1
|
Kevill JL, Farkas K, Herridge K, Malham SK, Jones DL. Evaluation of Three Viral Capsid Integrity qPCR Methods for Wastewater-Based Viral Surveillance. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:12. [PMID: 39760935 PMCID: PMC11703991 DOI: 10.1007/s12560-024-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
Capsid Integrity qPCR (CI-qPCR) assays offer a promising alternative to cell culture-based infectivity assays for assessing pathogenic human virus viability in wastewater. This study compared three CI-qPCR methods: two novel (Crosslinker, TruTiter) and one established (PMAxx dye). These methods were evaluated on heat-inactivated and non-heat-inactivated 'live' viruses spiked into phosphate-buffered saline (PBS) and wastewater, as well as on viruses naturally present in wastewater samples. The viral panel included Human adenovirus 5 (HAdV), enterovirus A71 (EV), hepatitis-A virus (HAV), influenza-A H3N2 (IAV), respiratory syncytial virus A2 (RSV), norovirus GI, norovirus GII, and SARS-CoV-2. All three methods successfully differentiated between degraded, heat-inactivated, and live viruses in PBS. While all three methods were comparable for HAdV and norovirus GI, PMAxx detected significantly lower gene copies for EV and IAV. In spiked wastewater, PMAxx yielded significantly lower gene copies for all heat-inactivated viruses (HAdV, EV, HAV, IAV, and RSV) compared to the Crosslinker and TruTiter methods. For viruses naturally present in wastewater (un-spiked), no significant difference was observed between PMAxx and TruTiter methods. Intact, potentially infectious viruses were detected using both PMAxx and TruTiter on untreated and treated wastewater samples. A comparative analysis of qPCR data and TEM images revealed that viral flocculation of IAV may interfere with capsid integrity assays using intercalating dyes. In summary, our findings not only advance the development of more effective methods for assessing viral viability in wastewater, but also highlight the potential of CI-qPCR techniques to enhance early warning systems for emerging pathogens, thereby strengthening public health preparedness and response strategies.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
2
|
Angga MS, Raya S, Hirai S, Haramoto E. Magnetic Carbon Bead-Based Concentration Method for SARS-CoV-2 Detection in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 17:8. [PMID: 39741220 DOI: 10.1007/s12560-024-09623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e., the Carbon Prep (C.prep) method (Life Magnetics), was employed to detect and quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bacteriophage Phi6 and pepper mild mottle virus (PMMoV) in wastewater samples. The performance of this method was evaluated by modifying several steps and comparing it with the polyethylene glycol (PEG) precipitation method to demonstrate its applicability to virus detection in wastewater. The protocol of the C.prep method, based on the manufacturer's instructions, could not detect SARS-CoV-2 RNA, while the optimized protocol could detect it in the tested samples at concentrations that were not significantly different from those obtained using the PEG precipitation method. However, the optimized C.prep method performed more poorly in recovering Phi6 and detecting PMMoV than the PEG precipitation method. The results of this study indicated that the full workflow of the C.prep method was not sufficient to detect the target viruses in wastewater and that an additional RNA extraction step was needed to increase its detection sensitivity.
Collapse
Affiliation(s)
- Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
| |
Collapse
|
3
|
Chen W, Bibby K. Temporal, spatial, and methodological considerations in evaluating the viability of measles wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178141. [PMID: 39709841 DOI: 10.1016/j.scitotenv.2024.178141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Measles is a highly transmissible disease of increasing concern due to waning vaccination contributing to a significant rise in measles cases, with 283 reported cases and 16 outbreaks in the U.S. as of November 7, 2024. Early identification of measles cases is thus critical to disease containment and control. Wastewater-based epidemiology (WBE) represents a potential strategy for the efficient identification of measles outbreaks. We investigated the suitability of WBE for measles outbreak identification by using a model-based approach to elucidate the relationship between measles shedding, wastewater concentration, and detectability. The model reveals conditions for effective detection, specifying the optimal timing, location, and methodology needed to achieve a specific probability of detection, including accounting for geographic variability of wastewater generation and measles case rates. Measles RNA shedding, primarily from urine, contributes an average of 8.72 log10 genome copies (GC) daily per infection into sewage. At the average U.S. wastewater treatment plant (WWTP), achieving a 50 % probability of detection requires approximately 78 cases per 100,000 people with a process limit of detection (PLOD) of 3.0 log10 GC/L. At a PLOD of 3.0 log10 GC/L, over half of all WWTPs in the world can detect a single hypothetical measles case at a 10 % probability of detection. However, achieving a 50-90 % detection rate is challenging, especially with a higher PLOD, except in areas with the highest measles cases. Some locations require case levels consistent with a complete lack of vaccination for feasible measles detection in wastewater. Future work exploring measles shedding, variable shedding behavior, and local case rates can enhance model predictions. Overall, this analysis suggests that WBE detection of measles in most locations remains challenging without a significant increase in case rates or technical improvements decreasing the PLOD.
Collapse
Affiliation(s)
- William Chen
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America.
| |
Collapse
|
4
|
Zafeiriadou A, Nano K, Thomaidis NS, Markou A. Evaluation of PCR-enhancing approaches to reduce inhibition in wastewater samples and enhance viral load measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176768. [PMID: 39393702 DOI: 10.1016/j.scitotenv.2024.176768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Molecular-based assays are the most commonly used methods for the detection and quantification of viruses in wastewater. The variety of inhibitory substances present in the complex matrix of wastewater hinders downstream analysis and often leads to false negative results and underestimation of viral load. The development of robust and inhibitor-tolerant detection methods is necessary in the context of wastewater-based epidemiology, a valuable tool that has gained further importance since the emergence of the Covid-19 pandemic. Various strategies are used to mitigate inhibition in the polymerase chain reaction (PCR) with the most prevalent of all: the dilution of the sample and the inhibitor removal kits. In this study, we first indicated the presence of inhibitors in wastewater samples and the evaluation of eight different PCR enhancing strategies were further performed using reverse-transcription PCR (RT-qPCR) protocol. False negative results were eliminated through four approaches evaluated, a 10-fold dilution of the extracted sample, addition of T4 gene 32 protein (gp32), addition of Bovine Serum Albumin (BSA), and using an inhibitor removal kit. Among the methods that removed inhibition, the most significant for the removal of inhibition was the addition of gp32 (at a final concentration 0.2 μg/μl). This optimized protocol was further applied to wastewater samples tested for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and a direct comparison study was further performed with reverse-transcription droplet digital PCR (RT-ddPCR). The detection frequency of both methods was 100 % and the obtained viral concentrations were higher by RT-ddPCR; the optimized RT-qPCR assay showed a good correlation (Intraclass Correlation Coefficient: 0,713, p-value <0,007) with RT-ddPCR. This is the first study to directly compare common strategies for eliminating inhibition in wastewater and demonstrates the importance of developing robust assays to accurately assess the recovery rates and viral loads of the targets tested, in a simple, cost-effective and high-throughput manner.
Collapse
Affiliation(s)
- Anastasia Zafeiriadou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Konstantina Nano
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece.
| |
Collapse
|
5
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2024:1-23. [PMID: 39545771 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
6
|
Yang S, Jiao Y, Dong Q, Li S, Xu C, Liu Y, Sun L, Huang X. Evaluating approach uncertainties of quantitative detection of SARS-CoV-2 in wastewater: Concentration, extraction and amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175285. [PMID: 39102960 DOI: 10.1016/j.scitotenv.2024.175285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Substantial uncertainties pose challenges to the accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quantification in wastewater. We conducted a comprehensive evaluation of two concentration methods, three nucleic acid extraction methods, and the amplification performance of eight primer-probe sets. Our results showed that the two concentration methods exhibited similar recovery rates. Specifically, using a 30 kDa cut-off ultrafilter and a centrifugal force of 2500 g achieved the highest virus recovery rates (27.32 ± 8.06 % and 26.37 ± 7.77 %, respectively), with lower corresponding quantification uncertainties of 29.51 % and 29.47 % in ultrafiltration methods. Similarly, a 15 % PEG concentration with 1.5 M NaCl markedly improved virus recovery (26.76 ± 5.92 % and 28.47 ± 6.74 %, respectively), and reducing variation to 22.16 % and 23.66 % in the PEG precipitation method. Additionally, employing a vigorous bead-beating approach at 6 m/s during viral RNA extraction significantly increased RNA yield, with an efficiency reaching up to 82.18 %. Among the evaluated eight primer-probe sets, the E_Sarbeco primer-probe set provided the most stable and consistent quantitative results across various sample matrices. These findings are crucial for establishing robust viral quantification protocols and enhancing methodological precision for effective wastewater surveillance, enabling sensitive and precise detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
7
|
Farkas K, Fletcher J, Oxley J, Ridding N, Williams RC, Woodhall N, Weightman AJ, Cross G, Jones DL. Implications of long-term sample storage on the recovery of viruses from wastewater and biobanking. WATER RESEARCH 2024; 265:122209. [PMID: 39126986 DOI: 10.1016/j.watres.2024.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Wastewater-based monitoring has been widely implemented worldwide for the tracking of SARS-CoV-2 outbreaks and other viral diseases. In many surveillance programmes, unprocessed and processed wastewater samples are often frozen and stored for long periods of time in case the identification and tracing of an emerging health threat becomes necessary. However, extensive sample bioarchives may be difficult to maintain due to limitations in ultra-freezer capacity and associated cost. Furthermore, the stability of viruses in such samples has not been systematically investigated and hence the usefulness of bioarchives is unknown. In this study, we assessed the stability of SARS-CoV-2, influenza viruses, noroviruses and the faecal indicator virus, crAssphage, in raw wastewater and purified nucleic aacid extracts stored at -80 °C for 6-24 months. We found that the isolated viral RNA and DNA showed little signs of degradation in storage over 8-24 months, whereas extensive decay viral and loss of qPCR signal was observed during the storage of raw unprocessed wastewater. The most stable viruses were noroviruses and crAssphage, followed by SARS-CoV-2 and influenza A virus. Based on our findings, we conclude that bioarchives comprised of nucleic acid extracts derived from concentrated wastewater samples may be archived long-term, for at least two years, whereas raw wastewater samples may be discarded after one year.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Jessica Fletcher
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - James Oxley
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Nicola Ridding
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Nick Woodhall
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cathays Park, Cardiff, CF10 3NQ, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
8
|
Donchev D, Stoikov I, Diukendjieva A, Ivanov IN. Assessment of Skimmed Milk Flocculation for Bacterial Enrichment from Water Samples, and Benchmarking of DNA Extraction and 16S rRNA Databases for Metagenomics. Int J Mol Sci 2024; 25:10817. [PMID: 39409144 PMCID: PMC11477342 DOI: 10.3390/ijms251910817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Water samples for bacterial microbiome studies undergo biomass concentration, DNA extraction, and taxonomic identification steps. Through benchmarking, we studied the applicability of skimmed milk flocculation (SMF) for bacterial enrichment, an adapted in-house DNA extraction protocol, and six 16S rRNA databases (16S-DBs). Surface water samples from two rivers were treated with SMF and vacuum filtration (VF) and subjected to amplicon or shotgun metagenomics. A microbial community standard underwent five DNA extraction protocols, taxonomical identification with six different 16S-DBs, and evaluation by the Measurement Integrity Quotient (MIQ) score. In SMF samples, the skimmed milk was metabolized by members of lactic acid bacteria or genera such as Polaromonas, Macrococcus, and Agitococcus, resulting in increased relative abundance (p < 0.5) up to 5.0 log fold change compared to VF, rendering SMF inapplicable for bacterial microbiome studies. The best-performing DNA extraction protocols were FastSpin Soil, the in-house method, and EurX. All 16S-DBs yielded comparable MIQ scores within each DNA extraction kit, ranging from 61-66 (ZymoBIOMICs) up to 80-82 (FastSpin). DNA extraction kits exert more bias toward the composition than 16S-DBs. This benchmarking study provided valuable information to inform future water metagenomic study designs.
Collapse
Affiliation(s)
- Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| | - Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| | | | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| |
Collapse
|
9
|
Girón‐Guzmán I, Sánchez G, Pérez‐Cataluña A. Tracking epidemic viruses in wastewaters. Microb Biotechnol 2024; 17:e70020. [PMID: 39382399 PMCID: PMC11462645 DOI: 10.1111/1751-7915.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Classical epidemiology relies on incidence, mortality rates, and clinical data from individual testing, which can be challenging for many countries. Therefore, innovative, flexible, cost-effective, and scalable surveillance techniques are needed. Wastewater-based epidemiology (WBE) has emerged as a highly powerful tool in this regard. WBE analyses substances excreted in human fluids and faeces that enter the sewer system. This approach provides insights into community health status and lifestyle habits. WBE serves as an early warning system for viral surveillance, detecting the emergence of new pathogens, changes in incidence rates, identifying future trends, studying outbreaks, and informing the performance of action plans. While WBE has long been used to study different viruses such as poliovirus and norovirus, its implementation has surged due to the pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2. This has led to the establishment of wastewater surveillance programmes at international, national, and community levels, many of which remain operational. Furthermore, WBE is increasingly applied to study other pathogens, including antibiotic resistance bacteria, parasites, fungi, and emerging viruses, with new methodologies being developed. Consequently, the primary focus now is on creating international frameworks to enhance states' preparedness against future health risks. However, there remains considerable work to be done, particularly in integrating the principles of One Health into epidemiological surveillance to acknowledge the interconnectedness of humans, animals, and the environment in pathogen transmission. Thus, a broader approach to analysing the three pillars of One Health must be developed, transitioning from WBE to wastewater and environmental surveillance, and establishing this approach as a routine practice in public health.
Collapse
Affiliation(s)
- Inés Girón‐Guzmán
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| | - Gloria Sánchez
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| | - Alba Pérez‐Cataluña
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| |
Collapse
|
10
|
Zhao L, Guzman HP, Xagoraraki I. Comparative analyses of SARS-CoV-2 RNA concentrations in Detroit wastewater quantified with CDC N1, N2, and SC2 assays reveal optimal target for predicting COVID-19 cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174140. [PMID: 38906283 DOI: 10.1016/j.scitotenv.2024.174140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
To monitor COVID-19 through wastewater surveillance, global researchers dedicated significant endeavors and resources to develop and implement diverse RT-qPCR or RT-ddPCR assays targeting different genes of SARS-CoV-2. Effective wastewater surveillance hinges on the appropriate selection of the most suitable assay, especially for resource-constrained regions where scant technical and socioeconomic resources restrict the options for testing with multiple assays. Further research is imperative to evaluate the existing assays through comprehensive comparative analyses. Such analyses are crucial for health agencies and wastewater surveillance practitioners in the selection of appropriate methods for monitoring COVID-19. In this study, untreated wastewater samples were collected weekly from the Detroit wastewater treatment plant, Michigan, USA, between January and December 2023. Polyethylene glycol precipitation (PEG) was applied to concentrate the samples followed by RNA extraction and RT-ddPCR. Three assays including N1, N2 (US CDC Real-Time Reverse Transcription PCR Panel for Detection of SARS-CoV-2), and SC2 assay (US CDC Influenza SARS-CoV-2 Multiplex Assay) were implemented to detect SARS-CoV-2 in wastewater. The limit of blank and limit of detection for the three assays were experimentally determined. SARS-CoV-2 RNA concentrations were evaluated and compared through three statistical approaches, including Pearson and Spearman's rank correlations, Dynamic Time Warping, and vector autoregressive models. N1 and N2 demonstrated the highest correlation and most similar time series patterns. Conversely, N2 and SC2 assay demonstrated the lowest correlation and least similar time series patterns. N2 was identified as the optimal target to predict COVID-19 cases. This study presents a rigorous effort in evaluating and comparing SARS-CoV-2 RNA concentrations quantified with N1, N2, and SC2 assays and their interrelations and correlations with clinical cases. This study provides valuable insights into identifying the optimal target for monitoring COVID-19 through wastewater surveillance.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA.
| |
Collapse
|
11
|
Singh S, Aw TG, Rose JB. Evaluation of an Automated Ultrafiltration System for Concentrating a Range of Viruses from Saline Waters. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:422-431. [PMID: 38951381 PMCID: PMC11422421 DOI: 10.1007/s12560-024-09602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 07/03/2024]
Abstract
Pathogenic viruses in environmental water are usually present in levels too low for direct detection and thus, a concentration step is often required to increase the analytical sensitivity. The objective of this study was to evaluate an automated filtration device, the Innovaprep Concentrating Pipette Select (CP Select) for the rapid concentration of viruses in saline water samples, while considering duration of process and ease of use. Four bacteriophages (MS2, P22, Phi6, and PhiX174) and three animal viruses (adenovirus, coronavirus OC43, and canine distemper virus) were seeded in artificial seawater, aquarium water, and bay water samples, and processed using the CP Select. The recovery efficiencies of viruses were determined either using a plaque assay or droplet digital PCR (ddPCR). Using plaque assays, the average recovery efficiencies for bacteriophages ranged from 4.84 ± 3.8% to 82.73 ± 27.3%, with highest recovery for P22 phage. The average recovery efficiencies for the CP Select were 39.31 ± 26.6% for adenovirus, 19.04 ± 11.6% for coronavirus OC43, and 19.84 ± 13.6% for canine distemper virus, as determined by ddPCR. Overall, viral genome composition, not the size of the virus, affected the recovery efficiencies for the CP Select. The small sample volume size used for the ultrafilter pipette of the system hinders the use of this method as a primary concentration step for viruses in marine waters. However, the ease of use and rapid processing time of the CP Select are especially beneficial when rapid detection of viruses in highly contaminated water, such as wastewater or sewage-polluted surface water, is needed.
Collapse
Affiliation(s)
- Simran Singh
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Williams RC, Perry WB, Lambert-Slosarska K, Futcher B, Pellett C, Richardson-O'Neill I, Paterson S, Grimsley JMS, Wade MJ, Weightman AJ, Farkas K, Jones DL. Examining the stability of viral RNA and DNA in wastewater: Effects of storage time, temperature, and freeze-thaw cycles. WATER RESEARCH 2024; 259:121879. [PMID: 38865915 DOI: 10.1016/j.watres.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrably successful as a relatively unbiased tool for monitoring levels of SARS-CoV-2 virus circulating in communities during the COVID-19 pandemic. Accumulated biobanks of wastewater samples allow retrospective exploration of spatial and temporal trends for public health indicators such as chemicals, viruses, antimicrobial resistance genes, and the possible emergence of novel human or zoonotic pathogens. We investigated virus resilience to time, temperature, and freeze-thaw cycles, plus the optimal storage conditions to maintain the stability of genetic material (RNA/DNA) of viral +ssRNA (Envelope - E, Nucleocapsid - N and Spike protein - S genes of SARS-CoV-2), dsRNA (Phi6 phage) and circular dsDNA (crAssphage) in wastewater. Samples consisted of (i) processed and extracted wastewater samples, (ii) processed and extracted distilled water samples, and (iii) raw, unprocessed wastewater samples. Samples were stored at -80 °C, -20 °C, 4 °C, or 20 °C for 10 days, going through up to 10 freeze-thaw cycles (once per day). Sample stability was measured using reverse transcription quantitative PCR, quantitative PCR, automated electrophoresis, and short-read whole genome sequencing. Exploring different areas of the SARS-CoV-2 genome demonstrated that the S gene in processed and extracted samples showed greater sensitivity to freeze-thaw cycles than the E or N genes. Investigating surrogate and normalisation viruses showed that Phi6 remains a stable comparison for SARS-CoV-2 in a laboratory setting and crAssphage was relatively resilient to temperature variation. Recovery of SARS-CoV-2 in raw unprocessed samples was significantly greater when stored at 4 °C, which was supported by the sequencing data for all viruses - both time and freeze-thaw cycles negatively impacted sequencing metrics. Historical extracts stored at -80 °C that were re-quantified 12, 14 and 16 months after original quantification showed no major changes. This study highlights the importance of the fast processing and extraction of wastewater samples, following which viruses are relatively robust to storage at a range of temperatures.
Collapse
Affiliation(s)
- Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - William B Perry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | - Ben Futcher
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Cameron Pellett
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK; The London Data Company, London, EC2N 2AT, UK
| | - Matthew J Wade
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
13
|
Faleye TOC, Skidmore P, Elyaderani A, Adhikari S, Kaiser N, Smith A, Yanez A, Perleberg T, Driver EM, Halden RU, Varsani A, Scotch M. Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling. Viruses 2024; 16:1188. [PMID: 39205161 PMCID: PMC11359023 DOI: 10.3390/v16081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at -20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures.
Collapse
Affiliation(s)
- Temitope O. C. Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Skidmore
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Amir Elyaderani
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Nicole Kaiser
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Abriana Smith
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Allan Yanez
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Tyler Perleberg
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Williams RC, Farkas K, Garcia-Delgado A, Adwan L, Kevill JL, Cross G, Weightman AJ, Jones DL. Simultaneous detection and characterization of common respiratory pathogens in wastewater through genomic sequencing. WATER RESEARCH 2024; 256:121612. [PMID: 38642537 DOI: 10.1016/j.watres.2024.121612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Genomic surveillance of SARS-CoV-2 has given insight into the evolution and epidemiology of the virus and its variant lineages during the COVID-19 pandemic. Expanding this approach to include a range of respiratory pathogens can better inform public health preparedness for potential outbreaks and epidemics. Here, we simultaneously sequenced 38 pathogens including influenza viruses, coronaviruses and bocaviruses, to examine the abundance and seasonality of respiratory pathogens in urban wastewater. We deployed a targeted bait capture method and short-read sequencing (Illumina Respiratory Virus Oligos Panel; RVOP) on composite wastewater samples from 8 wastewater treatment plants (WWTPs) and one associated hospital site. By combining seasonal sampling with whole genome sequencing, we were able to concurrently detect and characterise a range of common respiratory pathogens, including SARS-CoV-2, adenovirus and parainfluenza virus. We demonstrated that 38 respiratory pathogens can be detected at low abundances year-round, that hospital pathogen diversity is higher in winter vs. summer sampling events, and that significantly more viruses are detected in raw influent compared to treated effluent samples. Finally, we compared detection sensitivity of RT-qPCR vs. next generation sequencing for SARS-CoV-2, enteroviruses, influenza A/B, and respiratory syncytial viruses. We conclude that both should be used in combination; RT-qPCR allowed accurate quantification, whilst genomic sequencing detected pathogens at lower abundance. We demonstrate the valuable role of wastewater genomic surveillance and its contribution to the field of wastewater-based epidemiology, gaining rapid understanding of the seasonal presence and persistence for common respiratory pathogens. By simultaneously monitoring seasonal trends and early warning signs of many viruses circulating in communities, public health agencies can implement targeted prevention and rapid response plans.
Collapse
Affiliation(s)
- Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Alvaro Garcia-Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Latifah Adwan
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cathays Park, Cardiff, CF10 3NQ, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6150, Australia
| |
Collapse
|
15
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
16
|
Farkas K, Mannion F, Sorby R, Winterbourn B, Allender S, Gregory CGM, Holding P, Thorpe JM, Malham SK, Le Vay L. Assessment of wastewater derived pollution using viral monitoring in two estuaries. MARINE POLLUTION BULLETIN 2024; 200:116081. [PMID: 38354589 DOI: 10.1016/j.marpolbul.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Human wastewater-derived pollution of the environment is an emerging health risk that increases the number of waterborne and foodborne illnesses globally. To better understand and mitigate such health risks, we investigated the prevalence of faecal indicator bacteria, Escherichia coli, and indicator virus (crAssphage) along with human and animal enteric viruses (adenoviruses, noroviruses, sapoviruses, hepatitis E virus) in shellfish and water samples collected from two shellfish harvesting areas in the UK. Human noroviruses were detected at higher detection rates in oyster and water samples compared to mussels with peaks during the autumn-winter seasons. Human enteric viruses were sporadically detected during the warmer months, suggesting potential introduction by tourists following the relaxation of COVID-19 lockdown measures. Our results suggest that viral indicators are more suitable for risk assessment and source tracking than E. coli. The detection of emerging hepatitis and sapoviruses, support the need for comprehensive viral monitoring in shellfish harvesting areas.
Collapse
Affiliation(s)
- Kata Farkas
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK; School of Environment & Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, UK.
| | - Finn Mannion
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Rees Sorby
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Ben Winterbourn
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Susan Allender
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Charlie G M Gregory
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK; School of Environment & Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, UK
| | - Phoebe Holding
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Jamie M Thorpe
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Lewis Le Vay
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| |
Collapse
|
17
|
Farkas K, Kevill JL, Adwan L, Garcia-Delgado A, Dzay R, Grimsley JMS, Lambert-Slosarska K, Wade MJ, Williams RC, Martin J, Drakesmith M, Song J, McClure V, Jones DL. Near-source passive sampling for monitoring viral outbreaks within a university residential setting. Epidemiol Infect 2024; 152:e31. [PMID: 38329110 PMCID: PMC10894896 DOI: 10.1017/s0950268824000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is still under-investigated. To address this, near-source passive samples were taken at four locations targeting student hall of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza viruses, and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, with exposure of 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS). Furthermore, several outbreaks of influenza A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified among the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Latifah Adwan
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | | | - Rande Dzay
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jasmine M. S. Grimsley
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- The London Data Company, London, UK
| | | | - Matthew J. Wade
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rachel C. Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Javier Martin
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| | - Mark Drakesmith
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Jiao Song
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Victoria McClure
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
18
|
Kevill JL, Farkas K, Ridding N, Woodhall N, Malham SK, Jones DL. Use of Capsid Integrity-qPCR for Detecting Viral Capsid Integrity in Wastewater. Viruses 2023; 16:40. [PMID: 38257740 PMCID: PMC10819219 DOI: 10.3390/v16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Quantifying viruses in wastewater via RT-qPCR provides total genomic data but does not indicate the virus capsid integrity or the potential risk for human infection. Assessing virus capsid integrity in sewage is important for wastewater-based surveillance, since discharged effluent may pose a public health hazard. While integrity assays using cell cultures can provide this information, they require specialised laboratories and expertise. One solution to overcome this limitation is the use of photo-reactive monoazide dyes (e.g., propidium monoazide [PMAxx]) in a capsid integrity-RT-qPCR assay (ci-RT-qPCR). In this study, we tested the efficiency of PMAxx dye at 50 μM and 100 μM concentrations on live and heat-inactivated model viruses commonly detected in wastewater, including adenovirus (AdV), hepatitis A (HAV), influenza A virus (IAV), and norovirus GI (NoV GI). The 100 μM PMAxx dye concentration effectively differentiated live from heat-inactivated viruses for all targets in buffer solution. This method was then applied to wastewater samples (n = 19) for the detection of encapsulated AdV, enterovirus (EV), HAV, IAV, influenza B virus (IBV), NoV GI, NoV GII, and SARS-CoV-2. Samples were negative for AdV, HAV, IAV, and IBV but positive for EV, NoV GI, NoV GII, and SARS-CoV-2. In the PMAxx-treated samples, EV, NoV GI, and NoV GII showed -0.52-1.15, 0.9-1.51, and 0.31-1.69 log reductions in capsid integrity, indicating a high degree of potentially infectious virus in wastewater. In contrast, SARS-CoV-2 was only detected using RT-qPCR but not after PMAxx treatment, indicating the absence of encapsulated and potentially infectious virus. In conclusion, this study demonstrates the utility of PMAxx dyes to evaluate capsid integrity across a diverse range of viruses commonly monitored in wastewater.
Collapse
Affiliation(s)
- Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicola Ridding
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicholas Woodhall
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK;
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
- Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
19
|
North D, Bibby K. Comparison of viral concentration techniques for native fecal indicators and pathogens from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167190. [PMID: 37741389 DOI: 10.1016/j.scitotenv.2023.167190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Viral pathogens are typically dilute in environmental waters, necessitating a concentration step prior to subsequent quantification or analysis. Historically, studies on viral concentration efficiency have been done by spiking known viruses into the sample; however, spike-in controls may not have the same behavior as "native" viruses exposed to environmental conditions. In this study, four concentration methods, including polyethylene glycol precipitation (PEG), skimmed milk flocculation (SMF), pH drop followed by filtration through a 0.45 μm filter (pH), and centrifugation using an Amicon filter (Amicon), were evaluated to concentrate native viral targets in wastewater. Viral targets included both indicators (crAssphage and pepper mild mottle virus) and pathogens (adenovirus, norovirus GII, human polyomavirus, and SARS-CoV-2) in addition to a bacterial marker (HF183). A non-native spike-in control was also added to compare native and spike-in recoveries. Recovery varied widely across targets and methods, ranging from 0.1 to 39.3 %. The Amicon method was the most broadly effective concentration for recovery efficiency. For the lowest-titer target, the PEG method resulted in the lowest number of non-detections, with 96.7 % positive detections for SARS-CoV-2, compared to 66.7 %, 80 %, and 76.7 % positive detections for SMF, pH, and Amicon, respectively. The non-native spike-ins chosen were only representative of a few native recovery trends, varying by both target and concentration method, and consistently under or over-estimated recovery. Overall, this study suggests the utility of including native targets in viral concentration evaluation and determining the efficiency of concentration methods for a specific target of interest.
Collapse
Affiliation(s)
- Devin North
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States.
| |
Collapse
|
20
|
Farkas K, Pântea I, Woodhall N, Williams D, Lambert-Slosarska K, Williams RC, Grimsley JMS, Singer AC, Jones DL. Diurnal changes in pathogenic and indicator virus concentrations in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123785-123795. [PMID: 37989946 PMCID: PMC10746776 DOI: 10.1007/s11356-023-30381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Wastewater-based epidemiology (WBE) has been commonly used for monitoring SARS-CoV-2 outbreaks. As sampling times and methods (i.e. grab vs composite) may vary, diurnal changes of viral concentrations in sewage should be better understood. In this study, we collected untreated wastewater samples hourly for 4 days at two wastewater treatment plants in Wales to establish diurnal patterns in virus concentrations and the physico-chemical properties of the water. Simultaneously, we also trialled three absorbent materials as passive samples as a simple and cost-efficient alternative for the collection of composite samples. Ninety-six percent of all liquid samples (n = 74) and 88% of the passive samplers (n = 59) were positive for SARS-CoV-2, whereas 87% and 97% of the liquid and passive samples were positive for the faecal indicator virus crAssphage, respectively. We found no significant daily variations in the concentration of the target viruses, ammonium and orthophosphate, and the pH and electrical conductivity levels were also stable. Weak positive correlations were found between some physico-chemical properties and viral concentrations. More variation was observed in samples taken from the influent stream as opposed to those taken from the influent tank. Of the absorbent materials trialled as passive samples, we found that tampons provided higher viral recoveries than electronegative filter paper and cotton gauze swabs. For all materials tested, viral recovery was dependent on the virus type. Our results indicate that grab samples may provide representative alternatives to 24-h composite samples if taken from the influent tank, hence reducing the costs of sampling for WBE programmes. Tampons are also viable alternatives for cost-efficient sampling; however, viral recovery should be optimised prior to use.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK.
| | - Igor Pântea
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Nick Woodhall
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Denis Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | | | - Rachel C Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Jasmine M S Grimsley
- Data Analytics & Surveillance Division, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
- The London Data Company, London, EC2N 2AT, UK
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Davey L Jones
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
21
|
Angga MS, Malla B, Raya S, Kitajima M, Haramoto E. Optimization and performance evaluation of an automated filtration method for the recovery of SARS-CoV-2 and other viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163487. [PMID: 37068668 PMCID: PMC10105377 DOI: 10.1016/j.scitotenv.2023.163487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
A rapid virus concentration method is needed to get high throughput. Reliable results of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) detection in wastewater are necessary for applications in wastewater-based epidemiology. In this study, an automated filtration method using a concentrating pipette (CP Select; Innovaprep) was applied to detect SARS-CoV-2 in wastewater samples with several modifications to increase its sensitivity and throughput. The performance of the CP Select method was compared to other concentration methods (polyethylene glycol precipitation and direct capture using silica column) to evaluate its applicability to SARS-CoV-2 detection in wastewater. SARS-CoV-2 RNA was successfully detected in six of eight wastewater samples using the CP Select method, whereas other methods could detect SARS-CoV-2 RNA in all wastewater samples. Enteric viruses, such as noroviruses of genogroups I (NoVs-GI) and II (NoVs-GII) and enteroviruses, were tested, resulting in 100 % NoVs-GII detection using all concentration methods. As for NoVs-GI and enteroviruses, all methods gave comparable number of detected samples in wastewater samples. This study showed that the optimized CP Select method was less sensitive in SARS-CoV-2 detection in wastewater than other methods, whereas all methods were applicable to detect or recover other viruses in wastewater.
Collapse
Affiliation(s)
- Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
22
|
Kasprzyk-Hordern B, Sims N, Farkas K, Jagadeesan K, Proctor K, Wade MJ, Jones DL. Wastewater-based epidemiology for comprehensive community health diagnostics in a national surveillance study: Mining biochemical markers in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130989. [PMID: 36848844 DOI: 10.1016/j.jhazmat.2023.130989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This manuscript showcases results from a large scale and comprehensive wastewater-based epidemiology (WBE) study focussed on multi-biomarker suite analysis of both chemical and biological determinants in 10 cities and towns across England equating to a population of ∼7 million people. Multi-biomarker suite analysis, describing city metabolism, can provide a holistic understanding to encompass all of human, and human-derived, activities of a city in a single model: from lifestyle choices (e.g. caffeine intake, nicotine) through to health status (e.g. prevalence of pathogenic organisms, usage of pharmaceuticals as proxy for non-communicable disease, NCD, conditions or infectious disease status), and exposure to harmful chemicals due to environmental and industrial sources (e.g. pesticide intake via contaminated food and industrial exposure). Population normalised daily loads (PNDLs) of many chemical markers were found, to a large extent, driven by the size of population contributing to wastewater (especially NCDs). However, there are several exceptions providing insights into chemical intake that can inform either disease status in various communities or unintentional exposure to hazardous chemicals: e.g. very high PNDLs of ibuprofen in Hull resulting from its direct disposal (confirmed by ibuprofen/2-hydroxyibuprofen ratios) and bisphenol A (BPA) in Hull, Lancaster and Portsmouth likely related to industrial discharge. An importance for tracking endogenous health markers such as 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA, an oxidative stress marker) as a generic marker of health status in communities was observed due to increased levels of HNE-MA seen at Barnoldswick wastewater treatment plant that coincided with higher-than-average paracetamol usage and SARS-CoV-2 prevalence in this community. PNDLs of virus markers were found to be highly variable. Being very prevalent in communities nationwide during sampling, SARS-CoV-2 presence in wastewater was to a large extent community driven. The same applies to the fecal marker virus, crAssphage, which is very prevalent in urban communities. In contrast, norovirus and enterovirus showed much higher variability in prevalence across all sites investigated, with clear cases of localized outbreaks in some cities while maintaining low prevalence in other locations. In conclusion, this study clearly demonstrates the potential for WBE to provide an integrated assessment of community health which can help target and validate policy interventions aimed at improving public health and wellbeing.
Collapse
Affiliation(s)
| | - Natalie Sims
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kishore Jagadeesan
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Wade
- Analytics & Data Science Directorate, UK Health Security Agency, London SW1P 3JR, UK
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| |
Collapse
|
23
|
Vo V, Harrington A, Chang CL, Baker H, Moshi MA, Ghani N, Itorralba JY, Tillett RL, Dahlmann E, Basazinew N, Gu R, Familara TD, Boss S, Vanderford F, Ghani M, Tang AJ, Matthews A, Papp K, Khan E, Koutras C, Kan HY, Lockett C, Gerrity D, Oh EC. Identification and genome sequencing of an influenza H3N2 variant in wastewater from elementary schools during a surge of influenza A cases in Las Vegas, Nevada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162058. [PMID: 36758698 PMCID: PMC9909754 DOI: 10.1016/j.scitotenv.2023.162058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 05/25/2023]
Abstract
Real-time surveillance of infectious diseases at schools or in communities is often hampered by delays in reporting due to resource limitations and infrastructure issues. By incorporating quantitative PCR and genome sequencing, wastewater surveillance has been an effective complement to public health surveillance at the community and building-scale for pathogens such as poliovirus, SARS-CoV-2, and even the monkeypox virus. In this study, we asked whether wastewater surveillance programs at elementary schools could be leveraged to detect RNA from influenza viruses shed in wastewater. We monitored for influenza A and B viral RNA in wastewater from six elementary schools from January to May 2022. Quantitative PCR led to the identification of influenza A viral RNA at three schools, which coincided with the lifting of COVID-19 restrictions and a surge in influenza A infections in Las Vegas, Nevada, USA. We performed genome sequencing of wastewater RNA, leading to the identification of a 2021-2022 vaccine-resistant influenza A (H3N2) 3C.2a1b.2a.2 subclade. We next tested wastewater samples from a treatment plant that serviced the elementary schools, but we were unable to detect the presence of influenza A/B RNA. Together, our results demonstrate the utility of near-source wastewater surveillance for the detection of local influenza transmission in schools, which has the potential to be investigated further with paired school-level influenza incidence data.
Collapse
Affiliation(s)
- Van Vo
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Anthony Harrington
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Ching-Lan Chang
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Hayley Baker
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Michael A Moshi
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Nabih Ghani
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Jose Yani Itorralba
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Elizabeth Dahlmann
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Natnael Basazinew
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Richard Gu
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Tiffany D Familara
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Sage Boss
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Fritz Vanderford
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Moonis Ghani
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Austin J Tang
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Alice Matthews
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Katerina Papp
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Carolina Koutras
- R-Zero Systems, Inc., 345 W Bearcat Dr Suite #100, South Salt Lake, UT 84115, USA
| | - Horng-Yuan Kan
- Southern Nevada Health District, Las Vegas, NV 89106, USA
| | | | - Daniel Gerrity
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Edwin C Oh
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Department of Internal Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
24
|
Lucansky V, Samec M, Burjanivova T, Lukacova E, Kolkova Z, Holubekova V, Turyova E, Hornakova A, Zaborsky T, Podlesniy P, Reizigova L, Dankova Z, Novakova E, Pecova R, Calkovska A, Halasova E. Comparison of the methods for isolation and detection of SARS-CoV-2 RNA in municipal wastewater. Front Public Health 2023; 11:1116636. [PMID: 36960362 PMCID: PMC10028190 DOI: 10.3389/fpubh.2023.1116636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Coronavirus SARS-CoV-2 is a causative agent responsible for the current global pandemic situation known as COVID-19. Clinical manifestations of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever, dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been demonstrated to be detectable in the stool of COVID-19 patients. Waste-based epidemiology (WBE) has been shown as a promising approach for early detection and monitoring of SARS-CoV-2 in the local population performed via collection, isolation, and detection of viral pathogens from environmental sources. Methods In order to select the optimal protocol for monitoring the COVID-19 epidemiological situation in region Turiec, Slovakia, we (1) compared methods for SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the role of wastewater filtration on virus stability; and (4) determined appropriate methods including reverse transcription-droplet digital PCR (RT-ddPCR) and real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in wastewater samples. Results (1) Usage of Zymo Environ Water RNA Kit provided superior quality of isolated RNA in comparison with both ultracentrifugation and PEG precipitation. (2) Freezing of wastewater samples significantly reduces the RNA yield. (3) Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4) According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR. Discussion The results of our study suggest that WBE is a valuable early warning alert and represents a non-invasive approach to monitor viral pathogens, thus protects public health on a regional and national level. In addition, we have shown that the sensitivity of testing the samples with a nearer detection limit can be improved by selecting the appropriate combination of enrichment, isolation, and detection methods.
Collapse
Affiliation(s)
- Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tatiana Burjanivova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Lukacova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolkova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Hornakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Tibor Zaborsky
- RÚVZ (Regional Office of Public Health), Martin, Slovakia
| | - Petar Podlesniy
- Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain
| | - Lenka Reizigova
- Center for Microbiology and Infection Prevention, Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University, Trnava, Slovakia
| | - Zuzana Dankova
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Elena Novakova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
25
|
Scott G, Evens N, Porter J, Walker DI. The Inhibition and Variability of Two Different RT-qPCR Assays Used for Quantifying SARS-CoV-2 RNA in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:71-81. [PMID: 36790663 PMCID: PMC9930079 DOI: 10.1007/s12560-022-09542-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Faecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent detection in wastewater turned the spotlight onto wastewater-based epidemiology (WBE) for monitoring the coronavirus-disease 2019 (COVID-19) pandemic. WBE for SARS-CoV-2 has been deployed in 70 countries, providing insights into disease prevalence, forecasting and the spatiotemporal tracking and emergence of SARS-CoV-2 variants. Wastewater, however, is a complex sample matrix containing numerous reverse transcription quantitative PCR (RT-qPCR) inhibitors whose concentration and diversity are influenced by factors including population size, surrounding industry and agriculture and climate. Such differences in the RT-qPCR inhibitor profile are likely to impact the quality of data produced by WBE and potentially produce erroneous results.To help determine the possible impact of RT-qPCR assay on data quality, two assays employed by different laboratories within the UK's SARS-CoV-2 wastewater monitoring programme were assessed in the Cefas laboratory in Weymouth, UK. The assays were based on Fast Virus (FV) and qScript (qS) chemistries using the same primers and probes, but at different concentrations and under different cycling conditions. Bovine serum albumin and MgSO4 were also added to the FV assay reaction mixture. Two-hundred and eighty-six samples were analysed, and an external control RNA (EC RNA)-based method was used to measure RT-qPCR inhibition. Compared with qS, FV showed a 40.5% reduction in mean inhibition and a 57.0% reduction in inter-sample inhibition variability. A 4.1-fold increase in SARS-CoV-2 quantification was seen for FV relative to qS; partially due (1.5-fold) to differences in reverse transcription efficiency and the use of a dsDNA standard. Analytical variability was reduced by 51.2% using FV while qS increased the number of SARS-CoV-2 negative samples by 2.6-fold. This study indicates the importance of thorough method optimisation for RT-qPCR-based WBE which should be performed using a selection of samples which are representative of the physiochemical properties of wastewater. Furthermore, RT-qPCR inhibition, analytical variability and reverse transcription efficiency should be key considerations during assay optimisation. A standardised framework for the optimisation and validation of WBE procedures should be formed including concessions for emergency response situations that would allow flexibility in the process to address the difficult balance between the urgency of providing data and the availability of resources.
Collapse
Affiliation(s)
- George Scott
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK.
| | - Nicholas Evens
- Environment Agency, National Monitoring, Starcross, Exeter, EX6 8FD, UK
| | - Jonathan Porter
- Environment Agency, National Monitoring, Starcross, Exeter, EX6 8FD, UK
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK
| |
Collapse
|
26
|
Farkas K, Williams R, Alex-Sanders N, Grimsley JMS, Pântea I, Wade MJ, Woodhall N, Jones DL. Wastewater-based monitoring of SARS-CoV-2 at UK airports and its potential role in international public health surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001346. [PMID: 36963000 PMCID: PMC10021541 DOI: 10.1371/journal.pgph.0001346] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
It is well established that air travel plays a key role in the global spread of many enteric and respiratory diseases, including COVID-19. Even with travel restrictions (e.g. mask wearing, negative COVID-19 test prior to departure), SARS-CoV-2 may be transmitted by asymptomatic or pre-symptomatic individuals carrying the virus. Due to the limitation of current clinical surveillance approaches, complementary methods need to be developed to allow estimation of the frequency of SARS-CoV-2 entry across international borders. Wastewater-based epidemiology (WBE) represents one such approach, allowing the unbiased sampling of SARS-CoV-2 carriage by passenger cohorts entering via airports. In this study, we monitored sewage in samples from terminals (n = 150) and aircraft (n = 32) at three major international airports in the UK for 1-3 weeks in March 2022. As the raw samples were more turbid than typical municipal wastewater, we used beef extract treatment followed by polyethylene glycol (PEG) precipitation to concentrate viruses, followed by reverse transcription quantitative PCR (RT-qPCR) for the detection of SARS-CoV-2 and a faecal indicator virus, crAssphage. All samples taken from sewers at the arrival terminals of Heathrow and Bristol airports, and 85% of samples taken from sites at Edinburgh airport, were positive for SARS-CoV-2. This suggests a high COVID-19 prevalence among passengers and/or airport staff members. Samples derived from aircraft also showed 93% SARS-CoV-2 positivity. No difference in viral prevalence was found before and after COVID-19 travel restrictions were lifted. Our results suggest that WBE is a useful tool for monitoring the global transfer rate of human pathogens and other disease-causing agents across international borders and should form part of wider international efforts to monitor and contain the spread of future disease outbreaks.
Collapse
Affiliation(s)
- Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom
| | - Rachel Williams
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Jasmine M. S. Grimsley
- Data, Analytics, and Surveillance Group, UK Health Security Agency, London, United Kingdom
- The London Data Company, London, United Kingdom
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Matthew J. Wade
- Data, Analytics, and Surveillance Group, UK Health Security Agency, London, United Kingdom
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- Food Futures Institute, Murdoch University, Murdoch, Australia
| |
Collapse
|
27
|
Faleye TO, Skidmore P, Elyaderani A, Adhikari S, Kaiser N, Smith A, Yanez A, Perleberg T, Driver EM, Halden RU, Varsani A, Scotch M. Impact of sample clarification by size exclusion on virus detection and diversity in wastewater-based epidemiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.25.22280344. [PMID: 36203558 PMCID: PMC9536034 DOI: 10.1101/2022.09.25.22280344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of wastewater-based epidemiology (WBE) for early detection of virus circulation and response during the SARS-CoV-2 pandemic increased interest in and use of virus concentration protocols that are quick, scalable, and efficient. One such protocol involves sample clarification by size fractionation using either low-speed centrifugation to produce a clarified supernatant or membrane filtration to produce an initial filtrate depleted of solids, eukaryotes and bacterial present in wastewater (WW), followed by concentration of virus particles by ultrafiltration of the above. While this approach has been successful in identifying viruses from WW, it assumes that majority of the viruses of interest should be present in the fraction obtained by ultrafiltration of the initial filtrate, with negligible loss of viral particles and viral diversity. We used WW samples collected in a population of ~700,000 in southwest USA between October 2019 and March 2021, targeting three non-enveloped viruses (enteroviruses [EV], canine picornaviruses [CanPV], and human adenovirus 41 [Ad41]), to evaluate whether size fractionation of WW prior to ultrafiltration leads to appreciable differences in the virus presence and diversity determined. We showed that virus presence or absence in WW samples in both portions (filter trapped solids [FTS] and filtrate) are not consistent with each other. We also found that in cases where virus was detected in both fractions, virus diversity (or types) captured either in FTS or filtrate were not consistent with each other. Hence, preferring one fraction of WW over the other can undermine the capacity of WBE to function as an early warning system and negatively impact the accurate representation of virus presence and diversity in a population.
Collapse
Affiliation(s)
- Temitope O.C. Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Skidmore
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Amir Elyaderani
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Nicole Kaiser
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Abriana Smith
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Allan Yanez
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Tyler Perleberg
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
- OneWaterOneHealth, Nonprofit Project of the Arizona State University Foundation, Tempe, AZ, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| |
Collapse
|