic potential in IBD. Selenium yeast is a common selenium supplement that is convenient to access. This study explored the effect of selenium yeast on dextran sulfate sodium- (DSS-)induced chronic colitis in mice. Methods Mice were randomly divided into four groups: the control group, selenium yeast group, chronic colitis group, and chronic colitis+selenium yeast group (n=6). Mice were killed on the 26th day. The disease activity index (DAI) score and histological damage score were calculated. Cytokines, serum selenium, colonic tissue selenium, gut microbiota and their metabolites short-chain fatty acids (SCFAs) were evaluated. Results Selenium yeast lowered IL-1β, IL-6, TNF-α, IL-17A, IL-22 and IFN-γ (P<0.05). In addition, selenium yeast significantly elevated Turicibacter, Bifidobacterium, Allobaculum, Prevotella, Halomonas, Adlercreutzia (P<0.05), and butyric acid (P<0.05). Conclusion Selenium yeast could improve DSS-induced chronic colitis in mice by regulating cytokines, gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
22
|
Sant' Ana CT, Verediano TA, Grancieri M, Lopes Toledo RC, Costa NMB, Martino HSD, Barros FARD. Macauba ( Acrocomia aculeata) pulp oil has the potential to enhance the intestinal barrier morphology, goblet cell proliferation and gut microbiota composition in mice fed a high-fat diet. Br J Nutr 2024; 131:987-996. [PMID: 37955051 DOI: 10.1017/s0007114523002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Macauba (Acrocomia aculeata) is a palm tree native from Brazil, whose pulp is rich in oil that has a high content of oleic acid and carotenoids. Macauba pulp oil can bring health benefits due to its bioactive compounds; however, its effects on gut health are unknown. Thus, the objective of this study was to evaluate the effect of macauba pulp oil on the intestinal health in mice fed a high-fat (HF) diet. Male C57BL1/6 mice were randomly divided into three groups (10 animals/group): control diet, HF diet and HF diet with 4 % of macauba pulp oil (HFM). Concentration of short-chain fatty acids (SCFA), faecal pH and histomorphometric analysis of the colon were performed. Content of colon samples was used on microbiome analysis using 16S rRNA amplicon sequencing. Animals from the HFM group had higher butyric acid content and goblet cells number, greater circular and longitudinal muscle layer and higher α-diversity compared with the HF group. Moreover, consumption of MPO reduced Desulfobacterota phylum, Ruminococcaceae, Oscillospiraceae, Prevotellaceae, Bifidobacteriaceae family, Faecalibacterium, Prevotella, Ruminococcus and Enterorhabdus genus. Therefore, macauba pulp oil was able to modulate the gut microbiota and enhance intestinal barrier morphology, showing preventive effects on gut dysbiosis in mice fed a HF diet.
Collapse
Affiliation(s)
- Cíntia Tomaz Sant' Ana
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG36570-000, Brazil
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
23
|
Xu YX, Liu LD, Zhu JY, Zhu SS, Ye BQ, Yang JL, Huang JY, Huang ZH, You Y, Li WK, He JL, Xia M, Liu Y. Alistipes indistinctus-derived hippuric acid promotes intestinal urate excretion to alleviate hyperuricemia. Cell Host Microbe 2024; 32:366-381.e9. [PMID: 38412863 DOI: 10.1016/j.chom.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Hyperuricemia induces inflammatory arthritis and accelerates the progression of renal and cardiovascular diseases. Gut microbiota has been linked to the development of hyperuricemia through unclear mechanisms. Here, we show that the abundance and centrality of Alistipes indistinctus are depleted in subjects with hyperuricemia. Integrative metagenomic and metabolomic analysis identified hippuric acid as the key microbial effector that mediates the uric-acid-lowering effect of A. indistinctus. Mechanistically, A. indistinctus-derived hippuric acid enhances the binding of peroxisome-proliferator-activated receptor γ (PPARγ) to the promoter of ATP-binding cassette subfamily G member 2 (ABCG2), which in turn boosts intestinal urate excretion. To facilitate this enhanced excretion, hippuric acid also promotes ABCG2 localization to the brush border membranes in a PDZ-domain-containing 1 (PDZK1)-dependent manner. These findings indicate that A. indistinctus and hippuric acid promote intestinal urate excretion and offer insights into microbiota-host crosstalk in the maintenance of uric acid homeostasis.
Collapse
Affiliation(s)
- Ying-Xi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Lu-Di Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jiang-Yuan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Shan-Shan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Bing-Qi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jia-Lu Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jing-Yi Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Zhi-Hao Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yi You
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Wen-Kang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jia-Lin He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China.
| |
Collapse
|
24
|
Ammer-Herrmenau C, Neesse A. Response to: short-chain fatty acids in patients with severe acute pancreatitis: friend or foe? Gut 2024:gutjnl-2024-332236. [PMID: 38453356 DOI: 10.1136/gutjnl-2024-332236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Affiliation(s)
- Christoph Ammer-Herrmenau
- Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medicine Goettingen, Goettingen, Germany
| | - Albrecht Neesse
- Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medicine Goettingen, Goettingen, Germany
| |
Collapse
|
25
|
Pan J, Lu D, Yu L, Ye Z, Duan H, Narbad A, Zhao J, Zhai Q, Tian F, Chen W. Nonylphenol induces depressive behavior in rats and affects gut microbiota: A dose-dependent effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123357. [PMID: 38228262 DOI: 10.1016/j.envpol.2024.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Nonylphenol (NP), an endocrine disruptor absorbed through food intake, was investigated in this study for its potential dose-response relationship with the manifestation of depression-like behavior in rats. Based on this, the mechanisms of NP-induced depressive behavior, encompassing neurotransmitters, gut barrier function, inflammatory response, gut microbiota composition and metabolites were further explored. At medium and high NP doses, both mRNA and protein levels of zonula occludens protein-1 and claudin-1 were considerably downregulated, concomitant with an elevation in tumor necrosis factor-α and interleukin-1β expression in a dose-dependent effect, resulting in damage to the gut mucosa. Despite a minimal impact on behavior and gut barriers at low NP doses, alterations in gut microbiota composition were observed. During NP exposure, dose-dependent changes in the gut microbiota revealed a decline in microbial diversity linked to the synthesis of short-chain fatty acids. NP not only adversely affected the gut microbiota structure but also exacerbated central nervous system damage through the gut-brain axis. The accumulation of NP may cause neurotransmitter disturbances and inflammatory responses in the hippocampus, which also exacerbate depressed behavior in rats. Therefore, NP could exacerbate the inflammatory response in the hippocampus and colon by compromising intestinal barrier integrity, facilitating the proliferation of pathogenic bacteria, impairing butyrate metabolism, and perturbing neurotransmitter homeostasis, thus aggravating the depressive behavior of rats. It is noteworthy that the changes in these indicators were related to the NP exposure dose.
Collapse
Affiliation(s)
- Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Dezhi Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
26
|
Nagarajan A, Lasher AT, Morrow CD, Sun LY. Long term methionine restriction: Influence on gut microbiome and metabolic characteristics. Aging Cell 2024; 23:e14051. [PMID: 38279509 PMCID: PMC10928566 DOI: 10.1111/acel.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 01/28/2024] Open
Abstract
The Methionine restriction (MR) diet has been shown to delay aging and extend lifespan in various model organisms. However, the long-term effects of MR diet on the gut microbiome composition remain unclear. To study this, male mice were started on MR and control diet regimens at 6 months and continued until 22 months of age. MR mice have reduced body weight, fat mass percentage, and bone mineral density while having increased lean mass percentage. MR mice also have increased insulin sensitivity along with increasing indirect calorimetry markers such as energy expenditure, oxygen consumption, carbon dioxide production, and glucose oxidation. Fecal samples were collected at 1 week, 18 weeks, and 57 weeks after the diet onset for 16S rRNA amplicon sequencing to study the gut microbiome composition. Alpha and beta diversity metrics detected changes occurring due to the timepoint variable, but no changes were detected due to the diet variable. The results from LEfSe analysis surprisingly showed that more bacterial taxa changes were linked to age rather than diet. Interestingly, we found that the long-term MR diet feeding induced smaller changes compared to short-term feeding. Specific taxa changes due to the diet were observed at the 1 or 18-week time points, including Ileibacterium, Odoribacter, Lachnoclostridium, Marinifilaceae, and Lactobacillaceae. Furthermore, there were consistent aging-associated changes across both groups, with an increase in Ileibacterium and Erysipelotrichaceae with age, while Eubacterium_coprostanoligenes_group, Ruminococcaceae, Peptococcaceae, and Peptococcus decreased with age.
Collapse
Affiliation(s)
- Akash Nagarajan
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Casey D. Morrow
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
27
|
Mo C, Zhao J, Liang J, Chen Y, Wang H, Dai Y, Huang G. Effects of Zhuang medicine compound Xiancao Granule on diabetic kidney disease: A multi-omics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117517. [PMID: 38042391 DOI: 10.1016/j.jep.2023.117517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) poses a severe threat to human health. Compound Xiancao Granule (CXCG), a classic Zhuang medicinal formula, is reported as highly effective in treating DKD. However, the mechanisms underlying the action of CXCG in DKD remain unclear. AIM OF THE STUDY This study aimed to investigate the mechanisms of action of CXCG against DKD using multi-omics analysis, including 16s rRNA sequencing, metabolomics, and transcriptomics. MATERIALS AND METHODS The chemical compounds of CXCG were identified using ultra-high- performance liquid chromatography quadrupole/electrostatic field orbital trap high-resolution mass spectrometry analysis. A rat model of DKD was established by combining nephrectomy of the left kidney, high-fat diet, and streptozotocin. The therapeutic effects of CXCG on DKD were assessed based on body weight, blood glucose level, renal function, inflammatory cytokine levels, and histological staining. Subsequently, 16s rRNA sequencing, liquid chromatography-tandem mass spectrometry untargeted metabolomic profiling, and RNA sequencing analysis were used to investigate the mechanisms of action of CXCG in DKD. Spearman's correlation analysis was performed to elucidate the correlations between efficacy indicators, gut microbiota, metabolites, and inflammation-related genes. RESULTS A total of 118 compounds were identified in CXCG. CXCG significantly ameliorated glucose metabolism disorders, improved renal function, attenuated inflammation, and delayed renal pathological changes in DKD rats. CXCG modulated gut microbiota dysbiosis, including Alloprevotella, Oscillibacter, Anaeroplasma, Anaerotruncus, and Faecalibacterium. In addition, metabolic disruption in DKD rats was regulated by CXCG, which is involved in the metabolism of carbohydrates and amino acids. Transcriptome analysis showed that CXCG affected DKD mainly by regulating inflammation-related genes and pathways, such as the PI3K/Akt and MAPK signaling pathways. Furthermore, there were significant correlations between efficacy indicators, gut microbiota, metabolites, and genes. CONCLUSION This multi-omics association study provides novel insights into the effects of CXCG on DKD by remodeling the gut microbiota structure and restoring the metabolic homeostasis through the regulation of carbohydrate metabolism, amino acid metabolism, and inflammation-related pathways, highlighting a potential therapeutic strategy for DKD.
Collapse
Affiliation(s)
- Chao Mo
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, PR China; Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Jie Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, PR China.
| | - Jingyan Liang
- Department of Nephrology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, PR China.
| | - Yu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Huiling Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Yuchong Dai
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Guodong Huang
- Department of Nephrology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, PR China.
| |
Collapse
|
28
|
Gunjur A, Shao Y, Rozday T, Klein O, Mu A, Haak BW, Markman B, Kee D, Carlino MS, Underhill C, Frentzas S, Michael M, Gao B, Palmer J, Cebon J, Behren A, Adams DJ, Lawley TD. A gut microbial signature for combination immune checkpoint blockade across cancer types. Nat Med 2024; 30:797-809. [PMID: 38429524 PMCID: PMC10957475 DOI: 10.1038/s41591-024-02823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Immune checkpoint blockade (ICB) targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce remarkable, yet unpredictable, responses across a variety of cancers. Studies suggest that there is a relationship between a cancer patient's gut microbiota composition and clinical response to ICB; however, defining microbiome-based biomarkers that generalize across cohorts has been challenging. This may relate to previous efforts quantifying microbiota to species (or higher taxonomic rank) abundances, whereas microbial functions are often strain specific. Here, we performed deep shotgun metagenomic sequencing of baseline fecal samples from a unique, richly annotated phase 2 trial cohort of patients with diverse rare cancers treated with combination ICB (n = 106 discovery cohort). We demonstrate that strain-resolved microbial abundances improve machine learning predictions of ICB response and 12-month progression-free survival relative to models built using species-rank quantifications or comprehensive pretreatment clinical factors. Through a meta-analysis of gut metagenomes from a further six comparable studies (n = 364 validation cohort), we found cross-cancer (and cross-country) validity of strain-response signatures, but only when the training and test cohorts used concordant ICB regimens (anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). This suggests that future development of gut microbiome diagnostics or therapeutics should be tailored according to ICB treatment regimen rather than according to cancer type.
Collapse
Affiliation(s)
- Ashray Gunjur
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK.
| | - Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Timothy Rozday
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Oliver Klein
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
- Department of Medical Oncology, Austin Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andre Mu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Bastiaan W Haak
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ben Markman
- Department of Medical Oncology, Monash Health, Melbourne, Victoria, Australia
- Department of Medical Oncology, Alfred Health, Melbourne, Victoria, Australia
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Damien Kee
- Department of Medical Oncology, Austin Health, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Rare Cancer Laboratory, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Matteo S Carlino
- Department of Medical Oncology, Blacktown and Westmead Hospitals, Sydney, New South Wales, Australia
- Melanoma Institute of Australia, University of Sydney, Sydney, New South Wales, Australia
| | - Craig Underhill
- Border Medical Oncology and Haematology Research Unit, Albury-Wodonga Regional Cancer Centre, Albury-Wodonga, New South Wales, Australia
- Rural Medical School, University of New South Wales, Albury, New South Wales, Australia
| | - Sophia Frentzas
- Department of Medical Oncology, Monash Health, Melbourne, Victoria, Australia
| | - Michael Michael
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Bo Gao
- Department of Medical Oncology, Blacktown and Westmead Hospitals, Sydney, New South Wales, Australia
| | - Jodie Palmer
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
- Department of Medical Oncology, Austin Health, Melbourne, Victoria, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
29
|
Jernfors T, Lavrinienko A, Vareniuk I, Landberg R, Fristedt R, Tkachenko O, Taskinen S, Tukalenko E, Mappes T, Watts PC. Association between gut health and gut microbiota in a polluted environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169804. [PMID: 38184263 DOI: 10.1016/j.scitotenv.2023.169804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Animals host complex bacterial communities in their gastrointestinal tracts, with which they share a mutualistic interaction. The numerous effects these interactions grant to the host include regulation of the immune system, defense against pathogen invasion, digestion of otherwise undigestible foodstuffs, and impacts on host behaviour. Exposure to stressors, such as environmental pollution, parasites, and/or predators, can alter the composition of the gut microbiome, potentially affecting host-microbiome interactions that can be manifest in the host as, for example, metabolic dysfunction or inflammation. However, whether a change in gut microbiota in wild animals associates with a change in host condition is seldom examined. Thus, we quantified whether wild bank voles inhabiting a polluted environment, areas where there are environmental radionuclides, exhibited a change in gut microbiota (using 16S amplicon sequencing) and concomitant change in host health using a combined approach of transcriptomics, histological staining analyses of colon tissue, and quantification of short-chain fatty acids in faeces and blood. Concomitant with a change in gut microbiota in animals inhabiting contaminated areas, we found evidence of poor gut health in the host, such as hypotrophy of goblet cells and likely weakened mucus layer and related changes in Clca1 and Agr2 gene expression, but no visible inflammation in colon tissue. Through this case study we show that inhabiting a polluted environment can have wide reaching effects on the gut health of affected animals, and that gut health and other host health parameters should be examined together with gut microbiota in ecotoxicological studies.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland.
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland; Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Igor Vareniuk
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Olena Tkachenko
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Sara Taskinen
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014, Finland
| | - Eugene Tukalenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, 020000, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|
30
|
van den Berg FF, Besselink MG, van Santvoort H. Short-chain fatty acids in patients with severe acute pancreatitis: friend or foe? Gut 2024:gutjnl-2024-332129. [PMID: 38360070 DOI: 10.1136/gutjnl-2024-332129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Fons F van den Berg
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Locatie AMC, Amsterdam, Noord-Holland, Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, Noord-Holland, Netherlands
| | | |
Collapse
|
31
|
Jennings SAV, Clavel T. Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition. Annu Rev Anim Biosci 2024; 12:283-300. [PMID: 37963399 DOI: 10.1146/annurev-animal-021022-025552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.
Collapse
Affiliation(s)
- Susan A V Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| |
Collapse
|
32
|
Chu XJ, Song DD, Zhou MH, Chen XZ, Chu N, Li M, Li BZ, Liu SH, Hou S, Wu JB, Gong L. Perturbations in gut and respiratory microbiota in COVID-19 and influenza patients: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1301312. [PMID: 38405190 PMCID: PMC10884097 DOI: 10.3389/fmed.2024.1301312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Objectives Coronavirus disease-19 (COVID-19)/influenza poses unprecedented challenges to the global economy and healthcare services. Numerous studies have described alterations in the microbiome of COVID-19/influenza patients, but further investigation is needed to understand the relationship between the microbiome and these diseases. Herein, through systematic comparison between COVID-19 patients, long COVID-19 patients, influenza patients, no COVID-19/influenza controls and no COVID-19/influenza patients, we conducted a comprehensive review to describe the microbial change of respiratory tract/digestive tract in COVID-19/influenza patients. Methods We systematically reviewed relevant literature by searching the PubMed, Embase, and Cochrane Library databases from inception to August 12, 2023. We conducted a comprehensive review to explore microbial alterations in patients with COVID-19/influenza. In addition, the data on α-diversity were summarized and analyzed by meta-analysis. Results A total of 134 studies comparing COVID-19 patients with controls and 18 studies comparing influenza patients with controls were included. The Shannon indices of the gut and respiratory tract microbiome were slightly decreased in COVID-19/influenza patients compared to no COVID-19/influenza controls. Meanwhile, COVID-19 patients with more severe symptoms also exhibited a lower Shannon index versus COVID-19 patients with milder symptoms. The intestinal microbiome of COVID-19 patients was characterized by elevated opportunistic pathogens along with reduced short-chain fatty acid (SCFAs)-producing microbiota. Moreover, Enterobacteriaceae (including Escherichia and Enterococcus) and Lactococcus, were enriched in the gut and respiratory tract of COVID-19 patients. Conversely, Haemophilus and Neisseria showed reduced abundance in the respiratory tract of both COVID-19 and influenza patients. Conclusion In this systematic review, we identified the microbiome in COVID-19/influenza patients in comparison with controls. The microbial changes in influenza and COVID-19 are partly similar.
Collapse
Affiliation(s)
- Xiu-Jie Chu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Dan-Dan Song
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ming-Hua Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiu-Zhi Chen
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Na Chu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ming Li
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Song-Hui Liu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Sai Hou
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Jia-Bing Wu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Lei Gong
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| |
Collapse
|
33
|
Yue X, Zhou H, Wang S, Chen X, Xiao H. Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease. Cancer Med 2024; 13:e6799. [PMID: 38239049 PMCID: PMC10905340 DOI: 10.1002/cam4.6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is one of the most effective treatment strategies for leukemia, lymphoma, and other hematologic malignancies. However, graft-versus-host disease (GVHD) can significantly reduce the survival rate and quality of life of patients after transplantation, and is therefore the greatest obstacle to transplantation. The recent development of new technologies, including high-throughput sequencing, metabolomics, and others, has facilitated great progress in understanding the complex interactions between gut microbiota, microbiota-derived metabolites, and the host. Of these interactions, the relationship between gut microbiota, microbial-associated metabolites, and GVHD has been most intensively researched. Studies have shown that GVHD patients often suffer from gut microbiota dysbiosis, which mainly manifests as decreased microbial diversity and changes in microbial composition and microbiota-derived metabolites, both of which are significant predictors of poor prognosis in GVHD patients. Therefore, the purpose of this review is to summarize what is known regarding changes in gut microbiota and microbiota-derived metabolites in GVHD, their relationship to GVHD prognosis, and corresponding clinical strategies designed to prevent microbial dysregulation and facilitate treatment of GVHD.
Collapse
Affiliation(s)
- XiaoYan Yue
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongyu Zhou
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - ShuFen Wang
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xu Chen
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - HaoWen Xiao
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
34
|
Guo K, Figueroa-Romero C, Noureldein MH, Murdock BJ, Savelieff MG, Hur J, Goutman SA, Feldman EL. Gut microbiome correlates with plasma lipids in amyotrophic lateral sclerosis. Brain 2024; 147:665-679. [PMID: 37721161 PMCID: PMC10834248 DOI: 10.1093/brain/awad306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex, fatal neurodegenerative disease. Disease pathophysiology is incompletely understood but evidence suggests gut dysbiosis occurs in ALS, linked to impaired gastrointestinal integrity, immune system dysregulation and altered metabolism. Gut microbiome and plasma metabolome have been separately investigated in ALS, but little is known about gut microbe-plasma metabolite correlations, which could identify robust disease biomarkers and potentially shed mechanistic insight. Here, gut microbiome changes were longitudinally profiled in ALS and correlated to plasma metabolome. Gut microbial structure at the phylum level differed in ALS versus control participants, with differential abundance of several distinct genera. Unsupervised clustering of microbe and metabolite levels identified modules, which differed significantly in ALS versus control participants. Network analysis found several prominent amplicon sequence variants strongly linked to a group of metabolites, primarily lipids. Similarly, identifying the features that contributed most to case versus control separation pinpointed several bacteria correlated to metabolites, predominantly lipids. Mendelian randomization indicated possible causality from specific lipids related to fatty acid and acylcarnitine metabolism. Overall, the results suggest ALS cases and controls differ in their gut microbiome, which correlates with plasma metabolites, particularly lipids, through specific genera. These findings have the potential to identify robust disease biomarkers and shed mechanistic insight into ALS.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohamed H Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Langhi C, Vallier M, Bron A, Otero YF, Maura M, Le Joubioux F, Blomberg N, Giera M, Guigas B, Maugard T, Chassaing B, Peltier S, Blanquet-Diot S, Bard JM, Sirvent P. A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice. Front Cardiovasc Med 2024; 11:1342388. [PMID: 38317864 PMCID: PMC10839041 DOI: 10.3389/fcvm.2024.1342388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.
Collapse
Affiliation(s)
| | | | - Auriane Bron
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | | | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources Pour la Santé), UMR CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | | | - Stéphanie Blanquet-Diot
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Marie Bard
- Laboratoire de Biochimie Générale et Appliquée, UFR de Pharmacie, ISOMer-UE 2160, IUML-Institut Universitaire Mer et Littoral-FR3473 CNRS, Université de Nantes, Nantes, France
| | | |
Collapse
|
36
|
Al Amaz S, Chaudhary A, Mahato PL, Jha R, Mishra B. Pre-hatch thermal manipulation of embryos and post-hatch baicalein supplementation mitigated heat stress in broiler chickens. J Anim Sci Biotechnol 2024; 15:8. [PMID: 38246989 PMCID: PMC10802028 DOI: 10.1186/s40104-023-00966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND High environmental temperatures induce heat stress in broiler chickens, affecting their health and production performance. Several dietary, managerial, and genetics strategies have been tested with some success in mitigating heat stress (HS) in broilers. Developing novel HS mitigation strategies for sustaining broiler production is critically needed. This study investigated the effects of pre-hatch thermal manipulation (TM) and post-hatch baicalein supplementation on growth performance and health parameters in heat-stressed broilers. RESULTS Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5 °C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19 to 21, standard temperature) and 236 eggs were incubated at a controlled temperature (37.5 °C) till hatch. After hatch, 180-day-old chicks from both groups were raised in 36 pens (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) control heat stress (CHS), 4) thermal manipulation heat stress (TMHS), 5) control heat stress supplement (CHSS), and 6) thermal manipulation heat stress supplement (TMHSS). All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 °C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24 °C) environment was maintained in the Control and TM groups. RH was constant (50% ± 5%) throughout the trial. All the data were analyzed using one-way ANOVA in R and GraphPad software at P < 0.05 and are presented as mean ± SEM. Heat stress significantly decreased (P < 0.05) the final body weight and ADG in CHS and TMHS groups compared to the other groups. Embryonic TM significantly increased (P < 0.05) the expression of heat shock protein-related genes (HSP70, HSP90, and HSPH1) and antioxidant-related genes (GPX1 and TXN). TMHS birds showed a significant increment (P < 0.05) in total cecal volatile fatty acid (VFA) concentration compared to the CHS birds. The cecal microbial analysis showed significant enrichment (P < 0.05) in alpha and beta diversity and Coprococcus in the TMHSS group. CONCLUSIONS Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens' growth performance, upregulate favorable gene expression, increase VFA production, and promote gut health by increasing beneficial microbial communities.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Prem Lal Mahato
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
37
|
Li F, Yu C, Zhao Q, Wang Z, Wang Z, Chang Y, Xu Z, Han X, Li H, Liu Y, Hu S, Chang S, Tang T, Li Y. Exploring the intestinal ecosystem: from gut microbiota to associations with subtypes of inflammatory bowel disease. Front Cell Infect Microbiol 2024; 13:1304858. [PMID: 38239508 PMCID: PMC10794348 DOI: 10.3389/fcimb.2023.1304858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Objective Significant differences have been discovered between subtypes of Crohn's disease (CD) and ulcerative colitis (UC). The role of gut microbiota in promoting the onset of UC and CD is established, but conclusions regarding subtype-specific analyses remain limited. Methods This study aims to explore the influence of gut microbiota on subtypes of UC and CD, offering novel insights into the pathogenesis and treatment of UC and CD.Two-sample Mendelian randomization (MR) analysis was employed to examine the causal relationship between subtypes of UC and CD and gut microbiota composition. Gut microbiota data were sourced from the International Consortium MiBioGen, while UC and CD data were obtained from FINNGEN. Eligible single nucleotide polymorphisms (SNPs) were selected as instrumental variables. Multiple analytical approaches such as inverse variance-weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-RAPS were utilized. Sensitivity analyses including MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were conducted for quality control. Subsequently, we employed multivariable IVW, MR-Egger, weighted median, and LASSO regression methods to identify independently significant genera or families and conducted sensitivity analyses. Results We have determined that Hungatella, Acidaminococcaceae, and 15 other microbial taxa act as protective factors for various CD and UC subtypes, while Terrisporobacter, Anaerostipes, and 23 other microbial taxa are associated with increased risk for different CD and UC subtypes. Furthermore, through multivariable MR analysis, we have identified significant genera or families with independent effects. Conclusion Our study confirms a causal relationship between dysbiosis of gut microbiota and the occurrence of CD and UC subtypes. Furthermore, it validates etiological distinctions among different subtypes of CD and UC. A novel approach to adjunctive therapy involving distinct UC or CD subtypes may involve the use of probiotics and represents a potential avenue for future treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Liu X, Tang H, Huang X, Xu M. Butyrate affects bacterial virulence: a new perspective on preventing enteric bacterial pathogen invasion. Future Microbiol 2024; 19:73-84. [PMID: 38085176 DOI: 10.2217/fmb-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 02/15/2024] Open
Abstract
Enteric bacterial pathogens are a major threat to intestinal health. With the widespread use of antibiotics, bacterial resistance has become a problem, and there is an urgent need for a new treatment to reduce dependence on antibiotics. Butyrate can control enteric bacterial pathogens by regulating the expression of their virulence genes, promoting the posttranslational modification of their proteins, maintaining an anaerobic environment, regulating the host immune system and strengthening the intestinal mucosal barrier. Here, this review describes the mechanisms by which butyrate regulates the pathogenicity of enteric bacterial pathogens from various perspectives and discusses the prospects and limitations of butyrate as a new option for the control of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Hao Tang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
39
|
Speckmann B, Ehring E, Hu J, Rodriguez Mateos A. Exploring substrate-microbe interactions: a metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024; 16:2305716. [PMID: 38300741 PMCID: PMC10841028 DOI: 10.1080/19490976.2024.2305716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota is an important modulator of human health and contributes to high inter-individual variation in response to food and pharmaceutical ingredients. The clinical outcomes of interventions with prebiotics, probiotics, and synbiotics have been mixed and often unpredictable, arguing for novel approaches for developing microbiome-targeted therapeutics. Here, we review how the gut microbiota determines the fate of and individual responses to dietary and xenobiotic compounds via its immense metabolic potential. We highlight that microbial metabolites play a crucial role as targetable mediators in the microbiota-host health relationship. With this in mind, we expand the concept of synbiotics beyond prebiotics' role in facilitating growth and engraftment of probiotics, by focusing on microbial metabolism as a vital mode of action thereof. Consequently, we discuss synbiotic compositions that enable the guided metabolism of dietary or co-formulated ingredients by specific microbes leading to target molecules with beneficial functions. A workflow to develop novel synbiotics is presented, including the selection of promising target metabolites (e.g. equol, urolithin A, spermidine, indole-3 derivatives), identification of suitable substrates and producer strains applying bioinformatic tools, gut models, and eventually human trials.In conclusion, we propose that discovering and enabling specific substrate-microbe interactions is a valuable strategy to rationally design synbiotics that could establish a new category of hybrid nutra-/pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ana Rodriguez Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
40
|
Hao W, Luo Q, Tomic I, Quan W, Hartmann T, Menger MD, Fassbender K, Liu Y. Modulation of Alzheimer's disease brain pathology in mice by gut bacterial depletion: the role of IL-17a. Gut Microbes 2024; 16:2363014. [PMID: 38904096 PMCID: PMC11195493 DOI: 10.1080/19490976.2024.2363014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
Gut bacteria regulate brain pathology of Alzheimer's disease (AD) patients and animal models; however, the underlying mechanism remains unclear. In this study, 3-month-old APP-transgenic female mice with and without knock-out of Il-17a gene were treated with antibiotics-supplemented or normal drinking water for 2 months. The antibiotic treatment eradicated almost all intestinal bacteria, which led to a reduction in Il-17a-expressing CD4-positive T lymphocytes in the spleen and gut, and to a decrease in bacterial DNA in brain tissue. Depletion of gut bacteria inhibited inflammatory activation in both brain tissue and microglia, lowered cerebral Aβ levels, and promoted transcription of Arc gene in the brain of APP-transgenic mice, all of which effects were abolished by deficiency of Il-17a. As possible mechanisms regulating Aβ pathology, depletion of gut bacteria inhibited β-secretase activity and increased the expression of Abcb1 and Lrp1 in the brain or at the blood-brain barrier, which were also reversed by the absence of Il-17a. Interestingly, a crossbreeding experiment between APP-transgenic mice and Il-17a knockout mice further showed that deficiency of Il-17a had already increased Abcb1 and Lrp1 expression at the blood-brain barrier. Thus, depletion of gut bacteria attenuates inflammatory activation and amyloid pathology in APP-transgenic mice via Il-17a-involved signaling pathways. Our study contributes to a better understanding of the gut-brain axis in AD pathophysiology and highlights the therapeutic potential of Il-17a inhibition or specific depletion of gut bacteria that stimulate the development of Il-17a-expressing T cells.
Collapse
Affiliation(s)
- Wenlin Hao
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Qinghua Luo
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
- Department of Neurology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Wenqiang Quan
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
- Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China
| | - Tobias Hartmann
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
- Department of Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Michael D. Menger
- Department of Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
41
|
Gao M, Wang J, Liu P, Tu H, Zhang R, Zhang Y, Sun N, Zhang K. Gut microbiota composition in depressive disorder: a systematic review, meta-analysis, and meta-regression. Transl Psychiatry 2023; 13:379. [PMID: 38065935 PMCID: PMC10709466 DOI: 10.1038/s41398-023-02670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Studies investigating gut microbiota composition in depressive disorder have yielded mixed results. The aim of our study was to compare gut microbiome between people with depressive disorder and healthy controls. We did a meta-analysis and meta-regression of studies by searching PubMed, Web of Science, Embase, Scopus, Ovid, Cochrane Library, ProQuest, and PsycINFO for articles published from database inception to March 07, 2022. Search strategies were then re-run on 12 March 2023 for an update. We undertook meta-analyses whenever values of alpha diversity and Firmicutes, Bacteroidetes (relative abundance) were available in two or more studies. A random-effects model with restricted maximum-likelihood estimator was used to synthesize the effect size (assessed by standardized mean difference [SMD]) across studies. We identified 44 studies representing 2091 patients and 2792 controls. Our study found that there were no significant differences in patients with depressive disorder on alpha diversity indices, Firmicutes and Bacteroidetes compared with healthy controls. In subgroup analyses with regional variations(east/west) as a predictor, patients who were in the West had a lower Chao1 level (SMD -0.42[-0.74 to -0.10]). Subgroup meta-analysis showed Firmicutes level was decreased in patients with depressive disorder who were medication-free (SMD -1.54[-2.36 to -0.72]), but Bacteroidetes level was increased (SMD -0.90[0.07 to 1.72]). In the meta-regression analysis, six variables cannot explain the 100% heterogeneity of the studies assessing by Chao1, Shannon index, Firmicutes, and Bacteroidetes. Depleted levels of Butyricicoccus, Coprococcus, Faecalibacterium, Fusicatenibacter, Romboutsia, and enriched levels of Eggerthella, Enterococcus, Flavonifractor, Holdemania, Streptococcus were consistently shared in depressive disorder. This systematic review and meta-analysis found that psychotropic medication and dietary habit may influence microbiota. There is reliable evidence for differences in the phylogenetic relationship in depressive disorder compared with controls, however, method of measurement and method of patient classification (symptom vs diagnosis based) may affect findings. Depressive disorder is characterized by an increase of pro-inflammatory bacteria, while anti-inflammatory butyrate-producing genera are depleted.
Collapse
Affiliation(s)
- Mingxue Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Jizhi Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Hongwei Tu
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Ruiyu Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Yanyan Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
- Basic Medical College, Shanxi Medical University, 030001, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China.
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China.
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001, Taiyuan, China.
- First Clinical Medical College, Shanxi Medical University, 030001, Taiyuan, China.
| |
Collapse
|
42
|
Huang X, Chen C, Xie W, Zhou C, Tian X, Zhang Z, Wang Q, Chang H, Xiao W, Zhang R, Gao Y. Metagenomic Analysis of Intratumoral Microbiome Linking to Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer. Int J Radiat Oncol Biol Phys 2023; 117:1255-1269. [PMID: 37433373 DOI: 10.1016/j.ijrobp.2023.06.2515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE To assess taxonomic and functional characteristics of tumor-bearing microbiota and its association with response to neoadjuvant chemoradiation therapy (nCRT) in patients with locally advanced rectal cancer. METHODS AND MATERIALS We performed metagenomic sequencing of biopsy tumoral tissues from 73 patients with locally advanced rectal cancer before nCRT. Patients were classified into poor responders (PR) and good responders (GR) according to response to nCRT. Subsequent investigation of network alteration, key community, microbial biomarkers, and function related to nCRT responses were carried out. RESULTS The network-driven analysis systematically revealed 2 co-occurring bacteria modules that exhibited opposite relationship with rectal cancer radiosensitivity. In the 2 modules, prominent alteration of global graph properties and community structure was observed between networks of PR and GR group. By quantifying changes in between-group association patterns and abundances, a total of 115 discriminative biomarker species linked to nCRT response were found, and 35 microbial variables were selected to establish the optimal randomForest classifier for nCRT response prediction. It yielded an area under the curve value of 85.5% (95% CI, 73.3%-97.8%) in the training cohort and 88.4% (95% CI, 77.5%-99.4%) in the validation cohort. In a comprehensive consideration, 5 key bacteria showed high relevance with inducing resistance to nCRT, including Streptococcus equinus, Schaalia odontolytica, Clostridium hylemonae, Blautia producta, and Pseudomonas azotoformans. One key hub including several butyrate-formation bacteria involving with driving network alteration from GR to PR indicate that microbiota-derived butyrate may also be involved in reducing the antitumor effects of nCRT, especially Coprococcus. The functional analysis of metagenome linked the nitrate and sulfate-sulfur assimilation, histidine catabolic process, and resistance to cephamycin to the reduced therapeutic response. It also linked to leucine degradation, isoleucine biosynthesis, taurine, and hypotaurine metabolism to the improved response to nCRT. CONCLUSIONS Our data offer novel potential microbial factors and shared metagenome function linked to resistance to nCRT.
Collapse
Affiliation(s)
- Xiaoxue Huang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyan Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weihao Xie
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chengjing Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xue Tian
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zitong Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiaoxuan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Chang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiwei Xiao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Zhang
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yuanhong Gao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
43
|
Deng ZL, Pieper DH, Stallmach A, Steube A, Vital M, Reck M, Wagner-Döbler I. Engraftment of essential functions through multiple fecal microbiota transplants in chronic antibiotic-resistant pouchitis-a case study using metatranscriptomics. MICROBIOME 2023; 11:269. [PMID: 38037086 PMCID: PMC10691019 DOI: 10.1186/s40168-023-01713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Ileal pouch-anal anastomosis (IPAA) is the standard of care after total proctocolectomy for ulcerative colitis (UC). Around 50% of patients will experience pouchitis, an idiopathic inflammatory condition. Antibiotics are the backbone of treatment of pouchitis; however, antibiotic-resistant pouchitis develops in 5-10% of those patients. It has been shown that fecal microbiota transplantation (FMT) is an effective treatment for UC, but results for FMT antibiotic-resistant pouchitis are inconsistent. METHODS To uncover which metabolic activities were transferred to the recipients during FMT and helped the remission, we performed a longitudinal case study of the gut metatranscriptomes from three patients and their donors. The patients were treated by two to three FMTs, and stool samples were analyzed for up to 140 days. RESULTS Reduced expression in pouchitis patients compared to healthy donors was observed for genes involved in biosynthesis of amino acids, cofactors, and B vitamins. An independent metatranscriptome dataset of UC patients showed a similar result. Other functions including biosynthesis of butyrate, metabolism of bile acids, and tryptophan were also much lower expressed in pouchitis. After FMT, these activities transiently increased, and the overall metatranscriptome profiles closely mirrored those of the respective donors with notable fluctuations during the subsequent weeks. The levels of the clinical marker fecal calprotectin were concordant with the metatranscriptome data. Faecalibacterium prausnitzii represented the most active species contributing to butyrate synthesis via the acetyl-CoA pathway. Remission occurred after the last FMT in all patients and was characterized by a microbiota activity profile distinct from donors in two of the patients. CONCLUSIONS Our study demonstrates the clear but short-lived activity engraftment of donor microbiota, particularly the butyrate biosynthesis after each FMT. The data suggest that FMT triggers shifts in the activity of patient microbiota towards health which need to be repeated to reach critical thresholds. As a case study, these insights warrant cautious interpretation, and validation in larger cohorts is necessary for generalized applications. In the long run, probiotics with high taxonomic diversity consisting of well characterized strains could replace FMT to avoid the costly screening of donors and the risk of transferring unwanted genetic material. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Luo Deng
- Group Computational Biology for Infection Research, Helmholtz Center for Infection Research, Brunswick, Germany.
| | - Dietmar H Pieper
- Group Microbial Interactions and Processes, Helmholtz Center for Infection Research, Brunswick, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Arndt Steube
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Reck
- Group Microbial Communication, Helmholtz Center for Infection Research, Brunswick, Germany
- TÜV Rheinland, Cologne, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Brunswick, Germany
| |
Collapse
|
44
|
Kapphan LM, Nguyen VTT, Heinrich I, Tüscher O, Passauer P, Schwiertz A, Endres K. Comparison of Frailty and Chronological Age as Determinants of the Murine Gut Microbiota in an Alzheimer's Disease Mouse Model. Microorganisms 2023; 11:2856. [PMID: 38138000 PMCID: PMC10745811 DOI: 10.3390/microorganisms11122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The ageing of an organism is associated with certain features of functional decline that can be assessed at the cellular level (e.g., reduced telomere length, loss of proteostasis, etc.), but also at the organismic level. Frailty is an independent syndrome that involves increased multidimensional age-related deficits, heightens vulnerability to stressors, and involves physical deficits in mainly the locomotor/muscular capacity, but also in physical appearance and cognition. For sporadic Alzheimer's disease, age per se is one of the most relevant risk factors, but frailty has also been associated with this disease. Therefore, we aimed to answer the two following questions within a cross-sectional study: (1) do Alzheimer's model mice show increased frailty, and (2) what changes of the microbiota occur concerning chronological age or frailty? Indeed, aged 5xFAD mice showed increased frailty compared to wild type littermates. In addition, 5xFAD mice had significantly lower quantities of Bacteroides spp. when only considering frailty, and lower levels of Bacteroidetes in terms of both frailty and chronological age compared to their wild type littermates. Thus, the quality of ageing-as assessed by frailty measures-should be taken into account to unravel potential changes in the gut microbial community in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Malina Kapphan
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.M.K.); (V.T.T.N.); (I.H.); (O.T.)
| | - Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.M.K.); (V.T.T.N.); (I.H.); (O.T.)
| | - Isabel Heinrich
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.M.K.); (V.T.T.N.); (I.H.); (O.T.)
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.M.K.); (V.T.T.N.); (I.H.); (O.T.)
| | - Pamela Passauer
- MVZ Institut für Mikroökologie GmbH, 35745 Herborn, Germany; (P.P.); (A.S.)
| | - Andreas Schwiertz
- MVZ Institut für Mikroökologie GmbH, 35745 Herborn, Germany; (P.P.); (A.S.)
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.M.K.); (V.T.T.N.); (I.H.); (O.T.)
| |
Collapse
|
45
|
Mathrani A, Lu LW, Sequeira-Bisson IR, Silvestre MP, Hoggard M, Barnett D, Fogelholm M, Raben A, Poppitt SD, Taylor MW. Gut microbiota profiles in two New Zealand cohorts with overweight and prediabetes: a Tū Ora/PREVIEW comparative study. Front Microbiol 2023; 14:1244179. [PMID: 38033566 PMCID: PMC10687470 DOI: 10.3389/fmicb.2023.1244179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Obesity-related metabolic diseases such as type 2 diabetes (T2D) are major global health issues, affecting hundreds of millions of people worldwide. The underlying factors are both diverse and complex, incorporating biological as well as cultural considerations. A role for ethnicity - a measure of self-perceived cultural affiliation which encompasses diet, lifestyle and genetic components - in susceptibility to metabolic diseases such as T2D is well established. For example, Asian populations may be disproportionally affected by the adverse 'TOFI' (Thin on the Outside, Fat on the Inside) profile, whereby outwardly lean individuals have increased susceptibility due to excess visceral and ectopic organ fat deposition. A potential link between the gut microbiota and metabolic disease has more recently come under consideration, yet our understanding of the interplay between ethnicity, the microbiota and T2D remains incomplete. We present here a 16S rRNA gene-based comparison of the fecal microbiota of European-ancestry and Chinese-ancestry cohorts with overweight and prediabetes, residing in New Zealand. The cohorts were matched for mean fasting plasma glucose (FPG: mean ± SD, European-ancestry: 6.1 ± 0.4; Chinese-ancestry: 6.0 ± 0.4 mmol/L), a consequence of which was a significantly higher mean body mass index in the European group (BMI: European-ancestry: 37.4 ± 6.8; Chinese-ancestry: 27.7 ± 4.0 kg/m2; p < 0.001). Our findings reveal significant microbiota differences between the two ethnicities, though we cannot determine the underpinning factors. In both cohorts Firmicutes was by far the dominant bacterial phylum (European-ancestry: 93.4 ± 5.5%; Chinese-ancestry: 79.6 ± 10.4% of 16S rRNA gene sequences), with Bacteroidetes and Actinobacteria the next most abundant. Among the more abundant (≥1% overall relative sequence abundance) genus-level taxa, four zero-radius operational taxonomic units (zOTUs) were significantly higher in the European-ancestry cohort, namely members of the Subdoligranulum, Blautia, Ruminoclostridium, and Dorea genera. Differential abundance analysis further identified a number of additional zOTUs to be disproportionately overrepresented across the two ethnicities, with the majority of taxa exhibiting a higher abundance in the Chinese-ancestry cohort. Our findings underscore a potential influence of ethnicity on gut microbiota composition in the context of individuals with overweight and prediabetes.
Collapse
Affiliation(s)
- Akarsh Mathrani
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Louise W. Lu
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
| | - Ivana R. Sequeira-Bisson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
| | - Marta P. Silvestre
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), NOVA University of Lisbon, Lisbon, Portugal
| | - Michael Hoggard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Mikael Fogelholm
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sally D. Poppitt
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
46
|
Kleine Bardenhorst S, Cereda E, Severgnini M, Barichella M, Pezzoli G, Keshavarzian A, Desideri A, Pietrucci D, Aho VTE, Scheperjans F, Hildebrand F, Weis S, Egert M, Karch A, Vital M, Rübsamen N. Gut microbiota dysbiosis in Parkinson disease: A systematic review and pooled analysis. Eur J Neurol 2023; 30:3581-3594. [PMID: 36593694 DOI: 10.1111/ene.15671] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE The role of the gut microbiome in the pathogenesis of Parkinson disease (PD) is under intense investigation, and the results presented are still very heterogeneous. These discrepancies arise not only from the highly heterogeneous pathology of PD, but also from widely varying methodologies at all stages of the workflow, from sampling to final statistical analysis. The aim of the present work is to harmonize the workflow across studies to reduce the methodological heterogeneity and to perform a pooled analysis to account for other sources of heterogeneity. METHODS We performed a systematic review to identify studies comparing the gut microbiota of PD patients to healthy controls. A workflow was designed to harmonize processing across all studies from bioinformatics processing to final statistical analysis using a Bayesian random-effects meta-analysis based on individual patient-level data. RESULTS The results show that harmonizing workflows minimizes differences between statistical methods and reveals only a small set of taxa being associated with the pathogenesis of PD. Increased shares of the genera Akkermansia and Bifidobacterium and decreased shares of the genera Roseburia and Faecalibacterium were most characteristic for PD-associated microbiota. CONCLUSIONS Our study summarizes evidence that reduced levels of butyrate-producing taxa in combination with possible degradation of the mucus layer by Akkermansia may promote intestinal inflammation and reduced permeability of the gut mucosal layer. This may allow potentially pathogenic metabolites to transit and enter the enteric nervous system.
Collapse
Affiliation(s)
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
| | | | - Gianni Pezzoli
- Parkinson Institute, ASST-Pini-CTO, Milan, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome & Chronobiology Research, Chicago, Illinois, USA
- Departments of Medicine, Physiology, Anatomy, and Cell Biology, Rush University, Chicago, Illinois, USA
| | | | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-food, and Forest Systems, University of Tuscia, Viterbo, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, Italian National Research Council, Bari, Italy
| | - Velma T E Aho
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | | | - Severin Weis
- Microbiology and Hygiene Group, Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Markus Egert
- Microbiology and Hygiene Group, Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - André Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Nicole Rübsamen
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
47
|
Kiely LJ, Busca K, Lane JA, van Sinderen D, Hickey RM. Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria. FEMS Microbiol Rev 2023; 47:fuad056. [PMID: 37793834 PMCID: PMC10629584 DOI: 10.1093/femsre/fuad056] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
A number of bacterial species are found in high abundance in the faeces of healthy breast-fed infants, an occurrence that is understood to be, at least in part, due to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). HMOs are the third most abundant component of human milk after lactose and lipids, and represent complex sugars which possess unique structural diversity and are resistant to infant gastrointestinal digestion. Thus, these sugars reach the infant distal intestine intact, thereby serving as a fermentable substrate for specific intestinal microbes, including Firmicutes, Proteobacteria, and especially infant-associated Bifidobacterium spp. which help to shape the infant gut microbiome. Bacteria utilising HMOs are equipped with genes associated with their degradation and a number of carbohydrate-active enzymes known as glycoside hydrolase enzymes have been identified in the infant gut, which supports this hypothesis. The resulting degraded HMOs can also be used as growth substrates for other infant gut bacteria present in a microbe-microbe interaction known as 'cross-feeding'. This review describes the current knowledge on HMO metabolism by particular infant gut-associated bacteria, many of which are currently used as commercial probiotics, including the distinct strategies employed by individual species for HMO utilisation.
Collapse
Affiliation(s)
- Leonie Jane Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61C996, Ireland
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Kizkitza Busca
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
| | - Jonathan A Lane
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
48
|
Pei L, Liu W, Liu L, Wang X, Jiang L, Chen Z, Wang Q, Wang P, Xu H. Morel ( Morchella spp.) intake alters gut microbial community and short-chain fatty acid profiles in mice. Front Nutr 2023; 10:1237237. [PMID: 37810928 PMCID: PMC10556497 DOI: 10.3389/fnut.2023.1237237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Morels (Morchella spp.) are highly nutritious and consumed as both edible mushrooms and traditional Chinese medicine. This study aimed to investigate the effects of dietary supplementation with morel mushrooms on the gut bacterial microbiota and short-chain fatty acids (SCFAs) profiles in healthy mice. Healthy mice were randomly assigned to five groups: a control group (0% morel) and four intervention groups supplemented with different levels of morel mushrooms (5% for M5, 10% for M10, 15% for M15, and 20% for M20) over a period of 4 weeks. Fecal samples were collected at the end of the experiment to characterize the microbiota and assess the SCFAs levels. The morel intervention significantly altered the bacterial community composition, increasing Bacteroides, Lachnospiraceae NK4A136 group and Parabacteroides, while decreasing Staphylococcus and the Firmicutes to Bacteroidetes ratio (F/B ratio). Moreover, increased morel intake was associated with weight loss. All SCFAs content was upregulated in the morel-intervention groups. Potential SCFAs-producing taxa identified by regression analysis were distributed in the families Muribaculaceae, Lachnospiraceae, and in the genera Jeotgalicoccus, Gemella, Odoribacter, Tyzzerella 3 and Ruminococcaceae UCG-014. The functional categories involved with SCFAs-production or weight loss may contain enzymes such as beta-glucosidase (K05349), beta-galactosidase (K01190), and hexosaminidase (K12373) after morel intervention. The exploration of the impact of morel mushrooms on gut microbiota and metabolites contributes to the development of prebiotics for improving health and reducing obesity.
Collapse
Affiliation(s)
- Longying Pei
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Wei Liu
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang, China
| | - Luping Liu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Luxi Jiang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | | | - Qiquan Wang
- Zhiran Biotechnology Co., Ltd, Tianjin, China
| | - Peng Wang
- Zhiran Biotechnology Co., Ltd, Tianjin, China
| | - Heng Xu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| |
Collapse
|
49
|
Modrego J, Ortega-Hernández A, Goirigolzarri J, Restrepo-Córdoba MA, Bäuerl C, Cortés-Macías E, Sánchez-González S, Esteban-Fernández A, Pérez-Villacastín J, Collado MC, Gómez-Garre D. Gut Microbiota and Derived Short-Chain Fatty Acids Are Linked to Evolution of Heart Failure Patients. Int J Mol Sci 2023; 24:13892. [PMID: 37762194 PMCID: PMC10530267 DOI: 10.3390/ijms241813892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
There is a lack of direct evidence regarding gut microbiota dysbiosis and changes in short-chain fatty acids (SCFAs) in heart failure (HF) patients. We sought to assess any association between gut microbiota composition, SCFA production, clinical parameters, and the inflammatory profile in a cohort of newly diagnosed HF patients. In this longitudinal prospective study, we enrolled eighteen newly diagnosed HF patients. At admission and after 12 months, blood samples were collected for the assessment of proinflammatory cytokines, monocyte populations, and endothelial dysfunction, and stool samples were collected for analysis of gut microbiota composition and quantification of SCFAs. Twelve months after the initial HF episode, patients demonstrated improved clinical parameters and reduced inflammatory state and endothelial dysfunction. This favorable evolution was associated with a reversal of microbiota dysbiosis, consisting of the increment of health-related bacteria, such as genus Bifidobacterium, and levels of SCFAs, mainly butyrate. Furthermore, there was a decrease in the abundance of pathogenic bacteria. In vitro, fecal samples collected after 12 months of follow-up exhibited lower inflammation than samples collected at admission. In conclusion, the favorable progression of HF patients after the initial episode was linked to the reversal of gut microbiota dysbiosis and increased SCFA production, particularly butyrate. Whether restoring butyrate levels or promoting the growth of butyrate-producing bacteria could serve as a complementary treatment for these patients deserves further studies.
Collapse
Affiliation(s)
- Javier Modrego
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.M.); (A.O.-H.); (S.S.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Adriana Ortega-Hernández
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.M.); (A.O.-H.); (S.S.-G.)
| | - Josebe Goirigolzarri
- Servicio de Cardiología, Hospital Clínico de San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.G.); (M.A.R.-C.)
| | - María Alejandra Restrepo-Córdoba
- Servicio de Cardiología, Hospital Clínico de San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.G.); (M.A.R.-C.)
| | - Christine Bäuerl
- Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), 46980 Paterna, Spain; (C.B.); (E.C.-M.); (M.C.C.)
| | - Erika Cortés-Macías
- Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), 46980 Paterna, Spain; (C.B.); (E.C.-M.); (M.C.C.)
| | - Silvia Sánchez-González
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.M.); (A.O.-H.); (S.S.-G.)
| | | | - Julián Pérez-Villacastín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Servicio de Cardiología, Hospital Clínico de San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.G.); (M.A.R.-C.)
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Fundación para la Investigación Interhospitalaria Cardiovascular, 28008 Madrid, Spain
| | - María Carmen Collado
- Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), 46980 Paterna, Spain; (C.B.); (E.C.-M.); (M.C.C.)
| | - Dulcenombre Gómez-Garre
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.M.); (A.O.-H.); (S.S.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
50
|
Dudun AA, Chesnokova DV, Voinova VV, Bonartsev AP, Bonartseva GA. Changes in the Gut Microbiota Composition during Implantation of Composite Scaffolds Based on Poly(3-hydroxybutyrate) and Alginate on the Large-Intestine Wall. Polymers (Basel) 2023; 15:3649. [PMID: 37688275 PMCID: PMC10489921 DOI: 10.3390/polym15173649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The development of biopolymer scaffolds for intestine regeneration is one of the most actively developing areas in tissue engineering. However, intestinal regenerative processes after scaffold implantation depend on the activity of the intestinal microbial community that is in close symbiosis with intestinal epithelial cells. In this work, we study the impact of different scaffolds based on biocompatible poly(3-hydroxybutyrate) (PHB) and alginate (ALG) as well as PHB/ALG scaffolds seeded with probiotic bacteria on the composition of gut microbiota of Wistar rats. Implantation of PHB/ALG scaffolds on the large-intestine wall to close its injury showed that alpha diversity of the gut microbiota was not reduced in rats implanted with different PHB/ALG scaffolds except for the PHB/ALG scaffolds with the inclusion of Lactobacillus spheres (PHB/ALG-L). The composition of the gut microbiota of rats implanted with PHB/ALG scaffolds with probiotic bacteria or in simultaneous use of an antimicrobial agent (PHB/ALG-AB) differed significantly from other experimental groups. All rats with implanted scaffolds demonstrated shifts in the composition of the gut microbiota by individual operational taxonomic units. The PHB/ALG-AB construct led to increased abundance of butyrate-producing bacteria: Ileibacterium sp. dominated in rats with implanted PHB/ALG-L and Lactobacillus sp. and Bifidobacterium sp. dominated in the control group. In addition, the PHB/ALG scaffolds had a favourable effect on the growth of commensal bacteria. Thus, the effect of implantation of the PHB/ALG scaffold compared to other scaffolds on the composition of the gut microbiota was closest to the control variant, which may demonstrate the biocompatibility of this device with the microbiota.
Collapse
Affiliation(s)
- Andrei A. Dudun
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071 Moscow, Russia;
| | - Dariana V. Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (D.V.C.); (V.V.V.); (A.P.B.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (D.V.C.); (V.V.V.); (A.P.B.)
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (D.V.C.); (V.V.V.); (A.P.B.)
| | - Garina A. Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071 Moscow, Russia;
| |
Collapse
|