1
|
Dai JX, Yu Y, You LX, Zhong HL, Li YP, Wang AJ, Chorover J, Feng RW, Alwathnani HA, Herzberg M, Rensing C. Integrated induction of silver resistance determinants and production of extracellular polymeric substances in Cupriavidus metallidurans BS1 in response to silver ions and silver nanoparticles. CHEMOSPHERE 2024; 366:143503. [PMID: 39401671 DOI: 10.1016/j.chemosphere.2024.143503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Although the antimicrobial mechanisms of nanomaterials have been extensively investigated, bacterial defense mechanisms associated with AgNPs have not been fully elucidated. We here report that dissolved Ag+ (>0.05 μg mL-1) displayed higher toxicity on cell growth of strain Cupriavidus metallidurans BS1 (GCA_003260185.2) in comparison to 2 and 20 nm AgNPs. The genes necessary for synthesis of distinct abundance and composition of extracellular polymeric substances (EPS) were induced in strain BS1 exposed to Ag stress. This resulted in 20.1% (Ag(I)-EPS) and 24.2% (2 nm AgNPs-EPS) of the CO band integrated intensities being converted into C-OH/C-O-C group vibrations and the Ag-O bond was formed between EPS and 20 nm AgNPs. Meanwhile, the expression of primary resistance genes of the cus, sil and cup operon encoding HME-RND-driven efflux systems as well as a PIB1-type ATPase (CupA) were significantly induced after exposure to Ag(I), 2 and 20 nm AgNPs, respectively. Furthermore, distinct genes involved in biosynthesis pathways responsible for production of EPS were induced to relieve the toxicity of Ag(I), 2 nm and 20 nm AgNPs. This combined action is one potential reason why strain BS1 displayed distinct resistances in response to Ag(I) compared to 2 and 20 nm AgNPs. This work will help in understanding processes important in bacterial defensive mechanisms to AgNPs.
Collapse
Affiliation(s)
- Jia-Xin Dai
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hong-Lin Zhong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85719, USA
| | - Ren-Wei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Solar Materials Biotechnology (SOMA), Helmholtz Centre for Environmental Research GmbH (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
2
|
Koner D, Snaitang R, Das KC, Saha N. Molecular characterization of heat shock protein 70 and 90 genes and their expression analysis in air-breathing magur catfish (Clarias magur) while exposed to zinc oxide nanoparticles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01397-4. [PMID: 39180596 DOI: 10.1007/s10695-024-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
The air-breathing magur catfish (Clarias magur) are frequently challenged with high environmental pollutants, including that of various metal nanoparticles (NPs) in their natural habitats. Heat shock proteins (HSPs) are essential molecular chaperones for preserving intracellular protein homeostasis in eukaryotic cells. In aquatic animals, HSPs are known to play important defensive roles associated with various environmental stress-related cellular damages. In the present investigation, we characterized the molecular and structural organization of distinct HSPs and their potential induction of HSP genes in multiple magur catfish tissues while exposed to ZnO NPs for 14 days. The sequence alignment of four HSP genes (hsp70, hsc70, hsp90a, and hsp90b) of magur catfish demonstrated evolutionary parallels with bony fishes and total conservation of active sites across the amphibia, fish, and mammals. From the architectural analysis of HSP70, HSC70, HSP90a, and HSP90b proteins, a structural similarity with mammals was observed, suggesting the functional resemblances of the studied HSPs in chaperone mechanisms. In the examined tissues, the mRNAs of HSP genes expressed constitutively. Exposure of C. magur to ZnO NPs (10 mg/L) in situ led to a considerable increase in the levels of mRNAs for several HSP genes and translated proteins, with HSP70 exhibiting the highest level of expression. Thus, it can be contemplated that HSPs may be involved in defending the magur catfish against the ZnO NP- and other metal NP-mediated cellular damages. The results provide new insights into the involvement of HSP machinery during adaptation to the ZnO NP-induced stress in magur catfish.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Revelbornstar Snaitang
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Kanhu Charan Das
- Bioinformatics Centre, North-Eastern Hill University, Shillong, 793022, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
3
|
Vaissi S, Chahardoli A, Haghighi ZMS, Heshmatzad P. Metal nanoparticle-induced effects on green toads (Amphibia, Anura) under climate change: conservation implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29777-29793. [PMID: 38592634 DOI: 10.1007/s11356-024-33219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
The toxicity of aluminum oxide (Al2O3), copper oxide (CuO), iron oxide (Fe3O4), nickel oxide (NiO), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles (NPs) on amphibians and their interaction with high temperatures, remain unknown. In this study, we investigated the survival, developmental, behavioral, and histological reactions of Bufotes viridis embryos and larvae exposed to different NPs for a duration of 10 days, using lethal concentrations (LC25%, LC50%, and LC75% mg/L) under both ambient (AT: 18 °C) and high (HT: 21 °C) temperatures. Based on LC, NiONPs > ZnONPs > CuONPs > Al2O3NPs > TiO2NPs > Fe3O4NPs showed the highest mortality at AT. A similar pattern was observed at HT, although mortality occurred at lower concentrations and Fe3O4NPs were more toxic than TiO2NPs. The results indicated that increasing concentrations of NPs significantly reduced hatching rates, except for TiO2NPs. Survival rates decreased, abnormality rates increased, and developmental processes slowed down, particularly for NiONPs and ZnONPs, under HT conditions. However, exposure to low concentrations of Fe3O4NPs for up to 7 days, CuONPs for up to 72 h, and NiO, ZnONPs, and TiO2NPs for up to 96 h did not have a negative impact on survival compared with the control group under AT. In behavioral tests with larvae, NPs generally induced hypoactivity at AT and hyperactivity at HT. Histological findings revealed liver and internal gill tissue lesions, and an increase in the number of melanomacrophage centers at HT. These results suggest that global warming may exacerbate the toxicity of metal oxide NPs to amphibians, emphasizing the need for further research and conservation efforts in this context.
Collapse
Affiliation(s)
- Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | | | - Pouria Heshmatzad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
4
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Maximov P, Dasi E, Kalinina N, Ruban A, Pokidko B, Rudmin M. Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6729. [PMID: 37895713 PMCID: PMC10608737 DOI: 10.3390/ma16206729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
This study reports on the development of nanocomposites utilizing a mineral inhibitor and a micronutrient filler. The objective was to produce a slow release fertilizer, with zinc sulfate as the filler and halloysite nanotubes as the inhibitor. The study seeks to chemically activate the intercalation of zinc into the macro-, meso-, and micropores of the halloysite nanotubes to enhance their performance. As a result, we obtained three nanocomposites in zinc sulfate solution with concentrations of 2%, 20%, and 40%, respectively, which we named Hly-7Å-Zn2, Hly-7Å-Zn20, and Hly-7Å-Zn40. We investigated the encapsulation of zinc sulfate in halloysite nanotubes using X-ray diffraction analysis, transmission electron spectroscopy, infrared spectroscopy (FTIR), and scanning electron microscopy with an energy-dispersive spectrometer. No significant changes were observed in the initial mineral parameters when exposed to a zinc solution with a concentration of 2 mol%. It was proven that zinc was weakly intercalated in the micropore space of the halloysite through the increase in its interlayer distance from 7.2 to 7.4. With an increase in the concentration of the reacted solution, the average diameter of the nanotubes increased from 96 nm to 129 nm, indicating that the macropore space of the nanotubes, also known as the "site", was filled. The activated nanocomposites exhibit a maximum fixed content of adsorbed zinc on the nanotube surface of 1.4 wt%. The TEM images reveal an opaque appearance in the middle section of the nanotubes. S SEM images revealed strong adhesion of halloysite nanotubes to plant tissues. This property guarantees prolonged retention of the fertilizer on the plant surface and its resistance to leaching through irrigation or rainwater. Surface spraying of halloysite nanotubes offers accurate delivery of zinc to plants and prevents soil and groundwater contamination, rendering this fertilizer ecologically sound. The suggested approach of activating halloysite with a zinc solution appears to be a possible route forward, with potential for the production of tailored fertilizers in the days ahead.
Collapse
Affiliation(s)
- Prokopiy Maximov
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Evan Dasi
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Natalia Kalinina
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Alexey Ruban
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Boris Pokidko
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS (IGEM RAS), 119017 Moscow, Russia
| | - Maxim Rudmin
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia
| |
Collapse
|
6
|
Ayanda OS, Quadri RO, Adewuyi SO, Mmuoegbulam AO, Okezie O, Mohammed SE, Durumin-Iya NI, Lawal OS, Popoola KM, Adekola FA. Multidimensional applications and potential health implications of nanocomposites. JOURNAL OF WATER AND HEALTH 2023; 21:1110-1142. [PMID: 37632385 PMCID: wh_2023_141 DOI: 10.2166/wh.2023.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
This study reviews the concept, classifications, and techniques involved in the synthesis of nanocomposites. The environmental and health implications of nanoparticles and composite materials were detailed, as well as the applications of nanocomposites in water remediation, antibacterial application, and printed circuit boards. The study gave insights into the challenges of water pollution treatment and provided a broad list of nanocomposites that have been explored for water remediation. Moreover, the emergence of multi-drug resistance to many antibiotics has made current antibiotics inadequate in the treatment of disease. This has engineered the development of alternative strategies in the drug industries for the production of effective therapeutic agents, comprising nanocomposites with antibacterial agents. The new therapeutic agents known as nanoantibiotics are more efficient and have paved the way to handle the challenges of antibiotic resistance. In printed circuit boards, nanocomposites have shown promising applications because of their distinct mechanical, thermal, and electrical characteristics. The uniqueness of the write-up is that it provides a broad explanation of the concept, synthesis, application, toxicity, and harmful effects of nanocomposites. Thus, it will provide all-inclusive awareness to readers to identify research gaps and motivate researchers to synthesize novel nanocomposites for use in various fields.
Collapse
Affiliation(s)
- Olushola S Ayanda
- Nanoscience Research Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State P.M.B 373, Nigeria E-mail:
| | - Rukayat O Quadri
- Nanoscience Research Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State P.M.B 373, Nigeria
| | - Sulaiman O Adewuyi
- Nanoscience Research Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State P.M.B 373, Nigeria
| | - Augusta O Mmuoegbulam
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Onyemaechi Okezie
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Sa'adatu E Mohammed
- Department of Chemistry, Federal University Dutse, Dutse, Jigawa State PMB 7156, Nigeria
| | - Naseer I Durumin-Iya
- Department of Chemistry, Federal University Dutse, Dutse, Jigawa State PMB 7156, Nigeria
| | - Olayide S Lawal
- Nanoscience Research Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State P.M.B 373, Nigeria
| | - Kehinde M Popoola
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Folahan A Adekola
- Department of Industrial Chemistry, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
7
|
Environmentally Benign Nanoparticles for the Photocatalytic Degradation of Pharmaceutical Drugs. Catalysts 2023. [DOI: 10.3390/catal13030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
A rapid rise in industrialization has led to the release of pharmaceutical pollutants into water bodies, rendering water inappropriate for consumption by humans and animals, challenging our efforts to achieve the clean water sustainable development goal. These pharmaceutical pollutants include antibiotics, anticancer drugs, antidepressants, etc., which are highly stable and persistent in water, in addition to being harmful to life. At times, the secondary pollutant that is formed after degradation is more potent than the parent drug. Conventional water purification methods cannot completely remove these pollutants. Hence, efficient and robust methods are required to degrade pharmaceutical waste. Photocatalytic degradation of drugs is deemed an efficient and effective method for environmental remediation, along with recovery of photocatalysts, which are important for recycling and sustainable use. Herein, we present the synthesis of nanoparticles (NPs) and their application for photocatalytic degradation of pharmaceutical waste as a preferred water treatment method. Additionally, green synthesis of photocatalytic nanomaterials offers the benefit of avoiding secondary pollution. The green synthesis of NPs is employed by using plant extracts that offer a number of metabolites as reducing agents or capping agents, as well as the use of microbes as green nanofactories to tackle the issue of water cleanliness with respect to pharmaceutical waste. Despite regulations concerning drug disposal, some underdeveloped countries do not enforce and practice these guidelines in letter and spirit. Hence, the current work presenting a promising water cleanliness method is expected to contribute to the assurance of strict policy compliance and enforcement, resulting in the resolution of the health concerns with respect to hazardous pharmaceutical waste disposal in water bodies.
Collapse
|
8
|
Beig B, Niazi MBK, Jahan Z, Haider G, Zia M, Shah GA, Iqbal Z, Hayat A. Development and testing of zinc sulfate and zinc oxide nanoparticle-coated urea fertilizer to improve N and Zn use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 13:1058219. [PMID: 36733597 PMCID: PMC9886897 DOI: 10.3389/fpls.2022.1058219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) losses from conventional fertilizers in agricultural systems are very high, which can lead to serious environmental pollution with economic loss. In this study, innovative slow-release fertilizers were prepared using zinc (Zn) [nanoparticles (NPs) or in bulk], using molasses as an environmentally friendly coating. Several treatments were prepared using Zn in different concentrations (i.e., 0.25%, 0.5%, and 4% elemental Zn). The zinc oxide nanoparticles (ZnO-NPs) were prepared from zinc sulfate heptahydrate (ZnSO4·7H2O), and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Furthermore, the Zn-loaded urea samples were tested for urea N release rate, leaching of water from soil, and crushing strength to assess the impact of coating on the final finished product. Pot experiments were conducted simultaneously to check the agronomic effects of Zn-coated slow-release urea on the growth and development of wheat (Triticum aestivum L.). The laboratory and pot results confirmed that the ZnO-NP treatments boost wheat growth and yield as a result of reduced N and Zn release. UZnNPs2 (urea coated with 0.5% ZnO-NPs and 5% molasses) demonstrated the best results among all the treatments in terms of slow nutrient release, N and Zn uptake, and grain yield. The UZnNPs2 treatment increased plant yield by 34% (i.e., 4,515 vs. 3,345 kg ha-1) relative to the uncoated prill-treated crop because of the slower release of Zn and N.
Collapse
Affiliation(s)
- Bilal Beig
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Munir Zia
- Research and Development Department, Fauji Fertilizer Company Limited, Rawalpindi, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi-Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Zahid Iqbal
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi-Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Asim Hayat
- Land Resources Research Institute (LRRI), National Agricultural Research Center, Islamabad, Pakistan
| |
Collapse
|
9
|
Kaushik M, Sarkar N, Singh A, Kumar P. Nanomaterials to address the genesis of antibiotic resistance in Escherichia coli. Front Cell Infect Microbiol 2023; 12:946184. [PMID: 36683704 PMCID: PMC9845789 DOI: 10.3389/fcimb.2022.946184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Escherichia is a genus of prokaryotic gram-negative bacteria which forms a vital component of the gut microbiota of homeotherms including humans. Many members of this genus are commensals and pathogenic strains, which are responsible for some of the most common bacterial infections and can be fatal, particularly in the case of newborns and children. The fecal matter in wastewater treatment plants serves as major environmental sinks for the accumulation of Escherichia. The rise in antibiotic pollution and the lateral gene exchange of antibiotic-resistant genes have created antibiotic-resistant Escherichia strains that are often called superbugs. Antibiotic resistance has reached a crisis level that nowadays existing antibiotics are no longer effective. One way of tackling this emerging concern is by using nanomaterials. Punitively, nanomaterials can be used by conjugating with antibodies, biomolecules, and peptides to reduce antibiotic usage, whereas, preventatively, they can be used as either nano-antimicrobial additives or nano-photocatalytic sheets to reduce the microbial population and target the superbugs of environmental Escherichia. In this review, we have explored the threat posed by pathogenic Escherichia strains in the environment, especially in the context of antibiotic-resistant strains. Along with this, we have discussed some nanomaterial-mediated strategies in which the problem can be addressed by using nanomaterials as nanophotocatalytics, antimicrobial additives, drugs, and drug conjugates. This review also presents a brief overview of the ecological threats posed by the overuse of nanomaterials which warrants a balanced and judicious approach to the problem.
Collapse
Affiliation(s)
- Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,*Correspondence: Mahima Kaushik, ;
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Environmental Studies, University of Delhi, Delhi, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Chemistry, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Galante AJ, Pilsbury BC, Yates KA, LeMieux M, Bain DJ, Shanks RMQ, Romanowski EG, Leu PW. Reactive silver inks for antiviral, repellent medical textiles with ultrasonic bleach washing durability compared to silver nanoparticles. PLoS One 2022; 17:e0270718. [PMID: 36103519 PMCID: PMC9473630 DOI: 10.1371/journal.pone.0270718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/16/2022] [Indexed: 01/13/2023] Open
Abstract
Medical textiles are subject to particularly harsh disinfection procedures in healthcare settings where exposure risks are high. This work demonstrates a fabric treatment consisting of a reactive silver ink and low surface energy PDMS polymer that provides for superhydrophobicity and antiviral properties against enveloped herpes simplex virus stocks even after extended ultrasonic bleach washing. The antiviral properties of reactive silver ink has not been previously reported or compared with silver nanoparticles. The fabric treatment exhibits high static contact angles and low contact angle hysteresis with water, even after 300 minutes of ultrasonic bleach washing. Similarly, after this bleach washing treatment, the fabric treatment shows reductions of infectious virus quantities by about 2 logs compared to controls for enveloped viruses. The use of silver ink provides for better antiviral efficacy and durability compared to silver nanoparticles due to the use of reactive ionic silver, which demonstrates more conformal coverage of fabric microfibers and better adhesion. This study provides insights for improving the wash durability of antiviral silver fabric treatments and demonstrates a bleach wash durable, repellent antiviral treatment for reusable, functional personal protective equipment applications.
Collapse
Affiliation(s)
- Anthony J. Galante
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brady C. Pilsbury
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kathleen A. Yates
- Department of Ophthalmology, Charles T. Campbell Laboratory for Ophthalmic Microbiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Melbs LeMieux
- Electroninks Inc, Austin, TX, United States of America
| | - Daniel J. Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert M. Q. Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory for Ophthalmic Microbiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Eric G. Romanowski
- Department of Ophthalmology, Charles T. Campbell Laboratory for Ophthalmic Microbiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Paul W. Leu
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
11
|
Environmental Risk Assessment of Silver Nanoparticles in Aquatic Ecosystems Using Fuzzy Logic. WATER 2022. [DOI: 10.3390/w14121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rapid development of nanotechnology has stimulated the use of silver nanoparticles (AgNPs) in various fields that leads to their presence in different ecosystem compartments, in particular aquatic ecosystems. Several studies have shown that a variety of living organisms are affected by AgNPs. Therefore, a methodology to assess the risk of AgNPs for aquatic ecosystems was developed. The methodology is based on fuzzy logic, a proven method for dealing with variables with an associated uncertainty, as is the case with many variables related to AgNPs. After a careful literature search, a selection of relevant variables was carried out and the fuzzy model was designed. From inputs such as AgNPs’ size, shape, and coating, it is possible to determine their level of toxicity which, together with their level of concentration, are sufficient to create a risk assessment. Two case studies to assess this methodology are presented, one involving continuous effluent from a wastewater treatment plant and the second involving an accidental spill. The results showed that the accidental spills have a higher risk than WWTP release, with the combination of Plates–BPEI being the most toxic one. This approach can be adapted to different situations and types of nanoparticles, making it highly useful for both stakeholders and decision makers.
Collapse
|
12
|
Jovanović Glavaš O, Stjepanović N, Hackenberger BK. Influence of nano and bulk copper on agile frog development. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:357-365. [PMID: 35001260 DOI: 10.1007/s10646-021-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Nanotechnology, as one of the fastest-growing industries, offers many benefits in various fields. However, properties that contribute to its positive effects, in other context, can cause adverse effects to various organisms, such as amphibians. Identifying possible negative effects on its survival is crucial since amphibians are the most threatened group of vertebrates. In that context, we investigated the influence of both nano and bulk copper on embryonic development of agile frog, Rana dalmatina. The embryos were exposed to various concentrations (0.01 mg/L, 0.075 mg/L, 0.15 mg/L or 0.3 mg/L) of either nano (CuO, declared size 40-80 nm) or bulk form (CuSO4·5H2O) for 16 days. Upon the experiment, tadpoles were measured and weighted, then homogenized and their protein, lipid, and carbohydrates content determined, as well as the activity of LDH. Our results suggest stronger negative influence of nano copper to size and weight of tadpoles, and bulk copper on lipid content, while both had strong negative effect on carbohydrates content, and LDH activity. In addition, our results suggest agile frog to be more susceptible to negative influence of both, nano and bulk copper, than commonly used Xenopus laevis.
Collapse
Affiliation(s)
- Olga Jovanović Glavaš
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | | |
Collapse
|
13
|
Matouke MM, Sanusi HM, Eneojo AS. Interaction of copper with titanium dioxide nanoparticles induced hematological and biochemical effects in Clarias gariepinus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67646-67656. [PMID: 34255260 DOI: 10.1007/s11356-021-15148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for engineered nanomaterials induces potential harmful impact into aquatic ecosystems and is a great concern for freshwater biodiversity. The present study showed that enhancing toxic property of titanium dioxide nanoparticles (TiO2 NPs) with copper (Cu) was responsible for the disruption of hormonal, hematological, and biochemical activities, in Clarias gariepinus. The study revealed that C. gariepinus intravenously injected with safe concentrations of TiO2 NPs (3μg g) and Cu (2.5 μg g) alone and binary mixtures (TiO2 NPs (3μg g) + Cu (2.5μg g)) for a period of 96h remarkably changed hormonal activities and hematological and biochemical indices of the fish. Our findings indicated that both chemicals accumulated in vital organs (the brain, serum, heart, gonad, liver, gills, serum, and kidney) and the presence of TiO2 NPs enhanced the bioavailability of copper. Fish exposed to TiO2 NPs alone significantly increased thyroxine (T4) and further decreased triidothyronine (T3). In addition, the binary mixtures showed antagonistic effects on both hormones. The hematological indices (WBC, RBC, HGt, MCV, MCH, MCHC, and Hct) were altered in all treatment groups. Decrease in WBC, RBC, HGt, Hct, and MCV were observed. Furthermore, the co-exposure further decreased WBC (60.28%), RBC (47.10%), HGt (75.99%), Hct (25.34%), and MCV (16.18%), in contrast, MCH and MCHC increased by of 2 folds, respectively. Metabolic enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) showed significant (p<0.05) increase, with additive effect in co-exposure. However, the alkaline phosphatase (ALP) activity decreased significantly in co-exposure. Significant (p<0.05) decrease of antioxidants, superoxide dismutase (SOD), glutathione transferase (GST), catalase (CAT), and metallothionein (Met) was observed in all the treatments with additive effect of 64.9%, 30.77%, and 91.31% in SOD, GST, and CAT, respectively. However, there was an increase in lipid peroxidation (MDA) in all treated fish. The results indicate that combined mixture influences the accumulation, hormonal, hematological, and biochemical factors which could affect the health of the fish.
Collapse
|
14
|
Hassanpour M, Hosseini Tafreshi SA, Amiri O, Hamadanian M, Salavati-Niasari M. Toxicity of Nd 2WO 6 nanoparticles to the microalga Dunaliella salina: synthesis of nanoparticles and investigation of their impact on microalgae. RSC Adv 2021; 11:27283-27291. [PMID: 35480661 PMCID: PMC9037624 DOI: 10.1039/d1ra04878c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
The presence of nanoparticles in the environment and their impact on existing organisms is one of the main concerns of researchers working in this field. In this research, Nd2WO6 nanoparticles were prepared by an ultrasonic procedure for the first time. X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS) analyses were applied to identify and prove the purity of these particles. In addition to increasing the reaction rate and efficiency with the help of a radical generation mechanism, ultrasound was able to aid the synthesis of these particles. After confirming nanoparticle formation, the optimal nanoparticles in view of scale and morphology were selected by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Optimal particles at three concentrations (25, 50, and 100 ppm) were mixed into the algae growth medium to investigate the effects of the nanoparticles on Dunaliella salina growth. Biological parameters, including the number of cells, biomass, specific growth rate, pigments, and malondialdehyde (MDA), were measured after ten days. Growth parameters showed an increasing trend in concentrations up to 50 ppm; however, at a concentration of 100 ppm, a significant decrease was observed in contrast to the nanoparticles-free treatment. The MDA content showed a linear relationship with enhanced concentration of the nanoparticles. The examination of biological parameters showed that the algae response to stress was dependent on the concentration of nanoparticles. The results showed that 50 ppm of nanoparticles are suitable for increasing algae and achieving a suitable growth rate for commercial purposes. However, in higher concentrations, algal growth inhibition occurs, which is of great importance from a biotechnological point of view.
Collapse
Affiliation(s)
- Mohammad Hassanpour
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| | - Seyed Ali Hosseini Tafreshi
- Department of Biotechnology, Faculty of Chemistry, University of Kashan Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| | - Omid Amiri
- Department of Chemistry, College of Science, University of Raparin Rania Kurdistan Region Iraq
| | - Masood Hamadanian
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| |
Collapse
|
15
|
Al-Azab AJ, Widyaningrum D, Hirakawa H, Hayashi Y, Tanaka S, Ohama T. A resin cyanoacrylate nanoparticle as an acute cell death inducer to broad spectrum of microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Roma J, Matos AR, Vinagre C, Duarte B. Engineered metal nanoparticles in the marine environment: A review of the effects on marine fauna. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105110. [PMID: 32977204 DOI: 10.1016/j.marenvres.2020.105110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 05/27/2023]
Abstract
There is an increasing awareness of how damaging pollutants in the marine environment can be, however information on the effects of metal engineered nanoparticles (ENPs) on marine biota is still insufficient, despite an exponential rising in related publications in recent years. In order to provide an integrated insight on the present state of the art on metal ENP-related ecotoxicology studies on marine fauna, this review aimed to: (i) highlight the means of toxicity of metal ENPs in the marine environment, (ii) identify the principal biotic and abiotic factors that may alter metal ENP toxicity, and (iii) analyse and categorize results of these studies, including accumulation, molecular and histological biomarkers, genotoxicity and behavioural changes. Data retrieved from Scopus yielded 134 studies that met pre-established criteria. Most often, the target ENPs were titanium, zinc, copper or silver, and most studies (61.2%) focused on the phylum Mollusca. The degree of toxicity of metal ENPs was often dependent on the concentrations tested, length of exposure and the type of tissue sampled. Effects from simple tissue accumulation to DNA damage or behavioural alterations were identified, even when concentrations below environmentally available levels were used. It is proposed that other phyla besides the traditional Mollusca (and within it Bivalvia) should be used more often in this kind of studies, that exact pathways of toxicity be further explored, and lastly that co-stressors be used in order to best mimic conditions observed in nature. In this review, the current knowledge on engineered metal nanoparticles and their effects on marine fauna was summarized, highlighting present knowledge gaps. Guidelines for future studies focusing on under-developed subjects in ENP toxicology are also briefly provided.
Collapse
Affiliation(s)
- Joana Roma
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal.
| | - Ana Rita Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal da Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
17
|
Tomilina II, Grebenyuk LP. Malformations of Mouthpart Structures of Chironomusriparius Larvae (Diptera, Chironomidae) under the Effect of Metal-Containing Nanoparticles. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s0013873820010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
|
19
|
do Amaral DF, Guerra V, Motta AGC, de Melo E Silva D, Rocha TL. Ecotoxicity of nanomaterials in amphibians: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:332-344. [PMID: 31181520 DOI: 10.1016/j.scitotenv.2019.05.487] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Nanomaterials (NMs) have been used in a growing number of commercial products, and their rapid expansion could lead to their release into the aquatic environments. However, there is limited knowledge about the impact of NMs in the biota, especially the amphibians. The present study revised the historical use of amphibian species as a model system for nanoecotoxicological studies and summarized the data available in the scientific literature about the genotoxic, mutagenic, histopathological, embryotoxic and reproductive effects of NMs in different groups of amphibians. The interaction, bioaccumulation, mode of action (MoA) and ecotoxicity of NMs on amphibians were also revised. The nanoecotoxicological studies were conducted with 11 amphibian species, being eight species of the order Anura and three species of the order Caudata. Xenopus laevis was the most studied species. The studies were conducted mainly with inorganic NMs (72%) compared to organic ones. The nanoecotoxicity depends on NM behavior and transformation in the environment, as well as the developmental stages of amphibians. The known effects of NMs in amphibians were mainly reported with reactive oxygen species (ROS) production, oxidative stress, and genotoxic effects. Results emphasize the need for further studies testing the ecotoxicity of different NMs, concentrations and exposure periods at environmentally relevant approaches. Furthermore, standard protocols for nanoecotoxicological tests using amphibians are required. Revised data showed that amphibians are suitable organisms to assess the environmental impact of NMs and indicated significant research gaps concerning the ecotoxicity of NMs on freshwater ecosystems and recommendations for future researches.
Collapse
Affiliation(s)
- Diogo Ferreira do Amaral
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Vinicius Guerra
- Laboratory of Herpetology and Animal Behavior, Department of Ecology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Andreya Gonçalves Costa Motta
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Department of Genetics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
20
|
Cryptosporidium parvum oocyst directed assembly of gold nanoparticles and graphene oxide. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1813-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Widyaningrum D, Iida D, Tanabe Y, Hayashi Y, Kurniasih SD, Ohama T. Acutely induced cell mortality in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae) following exposure to acrylic resin nanoparticles. JOURNAL OF PHYCOLOGY 2019; 55:118-133. [PMID: 30304548 DOI: 10.1111/jpy.12798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Nanoparticles have unique properties that make them attractive for use in industrial and medical technology industries but can also be harmful to living organisms, making an understanding of their molecular mechanisms of action essential. We examined the effect of three different sized poly(isobutyl-cyanoacrylate) nanoparticles (iBCA-NPs) on the unicellular green alga Chlamydomonas reinhardtii. We found that exposure to iBCA-NPs immediately caused C. reinhardtii to display abnormal swimming behaviors. Furthermore, after one hour, most of the cells had stopped swimming and 10%-30% of cells were stained with trypan blue, suggesting that these cells had severely impaired plasma membranes. Observation of the cyto-ultrastructure showed that the cell walls had been severely damaged and that many iBCA-NPs were located in the space between the cell wall and plasma membrane, as well as inside the cytosol in some cases. A comparison of three strains of C. reinhardtii with different cell wall conditions further showed that the cell mortality ratio increased more rapidly in the absence of a cell wall. Interestingly, cell mortality over time was essentially identical regardless of iBCA-NP size if the total surface area was the same. Furthermore, direct observation of the trails of iBCA-NPs indicated that the first trigger was their contact with the cell wall, which is most likely accompanied by the inactivation or removal of adsorbed proteins from the cell wall surface. Cell mortality was accompanied by the overproduction of reactive oxygen species, which was detected more readily in cells grown under constant light rather than in the dark.
Collapse
Affiliation(s)
- Dwiyantari Widyaningrum
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami City, Kochi, 782-8502, Japan
| | - Daisuke Iida
- Chikami Miltec Inc, 1-6-3 Ohtesuji, Kochi City, Kochi, 780-0842, Japan
| | - Yuma Tanabe
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
| | - Yasuko Hayashi
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
| | - Sari Dewi Kurniasih
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami City, Kochi, 782-8502, Japan
- Chemistry Department, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java, 40132, Indonesia
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami City, Kochi, 782-8502, Japan
| |
Collapse
|
22
|
Deepa S, Murugananthkumar R, Raj Gupta Y, Gowda K.S M, Senthilkumaran B. Effects of zinc oxide nanoparticles and zinc sulfate on the testis of common carp, Cyprinus carpio. Nanotoxicology 2019; 13:240-257. [DOI: 10.1080/17435390.2018.1541259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Seetharam Deepa
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, India
| | - Yugantak Raj Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, India
| | | | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, India
| |
Collapse
|
23
|
Barreto A, Luis LG, Pinto E, Almeida A, Paíga P, Santos LHMLM, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Effects and bioaccumulation of gold nanoparticles in the gilthead seabream (Sparus aurata) - Single and combined exposures with gemfibrozil. CHEMOSPHERE 2019; 215:248-260. [PMID: 30317096 DOI: 10.1016/j.chemosphere.2018.09.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNPs) are found in a wide range of applications and therefore expected to present increasing levels in the environment. There is however limited knowledge concerning the potential toxicity of AuNPs as well as their combined effects with other pollutants. Hence, the present study aimed to investigate the effects of AuNPs alone and combined with the pharmaceutical gemfibrozil (GEM) on different biological responses (behaviour, neurotransmission, biotransformation and oxidative stress) in one of the most consumed fish in southern Europe, the seabream Sparus aurata. Fish were exposed for 96 h to waterborne 40 nm AuNPs with two coatings - citrate and polyvinylpyrrolidone (PVP), alone or combined with GEM. Antioxidant defences were induced in liver and gills upon both AuNPs exposure. Decreased swimming performance (1600 μg.L-1) and oxidative damage in gills (4 and 80 μg.L-1) were observed following exposure to polyvinylpyrrolidone coated gold nanoparticles (PVP-AuNPs). Generally, accumulation of gold in fish tissues and deleterious effects in S. aurata were higher for PVP-AuNPs than for cAuNPs exposures. Although AuNPs and GEM combined effects in gills were generally low, in liver, they were higher than the predicted. The accumulation and effects of AuNPs showed to be dependent on the size, coating, surface charge and aggregation/agglomeration state of nanoparticles. Additionally, it was tissue' specific and dependent on the presence of other contaminants. Although, gold intake by humans is expected to not exceed the estimated tolerable daily intake, it is highly recommended to keep it on track due to the increasing use of AuNPs.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - L G Luis
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Almeida
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Paíga
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - L H M L M Santos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - C Delerue-Matos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app9010059] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanotechnology has an increasingly large impact on a broad scope of biotechnological, pharmacological and pure technological applications. Its current use in bioenergy production from biomass is very restricted. The present study is based on the utilization of nanoparticles as an additive to feed bacteria that break down natural substances. The novel notion of dosing ions using modified nanoparticles can be used to progress up biogas production in oxygen free digestion processes. While minute nanoparticles are unstable, they can be designed to provide ions in a controlled approach, so that the maximum enhancement of biogas production that has been reported can be obtained. Nanoparticles are dissolved in a programmed way in an anaerobic atmosphere and are supplied in a sustainable manner to microbiotic organisms responsible for the degradation of organic material, which is a role that fits them well. Therefore, biogas fabrication can be increased up to 200%, thereby increasing the degradation of organic waste.
Collapse
|
25
|
Prospecting the interactions of nanoparticles with beneficial microorganisms for developing green technologies for agriculture. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
26
|
Ciğerci İH, Ali MM, Kaygısız ŞY, Kaya B, Liman R. Genotoxic Assessment of Different Sizes of Iron Oxide Nanoparticles and Ionic Iron in Earthworm (Eisenia hortensis) Coelomocytes by Comet Assay and Micronucleus Test. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:105-109. [PMID: 29802429 DOI: 10.1007/s00128-018-2364-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The current study was designed to evaluate genotoxicity of different sizes of iron oxide nanoparticles (IONPs) and ionic iron using coelomocytes of the earthworms Eisenia hortensis. Earthworms were exposed to different series of IONPs and ionic iron concentrations to find the respective LC50 of the chosen chemicals. LC50 for < 50, <100 nm and the ionic iron of IONPs were 500, 200, 250 µg/mL respectively. Concentrations of LC50/2 (250, 100, 125 µg/mL for < 50, <100 nm and the ionic iron respectively) and LC50 for 48 h were used to perform the comet assay and micronucleus test. Statistically significant (p < 0.05) increase in DNA and chromosomal damage was observed for all sizes of IONPs and ionic iron. In the comet assay system, the greatest genotoxicity was observed in the treatments with < 100 nm IONPs, whereas the greatest numbers of micronuclei and binucleate cells were observed in the treatments with ionic iron. It was concluded that different types of nanoparticles (i.e. sizes, shapes) may have different genotoxic potencies in different assays with E. hortensis earthworms.
Collapse
Affiliation(s)
- İbrahim Hakkı Ciğerci
- Department of Molecular Biology and Genetics, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Muhammad Muddassir Ali
- Department of Molecular Biology and Genetics, Afyon Kocatepe University, Afyonkarahisar, Turkey.
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Şöhret Yüksek Kaygısız
- Department of Molecular Biology and Genetics, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Recep Liman
- Department of Molecular Biology and Genetics, Uşak University, Uşak, Turkey
| |
Collapse
|
27
|
Bryant SL, Eixenberger JE, Rossland S, Apsley H, Hoffmann C, Shrestha N, McHugh M, Punnoose A, Fologea D. ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels. J Nanobiotechnology 2017; 15:90. [PMID: 29246155 PMCID: PMC5732404 DOI: 10.1186/s12951-017-0327-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/06/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate. RESULTS The macroscopic conductance of lysenin channels greatly diminished in the presence of cationic ZnO NPs. The inhibitory effects were asymmetrical relative to the direction of the electric field and addition site, suggesting electrostatic interactions between ZnO NPs and a binding site. Similar changes in the macroscopic conductance were observed when lysenin channels were reconstituted in neutral lipid membranes, implicating protein-NP interactions as the major contributor to the reduced transport capabilities. In contrast, no inhibitory effects were observed in the presence of anionic SnO2 NPs. Additionally, we demonstrate that inhibition of ion transport is not due to the dissolution of ZnO NPs and subsequent interactions of zinc ions with lysenin channels. CONCLUSION We conclude that electrostatic interactions between positively charged ZnO NPs and negative charges within the lysenin channels are responsible for the inhibitory effects on the transport of ions. These interactions point to a potential mechanism of cytotoxicity, which may not require NP internalization.
Collapse
Affiliation(s)
- Sheenah L. Bryant
- Department of Physics, Boise State University, Boise, ID 83725 USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| | - Josh E. Eixenberger
- Department of Physics, Boise State University, Boise, ID 83725 USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| | - Steven Rossland
- Department of Physics, Boise State University, Boise, ID 83725 USA
- Present Address: Department of Physics, University of Utah, Salt Lake City, UT 84112 USA
| | - Holly Apsley
- Department of Physics, Boise State University, Boise, ID 83725 USA
- Present Address: Department of Social Sciences, Yale-NUS College, Singapore, 138610 Singapore
| | - Connor Hoffmann
- Department of Physics, Boise State University, Boise, ID 83725 USA
- Present Address: Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Nisha Shrestha
- Department of Physics, Boise State University, Boise, ID 83725 USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| | - Michael McHugh
- Department of Physics, Boise State University, Boise, ID 83725 USA
| | - Alex Punnoose
- Department of Physics, Boise State University, Boise, ID 83725 USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725 USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
28
|
Večeřová K, Večeřa Z, Dočekal B, Oravec M, Pompeiano A, Tříska J, Urban O. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:207-218. [PMID: 27503055 DOI: 10.1016/j.envpol.2016.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 06/06/2023]
Abstract
The environmental fate of airborne nanoparticles and their toxicity to plants is not yet fully understood. Pot-grown barley plants with second leaves developed were therefore exposed to CdO nanoparticles (CdONPs) of ecologically relevant size (7-60 nm) and concentration (2.03 ± 0.45 × 105 particles cm-3) in air for 3 weeks. An experiment was designed to test the effects of different treatments when only leaves (T1); leaves and soil substrate (T2); and leaves, soil, and water supply were exposed to nanoparticles (T3). A fourth, control group of plants was left without treatment (T0). Although CdONPs were directly absorbed by leaves from the air, a part of leaf-allocated Cd was also transported from roots by transpiration flow. Chromatographic assays revealed that CdONPs had a significant effect on total content of primary metabolites (amino acids and saccharides) but no significant effect on total content of secondary metabolites (phenolic compounds, Krebs cycle acids, and fatty acids). In addition, the compositions of individual metabolite classes were affected by CdONP treatment. For example, tryptophan and phenylalanine were the most affected amino acids in both analysed organs, while ferulic acid and isovitexin constituted the polyphenols most affected in leaves. Even though CdONP treatment had no effect on total fatty acids content, there were significant changes in the composition of saturated and unsaturated fatty acids in both the roots and leaves of treated plants. Although the results indicate the most pronounced effect in T3 plants as compared to T1 and T2 plants, even just leaf exposure to CdONPs has the potential to induce changes in plant metabolism.
Collapse
Affiliation(s)
- Kristýna Večeřová
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, v.v.i., Bělidla 986/4a, CZ-603 00 Brno, Czech Republic
| | - Zbyněk Večeřa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i., Veveří 967/97, CZ-602 00 Brno, Czech Republic
| | - Bohumil Dočekal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i., Veveří 967/97, CZ-602 00 Brno, Czech Republic
| | - Michal Oravec
- Laboratory of Metabolomics and Isotopic Analyses, Global Change Research Institute of the Czech Academy of Sciences, v.v.i., Bělidla 986/4a, CZ-603 00 Brno, Czech Republic
| | - Antonio Pompeiano
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, v.v.i., Bělidla 986/4a, CZ-603 00 Brno, Czech Republic
| | - Jan Tříska
- Laboratory of Metabolomics and Isotopic Analyses, Global Change Research Institute of the Czech Academy of Sciences, v.v.i., Bělidla 986/4a, CZ-603 00 Brno, Czech Republic
| | - Otmar Urban
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, v.v.i., Bělidla 986/4a, CZ-603 00 Brno, Czech Republic.
| |
Collapse
|
29
|
Chatterjee N, Bhattacharjee B. Revelation of ZnS Nanoparticles Induces Follicular Atresia and Apoptosis in the Ovarian Preovulatory Follicles in the Catfish Mystus tengara (Hamilton, 1822). SCIENTIFICA 2016; 2016:3927340. [PMID: 27051555 PMCID: PMC4802041 DOI: 10.1155/2016/3927340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/22/2016] [Indexed: 05/06/2023]
Abstract
Important physicochemical characteristics of water like dissolved oxygen content, pH, and so forth were found to change in a dose dependent manner, showing a negative correlation with the nanoparticle concentration, when ZnS nanoparticle (NP) was exposed to water. This observation could be attributed to the enhanced photooxidation property associated with ZnS in its NP form. Under this situation, the catfish Mystus tengara was forced to live in hypoxia in its habitat. This condition was found to hamper the natural oogenesis process of the fish. Due to exposure at relatively lower concentration of ZnS NPs (250 μg/L), most of the maturing follicles of M. tengara failed to complete the process of vitellogenesis properly and underwent preovulatory atresia followed by oocytic apoptosis. For relatively higher concentration of ZnS nanoparticles (500 μg/L), the previtellogenic process continued with increasing number of apoptotic cells; however the vitellogenic process was found to be totally blocked. This unusual reproductive behaviour in female M. tengara can be attributed to the decreased metabolism of the fishes under ZnS nanoparticle induced hypoxia.
Collapse
Affiliation(s)
| | - Baibaswata Bhattacharjee
- Department of Physics, Ramananda College, Bishnupur, Bankura 722122, India
- *Baibaswata Bhattacharjee:
| |
Collapse
|
30
|
Tolaymat T, El Badawy A, Sequeira R, Genaidy A. An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:270-281. [PMID: 26079368 DOI: 10.1016/j.jhazmat.2015.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
There is an urgent need for broad and integrated studies that address the risks of engineered nanomaterials (ENMs) along the different endpoints of the society, environment, and economy (SEE) complex adaptive system. This article presents an integrated science-based methodology to assess the potential risks of engineered nanomaterials. To achieve the study objective, two major tasks are accomplished, knowledge synthesis and algorithmic computational methodology. The knowledge synthesis task is designed to capture "what is known" and to outline the gaps in knowledge from ENMs risk perspective. The algorithmic computational methodology is geared toward the provision of decisions and an understanding of the risks of ENMs along different endpoints for the constituents of the SEE complex adaptive system. The approach presented herein allows for addressing the formidable task of assessing the implications and risks of exposure to ENMs, with the long term goal to build a decision-support system to guide key stakeholders in the SEE system towards building sustainable ENMs and nano-enabled products.
Collapse
Affiliation(s)
- Thabet Tolaymat
- U.S Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Amro El Badawy
- Pegasus Technical Services Inc., Cincinnati, OH 45219, USA
| | | | | |
Collapse
|
31
|
Nogueira V, Lopes I, Rocha-Santos TAP, Rasteiro MG, Abrantes N, Gonçalves F, Soares AMVM, Duarte AC, Pereira R. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13212-13224. [PMID: 25940480 DOI: 10.1007/s11356-015-4581-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
The rapid development of nanotechnology and the increasing use of nanomaterials (NMs) raise concern about their fate and potential effects in the environment, especially for those that could be used for remediation purposes and that will be intentionally released to the environment. Despite the remarkable emerging literature addressing the biological effects of NMs to aquatic organisms, the existing information is still scarce and contradictory. Therefore, aimed at selecting NMs for the treatment of organic and inorganic effluents, we assessed the potential toxicity of NiO (100 and 10-20 nm), Fe2O3 (≈85 × 425 nm), and TiO2 (<25 nm), to a battery of aquatic organisms: Vibrio fischeri, Raphidocelis subcapitata, Lemna minor, Daphnia magna, Brachionus plicatilis, and Artemia salina. Also a mutagenic test was performed with two Salmonella typhimurium strains. Suspensions of each NM, prepared with the different test media, were characterized by dynamic light scattering (DLS) and eletrophoretic light scattering (ELS). For the assays with marine species, no toxicity was observed for all the compounds. In opposite, statistically significant effects were produced on all freshwater species, being D. magna the most sensitive organism. Based on the results of this study, the tested NMs can be classified in a decreasing order of toxicity NiO (100 nm) > NiO (10-20 nm) > TiO2 (<25 nm) > Fe2O3, allowing to infer that apparently Fe2O3 NMs seems to be the one with less risks for receiving aquatic systems.
Collapse
Affiliation(s)
- V Nogueira
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chatterjee N, Bhattacharjee B. An Analytic Contemplation of the Conspicuous Vicissitudes in the Histomorphology of Corpuscles of Stannius of a Freshwater Catfish Mystus tengara (Hamilton, 1822) due to the Exposure of ZnS Nanoparticles. SCIENTIFICA 2015; 2015:697053. [PMID: 26693386 PMCID: PMC4677026 DOI: 10.1155/2015/697053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 05/07/2023]
Abstract
Enhanced surface photooxidation property associated with the ZnS nanoparticles caused the reduction of dissolved oxygen content in water in a dose dependent manner, when ZnS nanoparticles of different sizes are exposed to the water in various concentrations. This property was more prominent for ZnS nanoparticles with smaller sizes. Mystus tengara, exposed to ZnS nanoparticles, responded to hypoxia with varied behavioural, physiological, and cellular responses in order to maintain homeostasis and organ function in an oxygen-depleted environment. The histomorphology of corpuscles of Stannius of the fish showed conspicuous vicissitudes under exposure of ZnS nanoparticles. The population of the cell type with granular cytoplasm showed significant increase at the expense of the other that consisted of agranular cytoplasm with increasing nanoparticle concentration. This can be explained as the defence mechanism of the fish against ZnS nanoparticle induced hypoxia and environmental acidification. The altering histomorphology has been studied employing an analytical approach.
Collapse
Affiliation(s)
| | - Baibaswata Bhattacharjee
- Department of Physics, Ramananda College, Bishnupur, Bankura 722122, India
- *Baibaswata Bhattacharjee:
| |
Collapse
|
33
|
Saria R, Mouchet F, Perrault A, Flahaut E, Laplanche C, Boutonnet JC, Pinelli E, Gauthier L. Short term exposure to multi-walled carbon nanotubes induce oxidative stress and DNA damage in Xenopus laevis tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:22-29. [PMID: 24905693 DOI: 10.1016/j.ecoenv.2014.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
The potential impact of Multiwalled Carbon NanoTubes (MWCNTs) was investigated on Xenopus laevis tadpoles exposed to 0.1, 1 and 10mg/L. Oxidative stress was measured in entire larvae exposed and DNA damage (Comet assay) was carried out in erythrocytes of circulating blood from 2h to 24h according to standardized recommendations. Results showed significant H2O2 production when larvae were exposed to 1mg/L and 10mg/L of MWCNTs after 4h and 2h of exposure, respectively. Antioxidant enzyme activities showed significant induction of catalase (CAT), glutathione reductase (GR) and superoxide dismutase (SOD) from only 2h of exposure to 10mg/L of MWCNTs. In presence of 1mg/L of MWCNTs, only GR and CAT activities were significantly induced at 4h. Enzyme activities do not follow a simple dose-effect relation, but the time of induction is shortened in relation with the tested concentration. The Comet assay results showed significant DNA damages with a dose dependent response. The profiles of DNA damages show fluctuations, in course of time, which are characteristics of oxidative stress response in relation with the continuous balance between damage and compensation process.
Collapse
Affiliation(s)
- Rayenne Saria
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France
| | - Florence Mouchet
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France; Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France.
| | - Annie Perrault
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France
| | - Emmanuel Flahaut
- Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France; Université de Toulouse; INP, UPS; EcoLab (Laboratoire d׳Ecologie Fonctionnelle et Environnement); ENSAT, Avenue de l׳Agrobiopole, F-31326 Castanet Tolosan, France; CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France
| | - Christophe Laplanche
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France
| | - Jean-Charles Boutonnet
- Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France; Toxicology & Environment Department, 420 rue d׳Estienne d׳Orves, F-92705 Colombes Cedex, Arkema, France
| | - Eric Pinelli
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France; Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France
| | - Laury Gauthier
- Université de Toulouse; UPS, INP; EcoLab; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab; F-31326 Castanet Tolosan, France; Laboratoire Commun NAUTILE (CNRS-UPS-INPT-ARKEMA France), laboratoires EcoLab/CIRIMAT/GRL CNRS, Institut Carnot CIRIMAT, F-31062 Toulouse, France
| |
Collapse
|
34
|
He X, Aker WG, Hwang HM. An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology 2014; 8 Suppl 1:185-95. [PMID: 24766231 DOI: 10.3109/17435390.2013.874050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of light on the acute toxicities of S-doped and Sigma TiO2 nanoparticles in zebrafish was studied. Metrics included mortality for both, and rheotaxis dysfunction and DNA damage for S-doped only. It was found that the acute toxicity of S-TiO2 nanoparticles was enhanced by simulated sunlight (SSL) irradiation (96-h LC50 of 116.56 ppm) and exceeded that of Sigma TiO2, which was essentially non-toxic. Behavioral disorder, in terms of rheotaxis, was significantly increased by treatment with S-TiO2 nanoparticles under SSL irradiation. In order to further understand its toxicity mechanism, we investigated hair cells in neuromasts of the posterior lateral line (PLL) using DASPEI staining. Significant hair cell damage was observed in the treated larvae. The Comet assay was employed to investigate the DNA damage, which might be responsible for the loss of hair cells. Production of the superoxide anion ([Formula: see text]), a major ROS generated by TiO2 nanoparticles, was assayed and used to postulate causative factors to account for these damages. Oxidative effects were most severe in the liver, heart, intestine, pancreatic duct, and pancreatic islet - results consistent with our earlier findings in the investigation of embryonic malformation. TEM micrographs, used to further investigate the fate of S-TiO2 nanoparticles at the cellular level, suggested receptor-mediated autophagy and vacuolization. Our findings validate the benefit of using the transparent zebrafish embryo as an in vivo model for evaluating photo-induced nanotoxicity. These results highlight the importance of conducting a systematic risk assessment in connection with the use of doped TiO2 nanoparticles in aquatic ecosystems.
Collapse
|
35
|
Harmful Impact of ZnS Nanoparticles on Daphnia sp. in the Western Part (Districts of Bankura and Purulia) of West Bengal, India. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/207239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ZnS nanoparticles of different sizes are synthesized employing a simple wet chemical method. These nanoparticles are used to study their impact on the Daphnia sp. through traditional toxicity tests. The percentage of mortality is found to increase initially with increasing nanoparticle concentration or exposure time and is finally found to saturate for higher concentrations or exposure times. Mortality is found to be higher for smaller particles. Hopping frequency and heart rate are also found to increase with increasing nanoparticle exposure time for a fixed nanoparticle concentration. These observations can be attributed to the enhanced surface photooxidation property of the ZnS nanoparticles. Thus the present study will help people to understand the hitherto unknown harmful impact of ZnS nanoparticles on aquatic organisms in the western part of West Bengal (Bankura and Purulia districts), India.
Collapse
|
36
|
Liu J, von der Kammer F, Zhang B, Legros S, Hofmann T. Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: assessing environmental behavior of functionalized gold nanoparticles on a continental scale. ENVIRONMENT INTERNATIONAL 2013; 59:53-62. [PMID: 23770771 DOI: 10.1016/j.envint.2013.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Many engineered nanoparticles (ENPs) are functionalized with different types of surface coatings to suit specific applications. The functionalization affects the fate and behavior of these ENPs in aquatic environments. In this study, gold nanoparticles (GNPs) coated with either citrate or 11-mercaptoundecanoic acid (MUA) are used as examples of functionalized ENPs. A method has been developed to assess the colloidal stability of functionalized ENPs under complex hydrochemical conditions, using their aggregation rates as indicators. The spatial distributions of stream-water chemistry data from across Europe were combined with the results of in-vitro colloidal stability testing. Aggregation rates were extracted for each stream-water sample and stability maps for Europe were plotted. The tendency of the tested GNPs to be dispersed or aggregated is described for water bodies of the respective region. Natural organic matter was identified as the predominant factor controlling the stability of the GNPs tested. The properties of surface coatings also affect aggregation rates as a result of differences in their hydrochemical parameters. The developed method can be used as a template for a stability assessment, and the results of this study provide a basis for exposure modeling and precautionary decision making.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14 A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
37
|
Miralles P, Church TL, Harris AT. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9224-39. [PMID: 22892035 DOI: 10.1021/es202995d] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.
Collapse
Affiliation(s)
- Pola Miralles
- Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
38
|
Montes MO, Hanna SK, Lenihan HS, Keller AA. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. JOURNAL OF HAZARDOUS MATERIALS 2012; 225-226:139-45. [PMID: 22614026 DOI: 10.1016/j.jhazmat.2012.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 05/16/2023]
Abstract
A growing body of evidence indicates that some engineered nanoparticles (ENPs) are toxic to organisms that perform important ecosystem services in terrestrial and aquatic ecosystems. However, toxicity can be influenced by the biotransformation of contaminants, including ENPs, as it may alter the fate and transport of these substances. In turn, fate and transport can influence their bioavailability. To understand how biotransformation influences the fate and transport of ENPs in marine ecosystems, we exposed suspension-feeding mussels, Mytilus galloprovincialis, to two common nano-metal oxides, CeO(2) and ZnO, over a range of concentrations from 1mg L(-1) to 10mg L(-1), in a laboratory experiment. Mussels exposed to 10mg L(-1) accumulated 62μg g(-1) of Ce and 880μg g(-1) of Zn on a dry tissue basis but rejected 21,000μg g(-1) for Ce and 63,000μg g(-1) for Zn in pseudofeces. Scanning electron microscope evidence indicates CeO(2) remained as ENPs but ZnO did not after being rejected by the mussels. Mussels filtered most of the CeO(2) from the aqueous media, while a significant fraction of Zn remained in solution. Differences in ENP solubility affect ENP uptake, excretion, and accumulation in mussels. Our study highlights the potential role of marine suspension feeders in biotransformation of ENPs.
Collapse
Affiliation(s)
- Milka O Montes
- University of California Center for Environmental Implications of Nanotechnology, Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
39
|
Taurozzi JS, Hackley VA, Wiesner MR. A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxicology 2012; 7:389-401. [DOI: 10.3109/17435390.2012.665506] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Bacchetta R, Santo N, Fascio U, Moschini E, Freddi S, Chirico G, Camatini M, Mantecca P. Nano-sized CuO, TiO₂ and ZnO affect Xenopus laevis development. Nanotoxicology 2011; 6:381-98. [PMID: 21574813 DOI: 10.3109/17435390.2011.579634] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The teratogenic potential of commercially available copper oxide (CuO), titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) was evaluated using the standardized FETAX test. After characterization of NP suspensions by TEM, DLS and AAS, histopathological screening and advanced confocal and energy-filtered electron microscopy techniques were used to characterize the induced lesions and to track NPs in tissues. Except for nCuO, which was found to be weakly embryolethal only at the highest concentration tested, the NPs did not cause mortality at concentrations up to 500 mg/L. However, they induced significant malformation rates, and the gut was observed to be the main target organ. CuO NPs exhibited the highest teratogenic potential, although no specific terata were observed. ZnO NPs caused the most severe lesions to the intestinal barrier, allowing NPs to reach the underlying tissues. TiO₂ NPs showed mild embryotoxicity, and it is possible that this substance could be associated with hidden biological effects. Ions from dissolved nCuO contributed greatly to the observed embryotoxic effects, but those from nZnO did not, suggesting that their mechanisms of action may be different.
Collapse
|