1
|
Wang R, Li Y, Zhang Y, Wang S, He Z, Cao D, Sun Z, Wang N, Zhang Y, Ma B. Exploring the Adaptation Process of Huso dauricus to High Temperatures Based on Changes in Intestinal Microbiota. BIOLOGY 2024; 13:1045. [PMID: 39765712 PMCID: PMC11672952 DOI: 10.3390/biology13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Global warming has led to rising water temperatures, posing a significant threat to fish survival. Understanding the mechanisms by which fish respond to and adapt to temperature variations is thus of considerable importance. This study employed high-throughput 16S rRNA gene sequencing and bioinformatics to investigate changes in the intestinal microbiota of the kaluga sturgeon (Huso dauricus) under four temperature conditions (19 °C, 25 °C, 28 °C, and 31 °C) and its relationship with adaptation to high-temperature stress. The results indicated that temperature variations caused significant changes in the intestinal microbiota. Over time, differences in the microbiota structure became more pronounced under different temperature conditions, and within-group variability gradually decreased. At higher temperatures, the relative abundance of Sphingomonas significantly decreased, while that of Clostridium sensu stricto 1, Cetobacterium, and Plesiomonas exhibited a significant increase in relative abundance. Upon the cessation of rapid mortality under various high-temperature conditions, the intestinal microbiota structure and composition became highly similar, with Clostridium sensu stricto 1 dominating both in terms of composition and relative abundance, suggesting a central role in adaptation to high-temperature stress. This study preliminarily confirms that the high-temperature adaptability of Huso dauricus is closely related to the structure and composition of its intestinal microbiota, with bacteria such as Clostridium sensu stricto 1 playing an important role. These findings provide new scientific insights into enhancing fish adaptability to high-temperature stress.
Collapse
Affiliation(s)
- Ruoyu Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yutao Li
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
| | - Yining Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Sihan Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zheng He
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Dingchen Cao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
| | - Zhipeng Sun
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
| | - Nianmin Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
| | - Ying Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Bo Ma
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (R.W.)
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
3
|
Daubresse L, Portas A, Bertaud A, Marlinge M, Gaillard S, Risso JJ, Ramdani C, Rostain JC, Adjiriou N, Desruelle AV, Blatteau JE, Guieu R, Vallée N. CO 2 Breathing Prior to Simulated Diving Increases Decompression Sickness Risk in a Mouse Model: The Microbiota Trail Is Not Forgotten. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1141. [PMID: 39338024 PMCID: PMC11431549 DOI: 10.3390/ijerph21091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Decompression sickness (DCS) with neurological disorders is the leading cause of major diving accidents treated in hyperbaric chambers. Exposure to high levels of CO2 during diving is a safety concern for occupational groups at risk of DCS. However, the effects of prior exposure to CO2 have never been evaluated. The purpose of this study was to evaluate the effect of CO2 breathing prior to a provocative dive on the occurrence of DCS in mice. Fifty mice were exposed to a maximum CO2 concentration of 70 hPa, i.e., 7% at atmospheric pressure, for one hour at atmospheric pressure. Another 50 mice breathing air under similar conditions served as controls. In the AIR group (control), 22 out of 50 mice showed post-dive symptoms compared to 44 out of 50 in the CO2 group (p < 0.001). We found that CO2 breathing is associated with a decrease in body temperature in mice and that CO2 exposure dramatically increases the incidence of DCS (p < 0.001). More unexpectedly, it appears that the lower temperature of the animals even before exposure to the accident-prone protocol leads to an unfavorable prognosis (p = 0.046). This study also suggests that the composition of the microbiota may influence thermogenesis and thus accidentology. Depending on prior exposure, some of the bacterial genera identified in this work could be perceived as beneficial or pathogenic.
Collapse
Affiliation(s)
- Lucille Daubresse
- Service de Médecine Hyperbare, Hôpital d’Instruction des Armées, 83000 Toulon, France (J.-E.B.)
| | | | - Alexandrine Bertaud
- Aix-Marseille University, 27 Boulevard Jean-Moulin, 13005 Marseille, France (J.-C.R.); (N.A.); (R.G.)
| | - Marion Marlinge
- Aix-Marseille University, 27 Boulevard Jean-Moulin, 13005 Marseille, France (J.-C.R.); (N.A.); (R.G.)
| | | | - Jean-Jacques Risso
- Subaquatic Operational Research Team (ERRSO), Military Institute of Biomedical Research (IRBA), 83000 Toulon, France (C.R.); (A.-V.D.)
| | - Céline Ramdani
- Subaquatic Operational Research Team (ERRSO), Military Institute of Biomedical Research (IRBA), 83000 Toulon, France (C.R.); (A.-V.D.)
| | - Jean-Claude Rostain
- Aix-Marseille University, 27 Boulevard Jean-Moulin, 13005 Marseille, France (J.-C.R.); (N.A.); (R.G.)
| | - Nabil Adjiriou
- Aix-Marseille University, 27 Boulevard Jean-Moulin, 13005 Marseille, France (J.-C.R.); (N.A.); (R.G.)
| | - Anne-Virginie Desruelle
- Subaquatic Operational Research Team (ERRSO), Military Institute of Biomedical Research (IRBA), 83000 Toulon, France (C.R.); (A.-V.D.)
| | - Jean-Eric Blatteau
- Service de Médecine Hyperbare, Hôpital d’Instruction des Armées, 83000 Toulon, France (J.-E.B.)
| | - Régis Guieu
- Aix-Marseille University, 27 Boulevard Jean-Moulin, 13005 Marseille, France (J.-C.R.); (N.A.); (R.G.)
| | - Nicolas Vallée
- Subaquatic Operational Research Team (ERRSO), Military Institute of Biomedical Research (IRBA), 83000 Toulon, France (C.R.); (A.-V.D.)
| |
Collapse
|
4
|
Li L, Xu H, Hu Z, Li L. Artemisinin ameliorates thyroid function and complications in adult male hypothyroid rats via upregulation of the L1 cell adhesion molecule. Thyroid Res 2024; 17:19. [PMID: 39155377 PMCID: PMC11331813 DOI: 10.1186/s13044-024-00206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Hypothyroidism, a common worldwide syndrome caused by insufficient thyroid hormone secretion, affects number of people at different ages. Artemisinin (ART), a well-known effective agent in the treatment of malaria, also has anti-oxidative stress functions in various diseases. The L1 cell adhesion molecule exerts multiple protective roles in diseased systems. The aim of the present study was to evaluate the role of ART in adult male hypothyroid rats and the underlying mechanisms. METHODS The propylthiouracil (PTU) rat model was treated with or without 5 mg/kg ART and with or without L1 short-interfering RNA (siRNA), followed by the experiments to determine the effect of ART on thyroid function, depression and anxiety, cognition impairments, liver, kidney and heart functions, and oxidative stress. RESULTS In the current study, it was shown that ART can ameliorate thyroid function, mitigate depression and anxiety symptoms, attenuate cognition impairments, improve liver, kidney and heart functions, and inhibit oxidative stress; however, the effects exerted by ART could not be observed when L1 was silenced by L1 siRNA. CONCLUSION These results indicated that ART can upregulate the L1 cell adhesion molecule to ameliorate thyroid function and the complications in adult male hypothyroid rats, laying the foundation for ART to be a novel strategy for the treatment of hypothyroidism.
Collapse
Affiliation(s)
- Lingling Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Haifan Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Zecheng Hu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Li Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
6
|
Zhao L, Xiao R, Zhang S, Zhang C, Zhang F. Environmental specificity of karst cave habitats evidenced by diverse symbiotic bacteria in Opiliones. BMC Ecol Evol 2024; 24:58. [PMID: 38720266 PMCID: PMC11080181 DOI: 10.1186/s12862-024-02248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Karst caves serve as natural laboratories, providing organisms with extreme and constant conditions that promote isolation, resulting in a genetic relationship and living environment that is significantly different from those outside the cave. However, research on cave creatures, especially Opiliones, remains scarce, with most studies focused on water, soil, and cave sediments. RESULTS The structure of symbiotic bacteria in different caves were compared, revealing significant differences. Based on the alpha and beta diversity, symbiotic bacteria abundance and diversity in the cave were similar, but the structure of symbiotic bacteria differed inside and outside the cave. Microorganisms in the cave play an important role in material cycling and energy flow, particularly in the nitrogen cycle. Although microbial diversity varies inside and outside the cave, Opiliones in Beijing caves and Hainan Island exhibited a strong similarity, indicating that the two environments share commonalities. CONCLUSIONS The karst cave environment possesses high microbial diversity and there are noticeable differences among different caves. Different habitats lead to significant differences in the symbiotic bacteria in Opiliones inside and outside the cave, and cave microorganisms have made efforts to adapt to extreme environments. The similarity in symbiotic bacteria community structure suggests a potential similarity in host environments, providing an explanation for the appearance of Sinonychia martensi in caves in the north.
Collapse
Affiliation(s)
- Likun Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, P. R. China
| | - Ruoyi Xiao
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China
| | - Shanfeng Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China
| | - Chao Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China.
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Baoding, 071002, P. R. China.
| | - Feng Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P.R. China.
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Baoding, 071002, P. R. China.
| |
Collapse
|
7
|
Zhu XM, Chen JQ, Du Y, Lin CX, Qu YF, Lin LH, Ji X. Microbial communities are thermally more sensitive in warm-climate lizards compared with their cold-climate counterparts. Front Microbiol 2024; 15:1374209. [PMID: 38686106 PMCID: PMC11056556 DOI: 10.3389/fmicb.2024.1374209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Environmental temperature affects the composition, structure, and function of the gut microbial communities in host animals. To elucidate the role of gut microbiota in thermal adaptation, we designed a 2 species × 3 temperatures experiment, whereby we acclimated adult males of two agamid lizard species (warm-climate Leiolepis reevesii and cold-climate Phrynocephalus przewalskii) to 20, 28, and 36°C for 2 weeks and then collected their fecal and small-intestinal samples to analyze and compare the microbiota using 16S rRNA gene amplicon sequencing technology. The fecal microbiota displayed more pronounced interspecific differences in microbial community than the small-intestinal microbiota in the two species occurring in thermally different regions. The response of fecal and small-intestinal microbiota to temperature increase or decrease differed between the two species, with more bacterial taxa affected by acclimation temperature in L. reevesii than in P. przewalskii. Both species, the warm-climate species in particular, could cope with temperature change by adjusting the relative abundance of functional categories associated with metabolism and environmental information processing. Functional genes associated with carbohydrate metabolism were enhanced in P. przewalskii, suggesting the contribution of the fecal microbiota to cold-climate adaptation in P. przewalskii. Taken together, our results validate the two hypotheses tested, of which one suggests that the gut microbiota should help lizards adapt to thermal environments in which they live, and the other suggests that microbial communities should be thermally more sensitive in warm-climate lizards than in cold-climate lizards.
Collapse
Affiliation(s)
- Xia-Ming Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jun-Qiong Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Long-Hui Lin
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
8
|
Yao Z, Zhao W, Tang B, Li Q, Wang Z. Effects of host identity on the gut microbiota: A comparative study on three microtinae species. Animal Model Exp Med 2024; 7:98-105. [PMID: 38567747 PMCID: PMC11079152 DOI: 10.1002/ame2.12404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Gut microbiota exert an immense effect on host health and host environmental adaptation. Furthermore, the composition and structure of gut microbiota are determined by the environment and host genetic factors. However, the relative contribution of the environment and host genetic factors toward shaping the structure of gut microbiota has been poorly understood. METHODS In this study, we characterized the fecal microbial communities of the closely related voles Neodon fuscus, Lasiopodomys brandtii, and L. mandarinus after caged feeding in the laboratory for 6 months, through high-throughput sequencing and bioinformatics analysis. RESULTS The results of pairwise comparisons of N. fuscus vs. L. brandtii and L. mandarinus vs. L. brandtii revealed significant differences in bacterial diversity and composition after domestication. While 991 same operational taxonomic units (OTUs) were shared in three voles, there were 362, 291, and 303 species-specific OTUs in N. fuscus, L. brandtii, and L. mandarinus, respectively. The relative abundances of Proteobacteria and Prevotella, which are reported to be enriched in high-altitude populations, were significantly higher in high-altitude N. fuscus than in low-altitude L. brandtii after domestication. Firmicutes, which produce various digestive enzymes for energy metabolism, and Spirochaetes, which can degrade cellulose, were found in higher abundance in subterranean L. mandarinus than that in L. brandtii which dwells on the earth surface. CONCLUSION Our findings showed that some components of gut microbiota still maintained dominance even when different host species are reared under the same environmental conditions, suggesting that these bacteria are substantially influenced by host factors.
Collapse
Affiliation(s)
- Zhen Yao
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| | - Wenli Zhao
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| | - Baohong Tang
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| | - Qinghua Li
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| |
Collapse
|
9
|
Zhang XY, Khakisahneh S, Han SY, Song EJ, Nam YD, Kim H. Ginseng extracts improve circadian clock gene expression and reduce inflammation directly and indirectly through gut microbiota and PI3K signaling pathway. NPJ Biofilms Microbiomes 2024; 10:24. [PMID: 38503759 PMCID: PMC10950852 DOI: 10.1038/s41522-024-00498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Saeid Khakisahneh
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Song-Yi Han
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 245, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 245, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, Republic of Korea.
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea.
| |
Collapse
|
10
|
Wu Y, Zhou T, Gu C, Yin B, Yang S, Zhang Y, Wu R, Wei W. Geographical distribution and species variation of gut microbiota in small rodents from the agro-pastoral transition ecotone in northern China. Ecol Evol 2024; 14:e11084. [PMID: 38469048 PMCID: PMC10926059 DOI: 10.1002/ece3.11084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
The gut microbiota of rodents is essential for survival and adaptation and is susceptible to various factors, ranging from environmental conditions to genetic predispositions. Nevertheless, few comparative studies have considered the contribution of species identity and geographic spatial distance to variations in the gut microbiota. In this study, a random sampling survey encompassing four rodent species (Apodemus agrarius, Cricetulus barabensis, Tscherskia triton and Rattus norvegicus) was conducted at five sites in northern China's farming-pastoral ecotone. Through a cross-factorial comparison, we aimed to discern whether belonging to the same species or sharing the same capture site predominantly influences the composition of gut microbiota. Notably, the observed variations in microbiome composition among these four rodent species match the host phylogeny at the family level but not at the species level. The gut microbiota of these four rodent species exhibited typical mammalian characteristics, predominantly characterized by the Firmicutes and Bacteroidetes phyla. As the geographic distance between populations increased, the number of shared microbial taxa among conspecific populations decreased. We observed that within a relatively small geographical range, even different species exhibited convergent α-diversity due to their inhabitation within the same environmental microbial pool. In contrast, the composition and structure of the intestinal microbiota in the allopatric populations of A. agrarius demonstrated marked differences, similar to those of C. barabensis. Additionally, geographical environmental elements exhibited significant correlations with diversity indices. Conversely, host-related factors had minimal influence on microbial abundance. Our findings indicated that the similarity of the microbial compositions was not determined primarily by the host species, and the location of the sampling explained a greater amount of variation in the microbial composition, indicating that the local environment played a crucial role in shaping the microbial composition.
Collapse
Affiliation(s)
- Yongzhen Wu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Taoxiu Zhou
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Chen Gu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Baofa Yin
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Shengmei Yang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Yunzeng Zhang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Ruiyong Wu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Wanhong Wei
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
11
|
Shuai He, Zhang KH, Jin QY, Wang QJ, Huang J, Li JJ, Guo Y, Liu P, Liu ZY, Liu D, Geng SX, Li Q, Li MY, Liu M, Wu ZH. The effects of ambient temperature and feeding regimens on cecum bacteria composition and circadian rhythm in growing rabbits. Front Microbiol 2024; 15:1344992. [PMID: 38476945 PMCID: PMC10927733 DOI: 10.3389/fmicb.2024.1344992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Seasonal environmental shifts and improper eating habits are the important causes of diarrhea in children and growing animals. Whether adjusting feeding time at varying temperatures can modify cecal bacterial structure and improve diarrhea remains unknown. Three batches growing rabbits with two groups per batch were raised under different feeding regimens (fed at daytime vs. nighttime) in spring, summer and winter separately, and contents were collected at six time points in 1 day and used 16S rRNA sequencing to investigate the effects of feeding regimens and season on the composition and circadian rhythms of cecum bacteria. Randomized forest regression screened 12 genera that were significantly associated with seasonal ambient temperature changes. Nighttime feeding reduced the abundance of the conditionally pathogenic bacteria Desulfovibrio and Alistipes in summer and Campylobacter in winter. And also increases the circadian rhythmic Amplicon Sequence Variants in the cecum, enhancing the rhythm of bacterial metabolic activity. This rhythmic metabolic profile of cecum bacteria may be conducive to the digestion and absorption of nutrients in the host cecum. In addition, this study has identified 9 genera that were affected by the combination of seasons and feeding time. In general, we found that seasons and feeding time and their combinations affect cecum composition and circadian rhythms, and that daytime feeding during summer and winter disrupts the balance of cecum bacteria of growing rabbits, which may adversely affect cecum health and induce diarrhea risk.
Collapse
Affiliation(s)
- Shuai He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ke-Hao Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiong-Yu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang-Jun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun-Jiao Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Handan Livestock Technology Extension Station, Handan, China
| | - Yao Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong-Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shi-Xia Geng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Yong Li
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao, China
| | - Man Liu
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao, China
| | - Zhong-Hong Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Zhang K, Cao J, Zhao Z. Fat accumulation in striped hamsters (Cricetulus barabensis) reflects the temperature of prior cold acclimation. Front Zool 2024; 21:4. [PMID: 38350982 PMCID: PMC10865701 DOI: 10.1186/s12983-024-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Proper adjustments of metabolic thermogenesis play an important role in thermoregulation in endotherm to cope with cold and/or warm ambient temperatures, however its roles in energy balance and fat accumulation remain uncertain. Our study aimed to investigate the effect of previous cold exposure (10 and 0 °C) on the energy budgets and fat accumulation in the striped hamsters (Cricetulus barabensis) in response to warm acclimation. The body mass, energy intake, resting metabolic rate (RMR) and nonshivering thermogenesis (NST), serum thyroid hormone levels (THs: T3 and T4), and the activity of brown adipose tissue (BAT), indicated by cytochrome c oxidase (COX) activity and uncoupling protein 1 (ucp1) expression, were measured following exposure to the cold (10 °C and 0 °C) and transition to the warm temperature (30 °C). RESULTS The hamsters at 10 °C and 0 °C showed significant increases in energy intake, RMR and NST, and a considerable reduction in body fat than their counterparts kept at 21 °C. After being transferred from cold to warm temperature, the hamsters consumed less food, and decreased RMR and NST, but they significantly increased body fat content. Interestingly, the hamsters that were previously exposed to the colder temperature showed significantly more fat accumulation after transition to the warm. Serum T3 levels, BAT COX activity and ucp1 mRNA expression were significantly increased following cold exposure, and were considerably decreased after transition to the warm. Furthermore, body fat content was negatively correlated with serum T3 levels, BAT COX activity and UCP1 expression. CONCLUSION The data suggest that the positive energy balance resulting from the decreased RMR and NST in BAT under the transition from the cold to the warm plays important roles in inducing fat accumulation. The extent of fat accumulation in the warm appears to reflect the temperature of the previous cold acclimation.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
13
|
Wu Y, Xiong Y, Ji Y, Cheng Y, Zhu Q, Jiao X, Chang Y, Zhao N, Yang J, Lei F, Song G. Metabolic and microbial changes in light-vented bulbul during recent northward range expansion. Curr Zool 2024; 70:24-33. [PMID: 38476130 PMCID: PMC10926257 DOI: 10.1093/cz/zoad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2024] Open
Abstract
Endotherms recently expanding to cold environments generally exhibit strong physiological acclimation to sustain high body temperature. During this process, gut microbes likely play a considerable role in host physiological functions, including digestion and thermogenesis. The light-vented bulbul Pycnonotus sinensis represents one such species. It used to be restricted to the Oriental realm but expanded its distribution range north to the Palearctic areas during the past few decades. Here, we explored the seasonal dynamics of the resting metabolic rate (RMR) and microbiota for local and newly colonized populations of the species. Our results showed that the mass-adjusted RMR and body mass were positively correlated with latitude variations in both seasons. Consistently, the gut microbiota showed a corresponding variation to the northern cold environments. In the two northern populations, the alpha diversity decreased compared with those of the two southern populations. Significant differences were detected in dominant phyla, such as Firmicutes, Bacteroidetes, Proteobacteria, and Desulfobacterota in both seasons. The core microbiota showed geographic differences in the winter, including the elevated relative abundance of 5 species in northern populations. Finally, to explore the link between microbial communities and host metabolic thermogenesis, we conducted a correlation analysis between microbiota and mass-adjusted RMR. We found that more genera were significantly correlated with mass-adjusted RMR in the wintering season compared to the breeding season (71 vs. 23). These results suggest that microbiota of the lighted-vented bulbul linked with thermogenesis in diversity and abundance under northward expansion.
Collapse
Affiliation(s)
- Yun Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625099, Sichuan, China
| | - Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianghui Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbin Chang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Henan Engineering Research Center of Bird-Related Outage, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Na Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Zhang CY, Peng XX, Wu Y, Peng MJ, Liu TH, Tan ZJ. Intestinal mucosal microbiota mediate amino acid metabolism involved in the gastrointestinal adaptability to cold and humid environmental stress in mice. Microb Cell Fact 2024; 23:33. [PMID: 38267983 PMCID: PMC10809741 DOI: 10.1186/s12934-024-02307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Growing evidence has demonstrated that cold and humid environmental stress triggers gastrointestinal (GI) disorders. In this study, we explored the effects of intestinal microbiota homeostasis on the intestinal mucus barrier and GI disorders by cold and humid environmental stress. Moreover, the inner link between the intestinal mucosal microbiota and metabolites in mice with cold and humid environmental stress was interpreted by integrative analysis of PacBio HiFi sequencing microbial genomics and targeted metabolomics. In the current study, we found (1) after the cold and wet cold and humid environmental stress intervened in the intestinal microbiota disorder and homeostasis mice respectively, the bacterial culturing and fluorescein diacetate (FDA) microbial activity detection of intestinal microbiota including feces, intestinal contents, and intestinal mucosa suggested that the cold and humid environmental stress decreased the colony of culturable bacteria and microbial activity, in which intestinal microbiota disorder aggravated the injury of the intestinal mucus barrier and the GI symptoms related to cold and humid environmental stress; (2) the serum amino acid transferases such as glutamate pyruvic transa (GPT), and glutamic oxaloacetic transaminase (GOT) in cold and humid environmental stressed mice increased significantly, indicating that the intestinal microbiota adapted to cold and humid environmental stress by regulating the host's amino acid metabolism; (3) the integrative analysis of multi-omics illustrated a prediction model based on the microbiota Lactobacillus reuteri abundance and host amino acid level that can predict intestinal mucoprotein Muc2 with an adjusted R2 of 75.0%. In conclusion, the cold and humid environmental stress regulates the neurotransmitter amino acids metabolic function both in intestinal mucosal microbiota and host serum by adjusting the composition of the dominant bacterial population Lactobacillus reuteri, which contributes to the intestinal mucus barrier injury and GI disorders caused by cold and humid environmental stress.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin-Xin Peng
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Mai-Jiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tiao-Hao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Zhou-Jin Tan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
15
|
Ren S, Zhang L, Tang X, Zhao Y, Cheng Q, Speakman JR, Zhang Y. Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167776. [PMID: 37848151 DOI: 10.1016/j.scitotenv.2023.167776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most wild animals follow Bergmann's rule and grow in body size as cold stress increases. However, the underlying thermogenic strategies and their relationship with the gut microbiota have not been comprehensively elucidated. Herein, we used the plateau pikas as a model to investigate body mass, thermogenic capacity, host transcriptome, gut microbiota and metabolites collected from seven sites ranging from 3100 to 4700 m on the Qinghai-Tibetan Plateau (QTP) in summer and winter to test the seasonal thermogenesis strategy in small herbivorous mammals. The results showed that the increase in pika body mass with altitude followed Bergmann's rule in summer and an inverted parabolic shape was observed in winter. However, physiological parameters and transcriptome profiles indicated that the thermogenic capacity of pikas increased with altitude in summer and decreased with altitude in winter. The abundance of Firmicutes declined, whereas that of Bacteroidetes significantly increased with altitude in summer. Phenylalanine, tyrosine, and proline were enriched in summer, whereas carnitine and succinate were enriched in winter. Spearman's correlation analysis revealed significant positive correlations between Prevotella, Bacteroides, Ruminococcus, Alistipes and Akkermansia and metabolites of amino acids, pika physiological parameters, and transcriptome profiles. Moreover, metabolites of amino acids further showed significant positive correlations with pika physiological parameters and transcriptome profiles. Our study highlights that the changes in body mass and thermogenic capacity with altitude distinctly differentiate small herbivorous mammals between summer and winter on the QTP, and that the gut microbiota may regulate host thermogenesis through its metabolites.
Collapse
Affiliation(s)
- Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China.
| |
Collapse
|
16
|
Zhu W, Chang L, Shi S, Lu N, Du S, Li J, Jiang J, Wang B. Gut microbiota reflect adaptation of cave-dwelling tadpoles to resource scarcity. THE ISME JOURNAL 2024; 18:wrad009. [PMID: 38365235 PMCID: PMC10811740 DOI: 10.1093/ismejo/wrad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 02/18/2024]
Abstract
Gut microbiota are significant to the host's nutrition and provide a flexible way for the host to adapt to extreme environments. However, whether gut microbiota help the host to colonize caves, a resource-limited environment, remains unknown. The nonobligate cave frog Oreolalax rhodostigmatus completes its metamorphosis within caves for 3-5 years before foraging outside. Their tadpoles are occasionally removed from the caves by floods and utilize outside resources, providing a contrast to the cave-dwelling population. For both cave and outside tadpoles, the development-related reduction in their growth rate and gut length during prometamorphosis coincided with a shift in their gut microbiota, which was characterized by decreased Lactobacillus and Cellulosilyticum and Proteocatella in the cave and outside individuals, respectively. The proportion of these three genera was significantly higher in the gut microbiota of cave-dwelling individuals compared with those outside. The cave-dwellers' gut microbiota harbored more abundant fibrolytic, glycolytic, and fermentative enzymes and yielded more short-chain fatty acids, potentially benefitting the host's nutrition. Experimentally depriving the animals of food resulted in gut atrophy for the individuals collected outside the cave, but not for those from inside the cave. Imitating food scarcity reproduced some major microbial features (e.g. abundant Proteocatella and fermentative genes) of the field-collected cave individuals, indicating an association between the cave-associated gut microbiota and resource scarcity. Overall, the gut microbiota may reflect the adaptation of O. rhodostigmatus tadpoles to resource-limited environments. This extends our understanding of the role of gut microbiota in the adaptation of animals to extreme environments.
Collapse
Affiliation(s)
- Wei Zhu
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Liming Chang
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Shengchao Shi
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Ningning Lu
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Simeng Du
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Jiatang Li
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Jianping Jiang
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Bin Wang
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| |
Collapse
|
17
|
Li S, Li X, Wang K, Li Y, Nagaoka K, Li C. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway. J Anim Sci Biotechnol 2023; 14:159. [PMID: 38129919 PMCID: PMC10734199 DOI: 10.1186/s40104-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Broilers have a robust metabolism and high body temperature, which make them less tolerant to high-temperature (HT) environments and more susceptible to challenges from elevated temperatures. Gut microbes, functioning as symbionts within the host, possess the capacity to significantly regulate the physiological functions and environmental adaptability of the host. This study aims to investigate the effects of gut microbial intervention on the body temperature and thermogenesis of broilers at different ambient temperatures, as well as the underlying mechanism involving the "gut-brain" axis. METHODS Broilers were subjected to gut microbiota interference with or without antibiotics (control or ABX) starting at 1 day of age. At 21 day of age, they were divided into 4 groups and exposed to different environments for 7 d: The control and ABX groups at room temperature (RT, 24 ± 1 °C, 60% relative humidity (RH), 24 h/d) and the control-HT and ABX-HT groups at high temperature (HT, 32 ± 1 °C, 60% RH, 24 h/d). RESULTS : The results demonstrated that the antibiotic-induced gut microbiota intervention increased body weight and improved feed conversion in broiler chickens (P < 0.05). Under HT conditions, the microbiota intervention reduced the rectal temperature of broiler chickens (P < 0.05), inhibited the expression of avUCP and thermogenesis-related genes in breast muscle and liver (P < 0.05), and thus decreased thermogenesis capacity. Furthermore, the gut microbiota intervention blunted the hypothalamic‒pituitary‒adrenal axis and hypothalamic-pituitary-thyroid axis activation induced by HT conditions. By analyzing the cecal microbiota composition of control and ABX chickens maintained under HT conditions, we found that Alistipes was enriched in control chickens. In contrast, antibiotic-induced gut microbiota intervention resulted in a decrease in the relative abundance of Alistipes (P < 0.05). Moreover, this difference was accompanied by increased hypothalamic 5-hydroxytryptamine (5-HT) content and TPH2 expression (P < 0.05). CONCLUSIONS These findings underscore the critical role of the gut microbiota in regulating broiler thermogenesis via the gut-brain axis and suggest that the hypothalamic 5-HT pathway may be a potential mechanism by which the gut microbiota affects thermoregulation in broilers.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Li P, Hong J, Yuan Z, Huang Y, Wu M, Ding T, Wu Z, Sun X, Lin D. Gut microbiota in parasite-transmitting gastropods. Infect Dis Poverty 2023; 12:105. [PMID: 38001502 PMCID: PMC10668521 DOI: 10.1186/s40249-023-01159-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Gastropoda, the largest class within the phylum Mollusca, houses diverse gut microbiota, and some gastropods serve as intermediate hosts for parasites. Studies have revealed that gut bacteria in gastropods are associated with various biological aspects, such as growth, immunity and host-parasite interactions. Here, we summarize our current knowledge of gastropod gut microbiomes and highlight future research priorities and perspectives. METHODS A literature search was undertaken using PubMed, Web of Science and CNKI for the articles on the gut microbiota of gastropods until December 31, 2022. We retrieved a total of 166 articles and identified 73 eligible articles for inclusion in this review based on the inclusion and exclusion criteria. RESULTS Our analysis encompassed freshwater, seawater and land snails, with a specific focus on parasite-transmitting gastropods. We found that most studies on gastropod gut microbiota have primarily utilized 16S rRNA gene sequencing to analyze microbial composition, rather than employing metagenomic, metatranscriptomic, or metabolomic approaches. This comprehensive review provided an overview of the parasites carried by snail species in the context of gut microbiota studies. We presented the gut microbial trends, a comprehensive summary of the diversity and composition, influencing factors, and potential functions of gastropod gut microbiota. Additionally, we discussed the potential applications, research gaps and future perspectives of gut microbiomes in parasite-transmitting gastropods. Furthermore, several strategies for enhancing our comprehension of gut microbiomes in snails were also discussed. CONCLUSIONS This review comprehensively summarizes the current knowledge on the composition, potential function, influencing factors, potential applications, limitations, and challenges of gut microbiomes in gastropods, with a specific emphasis on parasite-transmitting gastropods. These findings provide important insights for future studies aiming to understand the potential role of gastropod gut microbiota in controlling snail populations and snail-borne diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yun Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
19
|
Gao WT, Liu JX, Wang DH, Sun HJ, Zhang XY. Melatonin reduced colon inflammation but had no effect on energy metabolism in ageing Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109731. [PMID: 37611884 DOI: 10.1016/j.cbpc.2023.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In photoperiod-sensitive wild animals, the secretion of melatonin (MT) is modulated by external photoperiod, and MT affects inflammation and the ageing process. The beneficial effects of MT in delaying the progress of ageing have been reported in laboratory mice and rats. However, little is known about MT in wild mammals. In the current study, we investigated energy metabolism, microbial community structure and colon homeostasis in ageing Mongolian gerbils (Meriones unguiculatus) through exogenous supplementation of MT to test the hypothesis that MT has beneficial effects on gut homeostasis in ageing gerbils. Exogenous MT supplementation had no effect on energy metabolism in Mongolian gerbils but reduced the levels of circulating tumor necrosis factor-α (TNF-α), immune globulin G (IgG) and corticosterone (CORT). The increase in the level of inflammation in ageing animals was related to changes in the structure and diversity of the gut microbiota. At the genus level, the relative abundance of Prevotella, Treponema, Corynebacterium, and Sphingomonas was increased in ageing animals and decreased significantly by the treatment of MT. Christensenella and Lactobacillus were attenuated in ageing animals, and tended to be enhanced by MT treatment. Functions related to glycosphingolipid biosynthesis-ganglio series and lipopolysaccharide biosynthesis (metabolisms of cofactors, vitamins and glycan) were increased in ageing animals and decreased significantly by the treatment of MT. Our data suggest that a supplement of MT could improve colon homeostasis through changing the composition of gut microbiota and reducing inflammation in ageing gerbils.
Collapse
Affiliation(s)
- Wen-Ting Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xiu Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shenyang Normal University, Shenyang 110034, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong University, Qingdao 266237, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Zhang XY, Khakisahneh S, Liu W, Zhang X, Zhai W, Cheng J, Speakman JR, Wang DH. Phylogenetic signal in gut microbial community rather than in rodent metabolic traits. Natl Sci Rev 2023; 10:nwad209. [PMID: 37928774 PMCID: PMC10625476 DOI: 10.1093/nsr/nwad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 11/07/2023] Open
Abstract
Host phylogeny and environment have all been implicated in shaping the gut microbiota and host metabolic traits of mammals. However, few studies have evaluated phylogeny-associated microbial assembly and host metabolic plasticity concurrently, and their relationships on both short-term and evolutionary timescales. We report that the branching order of a gut microbial dendrogram was nearly congruent with phylogenetic relationships of seven rodent species, and this pattern of phylosymbiosis was intact after diverse laboratory manipulations. Laboratory rearing, diet or air temperature (Ta) acclimation induced alterations in gut microbial communities, but could not override host phylogeny in shaping microbial community assembly. A simulative heatwave reduced core microbiota diversity by 26% in these species, and led to an unmatched relationship between the microbiota and host metabolic phenotypes in desert species. Moreover, the similarity of metabolic traits across species at different Tas was not correlated with phylogenetic distance. These data demonstrated that the gut microbial assembly showed strong concordance with host phylogeny and may be shaped by environmental variables, whereas host metabolic traits did not seem to be linked with phylogeny.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Saeid Khakisahneh
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Animal Evolution and Genetics, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Animal Evolution and Genetics, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB39 2PN, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Zhang W, Jia T, Zhang H, Zhu W. Effects of high-fiber food on gut microbiology and energy metabolism in Eothenomys miletus at different altitudes. Front Microbiol 2023; 14:1264109. [PMID: 37727288 PMCID: PMC10505965 DOI: 10.3389/fmicb.2023.1264109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Intestinal microorganisms assist the host in digesting complex and difficultly decomposed foods; expand the host's dietary ecological niche. In order to investigate the effect of high-fiber food on intestinal microorganisms of Eothenomys miletus at different altitudes, exploring the regional differences of intestinal microorganisms and their roles in body mass regulation, we collected E. miletus from Dali (DL) and Xianggelila (XGLL), which were divided into control group, high-fiber group fed with high-fiber diet for 7 days, and refeeding group fed with standard diet for 14 days after high-fiber diet. Using 16S rRNA gene sequencing technology combined with physiological methods, we analyzed the gut microbial diversity, abundance, community structure and related physiological indicators of each group, and explored the effects of high-fiber foods and regions on the diversity, structure of gut microorganisms and physiological indicators. The results showed that high-fiber food affected the food intake and metabolic rate of E. miletus, which also showed regional differences. The intestinal microorganisms of E. miletus obtained energy through the enrichment of fiber degrading bacteria under the condition of high-fiber food, while producing short-chain fatty acids, which participated in processes such as energy metabolism or immune regulation. Moreover, it also affected the colonization of intestinal microorganisms. High-fiber food promoted the enrichment of probiotics in the intestinal microbiota of E. miletus, but pathogenic bacteria also appeared. Therefore, the changes in the composition and diversity of gut microbiota in E. miletus provided important guarantees for their adaptation to high fiber food environments in winter.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Hao Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
22
|
Zhai J, Sun X, Lu R, Hu X, Huang Z. Bibliometric Analysis of Global Trends in Research on Seasonal Variations in Gut Microbiota from 2012 to 2022. Microorganisms 2023; 11:2125. [PMID: 37630685 PMCID: PMC10458723 DOI: 10.3390/microorganisms11082125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Seasons are the important influencing factor for gut microbiota, which in turn affects the ecology and evolution of the host. The seasonal variation in gut microbiota has increasingly attracted the attention of researchers and professionals worldwide. However, studies of seasonal variations in gut microbiota have not been systematically analyzed by bibliometrics or visual analysis. This study is based on 271 publications from 2012 to 2022 in the Web of Science Core Collection database (WOSCC) to analyze hot spots and trends in this field. The collaborations between different countries, institutions, authors, journals, and keywords were bibliometrically analyzed using Excel, CiteSpace (Version 6.2. R4), and VOSviewer (version 1.6.19) software. The number of publications has been increasing rapidly and shows a general upward trend. China and the Chinese Academy of Sciences are the country and institution contributing the most, respectively. The research hotspots and trends mainly include the diversity of gut microbiota communities in different seasons, the relationship between diet and gut microbiota in seasonal changes, and the relationship between gut microbiota and evolutionary adaptation in seasonal changes. This is the first bibliometric and visualization analysis of seasonal variations in gut microbiota, which may advance this field and lay the foundation for future research.
Collapse
Affiliation(s)
- Jiancheng Zhai
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Xiao Sun
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
| | - Rui Lu
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Xueqin Hu
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Zhiqiang Huang
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
23
|
Khakisahneh S, Zhang XY, Han SY, Song EJ, Nam YD, Kim H. Yijung-tang improves thermogenesis and reduces inflammation associated with gut microbiota in hypothyroid rats. NPJ Biofilms Microbiomes 2023; 9:32. [PMID: 37270649 DOI: 10.1038/s41522-023-00396-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023] Open
Abstract
Currently, considerable attention is focused on exploring the potential relationship between herbal medicine (HM) and the gut microbiome in terms of thermoregulation, which is an important aspect of human health, in modern system biology. However, our knowledge of the mechanisms of HM in thermoregulation is inadequate. Here, we demonstrate that the canonical herbal formula, Yijung-tang (YJT), protects against hypothermia, hyperinflammation, and intestinal microbiota dysbiosis in PTU-induced hypothyroid rats. Notably, these properties were associated with alterations in the gut microbiota and signaling crosstalk between the thermoregulatory and inflammatory mediators in the small intestine and brown adipose tissue (BAT). In contrast to the conventional drug L-thyroxine for curing hypothyroidism, YJT has an efficacy for attenuating systematic inflammatory responses, related with depression in intestinal TLR4 and Nod2/Pglyrp1 signaling pathways. Our findings suggest that YJT could promote BAT thermogenesis and prevent systemic inflammation in PTU-induced hypothyroid rats, which was associated with its prebiotic effect on modulating of the gut microbiota and gene expression with relevance in the enteroendocrine function and innate immune systems. These findings may strengthen the rationale of the microbiota-gut-BAT axis for a paradigm shift to enable holobiont-centric medicine.
Collapse
Affiliation(s)
- Saeid Khakisahneh
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song-Yi Han
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun, 245, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun, 245, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, Republic of Korea.
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea.
| |
Collapse
|
24
|
Wang B, Zhang XY, Yuan S, Fu HP, Wang CZ, Wang DH. Genetic Diversity of a Heat Activated Channel-TRPV1 in Two Desert Gerbil Species with Different Heat Sensitivity. Int J Mol Sci 2023; 24:ijms24119123. [PMID: 37298074 DOI: 10.3390/ijms24119123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Heat sensation and tolerance are crucial for determining species' survival and distribution range of small mammals. As a member of the transmembrane proteins, transient receptor potential vanniloid 1 (TRPV1) is involved in the sensation and thermoregulation of heat stimuli; however, the associations between animal's heat sensitivity and TRPV1 in wild rodents are less studied. Here, we found that Mongolian gerbils (Meriones unguiculatus), a rodent species living in Mongolia grassland, showed an attenuated sensitivity to heat compared with sympatrically distributed mid-day gerbils (M. meridianus) based on a temperature preference test. To explain this phenotypical difference, we measured the TRPV1 mRNA expression of two gerbil species in the hypothalamus, brown adipose tissue, and liver, and no statistical difference was detected between two species. However, according to the bioinformatics analysis of TRPV1 gene, we identified two single amino acid mutations on two TRPV1 orthologs in these two species. Further Swiss-model analyses of two TRPV1 protein sequences indicated the disparate conformations at amino acid mutation sites. Additionally, we confirmed the haplotype diversity of TRPV1 in both species by expressing TRPV1 genes ectopicly in Escherichia coli system. Taken together, our findings supplemented genetic cues to the association between the discrepancy of heat sensitivity and the functional differentiation of TRPV1 using two wild congener gerbils, promoting the comprehension of the evolutionary mechanisms of the TRPV1 gene for heat sensitivity in small mammals.
Collapse
Affiliation(s)
- Bing Wang
- State key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ying Zhang
- State key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Yuan
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - He-Ping Fu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chen-Zhu Wang
- State key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Hua Wang
- State key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
25
|
Zhang L, Yang Z, Yang F, Wang G, Zeng M, Zhang Z, Yang M, Wang Z, Li Z. Gut microbiota of two invasive fishes respond differently to temperature. Front Microbiol 2023; 14:1087777. [PMID: 37056740 PMCID: PMC10088563 DOI: 10.3389/fmicb.2023.1087777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Temperature variation structures the composition and diversity of gut microbiomes in ectothermic animals, key regulators of host physiology, with potential benefit to host or lead to converse results (i.e., negative). So, the significance of either effect may largely depend on the length of time exposed to extreme temperatures and how rapidly the gut microbiota can be altered by change in temperature. However, the temporal effects of temperature on gut microbiota have rarely been clarified. To understand this issue, we exposed two juvenile fishes (Cyprinus carpio and Micropterus salmoides), which both ranked among the 100 worst invasive alien species in the world, to increased environmental temperature and sampled of the gut microbiota at multiple time points after exposure so as to determine when differences in these communities become detectable. Further, how temperature affects the composition and function of microbiota was examined by comparing predicted metagenomic profiles of gut microbiota between treatment groups at the final time point of the experiment. The gut microbiota of C. carpio was more plastic than those of M. salmoides. Specifically, communities of C. carpio were greatly altered by increased temperature within 1 week, while communities of M. salmoides exhibit no significant changes. Further, we identified 10 predicted bacterial functional pathways in C. carpio that were temperature-dependent, while none functional pathways in M. salmoides was found to be temperature-dependent. Thus, the gut microbiota of C. carpio was more sensitive to temperature changes and their functional pathways were significantly changed after temperature treatment. These results showed the gut microbiota of the two invasive fishes differ in response to temperature change, which may indicate that they differ in colonization modes. Broadly, we have confirmed that the increased short-term fluctuations in temperatures are always expected to alter the gut microbiota of ectothermic vertebrates when facing global climate change.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
- Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem and The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, China
- *Correspondence: Lixia Zhang,
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ming Zeng
- Jigongshan National Nature Reserve, Xinyang, China
| | | | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Zhibing Li
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
26
|
Zhao C, Sun C, Yuan J, Tsopmejio ISN, Li Y, Jiang Y, Song H. Hericium caput-medusae (Bull.:Fr.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115721. [PMID: 36115601 DOI: 10.1016/j.jep.2022.115721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional edible fungus in China and many other Asian countries, Hericium caput-medusae (Bull. Fr.) Pers. is widely used to improve the health of the gastrointestinal tract. For example, the drug "Weilexin Granules" is mainly composed of H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate. However, the mechanism of action remains to be elucidated. AIMS OF THE STUDY The purpose of this study was to assess whether polysaccharides from H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate (HFP) exerts a gut protective effect and a regulatory effect on the intestinal microbiota through the chloride channels and mucus secretion. MATERIALS AND METHODS HFP was extracted, characterized and different concentrations of HFP (100, 200, 400 mg/kg) were administered to mice for 14 days. The changes in gut microbiota were observed via 16S high throughput sequencing. Short-chain fatty acids (SCFAs) was detected by GC-MS. AB-PAS staining was used to observe the secretion of mucus. The chloride channel activity and protein expression were verified by short-circuit current measurement and Western blot. RESULTS HFP regulated the abundance of gut microbiota in mice, with increased levels of Ruminococcaceae and Lachnospiraceae and reduced proportions of Staphylococcus and Enterobacter. HFP enhanced mucus volume as well as increased intestinal fluid secretion by activating the chloride channels. In addition, short-circuit current experiments also proved that HFP activates Cl⁻ currents targeting cystic fibrosis transmembrane conductance regulator (CFTR) and Anoamin1 (ANO1). CONCLUSION In conclusion, HFP might increase intestinal fluid secretion by promoting Cl⁻ secretion, which in turn advanced mucus hydration as well as regulated gut microbiota to improve intestinal health. Therefore, H. caput-medusae (Bull. Fr.) Pers. could be potentially used in the regulation of intestinal secretion and microbes.
Collapse
Affiliation(s)
- Cong Zhao
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Chang Sun
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Jing Yuan
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | | | - Yuting Li
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Yu Jiang
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China.
| | - Hui Song
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, 130118, Changchun, China.
| |
Collapse
|
27
|
Zhu H, Li G, Liu J, Xu X, Zhang Z. Gut microbiota is associated with the effect of photoperiod on seasonal breeding in male Brandt's voles (Lasiopodomys brandtii). MICROBIOME 2022; 10:194. [PMID: 36376894 PMCID: PMC9664686 DOI: 10.1186/s40168-022-01381-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/27/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Seasonal breeding in mammals has been widely recognized to be regulated by photoperiod, but the association of gut microbiota with photoperiodic regulation of seasonal breeding has never been investigated. RESULTS In this study, we investigated the association of gut microbiota with photoperiod-induced reproduction in male Brandt's voles (Lasiopodomys brandtii) through a long-day and short-day photoperiod manipulation experiment and fecal microbiota transplantation (FMT) experiment. We found photoperiod significantly altered reproductive hormone and gene expression levels, and gut microbiota of voles. Specific gut microbes were significantly associated with the reproductive hormones and genes of voles during photoperiod acclimation. Transplantation of gut microbes into recipient voles induced similar changes in three hormones (melatonin, follicle-stimulating hormone, and luteinizing hormone) and three genes (hypothalamic Kiss-1, testicular Dio3, and Dio2/Dio3 ratio) to those in long-day and short-day photoperiod donor voles and altered circadian rhythm peaks of recipient voles. CONCLUSIONS Our study firstly revealed the association of gut microbiota with photoperiodic regulation of seasonal breeding through the HPG axis, melatonin, and Kisspeptin/GPR54 system. Our results may have significant implications for pest control, livestock animal breeding, and human health management. Video Abstract.
Collapse
Affiliation(s)
- Hanyi Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
He Y, Zhang X, Gao J, Gao H, Cheng J, Xu Z, Pan R, Yi W, Song J, Liu X, Tang C, Song S, Su H. The impact of cold spells on schizophrenia admissions and the synergistic effect with the air quality index. ENVIRONMENTAL RESEARCH 2022; 212:113243. [PMID: 35398316 DOI: 10.1016/j.envres.2022.113243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Under current global climate conditions, there are insufficient studies on the health influences of cold spells, especially on mental health. This study aimed to examine the effect of cold spells on schizophrenia admissions and to analyze the potential interaction effect with the air quality index (AQI). METHODS Daily data on schizophrenia admissions and climatic variables in Hefei were collected from 2013 to 2019. Based on 20 definitions, the impacts of cold spells were quantified separately to find the most appropriate definition for the region, and meta-regression was used to explore the different effect sizes of the different days in a cold spell event. In addition, the potential interaction effect was tested by introducing a categorical variable, CSH, reflecting the cold spell and AQI level. RESULTS The cold spell defined by temperature below the 6th centile while lasting for at least three days produced the optimum model fit performance. In general, the risk of schizophrenia admissions increased on cold spell days. The largest single-day effect occurred on the 12th day with RR = 1.081 (95% CI: 1.044, 1.118). In a single cold spell event, the effect of the 3rd and subsequent days of a cold spell (RR = 1.082, 95% CI: 1.036, 1.130) was higher than that on the 2nd day (RR = 1.054, 95% CI: 1.024, 1.085). Similarly, the effect of the 2nd day was also higher than that of the 1st day (RR = 1.027, 95% CI: 1.012, 1.042). We found a synergistic effect between cold spells and high AQI in the male group, and the relative excess risk due to interaction (RERI) was 0.018 (95% CI: 0.005-0.030). CONCLUSIONS This study suggested that the impacts of cold spells should be considered based on the definition of the most appropriate for the region when formulating targeted measures of schizophrenia. The discovery of the synergistic effect was referred to help the selection of the timing of precautions for susceptible people.
Collapse
Affiliation(s)
- Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xulai Zhang
- Anhui Mental Health Center, Hefei, Anhui, China
| | - Jiaojiao Gao
- Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Hua Gao
- Anhui Mental Health Center, Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
29
|
Puthota J, Alatorre A, Walsh S, Clemente JC, Malaspina D, Spicer J. Prenatal ambient temperature and risk for schizophrenia. Schizophr Res 2022; 247:67-83. [PMID: 34620533 PMCID: PMC8977400 DOI: 10.1016/j.schres.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We conducted a systematic review of the published literature to test the hypothesis that maternal exposure to extremes of ambient temperatures during pregnancy is associated with the risk for psychiatric disorders or congenital malformations in offspring, both of which are indicative of perturbations of fetal neurodevelopment. METHOD This study was conducted in accordance with the recommendations outlined in the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting proposal. Electronic databases (Ovid MEDLINE, Ovid Embase, Ovid PsycINFO, Ovid Global Health, Web of Science, and Cochrane Library) were searched. Four independent reviewers selected studies with the following criteria: (1) prenatal maternal ambient temperature exposure; (2) outcome of offspring psychiatric disorder or congenital defects; (3) empirical study; (4) full-length article, no conference presentations or abstracts. RESULTS Twenty-two studies met criteria and one was added from a reference list (n = 23). Of these, schizophrenia (n = 5), anorexia nervosa (n = 3) and congenital cardiovascular malformations (n = 6) studies were the most common. Each of these categories showed some evidence of association with an early pregnancy maternal ambient heat exposure effect, with other evidence for a late pregnancy cold effect. CONCLUSION Some evidence supports a role for early pregnancy maternal exposure to extreme ambient heat in the development of psychiatric disorders, but large-scale, prospective cohort data on individual births is essential. Optimal studies will be conducted in seasonally variable climates, accounting for actual maternal residence over the pregnancy and at parturition, local environmental temperature records, and appropriate covariates, similar to studies identified by this systematic review for congenital malformations.
Collapse
Affiliation(s)
| | - Andrea Alatorre
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, United States of America
| | - Samantha Walsh
- Levy Library, Icahn School of Medicine at Mount Sinai, United States of America
| | - Jose C Clemente
- Department of Genetics & Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, United States of America
| | - Dolores Malaspina
- Departments of Psychiatry, Neuroscience, Genetics & Genomics, Icahn School of Medicine at Mount Sinai, United States of America
| | - Julie Spicer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
30
|
Greene LK, Andriambeloson JB, Rasoanaivo HA, Yoder AD, Blanco MB. Variation in gut microbiome structure across the annual hibernation cycle in a wild primate. FEMS Microbiol Ecol 2022; 98:6604834. [PMID: 35679092 DOI: 10.1093/femsec/fiac070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiome can mediate host metabolism, including facilitating energy-saving strategies like hibernation. The dwarf lemurs of Madagascar (Cheirogaleus spp.) are the only obligate hibernators among primates. They also hibernate in the subtropics, and unlike temperate hibernators, fatten by converting fruit sugars to lipid deposits, torpor at relatively warm temperatures, and forage for a generalized diet after emergence. Despite these ecological differences, we might expect hibernation to shape the gut microbiome in similar ways across mammals. We, therefore, compare gut microbiome profiles, determined by amplicon sequencing of rectal swabs, in wild furry-eared dwarf lemurs (C. crossleyi) during fattening, hibernation, and after emergence. The dwarf lemurs exhibited reduced gut microbial diversity during fattening, intermediate diversity and increased community homogenization during hibernation, and greatest diversity after emergence. The Mycoplasma genus was enriched during fattening, whereas the Aerococcaceae and Actinomycetaceae families, and not Akkermansia, bloomed during hibernation. As expected, the dwarf lemurs showed seasonal reconfigurations of the gut microbiome; however, the patterns of microbial diversity diverged from temperate hibernators, and better resembled the shifts associated with dietary fruits and sugars in primates and model organisms. Our results thus highlight the potential for dwarf lemurs to probe microbiome-mediated metabolism in primates under contrasting conditions.
Collapse
Affiliation(s)
- Lydia K Greene
- The Duke Lemur Center, 3705 Erwin Road, Durham, NC 27705, United States.,Department of Biology, Duke University, Durham, NC 27708, United States
| | - Jean-Basile Andriambeloson
- Department of Zoology and Animal Biodiversity, Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | - Hoby A Rasoanaivo
- Department of Science and Veterinary Medicine, Faculty of Medicine, University of Antananarivo, Antananarivo, Madagascar
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - Marina B Blanco
- The Duke Lemur Center, 3705 Erwin Road, Durham, NC 27705, United States.,Department of Biology, Duke University, Durham, NC 27708, United States
| |
Collapse
|
31
|
Chen S, Holyoak M, Liu H, Bao H, Ma Y, Dou H, Li G, Roberts NJ, Jiang G. Global warming responses of gut microbiota in moose (
Alces alces
) populations with different dispersal patterns. J Zool (1987) 2022. [DOI: 10.1111/jzo.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S. Chen
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
| | - M. Holyoak
- Department of Environmental Science and Policy University of California Davis California USA
| | - H. Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
- College of Forestry Hainan University Haikou China
| | - H. Bao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
| | - Y. Ma
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
- Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - H. Dou
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization Guangdong Academy of Forestry Guangzhou China
| | - G. Li
- State Key Laboratory of Integrated Pest Management, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - N. J. Roberts
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
| | - G. Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area Northeast Forestry University Harbin China
- Northeast Asia Biodiversity Research Center Northeast Forestry University Harbin China
| |
Collapse
|
32
|
Zhang Y, Zhao H, Li Q, Tsechoe D, Yuan H, Su G, Yang J. Environmental factors influence yak milk composition by modulating short-chain fatty acid metabolism in intestinal microorganisms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Gan L, Bo T, Liu W, Wang D. The Gut Microbiota May Affect Personality in Mongolian Gerbils. Microorganisms 2022; 10:1054. [PMID: 35630496 PMCID: PMC9146877 DOI: 10.3390/microorganisms10051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022] Open
Abstract
The "gut-microbiota-brain axis" reveals that gut microbiota plays a critical role in the orchestrating behavior of the host. However, the correlation between the host personalities and the gut microbiota is still rarely known. To investigate whether the gut microbiota of Mongolian gerbils (Meriones unguiculatus) differs between bold and shy personalities, we compared the gut microbiota of bold and shy gerbils, and then we transplanted the gut microbiota of bold and shy gerbils into middle group gerbils (individuals with less bold and shy personalities). We found a significant overall correlation between host boldness and gut microbiota. Even though there were no significant differences in alpha diversity and beta diversity of gut microbiota between bold and shy gerbils, the Firmicutes/Bacteroidetes phyla and Odoribacter and Blautia genus were higher in bold gerbils, and Escherichia_shigella genus was lower. Furthermore, the fecal microbiota transplantation showed that changes in gut microbiota could not evidently cause the increase or decrease in the gerbil's boldness score, but it increased the part of boldness behaviors by gavaging the "bold fecal microbiota". Overall, these data demonstrated that gut microbiota were significantly correlated with the personalities of the hosts, and alteration of microbiota could alter host boldness to a certain extent.
Collapse
Affiliation(s)
- Lin Gan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
34
|
Zhang XY, Wang DH. Gut Microbial Community and Host Thermoregulation in Small Mammals. Front Physiol 2022; 13:888324. [PMID: 35480035 PMCID: PMC9035535 DOI: 10.3389/fphys.2022.888324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The endotherms, particularly the small mammals living in the polar region and temperate zone, are faced with extreme challenges for maintaining stable core body temperatures in harsh cold winter. The non-hibernating small mammals increase metabolic rate including obligatory thermogenesis (basal/resting metabolic rate, BMR/RMR) and regulatory thermogenesis (mainly nonshivering thermogenesis, NST, in brown adipose tissue and skeletal muscle) to maintain thermal homeostasis in cold conditions. A substantial amount of evidence indicates that the symbiotic gut microbiota are sensitive to air temperature, and play an important function in cold-induced thermoregulation, via bacterial metabolites and byproducts such as short-chain fatty acids and secondary bile acids. Cold signal is sensed by specific thermosensitive transient receptor potential channels (thermo-TRPs), and then norepinephrine (NE) is released from sympathetic nervous system (SNS) and thyroid hormones also increase to induce NST. Meanwhile, these neurotransmitters and hormones can regulate the diversity and compositions of the gut microbiota. Therefore, cold-induced NST is controlled by both Thermo-TRPs—SNS—gut microbiota axis and thyroid—gut microbiota axis. Besides physiological thermoregulation, small mammals also rely on behavioral regulation, such as huddling and coprophagy, to maintain energy and thermal homeostasis, and the gut microbial community is involved in these processes. The present review summarized the recent progress in the gut microbiota and host physiological and behavioral thermoregulation in small mammals for better understanding the evolution and adaption of holobionts (host and symbiotic microorganism). The coevolution of host-microorganism symbionts promotes individual survival, population maintenance, and species coexistence in the ecosystems with complicated, variable environments.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Shandong University, Qingdao, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: De-Hua Wang,
| |
Collapse
|
35
|
The microbiota-gut-kidney axis mediates host osmoregulation in a small desert mammal. NPJ Biofilms Microbiomes 2022; 8:16. [PMID: 35379849 PMCID: PMC8980004 DOI: 10.1038/s41522-022-00280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
Regulating sodium and water balances is crucial for survival of small, desert mammals. Studies demonstrate that the gut microbiota and their metabolites are involved in host energy homeostasis, but little is known on the interactions among salt loading, gut microbiota, and osmoregulation. The aim of this study was to fill this gap. Mongolian gerbils (Meriones unguiculatus) were offered drinking water (Con) and either water containing moderate (4%, MS) or high NaCl (8%, HS) ad libitum. Intake of HS reduced α diversity of the microbial community and, at the genus level, reduced the relative abundances of Rikenella and Christensenella but increased Atopobium. To confirm the function of gut microbiota in host osmoregulation, we transplanted caecal microbiota in HS gerbils. To cope with salt loading, the gerbils concentrated urine, resulting in negative energy balance and systemic inflammation. The HS gerbils increased hypothalamic arginine vasopressin and intestinal and renal aquaporin 2 to support water retention, and reduced intestinal and renal epithelial sodium channel α to promote sodium excretion. However, HS gerbils with caecal microbiota transplant (CMT) from Con donors maintained energy balance and osmoregulation, and had a much reduced systemic inflammation. Further, CMT from Con donors to HS recipients reshaped the gut microbiota, particularly by reducing Parabacteroides distasonis and Prevotella copri, and increasing Lactobacillus reuteri abundances, with a resulting increase in bacterial metabolites such as butyrate. These findings highlight a vital role of the microbiota-gut-kidney axis in mediating salt-related osmoregulation, allowing small mammals to adapt to high salt loads in a desert habitat.
Collapse
|
36
|
Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm. Nat Ecol Evol 2022; 6:405-417. [PMID: 35256809 DOI: 10.1038/s41559-022-01686-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Identifying factors that influence how ectothermic animals respond physiologically to changing temperatures is of high importance given current threats of global climate change. Host-associated microbial communities impact animal physiology and have been shown to influence host thermal tolerance in invertebrate systems. However, the role of commensal microbiota in the thermal tolerance of ectothermic vertebrates is unknown. Here we show that experimentally manipulating the tadpole microbiome through environmental water sterilization reduces the host's acute thermal tolerance to both heat and cold, alters the thermal sensitivity of locomotor performance, and reduces animal survival under prolonged heat stress. We show that these tadpoles have reduced activities of mitochondrial enzymes and altered metabolic rates compared with tadpoles colonized with unmanipulated microbiota, which could underlie differences in thermal phenotypes. These results demonstrate a strong link between the microbiota of an ectothermic vertebrate and the host's thermal tolerance, performance and fitness. It may therefore be important to consider host-associated microbial communities when predicting species' responses to climate change.
Collapse
|
37
|
Bai D, Wan X, Li G, Wan X, Guo Y, Shi D, Zhang Z. Factors influencing range contraction of a rodent herbivore in a steppe grassland over the past decades. Ecol Evol 2022; 12:e8546. [PMID: 35222948 PMCID: PMC8843818 DOI: 10.1002/ece3.8546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
Climate warming and human disturbance are known to be key drivers in causing range contraction of many species, but quantitative assessment on their distinctive and interactive effects on local disappearance is still rare.In this study, we examined the association of climate warming and human disturbance stressors with local disappearance probability of Brandt's voles (Lasiopodomys brandtii) in a steppe grassland in northern China.We used logistic generalized additive models to quantify the relationship between local disappearance probability of Brandt's voles and environmental variables. The year following the last observation year was used to estimate the disappearance threshold of Brandt's voles. We projected the distribution change of Brandt's voles under future climate warming scenarios.We found climate warming attributed to local disappearance and range contraction for southern populations of Brandt's voles from 1971 to 2020. Human stressors and high vegetation coverage increased the probability of local disappearance of voles in years of abundant precipitation. The southern boundary retreated northward at a speed of 99.0 km per decade with the temperature rise of 0.36°C. The disappearance threshold of maximum air temperature of Brandt's voles in the warmest month (27.50 ± 1.61°C) was similar to the lower critical temperature of its thermal neutral zone.Our study suggests that the rapid climate change over the past decades contributed to the range contraction of its southern boundary of this keystone species in the steppe grassland of China. It is necessary to take actions to preserve the isolated populations of Brandt's voles from the effects of accelerated climate change and human disturbance.
Collapse
Affiliation(s)
- Defeng Bai
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Xinrong Wan
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yongwang Guo
- National Agro‐tech Extension and Service CenterBeijingChina
| | - Dazhao Shi
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
38
|
Fan C, Zhang L, Jia S, Tang X, Fu H, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integr Zool 2022; 17:379-395. [PMID: 35051309 PMCID: PMC9305894 DOI: 10.1111/1749-4877.12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Seasonal variations in gut microbiota of small mammals and how it is influenced by environmental variables is relatively poorly understood. We sampled 162 wild plateau pikas (Ochotona curzoniae) in four seasons over two and a half years and recorded the air temperature, precipitation, and nutrient content in edible vegetation at the sampling site. After conducting 16S rRNA and shotgun metagenomic sequencing, we found that the highest alpha diversity, the relative abundance of Firmicutes, and the simplest co-occurrence network occurred in winter, whereas that the highest relative abundance of Proteobacteria and the most complex network structure was observed in spring. The highest relative abundance of Verrucomicrobiota and Spirochaetota were seen in summer and autumn, respectively. Air temperature, precipitation, and the contents of crude protein, crude fiber, and polysaccharide in vegetation had significant effects on the seasonal changes in gut microbiota. Diet contributed more to microbial variation than climatic factors. Metagenomic analysis revealed that the amino acid metabolism pathway and axillary activity enzymes were most abundant in summer, while abundance of carbohydrate-binding modules and carbohydrate esterases were highest in spring. These microbial variations were related to the changes in dietary nutrition, indicating that gut microbiota of plateau pika contribute to the efficient use of food resources. This study provides new evidence of how external environmental factors affect the intestinal environment of small mammals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,College of Life Sciences, Qufu Normal University, Qufu, 273165, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| |
Collapse
|
39
|
Ichikawa N, Sasaki H, Lyu Y, Furuhashi S, Watabe A, Imamura M, Hayashi K, Shibata S. Cold Exposure during the Active Phase Affects the Short-Chain Fatty Acid Production of Mice in a Time-Specific Manner. Metabolites 2021; 12:metabo12010020. [PMID: 35050143 PMCID: PMC8781671 DOI: 10.3390/metabo12010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic or acute ambient temperature change alter the gut microbiota and the metabolites, regulating metabolic functions. Short-chain fatty acids (SCFAs) produced by gut bacteria reduce the risk of disease. Feeding patterns and gut microbiota that are involved in SCFAs production are controlled by the circadian clock. Hence, the effect of environmental temperature change on SCFAs production is expected depending on the exposure timing. In addition, there is limited research on effects of habitual cold exposure on the gut microbiota and SCFAs production compared to chronic or acute exposure. Therefore, the aim was to examine the effect of cold or heat exposure timing on SCFAs production. After exposing mice to 7 or 37 °C for 3 h a day at each point for 10 days, samples were collected, and cecal pH, SCFA concentration, and BAT weight was measured. As a result, cold exposure at ZT18 increased cecal pH and decreased SCFAs. Intestinal peristalsis was suppressed due to the cold exposure at ZT18. The results reveal differing effects of intermittent cold exposure on the gut environment depending on exposure timing. In particular, ZT18 (active phase) is the timing to be the most detrimental to the gut environment of mice.
Collapse
|
40
|
Abstract
The intestinal microbiome influences host health, and its responsiveness to diet and disease is increasingly well studied. However, our understanding of the factors driving microbiome variation remain limited. Temperature is a core factor that controls microbial growth, but its impact on the microbiome remains to be fully explored. Although commonly assumed to be a constant 37°C, normal body temperatures vary across the animal kingdom, while individual body temperature is affected by multiple factors, including circadian rhythm, age, environmental temperature stress, and immune activation. Changes in body temperature via hypo- and hyperthermia have been shown to influence the gut microbiota in a variety of animals, with consistent effects on community diversity and stability. It is known that temperature directly modulates the growth and virulence of gastrointestinal pathogens; however, the effect of temperature on gut commensals is not well studied. Further, body temperature can influence other host factors, such as appetite and immunity, with indirect effects on the microbiome. In this minireview, we discuss the evidence linking body temperature and the intestinal microbiome and their implications for microbiome function during hypothermia, heat stress, and fever.
Collapse
Affiliation(s)
- Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|