1
|
Anilkumar S A, Dutta S, Aboo S, Ismail A. Vitamin D as a modulator of molecular pathways involved in CVDs: Evidence from preclinical studies. Life Sci 2024; 357:123062. [PMID: 39288869 DOI: 10.1016/j.lfs.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Vitamin D deficiency (VDD) is a widespread global health issue, affecting nearly a billion individuals worldwide, and mounting evidence links it to an increased risk of cardiovascular diseases like hypertension, atherosclerosis, and heart failure. The discovery of vitamin D receptors and metabolizing enzymes in cardiac and vascular cells, coupled with experimental studies, underscores the complex relationship between vitamin D and cardiovascular health. This review aims to synthesize and critically evaluate the preclinical evidence elucidating the role of vitamin D in cardiovascular health. We examined diverse preclinical in vitro (cardiomyocyte cell line) models and in vivo models, including knockout mice, diet-induced deficiency, and disease-specific animal models (hypertension, hypertrophy and myocardial infarction). These studies reveal that vitamin D modulates vascular tone, and prevents fibrosis and hypertrophy through effects on major signal transduction pathways (NF-kB, Nrf2, PI3K/AKT/mTOR, Calcineurin/NFAT, TGF-β/Smad, AMPK) and influences epigenetic mechanisms governing inflammation, oxidative stress, and pathological remodeling. In vitro studies elucidate vitamin D's capacity to promote cardiomyocyte differentiation and inhibit pathological remodeling. In vivo studies further uncovered detrimental cardiac effects of VDD, while supplementation with vitamin D in cardiovascular disease (CVD) models demonstrated its protective effects by decreasing inflammation, attenuating hypertrophy, reduction in plaque formation, and improving cardiac function. Hence, this comprehensive review emphasizes the critical role of vitamin D in cardiovascular health and its potential as a preventive/therapeutic strategy in CVDs. However, further research is needed to translate these findings into clinical applications as there are discrepancies between preclinical and clinical studies.
Collapse
Affiliation(s)
- Athira Anilkumar S
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Soumam Dutta
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Shabna Aboo
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
2
|
Gao L, Wang H, Fang F, Liu J, Zhao C, Niu J, Wang Z, Zhong Y, Wang X. The roles of orphan nuclear receptor 4 group A1 and A2 in fibrosis. Int Immunopharmacol 2024; 139:112705. [PMID: 39029235 DOI: 10.1016/j.intimp.2024.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Fibrosis is not a disease but rather an outcome of the pathological tissue repair response. Many myofibroblasts are activated which lead to the excessive accumulation of extracellular matrix components such as collagen and fibronectin with fibrosis. A variety of organs, including kidney, liver, lung, heart and skin, can undergo fibrosis under the stimulation of exogenous or endogenous pathogenic factors. The orphan nuclear receptor 4 group A1 (NR4A1) and nuclear receptor 4 group A2(NR4A2)are belong to the nuclear receptor subfamily and inhibit the occurrence and development of fibrosis. NR4A1 is an inhibitory factor of TGF-β signaling transduction. Overexpression of NR4A1 in fibroblasts can reduce TGF-β induced collagen deposition and fibrosis related gene expression. Here, we summarize the current research progress on the NR4A1/2 and fibrosis, providing reference for the treatment of fibrosis.
Collapse
Affiliation(s)
- Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jieqi Niu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.
| |
Collapse
|
3
|
Shafi T, Rasool Wani R, Hussain S, Bhat IA, Makhdoomi R, Bashir SA, Hassan I, Shah ZA. Investigating dysregulation of TGF-β1/SMAD3 signaling in atopic dermatitis: a molecular and immunohistochemical analysis. Clin Exp Immunol 2024; 216:192-199. [PMID: 38066678 PMCID: PMC11036103 DOI: 10.1093/cei/uxad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/07/2023] [Accepted: 12/02/2023] [Indexed: 04/24/2024] Open
Abstract
Atopic dermatitis (AD) is a persistent and recurring inflammatory condition affecting the skin. An expanding corpus of evidence indicates the potential participation of transforming growth factor-β1 (TGF-β1) in the modulation of inflammation and tissue remodeling in AD. The primary objective of this study was to examine the aberrant modulation of TGF-β1/small mothers against decapentaplegic homolog 3 (SMAD3) signaling through a comprehensive analysis of their molecular and protein expression profiles. The study encompassed an aggregate of 37 participants, which included 25 AD patients and 12 controls. The assessment of mRNA and protein levels of TGF-β1 and SMAD3 was conducted utilizing quantitative real-time PCR and immunohistochemistry (IHC), whereas serum IgE and vitamin D levels were estimated by ELISA and chemiluminescence, respectively. Quantitative analysis demonstrated a 2.5-fold upregulation of TGF-β1 mRNA expression in the lesional AD skin (P < 0.0001). IHC also exhibited a comparable augmented pattern, characterized by moderate to strong staining intensities. In addition, TGF-β1 mRNA showed an association with vitamin D deficiency in serum (P < 0.02), and its protein expression was linked with the disease severity (P < 0.01) Furthermore, a significant decrease in the expression of the SMAD3 gene was observed in the affected skin (P = 0.0004). This finding was further confirmed by evaluating the protein expression and phosphorylation of SMAD3, both of which exhibited a decrease. These findings suggest that there is a dysregulation in the TGF-β1/SMAD3 signaling pathway in AD. Furthermore, the observed augmentation in mRNA and protein expression of TGF-β1, along with its correlation with the disease severity, holds considerable clinical significance and emphasizes its potential role in AD pathogenesis.
Collapse
Affiliation(s)
- Tabasum Shafi
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| | - Roohi Rasool Wani
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| | - Showkat Hussain
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| | - Imtiyaz A Bhat
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| | | | - Sheikh Adil Bashir
- Department of Plastic and Reconstructive Surgery, SKIMS, Srinagar, India-190011
| | - Iffat Hassan
- Department of Dermatology, Venereology, and Leprosy, GMC, Srinagar, India-190010
| | - Zafar A Shah
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| |
Collapse
|
4
|
Liang M, Dickel N, Györfi AH, SafakTümerdem B, Li YN, Rigau AR, Liang C, Hong X, Shen L, Matei AE, Trinh-Minh T, Tran-Manh C, Zhou X, Zehender A, Kreuter A, Zou H, Schett G, Kunz M, Distler JHW. Attenuation of fibroblast activation and fibrosis by adropin in systemic sclerosis. Sci Transl Med 2024; 16:eadd6570. [PMID: 38536934 DOI: 10.1126/scitranslmed.add6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Fibrotic diseases impose a major socioeconomic challenge on modern societies and have limited treatment options. Adropin, a peptide hormone encoded by the energy homeostasis-associated (ENHO) gene, is implicated in metabolism and vascular homeostasis, but its role in the pathogenesis of fibrosis remains enigmatic. Here, we used machine learning approaches in combination with functional in vitro and in vivo experiments to characterize adropin as a potential regulator involved in fibroblast activation and tissue fibrosis in systemic sclerosis (SSc). We demonstrated consistent down-regulation of adropin/ENHO in skin across multiple cohorts of patients with SSc. The prototypical profibrotic cytokine TGFβ reduced adropin/ENHO expression in a JNK-dependent manner. Restoration of adropin signaling by therapeutic application of bioactive adropin34-76 peptides in turn inhibited TGFβ-induced fibroblast activation and fibrotic tissue remodeling in primary human dermal fibroblasts, three-dimensional full-thickness skin equivalents, mouse models of bleomycin-induced pulmonary fibrosis and sclerodermatous chronic graft-versus-host-disease (sclGvHD), and precision-cut human skin slices. Knockdown of GPR19, an adropin receptor, abrogated the antifibrotic effects of adropin in fibroblasts. RNA-seq demonstrated that the antifibrotic effects of adropin34-76 were functionally linked to deactivation of GLI1-dependent profibrotic transcriptional networks, which was experimentally confirmed in vitro, in vivo, and ex vivo using cultured human dermal fibroblasts, a sclGvHD mouse model, and precision-cut human skin slices. ChIP-seq confirmed adropin34-76-induced changes in TGFβ/GLI1 signaling. Our study characterizes the TGFβ-induced down-regulation of adropin/ENHO expression as a potential pathomechanism of SSc as a prototypical systemic fibrotic disease that unleashes uncontrolled activation of profibrotic GLI1 signaling.
Collapse
Affiliation(s)
- Minrui Liang
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Division of Rheumatology, Huashan Rare Disease Center, Huashan Hospital, Fudan University, 200032 Shanghai, P. R. China
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Nicholas Dickel
- Chair of Medical Informatics, Friedrich-Alexander University (FAU), Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Bilgesu SafakTümerdem
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Yi-Nan Li
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Aleix Rius Rigau
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Chunguang Liang
- Chair of Medical Informatics, Friedrich-Alexander University (FAU), Erlangen-Nürnberg, 91058 Erlangen, Germany
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Xuezhi Hong
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Lichong Shen
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
- Division of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, 200001 Shanghai, P. R. China
| | - Alexandru-Emil Matei
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Cuong Tran-Manh
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Xiang Zhou
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ariella Zehender
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Alexander Kreuter
- Department of Dermatology and Allergology, HELIOS Sankt Elisabeth Klinik Oberhausen, 46045 Oberhausen, Nordrhein-Westfalen, Germany
| | - Hejian Zou
- Division of Rheumatology, Huashan Rare Disease Center, Huashan Hospital, Fudan University, 200032 Shanghai, P. R. China
| | - Georg Schett
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University (FAU), Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University; 40225 Düsseldorf, Germany
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Voisin T, Joannes A, Morzadec C, Lagadic-Gossmann D, Naoures CL, De Latour BR, Rouze S, Jouneau S, Vernhet L. Antifibrotic effects of vitamin D3 on human lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. J Nutr Biochem 2024; 125:109558. [PMID: 38185349 DOI: 10.1016/j.jnutbio.2023.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Up to now, no treatment can stop the progression of IPF. Vitamin D3 (VD) reduces experimental lung fibrosis in murine models and depletion of vitamin D3 might be associated with the reduced survival of patients with IPF. In this context, we determined if VD can prevent the pro-fibrotic functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and control HLFs were derived from surgical lung biopsies collected from patients with IPF or with primary lung cancer, respectively. VD (3-100 nM) markedly reduced the basal and PDGF-induced proliferation of HLFs. VD also altered cell cycle by increasing the percentage of IPF HLFs arrested in the G0/G1 phase, and by downregulating the expression of various cell cycle regulatory proteins. In addition, VD barely prevented the TGF-β1-induced differentiation in HLFs. At 100 nM, VD slightly reduced the expression of the pro-fibrotic marker α-smooth muscle actin, and had no effect on fibronectin and collagen-1 expression. In contrast, 100 nM VD strongly inhibited the aerobic glycolytic metabolism induced by TGF- β1. Finally, VD reduced both the secretion of lactate, the levels of lactate deshydrogenase mRNA and the activity of intracellular LDH in IPF HLFs. In conclusion, our study shows that VD reduced pro-fibrotic functions of HLFs. These findings suggest that it might be interesting to assess the potential clinical benefits of vitamin D supplementation in patients with IPF, especially on lung function decline.
Collapse
Affiliation(s)
- Tom Voisin
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Audrey Joannes
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Cécile Le Naoures
- Department of pathology and cytology, Rennes University Hospital, France
| | | | - Simon Rouze
- Department of Thoracic, cardiac and vascular surgery, Rennes University Hospital, France
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France; Department of Respiratory Diseases, Competence Center for Rare Pulmonary Diseases, Rennes University Hospital, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France.
| |
Collapse
|
6
|
Wynsberghe JV, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Hahn JM, Combs KA, Powell HM, Supp DM. A role for vitamin D and the vitamin D receptor in keloid disorder. Wound Repair Regen 2023; 31:563-575. [PMID: 37458255 DOI: 10.1111/wrr.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Keloids are disfiguring fibroproliferative lesions that can occur in susceptible individuals following any skin injury. They are extremely challenging to treat, with relatively low response rates to current therapies and high rates of recurrence after treatment. Although several distinct genetic loci have been associated with keloid formation in different populations, there has been no single causative gene yet identified and the molecular mechanisms guiding keloid development are incompletely understood. Further, although it is well known that keloids are more commonly observed in populations with dark skin pigmentation, the basis for increased keloid risk in skin of colour is not yet known. Because individuals with dark skin pigmentation are at higher risk for vitamin D deficiency, the role of vitamin D in keloid pathology has gained interest in the keloid research community. A limited number of studies have found lower serum vitamin D levels in patients with keloids, and reduced expression of the vitamin D receptor (VDR) in keloid lesions compared with uninjured skin. Vitamin D has documented anti-inflammatory, anti-proliferative and pro-differentiation activities, suggesting it may have a therapeutic role in suppression of keloid fibrosis. Here we review the evidence supporting a role for vitamin D and VDR in keloid pathology.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly A Combs
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Heather M Powell
- Departments of Materials Science and Engineering and Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Koç Yıldırım S, Najafova T, Ersoy Evans S, Lay İ, Karaduman A. Serum vitamin D levels and vitamin D receptor gene ApaI and TaqI polymorphisms in patients with morphea: a case-control study. Arch Dermatol Res 2023; 315:2119-2127. [PMID: 36964246 DOI: 10.1007/s00403-023-02612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
A uncommon inflammatory condition called morphea causes fibrosis in the skin and subcutaneous tissue. The key stages in the pathophysiology are vascular damage, immunological response, and fibrosis. Numerous research have examined the relationships between the immune system, fibrosis, and vitamin D, but the exact pathogenetic pathways of morphea remain poorly understood. The purpose of this study was to investigate serum 25(OH)D levels and the ApaI (rs7975232) and TaqI (rs731236) polymorphisms of the vitamin D receptor (VDR) in morphea patients. There were 48 age- and sex-matched controls and 41 morphea patients total. VDR polymorphisms were found using PCR tests and gel electrophoresis, and serum 25(OH)D levels were determined using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The patient group consisted of 37 females (90.2%) and 4 males (9.8%). The patients' mean age was 38.68 ± 17.54 years. In terms of VDR ApaI and TaqI polymorphisms, there was no discernible difference between the patient and control groups. TaqI polymorphism heterozygosity was discovered in all patients with progressive disease, and this finding was statistically significant (p = 0.012). Patients' mean serum 25(OH)D levels were 16.98 ± 11.55 ng/mL, while those in the control group were 18.02 ± 14.30 ng/mL. VDR polymorphisms, vitamin D levels, disease subtype, age of onset, and responsiveness to treatment did not significantly correlate. In our research, we discovered that TaqI polymorphism may be related to the severity of the disease and that the polymorphisms of the VDR ApaI and TaqI were not associated with morphea susceptibility.
Collapse
Affiliation(s)
- Sema Koç Yıldırım
- Department of Dermatology and Venereology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
- Department of Dermatology and Venereology, Uşak University Faculty of Medicine, Uşak, Turkey.
| | - Tahmina Najafova
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sibel Ersoy Evans
- Department of Dermatology and Venereology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İncilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ayşen Karaduman
- Department of Dermatology and Venereology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Srikuea R, Hirunsai M. TGF-β1 stimulation and VDR-dependent activation modulate calcitriol action on skeletal muscle fibroblasts and Smad signalling-associated fibrogenesis. Sci Rep 2023; 13:13811. [PMID: 37612333 PMCID: PMC10447566 DOI: 10.1038/s41598-023-40978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Fibroblasts play a pivotal role in fibrogenesis after skeletal muscle injury. Excess fibrous formation can disrupt contractile functions and delay functional recovery. Although vitamin D receptor (VDR) is expressed explicitly in regenerating muscle compared with uninjured muscle, how calcitriol [1α,25(OH)2D3] directly regulates skeletal muscle primary fibroblast proliferation, the transition to myofibroblasts, and Smad signalling-associated fibrogenesis is currently unknown. Herein, the effects of calcitriol on cultured skeletal muscle primary fibroblasts of male C57BL/6 mice (aged 1 month old) were investigated. The percentage of BrdU+ nuclei in primary fibroblasts was significantly decreased after calcitriol treatment; however, the antiproliferative effect of calcitriol was diminished after TGF-β1 stimulation to induce fibroblast to myofibroblast transition. This suppressive effect was associated with significantly decreased VDR expression in TGF-β1-treated cells. In addition, Vdr siRNA transfection abolished the effects of calcitriol on the suppression of α-SMA expression and Smad2/3 signalling in myofibroblasts, supporting that its antifibrogenic effect requires VDR activation. Compared with calcitriol, the antifibrotic agent suramin could inhibit fibroblast/myofibroblast proliferation and suppress the expression of TCF-4, which regulates fibrogenic determination. Collectively, these findings suggest that profibrotic stimulation and VDR-dependent activation could modulate the effects of calcitriol on skeletal muscle fibroblast proliferation and fibrogenesis processes. Therefore, TGF-β1 and VDR expression levels are crucial determinants for the antifibrogenic effect of calcitriol on skeletal muscle after injury.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok, 26120, Thailand
| |
Collapse
|
10
|
Wei J, Zhan J, Ji H, Xu Y, Xu Q, Zhu X, Liu Y. Fibroblast Upregulation of Vitamin D Receptor Represents a Self-Protective Response to Limit Fibroblast Proliferation and Activation during Pulmonary Fibrosis. Antioxidants (Basel) 2023; 12:1634. [PMID: 37627629 PMCID: PMC10451996 DOI: 10.3390/antiox12081634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Dysregulation of vitamin D receptor (VDR) is implicated in chronic obstructive pulmonary disease. However, whether VDR dysregulation contributes to the development of pulmonary fibrosis remains largely unknown. Analysis of bulk and single-cell RNA profiling datasets revealed VDR upregulation in lung fibroblasts from patients with pulmonary fibrosis or fibrotic mice, which was validated in lung fibroblasts from bleomycin-exposed mice and bleomycin-treated fibroblasts. Stable VDR knockdown promoted, whereas the VDR agonist paricalcitol suppressed lung fibroblast proliferation and activation. Gene set enrichment analysis (GSEA) showed that the JAK/STAT pathway and unfolded protein response (UPR), a process related to endoplasmic reticulum (ER) stress, were enriched in lung fibroblasts of fibrotic lungs. Stable VDR knockdown stimulated, but paricalcitol suppressed ER stress and JAK1/STAT3 activation in lung fibroblasts. The STAT3 inhibitor blocked bleomycin- or stable VDR knockdown-induced ER stress. Paricalcitol inhibited the bleomycin-induced enrichment of STAT3 to the ATF6 promoter, thereby suppressing ATF6 expression in fibroblasts. Paricalcitol or intrapulmonary VDR overexpression inactivated JAK1/STAT3 and suppressed ER stress in bleomycin-treated mice, thus resulting in the inhibition of fibroblast proliferation and activation. Collectively, this study suggests that fibroblast VDR upregulation may be a self-protective response to limit fibroblast proliferation and activation during pulmonary fibrosis by suppressing the JAK1/STAT3/ER stress pathway.
Collapse
Affiliation(s)
- Juan Wei
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Junhui Zhan
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Hui Ji
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Yitong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Qingfeng Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Yujian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| |
Collapse
|
11
|
Campione E, Di Prete M, Costanza G, Saggini A, Agostinelli S, Terrinoni A, Centofanti F, Rapanotti MC, Bianchi L, Ferlosio A, Scioli MG, Orlandi A. Increased Occurrence of Cutaneous Leiomyomas and Dermatofibromas in Patients with Uterine Leiomyomas without Fumarate Hydratase Gene Mutations. Dermatopathology (Basel) 2023; 10:231-243. [PMID: 37606484 PMCID: PMC10443243 DOI: 10.3390/dermatopathology10030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Leiomyomas are smooth muscle-derived benign neoplasms that can affect all organs, most frequently in the uterus. Fumarate hydratase gene (FH) mutation is characterised by an autosomal dominant disease with increased occurrence of renal tumours, but also by cutaneous (CLs) and uterine leiomyomas (ULs). So far, an increased occurrence of skin tumours in non-mutated patients with ULs has not been verified. To this aim, a case-group of women who were FH non-mutated patients surgically treated for ULs (n = 34) was compared with a control-group (n = 37) of consecutive age-matched healthy women. The occurrence of skin neoplasms, including CLs and dermatofibromas (DFs), was evaluated. Moreover, the microscopic features of FH non-mutated skin tumours were compared with those of an age-matched population group (n = 70) who presented, in their clinical history, only one type of skin tumour and no ULs. Immunohistochemical and in vitro studies analysed TGFβ and vitamin D receptor expression. FH non-mutated patients with ULs displayed a higher occurrence of CLs and DFs (p < 0.03 and p < 0.001), but not of other types of skin tumours. Immunohistochemistry revealed a lower vitamin D receptor (VDR) expression in CLs and DFs from the ULs group compared with those from the population group (p < 0.01), but a similar distribution of TGFβ-receptors and SMAD3. In vitro studies documented that TGFβ-1 treatment and vitamin D3 have opposite effects on α-SMA, TGFβR2 and VDR expression on dermal fibroblast and leiomyoma cell cultures. This unreported increased occurrence of CLs and DFs in FH non-mutated patients with symptomatic ULs with vitamin D deficiency suggests a potential pathogenetic role of vitamin D bioavailability also for CLs and DFs.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.C.); (L.B.)
| | - Monia Di Prete
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
| | - Gaetana Costanza
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
| | - Andrea Saggini
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
| | - Sara Agostinelli
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Federica Centofanti
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
| | - Maria Cristina Rapanotti
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.C.); (L.B.)
| | - Amedeo Ferlosio
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
| | - Maria Giovanna Scioli
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
| | - Augusto Orlandi
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.P.); (G.C.); (A.S.); (S.A.); (F.C.); (M.C.R.); (A.F.); (M.G.S.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| |
Collapse
|
12
|
Rega S, Farina F, Bouhuis S, de Donato S, Chiesa M, Poggio P, Cavallotti L, Bonalumi G, Giambuzzi I, Pompilio G, Perrucci GL. Multi-omics in thoracic aortic aneurysm: the complex road to the simplification. Cell Biosci 2023; 13:131. [PMID: 37475058 DOI: 10.1186/s13578-023-01080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious condition that affects the aorta, characterized by the dilation of its first segment. The causes of TAA (e.g., age, hypertension, genetic syndromes) are heterogeneous and contribute to the weakening of the aortic wall. This complexity makes treating this life-threatening aortopathy challenging, as there are currently no etiological therapy available, and pharmacological strategies, aimed at avoiding surgical aortic replacement, are merely palliative. Recent studies on novel therapies for TAA have focused on identifying biological targets and etiological mechanisms of the disease by using advanced -omics techniques, including epigenomics, transcriptomics, proteomics, and metabolomics approaches. METHODS This review presents the latest findings from -omics approaches and underscores the importance of integrating multi-omics data to gain more comprehensive understanding of TAA. RESULTS Literature suggests that the alterations in TAA mediators frequently involve members of pro-fibrotic process (i.e., TGF-β signaling pathways) or proteins associated with cell/extracellular structures (e.g., aggrecans). Further analyses often reported the importance in TAA of processes as inflammation (PCR, CD3, leukotriene compounds), oxidative stress (chromatin OXPHOS, fatty acids), mitochondrial respiration and glycolysis/gluconeogenesis (e.g., PPARs and HIF1a). Of note, more recent metabolomics studies added novel molecular markers to the list of TAA-specific detrimental mediators (proteoglycans). CONCLUSION It is increasingly clear that integrating data from different -omics branches, along with clinical data, is essential as well as complicated both to reveal hidden relevant information and to address complex diseases such as TAA. Importantly, recent progresses in metabolomics highlighted novel potential and unprecedented marks in TAA diagnosis and therapy.
Collapse
Affiliation(s)
- Sara Rega
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Floriana Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Bouhuis
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Silvia de Donato
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico Di Milano, Milan, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giorgia Bonalumi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ilaria Giambuzzi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
13
|
Xing K, Wu Y, Gao F, Dai Y, Guan C, Tong Y, Gao Y, Wang C, Zhang C. Design, synthesis and anti-hepatic fibrosis activity of novel diphenyl vitamin D receptor agonists. Eur J Med Chem 2023; 258:115596. [PMID: 37406383 DOI: 10.1016/j.ejmech.2023.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Hepatic fibrosis poses a significant threat to human health due to excessive extracellular matrix (ECM) deposition leading to liver function damage. Ligand-activated vitamin D receptor (VDR) has been identified as an effective target for hepatic fibrosis, reducing ECM by inhibiting hepatic stellate cell (HSC) activation. Here, a series of novel diphenyl VDR agonists have been rationally designed and synthesized. Among these, compounds 15b, 16i, and 28m showed better transcriptional activity compared to sw-22, which was previously reported to be a potent non-secosteroidal VDR modulator. Moreover, these compounds exhibited outstanding efficacy to inhibit collagen deposition in vitro. In models of CCl4-induced and bile duct ligation-induced hepatic fibrosis, compound 16i showed the most significant therapeutic effect by ultrasound imaging and histological examination. Moreover, 16i was able to repair liver tissue by reducing the expression levels of fibrosis genes and serum liver function indexes without causing hypercalcemia in mice. In conclusion, compound 16i is a potent VDR agonist with significant anti-hepatic fibrosis action both in vitro and in vivo.
Collapse
Affiliation(s)
- Kai Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yupeng Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chun Guan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yu Tong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yi Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Cong Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
14
|
Athanassiou L, Kostoglou-Athanassiou I, Koutsilieris M, Shoenfeld Y. Vitamin D and Autoimmune Rheumatic Diseases. Biomolecules 2023; 13:709. [PMID: 37189455 PMCID: PMC10135889 DOI: 10.3390/biom13040709] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Vitamin D is a steroid hormone with potent immune-modulating properties. It has been shown to stimulate innate immunity and induce immune tolerance. Extensive research efforts have shown that vitamin D deficiency may be related to the development of autoimmune diseases. Vitamin D deficiency has been observed in patients with rheumatoid arthritis (RA) and has been shown to be inversely related to disease activity. Moreover, vitamin D deficiency may be implicated in the pathogenesis of the disease. Vitamin D deficiency has also been observed in patients with systemic lupus erythematosus (SLE). It has been found to be inversely related to disease activity and renal involvement. In addition, vitamin D receptor polymorphisms have been studied in SLE. Vitamin D levels have been studied in patients with Sjogren's syndrome, and vitamin D deficiency may be related to neuropathy and the development of lymphoma in the context of Sjogren's syndrome. Vitamin D deficiency has been observed in ankylosing spondylitis, psoriatic arthritis (PsA), and idiopathic inflammatory myopathies. Vitamin D deficiency has also been observed in systemic sclerosis. Vitamin D deficiency may be implicated in the pathogenesis of autoimmunity, and it may be administered to prevent autoimmune disease and reduce pain in the context of autoimmune rheumatic disorders.
Collapse
Affiliation(s)
- Lambros Athanassiou
- Department of Rheumatology, Asclepeion Hospital, Voula, GR16673 Athens, Greece
- Department of Physiology, Medical School, University of Athens, GR11527 Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, University of Athens, GR11527 Athens, Greece
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Shafi T, Rasool R, Ayub S, Bhat IA, Shah IH, Hussain S, Shah ZA, Baba SM, Makhdoomi R, Bashir SA. Unveiling the TGF- β1 paradox: Significant implication of TGF- β1 promoter variants and its mRNA and protein expression in atopic dermatitis. Mol Immunol 2023; 157:214-224. [PMID: 37084506 DOI: 10.1016/j.molimm.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Atopic Dermatitis (AD) is a chronic inflammatory skin disorder with evidence of lichenification in later stages. There is mounting evidence supporting the role of TGF- β1 in mediating inflammation as well as subsequent tissue remodeling, often resulting in fibrosis. Given the role of genetic variants in the differential expression of TGF-β1 in various diseases, this study seeks to ascertain the role of TGF-β1 promoter variants (rs1800469 and rs1800468) in AD susceptibility, as well as their association with TGF- β1 mRNA expression, TGF- β1 serum levels and skin prick test positivity in Atopic Dermatitis patients. METHODS An aggregate of 246 subjects including 134 AD cases and 112 matched healthy controls were genotyped for TGF-β1 promoter polymorphisms by PCR-RFLP. TGF- β1 mRNA was quantified by quantitative Real-Time PCR (qRT-PCR), Vitamin-D levels by chemiluminescence, and serum TGF- β1, and total IgE levels were determined by ELISA. In-vivo allergy testing was performed for the evaluation of allergic reactions to house dust mites and food allergens. RESULTS A higher frequency of TT genotypes of rs1800469 (OR = 7.7, p = 0.0001) and GA+AA genotypes of rs1800468 (OR-4.4, p < 0.0001) were observed in AD cases than those in controls. Haplotype analysis demonstrated that TG haplotype carriers had an increased risk of AD (p = 0.013). Quantitative analysis revealed a significant upregulation of both mRNA (p = 0.0002) and serum levels (p < 0.0001) of TGF- β1 with a substantial positive correlation between them (Correlation coefficient=0.504; p = 0.01). Moreover, serum TGF-β1 levels were associated with quality of life (p = 0.03), the severity of the disease (p = 0.03), and House dust mite allergy (p = 0.01) whereas TGF-β1 mRNA levels positively correlated with disease severity(p = 0.02). Stratification analysis revealed that the TT genotype of rs1800469 was associated with higher IgE levels (p = 0.01) and eosinophil percentage(p = 0.007) whereas the AA genotype of rs1800468 correlated with elevated serum IgE levels (p = 0.01). Besides, no significant association of genotypes with mRNA and serum expression of TGF-β1 was observed. CONCLUSION Our study indicates that TGF-β1 promoter SNPs bear a significant risk of AD development. Moreover, upregulation of TGF-β1 mRNA and serum levels and their association with disease severity, quality of life, and HDM allergy suggests its role as a diagnostic/prognostic biomarker that could help in the development of new therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Tabasum Shafi
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Roohi Rasool
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India.
| | - Sakeena Ayub
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Imtiyaz A Bhat
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Iffat Hassan Shah
- Department of Dermatology, Venereology, and Leprosy, GMC- Srinagar 190010, India
| | - Showkat Hussain
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Zafar A Shah
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Shahid M Baba
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | | | - Sheikh Adil Bashir
- Department of Plastic and Reconstructive Surgery, SKIMS, Srinagar 190011, India
| |
Collapse
|
16
|
Distler JHW, Riemekasten G, Denton CP. The Exciting Future for Scleroderma. Rheum Dis Clin North Am 2023; 49:445-462. [PMID: 37028846 DOI: 10.1016/j.rdc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Emerging evidence shows that a complex interplay between cells and mediators and extracellular matrix factors may underlie the development and persistence of fibrosis in systemic sclerosis. Similar processes may determine vasculopathy. This article reviews recent progress in understanding how fibrosis becomes profibrotic and how the immune system, vascular, and mesenchymal compartment affect disease development. Early phase trials are informing about pathogenic mechanisms in vivo and reverse translation for observational and randomized trials is allowing hypotheses to be developed and tested. In addition to repurposing already available drugs, these studies are paving the way for the next generation of targeted therapeutics.
Collapse
Affiliation(s)
- Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Christopher P Denton
- Division of Medicine, Department of Inflammation, Centre for Rheumatology, University College London, London, UK.
| |
Collapse
|
17
|
Ciurea A, Rednic NV, Soancă A, Micu IC, Stanomir A, Oneț D, Șurlin P, Filipescu I, Roman A, Stratul ȘI, Pamfil C. Current Perspectives on Periodontitis in Systemic Sclerosis: Associative Relationships, Pathogenic Links, and Best Practices. Diagnostics (Basel) 2023; 13:diagnostics13050841. [PMID: 36899985 PMCID: PMC10000920 DOI: 10.3390/diagnostics13050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Systemic sclerosis is a chronic, autoimmune, multisystemic disease characterized by aberrant extracellular matrix protein deposition and extreme progressive microvasculopathy. These processes lead to damage within the skin, lungs, or gastrointestinal tract, but also to facial changes with physiognomic and functional alterations, and dental and periodontal lesions. Orofacial manifestations are common in SSc but are frequently overshadowed by systemic complications. In clinical practice, oral manifestations of SSc are suboptimally addressed, while their management is not included in the general treatment recommendations. Periodontitis is associated with autoimmune-mediated systemic diseases, including systemic sclerosis. In periodontitis, the microbial subgingival biofilm induces host-mediated inflammation with subsequent tissue damage, periodontal attachment, and bone loss. When these diseases coexist, patients experience additive damage, increasing malnutrition, and morbidity. The present review discusses the links between SSc and periodontitis, and provides a clinical guide for preventive and therapeutical approaches in the management of these patients.
Collapse
Affiliation(s)
- Andreea Ciurea
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Nicolae Voicu Rednic
- Department of Gastroenterology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor St., No. 19, 400394 Cluj-Napoca, Romania
| | - Andrada Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Iulia Cristina Micu
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Alina Stanomir
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Diana Oneț
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Petra Șurlin
- Department of Periodontology, University of Medicine and Pharmacy Craiova, Petru Rareș St., No. 2, 200349 Craiova, Romania
| | - Ileana Filipescu
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor St., No. 2, 400000 Cluj-Napoca, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-722-627-488
| | - Ștefan Ioan Stratul
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, Victor Babeș University of Medicine and Pharmacy Timișoara, Revoluției from 1989 St., No. 9, 300041 Timișoara, Romania
| | - Cristina Pamfil
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor St., No. 2, 400000 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Jiao S, Reinach PS, Huang C, Yu L, Zhuang H, Ran H, Zhao F, Srinivasalu N, Qu J, Zhou X. Calcipotriol Attenuates Form Deprivation Myopia Through a Signaling Pathway Parallel to TGF-β2-Induced Increases in Collagen Expression. Invest Ophthalmol Vis Sci 2023; 64:2. [PMID: 36723926 PMCID: PMC9904334 DOI: 10.1167/iovs.64.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose To determine the role of calcipotriol, a vitamin D3 analogue, in myopia development and altering the expression of scleral α1 chain of type I collagen (Col1α1) in mice. We also aimed to identify if the signaling pathway mediating the above changes is different from the one involved in transforming growth factor β2 (TGF-β2)-mediated increases of COL1A1 in cultured human scleral fibroblasts (HSFs). Methods C57BL/6J mice were either intraperitoneally injected with calcipotriol and subjected to form deprivation (FD) or exposed to normal refractive development for 4 weeks. Scleral vitamin D receptor (Vdr) expression was knocked down using a Sub-Tenon's capsule injection of an adeno-associated virus-packaged short hairpin RNA (AAV8-shRNA). Refraction and biometric measurements evaluated myopia development. A combination of knockdown and induction strategies determined the relative contributions of the vitamin D3 and the TGF-β2 signaling pathways in modulating COL1A1 expression in HSFs. Results Calcipotriol injections suppressed FD-induced myopia (FDM), but it had no significant effect on normal refractive development. AAV8-shRNA injection reduced Vdr mRNA expression by 42% and shifted the refraction toward myopia (-3.15 ± 0.99D, means ± SEM) in normal eyes. In HSFs, VDR knockdown reduced calcipotriol-induced rises in COL1A1 expression, but it did not alter TGF-β2-induced increases in COL1A1 expression. Additionally, TGF-β2 augmented calcipotriol-induced rises in COL1A1 expression. TGF-β receptor (TGFBRI/II) knockdown blunted TGF-β2-induced increases in COL1A1 expression, whereas calcipotriol-induced increases in VDR and COL1A1 expression levels were unaltered. Conclusions Scleral vitamin D3 inhibits myopia development in mice, potentially by activating a VDR-dependent signaling pathway and increasing scleral COL1A1 expression levels.
Collapse
Affiliation(s)
- Shiming Jiao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peter Sol Reinach
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengjie Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lan Yu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiman Zhuang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongli Ran
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, Zhejiang, China,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Nethrajeith Srinivasalu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, Zhejiang, China,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Perazzi M, Gallina E, Manfredi GF, Patrucco F, Acquaviva A, Colangelo D, Pirisi M, Bellan M. Vitamin D in Systemic Sclerosis: A Review. Nutrients 2022; 14:nu14193908. [PMID: 36235561 PMCID: PMC9573213 DOI: 10.3390/nu14193908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: In the present paper we aimed to review the evidence about the potential implication of vitamin D in the pathogenesis and management of systemic sclerosis (SSc); (2) Methods: we performed a review of the literature looking for studies evaluating the potential role of vitamin D and its analogs in SSc. We searched the PubMed, Medline, Embase, and Cochrane libraries using the following strings: (vitamin D OR cholecalciferol) AND (systemic sclerosis OR scleroderma). We included cohort studies, case-control studies, randomized controlled trials, and observational studies. (3) Results: we identified nine pre-clinical and 21 clinical studies. Pre-clinical data suggest that vitamin D and its analogs may suppress fibrogenesis. Clinical data are concordant in reporting a high prevalence of hypovitaminosis D and osteoporosis in SSc patients; data about the association with clinical manifestations and phenotypes of SSc are, conversely, far less consistent; (4) Conclusions: in vitro data suggest that vitamin D may play an antifibrotic role in SSc, but clinical data confirming this finding are currently lacking. Hypovitaminosis D is common among SSc patients and should be treated to reduce the risk of osteoporosis.
Collapse
Affiliation(s)
- Mattia Perazzi
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, Italy
- Department of Internal Medicine, Rheumatology Unit, “AOU Maggiore della Carità”, 28100 Novara, Italy
| | - Enrico Gallina
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, Italy
- Department of Internal Medicine, Rheumatology Unit, “AOU Maggiore della Carità”, 28100 Novara, Italy
| | - Giulia Francesca Manfredi
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, Italy
- Department of Internal Medicine, Rheumatology Unit, “AOU Maggiore della Carità”, 28100 Novara, Italy
| | - Filippo Patrucco
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, Italy
- Department of Internal Medicine, Rheumatology Unit, “AOU Maggiore della Carità”, 28100 Novara, Italy
| | - Antonio Acquaviva
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, Italy
- Department of Internal Medicine, Rheumatology Unit, “AOU Maggiore della Carità”, 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences (DSS), Università del Piemonte Orientale UPO, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, Italy
- Department of Internal Medicine, Rheumatology Unit, “AOU Maggiore della Carità”, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale UPO, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, Italy
- Department of Internal Medicine, Rheumatology Unit, “AOU Maggiore della Carità”, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale UPO, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-3737512
| |
Collapse
|
20
|
An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int J Mol Sci 2022; 23:ijms23179784. [PMID: 36077185 PMCID: PMC9456003 DOI: 10.3390/ijms23179784] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/16/2022] Open
Abstract
Vitamin D intervenes in calcium and phosphate metabolism and bone homeostasis. Experimental studies have shown that 1,25-dihydroxyvitamin D (calcitriol) generates immunologic activities on the innate and adaptive immune system and endothelial membrane stability. Low levels of serum 25-hydroxyvitamin D (25(OH)D) are associated with an increased risk of developing immune-related diseases such as psoriasis, type 1 diabetes, multiple sclerosis, and autoimmune diseases. Various clinical trials describe the efficacy of supplementation of vitamin D and its metabolites for treating these diseases that result in variable outcomes. Different disease outcomes are observed in treatment with vitamin D as high inter-individual difference is present with complex gene expression in human peripheral blood mononuclear cells. However, it is still not fully known what level of serum 25(OH)D is needed. The current recommendation is to increase vitamin D intake and have enough sunlight exposure to have serum 25(OH)D at a level of 30 ng/mL (75 nmol/L) and better at 40–60 ng/mL (100–150 nmol/L) to obtain the optimal health benefits of vitamin D.
Collapse
|
21
|
Riemekasten G, Distler JH. A broad look into the future of systemic sclerosis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221109404. [PMID: 35966183 PMCID: PMC9373175 DOI: 10.1177/1759720x221109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease with the key features of inflammation, vasculopathy and fibrosis. This article focussed on emerging fields based on the authors' current work and expertise. The authors provide a hierarchical structure into the studies of the pathogenesis of SSc starting with the contribution of environmental factors. Regulatory autoantibodies (abs) are discussed, which are parts of the human physiology and are specifically dysregulated in SSc. Abs against the angiotensin II receptor subtype 1 (AT1R) and the endothelin receptor type A (ETAR) are discussed in more detail. Extracellular vesicles are another novel player to possess disease processes. Fibroblasts are a key effector cell in SSc. Therefore, the current review will provide an overview about their plasticity in the phenotype and function. Promising nuclear receptors as key regulators of transcriptional programmes will be introduced as well as epigenetic modifications, which are pivotal to maintain the profibrotic fibroblast phenotype independent of external stimuli. Fibroblasts from SSc patients exhibit a specific signalling and reactivate developmental pathways and stem cell maintenance such as by employing hedgehog and WNT, which promote fibroblast-to-myofibroblast transition and extracellular matrix generation. Pharmacological interventions, although for other indications, are already in clinical use to address pathologic signalling.
Collapse
Affiliation(s)
- Gabriela Riemekasten
- Clinic for Rheumatology and Clinical
Immunology, University Clinic Schleswig-Holstein and University
of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jörg H.W. Distler
- Department of Internal Medicine 3,
Universitätsklinikum Erlangen, Friedrich-Alexander-University
(FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Morelli-Batters A, Lamont HC, Elghobashy M, Masood I, Hill LJ. The role of Vitamin D3 in ocular fibrosis and its therapeutic potential for the glaucomatous trabecular meshwork. FRONTIERS IN OPHTHALMOLOGY 2022; 2:897118. [PMID: 38983544 PMCID: PMC11182265 DOI: 10.3389/fopht.2022.897118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/04/2022] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The most prevalent subtype, Primary Open Angle Glaucoma (POAG), is characterized by increased intraocular pressure (IOP), damage to the optic nerve head and irreversible visual loss. IOP increases aqueous humor (AqH) outflow is reduced through the trabecular meshwork (TM) and Schlemm's canal (SC). Increased outflow resistance is partly due to TM/SC dysregulation, including loss of normal trabecular meshwork cell (TMC) function, following increased levels of oxidative stress within TMC, dysregulated extracellular matrix (ECM) deposition and remodeling alongside alterations in TMC phenotype and apoptosis. Current widely available POAG treatments do not target the aberrant expression of ECM in the TM directly. As a result, most drug treatments can fail as the underlying pathological process continues unabated. Rho-kinase inhibitors have demonstrated the benefit of restoring TM/SC function, however there is a clear need to develop further treatment strategies that can target the underlying cellular processes which become dysregulated within the TMC during POAG pathogenesis. Vitamin D is suggested to be beneficial in alleviating the symptoms of fibrosis and inflammation in soft tissues. It has important functions in many major organ systems, including regulation of calcium, phosphate and parathyroid hormone. Evidence suggests that Vitamin D3 modulates ECM turnover through the conventional TGFβ-SMAD signaling, which is associated with the development of POAG. The link between Vitamin D3, inflammation and fibrosis within ocular tissues will be discussed and the potential roles of Vitamin D3 in the management of POAG patients will be explored within this review.
Collapse
Affiliation(s)
- Alexander Morelli-Batters
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah C Lamont
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Birmingham, United Kingdom
| | - Mirna Elghobashy
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Liang M, Matteson EL, Abril A, Distler JH. The role of antifibrotics in the treatment of rheumatoid arthritis-associated interstitial lung disease. Ther Adv Musculoskelet Dis 2022; 14:1759720X221074457. [PMID: 35186127 PMCID: PMC8852164 DOI: 10.1177/1759720x221074457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022] Open
Abstract
The major pulmonary complication of rheumatoid arthritis (RA) is interstitial lung disease (ILD), which causes significant morbidity and mortality and influences the natural course of disease. Recent advances in the management of arthritis have improved patient outcomes. However, exceptionally high medical needs still remain for effective therapies for the patients with ILD in RA. Better understanding of the shared and distinct pathophysiology of fibrotic diseases led to the development of novel antifibrotic agents such as nintedanib and pirfenidone. The further stratification analysis of the phase III INBUILD trial demonstrated beneficial effects of nintedanib in RA-ILD with a progressive phenotype by reducing the rate of decline in forced vital capacity (FVC) over 52 weeks by 60%. Pirfenidone is another antifibrotic agent currently under phase II clinical study (TRAIL1) aiming to evaluate its effects for RA-ILD. This review provides an overview of state-of-the-art pathogenesis and the current therapeutic options for RA-ILD, with a focus on antifibrotic strategies.
Collapse
Affiliation(s)
- Minrui Liang
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eric L. Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andy Abril
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Jörg H.W. Distler
- Rheumatology and Clinical Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
24
|
Ge Y, Luo J, Li D, Li C, Huang J, Yu H, Lin X, Li Y, Man M, Zhang J, Zhang J, Hu L. Deficiency of vitamin D receptor in keratinocytes augments dermal fibrosis and inflammation in a mouse model of HOCl-induced scleroderma. Biochem Biophys Res Commun 2022; 591:1-6. [PMID: 34986435 DOI: 10.1016/j.bbrc.2021.12.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023]
Abstract
Scleroderma, characterized by extensive fibrosis and vascular alterations, involves excessive fibroblast activation, uncontrolled inflammation, and abnormal collagen deposition. Previous studies showed that administrations of either 1,25(OH)2D3 or vitamin D analog effectively decreased or reversed skin fibrosis by regulating the extracellular matrix homeostasis. The actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR), a transcription regulator crucial for skin homeostasis. Although evidence suggests that keratinocyte-fibroblast interaction influences the development of scleroderma, the role of keratinocytes in scleroderma remains unknown. Here, we demonstrated that the ablation of VDR in keratinocytes greatly exacerbated dermal fibrosis in HOCl-induced scleroderma in mice. The deficiency of VDR in the epidermis marked increased dermal thickness, inflammatory cell infiltration, and severe collagen deposition in comparison to the control group in HOCl-treated skin. Moreover, significant elevations in expression levels of mRNA for collagen overproduction (Col1A1, Col1A2, Col3A1, α-SMA, MMP9, TGF-β1) and proinflammatory cytokines (IL-1β, IL-6, CXCL1, CXCL2) were observed in VDR conditional KO versus control mice following HOCl treatment. Collectively, these results suggest that VDR in keratinocytes plays a pivotal role in scleroderma progression, and the interplay between keratinocytes and fibroblasts deserves more attention regarding the exploration of the pathogenesis and treatment for scleroderma.
Collapse
Affiliation(s)
- Yicheng Ge
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Jing Luo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Dan Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Chenxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xinyi Lin
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Yingxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Maoqiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, Bei Road, Hongqiao District, Tianjin, 300120, China
| | - Jing Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
25
|
Wang X, Yi X, Tang D. Aerobic Exercise Improves Pulmonary Fibrosis by Improving Insulin Resistance and Inflammation in Obese Mice. Front Physiol 2022; 12:785117. [PMID: 35115954 PMCID: PMC8804531 DOI: 10.3389/fphys.2021.785117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Background Previous studies have demonstrated that obesity is associated with pulmonary fibrosis. We attempted to identify whether regular aerobic exercise (AE) can protect against high-fat diet (HFD)-associated pulmonary fibrosis. Methods Forty-eight C57BL/6 mice were randomly assigned to four groups: chow group (Ch), chow plus exercise group (CE), obesity group (Ob), and obesity plus exercise group (OE). The mice were fed either an HFD or a chow diet for 16 weeks, and low-intensity aerobic exercise (AE) was performed in the last 8 weeks. We measured the degree of pulmonary fibrosis; pulmonary inflammation; oxidative stress parameters; insulin resistance-related indicators; the number of inflammatory cells in bronchoalveolar lavage fluid (BALF); the mRNA expression levels of IL-10, IL-1β, TGF-β, TNF-α, CXCL-1, IL-17, MMP-9, MPO, NE, and sirt-1; and the BALF levels of CXCL-1, IL-17, TGF-β, IL-10, IL-1β, and TNF-α in lung tissue. Results AE in obese mice protected against obesity-associated pulmonary fibrosis, chronic inflammation, pro-oxidative/antioxidative imbalance, and insulin resistance. AE ameliorated the HFD-induced inflammatory response and neutrophil infiltration in the lung. AE downregulated BALF levels of CXCL-1, IL-1β, TNF-α IL-17, and TGF-β but upregulated BALF levels of IL-10. AE decreased IL-1β, TGF-β, TNF-α, CXCL-1, IL-17, MMP-9, MPO, and NE mRNA expression levels but upregulated IL-10 and sirt-1 mRNA expression levels in the lung. Conclusions AE protects against HFD-induced pulmonary fibrosis by improving obesity-associated insulin resistance, chronic low-grade inflammation, and pro-oxidative/antioxidative imbalance. AE improved HFD-induced pulmonary fibrosis by suppressing IL-17, TGF-β, NE, and MMP-9 expression and activating IL-10 and sirt-1 expression.
Collapse
Affiliation(s)
- Xishuai Wang
- Department of College of P.E. and Sports, Beijing Normal University, Beijing, China
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xishuai Wang,
| | - Xuejie Yi
- Department of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Donghui Tang
- Department of College of P.E. and Sports, Beijing Normal University, Beijing, China
- Donghui Tang,
| |
Collapse
|
26
|
Park JW, Kim ST, Lee KS, Gong HS. Vitamin D Status in Dupuytren's Disease: Association with Clinical Status and Vitamin D Receptor Expression. J Plast Reconstr Aesthet Surg 2022; 75:1916-1922. [DOI: 10.1016/j.bjps.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/15/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
|
27
|
Abstract
Uterine fibroids (leiomyomas) are present in >75% of women and can cause serious morbidity. They are by far the leading cause of hysterectomy. Fibroids are a complex mixture of cells that include fibroblasts and smooth muscle cells. Rich in extracellular matrix, they typically arise through somatic mutations, most commonly MED12. Their lack of growth inhibition and their ability to have facets of malignancy yet be histologically and biologically benign provide opportunities to explore basic processes. To date, the mechanisms responsible for growth and development of leiomyomas are an enigma. This review provides an overview of current understanding and future directions for clinical and basic research of fibroids.
Collapse
Affiliation(s)
- Elizabeth A. Stewart
- 1Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, Minnesota,2Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,3Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota,4Department of Surgery, Mayo Clinic, Rochester, Minnesota,5Women’s Health Research Center, Mayo Clinic, Rochester, Minnesota
| | - Romana A. Nowak
- 6Department of Animal Sciences, University of Illinois, Urbana, Illinois,7Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| |
Collapse
|
28
|
Abstract
Asthma is chronic eosinophilic bronchitis with the dominancy of T helper 2 (Th2) inflammation. However, patients with asthma and metabolic dysfunction have pathogenic and pathological differences from those with Th2 inflammation. Metabolic dysfunction, typically presented as metabolic syndrome, has several important clinical components including central obesity, insulin resistance or glucose intolerance, dyslipidemia, and vitamin D deficiency. Data from large epidemiological studies support the significance of these components in the control of asthma and their contribution to airway remodeling, suggesting the presence of an asthma phenotype with metabolic dysfunction. These components are quite interactive with each other, so it is difficult to reveal the individual role of each. It is well known that asthma is difficult to treat in patients with obesity, due in part to inadequate response to inhaled corticosteroids. Additionally, vitamin D deficiency and insulin resistance have been regarded as aggravating factors of asthma control and airway remodeling. Recent clinical and in vivo studies have revealed the specific mechanisms of these components, which may aggravate asthma control and airway remodeling. In this review article, I summarize the recent studies and unmet needs for patients with asthma and metabolic dysfunction.
Collapse
Affiliation(s)
- Jung-Won Park
- Institute for Allergy & Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Abstract
Vitamin D is a steroid hormone of importance to the field of dermatology. Skin is unique in that it is the site of vitamin D synthesis upon sun exposure and a target organ for its activity. We explore the physiology and metabolic mechanism of action of vitamin D, as well as its effects on the skin. We also discuss the current evidence of the efficacy and safety of oral and topical vitamin D analogues on skin conditions such as psoriasis, atopic dermatitis, vitiligo, sunburn, actinic keratosis, and fibrosing skin disorders. Based on currently available scientific evidence, the National Academy of Medicine's recommended dietary allowance for vitamin D ranges from 400 IU to 800 IU daily based on age categories.
Collapse
Affiliation(s)
- Erisa Alia
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Philip E Kerr
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
30
|
Castle RD, Williams MA, Bushell WC, Rindfleisch JA, Peterson CT, Marzolf J, Brouwer K, Mills PJ. Implications for Systemic Approaches to COVID-19: Effect Sizes of Remdesivir, Tocilizumab, Melatonin, Vitamin D3, and Meditation. J Inflamm Res 2021; 14:4859-4876. [PMID: 34588793 PMCID: PMC8473718 DOI: 10.2147/jir.s323356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/28/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION COVID-19 poses a chronic threat to inflammatory systems, reinforcing the need for efficient anti-inflammatory strategies. The purpose of this review and analysis was to determine the efficacy of various interventions upon the inflammatory markers most affected by COVID-19. The focus was on the markers associated with COVID-19, not the etiology of the virus itself. METHODS Based on 27 reviewed papers, information was extracted on the effects of COVID-19 upon inflammatory markers, then the effects of standard treatments (Remdesivir, Tocilizumab) and adjunctive interventions (vitamin D3, melatonin, and meditation) were extracted for those markers. These data were used to approximate effect sizes for the disease or interventions via standardized mean differences (SMD). RESULTS The data that were available indicated that adjunctive interventions affected 68.4% of the inflammatory markers impacted by COVID-19, while standard pharmaceutical medication affected 26.3%. DISCUSSION Nonstandard adjunctive care appeared to have comparable or superior effects in comparison to Remdesivir and Tocilizumab on the inflammatory markers most impacted by COVID-19. Alongside standards of care, melatonin, vitamin D3, and meditation should be considered for treatment of SARS-COV-2 infection and COVID-19 disease.
Collapse
Affiliation(s)
- Ryan D Castle
- Science Division, Whole Health Institute, Bentonville, AR, USA
| | - Michelle A Williams
- Harvard T.H. Chan School of Public Health, Department of Global Health and Population, Harvard University, Boston, MA, USA
| | | | - J Adam Rindfleisch
- Education Department, Whole Health School of Medicine and Health Sciences, Bentonville, AR, USA
| | - Christine Tara Peterson
- Center of Excellence for Research and Training in Integrative Health, Department of Family Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - James Marzolf
- Health Sector Finance & Policy, Whole Health Institute, Bentonville, AR, USA
| | - Kimberly Brouwer
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Paul J Mills
- Herbert Wertheim School of Public Health and Human Longevity Science, Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, CA, USA
| |
Collapse
|
31
|
Xue Y, Wang P, Jiang F, Yu J, Ding H, Zhang Z, Pei H, Li B. A Newly Identified lncBCAS1-4_1 Associated With Vitamin D Signaling and EMT in Ovarian Cancer Cells. Front Oncol 2021; 11:691500. [PMID: 34422647 PMCID: PMC8377733 DOI: 10.3389/fonc.2021.691500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) were identified rapidly due to their important role in many biological processes and human diseases including cancer. 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] and its analogues are widely applied as preventative and therapeutic anticancer agents. However, the expression profile of lncRNAs regulated by 1α,25(OH)2D3 in ovarian cancer remains to be clarified. In the present study, we found 606 lncRNAs and 102 mRNAs that showed differential expression (DE) based on microarray data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the DE genes were mainly enriched in TGF-β, MAPK, Ras, PI3K-Akt, and Hippo signaling pathways, as well as the vitamin D-related pathway. We further assessed the potential lncRNAs that linked vitamin D signaling with EMT, and lncBCAS1-4_1 was identified in the first time. Moreover, we found that the most upregulated lncBCAS1-4_1 showed 75% same transcripts with CYP24A1 (metabolic enzyme of 1α,25(OH)2D3). Finally, the lncBCAS1-4_1 gain-of-function cell model was established, which demonstrated that the knockdown of lncBCAS1-4_1 inhibited the proliferation and migration of ovarian cancer cells. Furthermore, lncBCAS1-4_1 could resist the antitumor effect of 1α,25(OH)2D3, which was associated with upregulated ZEB1. These data provide new evidences that lncRNAs served as a target for the antitumor effect of 1α,25(OH)2D3.
Collapse
Affiliation(s)
- Yaqi Xue
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China.,Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Wang
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| | - Fei Jiang
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| | - Jing Yu
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zengli Zhang
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bingyan Li
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
32
|
17,20S(OH) 2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. Int J Mol Sci 2021; 22:ijms22168926. [PMID: 34445632 PMCID: PMC8396226 DOI: 10.3390/ijms22168926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc; scleroderma) is a chronic fibrotic disease involving TGF-β1. Low serum vitamin D (vit D) correlates with the degree of fibrosis and expression of TGF-β1. This study was designed to determine whether the noncalcemic vit D analog, 17,20S(OH)2pD, suppresses fibrosis and mediators of the TGF-β1 pathway in the bleomycin (BLM) model of fibrosis. Fibrosis was induced into the skin of female C57BL/6 mice by repeated injections of BLM (50 μg/100 μL) subcutaneously. Mice received daily oral gavage with either vehicle (propylene glycol) or 17,20S(OH)2pD using 5, 15, or 30 μg/kg for 21 days. The injected skin was biopsied; analyzed histologically; examined for total collagen by Sircol; and examined for mRNA expression of MMP-13, BMP-7, MCP-1, Gli1, and Gli2 by TR-PCR. Spleen was analyzed for lymphocytes using flow cytometry. Serum was analyzed for cytokines using a multiplexed ELISA. Results showed that all three doses of 17,20S(OH)2pD suppressed net total collagen production, dermal thickness, and total collagen content in the BLM fibrosis model. 17,20S(OH)2pD also increased MMP-13 expression, decreased MCP-1 and Gli-2 expression in vivo, and suppressed serum levels of IL-13, TNF-α, IL-6, IL-10, IL-17, and IL-12p70. In summary, 17,20S(OH)2pD modulates the mediators of fibrosis in vivo and suppresses total collagen production and dermal thickness. This antifibrotic property of 17,20S(OH)2pD offers new therapeutic approaches for fibrotic disorders.
Collapse
|
33
|
Felicidade I, Bocchi M, Ramos MRZ, Carlos LDO, Wagner NRF, Campos ACL, Ribeiro LR, Mantovani MS, Watanabe MAE, Vitiello GAF. Transforming growth factor beta 1 (TGFβ1) plasmatic levels and haplotype structures in obesity: a role for TGFβ1 in steatosis development. Mol Biol Rep 2021; 48:6401-6411. [PMID: 34403036 DOI: 10.1007/s11033-021-06640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Obesity is considered a chronic inflammatory disease and transforming growth factor beta 1 (TGFβ1) might exert important roles in disease pathogenesis regulating adipocyte differentiation and immune-inflammatory environment. However, the role of this cytokine as a biomarker in obesity is poorly addressed. Therefore, the present study aimed to evaluate the impact of TGFB1 polymorphisms and TGFβ1 plasmatic levels in obesity METHODS AND RESULTS: TGFB1 promoter region polymorphisms (rs1800468, G-800A and rs1800469, C-509 T) were evaluated in 75 obese patients and 45 eutrophic patients through PCR-RFLP and plasmatic TGFβ1 was quantified through ELISA from 37 of the obese patients, and correlations with clinical and biochemical parameters were tested. Despite no association was found between TGFB1 polymorphisms and obesity susceptibility, several correlations with clinical data were noted. Among others, AC haplotype negatively correlated with plasmatic TGFβ1, while plasmatic TGFβ1 negatively correlated with C-reactive protein and positively correlated with liver abnormalities on ultrasound and, specifically, with steatosis presence and degree. Conversely, GT haplotype, which associates with higher TGFβ1 production, was also positively correlated with the same parameters of liver abnormalities. Further, plasmatic vitamin D negatively correlated with TGFβ1, while positively correlated with AC haplotype. CONCLUSION Overall, the results indicate that TGFβ1 might exert important roles in obesity pathophysiology and correlate with biochemical and clinical parameters both at systemic protein as well as at genetic level. Importantly, the consistent positive correlation at both levels with steatosis might suggest this cytokine as a biomarker for this hepatic abnormality in obese patients.
Collapse
Affiliation(s)
- Ingrid Felicidade
- Department of General Biology, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
- School of Medicine, Department of Pathology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Mayara Bocchi
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | | | | | | | | | - Lúcia Regina Ribeiro
- School of Medicine, Department of Pathology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil.
- Laboratory of DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, PR445, Km 380 Celso Garcia Cid highway, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
34
|
Zehender A, Li YN, Lin NY, Stefanica A, Nüchel J, Chen CW, Hsu HH, Zhu H, Ding X, Huang J, Shen L, Györfi AH, Soare A, Rauber S, Bergmann C, Ramming A, Plomann M, Eckes B, Schett G, Distler JHW. TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nat Commun 2021; 12:4404. [PMID: 34285225 PMCID: PMC8292318 DOI: 10.1038/s41467-021-24601-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Activation of fibroblasts is essential for physiological tissue repair. Uncontrolled activation of fibroblasts, however, may lead to tissue fibrosis with organ dysfunction. Although several pathways capable of promoting fibroblast activation and tissue repair have been identified, their interplay in the context of chronic fibrotic diseases remains incompletely understood. Here, we provide evidence that transforming growth factor-β (TGFβ) activates autophagy by an epigenetic mechanism to amplify its profibrotic effects. TGFβ induces autophagy in fibrotic diseases by SMAD3-dependent downregulation of the H4K16 histone acetyltransferase MYST1, which regulates the expression of core components of the autophagy machinery such as ATG7 and BECLIN1. Activation of autophagy in fibroblasts promotes collagen release and is both, sufficient and required, to induce tissue fibrosis. Forced expression of MYST1 abrogates the stimulatory effects of TGFβ on autophagy and re-establishes the epigenetic control of autophagy in fibrotic conditions. Interference with the aberrant activation of autophagy inhibits TGFβ-induced fibroblast activation and ameliorates experimental dermal and pulmonary fibrosis. These findings link uncontrolled TGFβ signaling to aberrant autophagy and deregulated epigenetics in fibrotic diseases and may contribute to the development of therapeutic interventions in fibrotic diseases.
Collapse
Affiliation(s)
- Ariella Zehender
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Yi-Nan Li
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Neng-Yu Lin
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Adrian Stefanica
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Julian Nüchel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Hsiao-Han Hsu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Honglin Zhu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Ding
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Lichong Shen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Simon Rauber
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Markus Plomann
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Faculty of Medicine, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
35
|
Kocic G, Gajic M, Tomovic K, Hadzi-Djokic J, Anderluh M, Smelcerovic A. Purine adducts as a presumable missing link for aristolochic acid nephropathy-related cellular energy crisis, potential anti-fibrotic prevention and treatment. Br J Pharmacol 2021; 178:4411-4427. [PMID: 34235731 DOI: 10.1111/bph.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Mihajlo Gajic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
36
|
Cutolo M, Soldano S, Sulli A, Smith V, Gotelli E. Influence of Seasonal Vitamin D Changes on Clinical Manifestations of Rheumatoid Arthritis and Systemic Sclerosis. Front Immunol 2021; 12:683665. [PMID: 34267753 PMCID: PMC8276051 DOI: 10.3389/fimmu.2021.683665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Vitamin D [1,25(OH)2D-calcitriol] is basically a steroid hormone with pleiotropic biologic effects, and its impact on the regulation of immune system may influence several clinical conditions. Calcidiol (25OHD), as precursor of calcitriol, derives, for the most part (80%), from cutaneous cholesterol (7-dehydrocholesterol) under the action of UV-B (sunlight). Consequently, serum concentrations fluctuate during the year following the circannual rhythm of sun exposition. We will update about the available evidence regarding the complex influence of seasonal vitamin D changes on two different chronic connective tissue diseases, namely rheumatoid arthritis (RA) and systemic sclerosis (SSc). Notably, RA is an emblematic model of autoimmune disease with prevalent joint inflammatory features, while SSc is mainly an autoimmune progressive pro-fibrotic disease. However, in both conditions, low serum concentrations of 25OHD are involved in the pathogenesis of the diseases, and emerging data report their impact on clinical manifestations.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
- Unit for Molecular Immunology and Inflammation, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center (IRC), Ghent, Belgium
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| |
Collapse
|
37
|
Schneider L, Hax V, Monticielo O, Macedo TF, Barreto RKM, Marcondes NA, Chakr R. Dualities of the vitamin D in systemic sclerosis: a systematic literature review. Adv Rheumatol 2021; 61:34. [PMID: 34108054 DOI: 10.1186/s42358-021-00192-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a chronic disease characterized by autoimmunity, vasculopathy, and visceral and cutaneous fibrosis. Vitamin D has several functions in the immunological system, and different studies have suggested a potential role in triggering autoimmune diseases. Patients with SSc may present with low serum levels of vitamin D, but the association between hypovitaminosis D and disease onset or any clinical manifestation is still obscure. Our goal was to verify the causal relationship between hypovitaminosis D and SSc onset or any particular clinical manifestation in the literature. METHODS A systematic literature review was performed through February 24th, 2021 on Pubmed, Lilacs/BIREME, and Cochrane databases. The eligible studies were read in full text, and, in the absence of exclusion criteria, were included in this review after consensus between two reviewers. RESULTS Forty articles met the eligibility criteria and the main results of each study are described. In most studies, SSc patients showed a higher prevalence of vitamin D deficiency and insufficiency compared to controls. Additionally, in some reports serum levels of vitamin D were inversely correlated with the severity of SSc. Oral supplementation did not seem to affect serum levels of vitamin D. Four of the included studies were with experimental models. CONCLUSION In conclusion, vitamin D deficiency seems to have a role in susceptibility to SSc, as well as in the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Laiana Schneider
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos St, Room 645, Porto Alegre, RS, 90035-903, Brazil.
| | - Vanessa Hax
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos St, Room 645, Porto Alegre, RS, 90035-903, Brazil
| | - Odirlei Monticielo
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos St, Room 645, Porto Alegre, RS, 90035-903, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tamires Ferri Macedo
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Rafael Chakr
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos St, Room 645, Porto Alegre, RS, 90035-903, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
38
|
Vitamin D protects glomerular mesangial cells from high glucose-induced injury by repressing JAK/STAT signaling. Int Urol Nephrol 2021; 53:1247-1254. [PMID: 33942213 PMCID: PMC8144147 DOI: 10.1007/s11255-020-02728-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 12/02/2020] [Indexed: 01/28/2023]
Abstract
Aim High glucose (HG) induces the production of transforming growth factor (TGF)-β and reactive oxygen species, which further activates JAK/STAT signaling and promotes the synthesis of matrix proteins, contributes to the pathophysiological processes of diabetic nephropathy. This study aims to investigate the protection role of vitamin D (VD) in the kidney in high glucose condition. Methods Rat glomerular mesangial cells were cultured in high glucose medium, with or without VD or VD receptor (VDR) siRNAs treatment. The levels of TGF-β and fibronectin were detected by qRT-PCR, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The levels of phosphorylated JAK2, STAT1 and STAT3, and JAK/STAT signaling downstream genes were examined by immunoblotting and qRT-PCR. Results In rat glomerular mesangial cells, VD treatment can repress the tyrosine phosphorylation of JAK2, STAT1 and STAT3. VD inhibited TGF-β and fibronectin expression which was rescued by vitamin d receptor (VDR) siRNA and STATs inhibitor perficitinib. The JAK/STAT signaling downstream protein coding genes including SOCS1, SOCS3 and type IV collagen were repressed by VD. Meanwhile, the expression of non-coding RNAs such as miR-181a, miR-181b, was repressed by VD, and the expression of miR-34a and Let-7b was upregulated by VD.
Conclusion Vitamin D (VD) treatment inhibits the function of HG on fibronectin production through regulating JAK/STAT pathway. These results provide direct evidences that VD protects glomerular mesangial cells from high glucose-induced injury through repressing JAK/STAT signaling, which has the potential for clinical DN treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s11255-020-02728-z.
Collapse
|
39
|
The effects of vitamin D3 supplementation on TGF-β and IL-17 serum levels in migraineurs: post hoc analysis of a randomized clinical trial. J Pharm Health Care Sci 2021; 7:9. [PMID: 33653409 PMCID: PMC7927391 DOI: 10.1186/s40780-021-00192-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although the exact mechanism involved in migraine pathogenesis remained uncertain, and different researches have been developed to address the role of neuroinflammation and immune dysfunction. Therefore, considering the immune protective functions of vitamin D3, we aimed to investigate the effects of daily administration of 2000 IU D3 supplements on serum status of immune markers in migraine patients. METHODS AND MATERIALS Eighty episodic migraineurs who randomly assigned into two equal groups to receive either vitamin D3 2000 IU/d or placebo for 12-week were enrolled in this placebo-controlled double-blind trial included. Serum concentrations of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 were evaluated at baseline and after the trial via the ELISA method. RESULTS Applying ANCOVA adjusted for baseline levels and confounding variables, it was found that the serum level of TGF-β was significantly higher in vitamin D group (adjusted mean:1665.50 ng/L) than the placebo group (1361.90 ng/L) after the experiment (P-value = 0.012); on the other hand, vitamin D prevented the increment in IL-17 serum level in the intervention group after the trial (adjusted mean:37.84 ng/L) comparing to the controls (adjusted mean:70.09 ng/L; P-value = 0.039). The Pearson correlation analysis revealed a significant positive correlation between changes in serum 25-hydroxy-vitamin D (25(OH)D) and TGF-β (r = - 0.306, P-value = 0.008). In contrast, no significant correlations were noted between serum 25(OH) D and IL-17 changes throughout the study. CONCLUSION Based on the results of this study, it was revealed that 12-week vitamin D3 supplementation (2000 IU/day) could enhance the Th17/Treg related cytokines balance in episodic migraineurs. Although these findings are promising, it is needed to be extended. TRIAL REGISTRATION The trial is registered in the Iranian registry of clinical trials (IRCT) at 11 July 2018, with IRCT code: IRCT20151128025267N6 ( https://www.irct.ir/trial/31246 ).
Collapse
|
40
|
Han H, Chung SI, Park HJ, Oh EY, Kim SR, Park KH, Lee JH, Park JW. Obesity-induced Vitamin D Deficiency Contributes to Lung Fibrosis and Airway Hyperresponsiveness. Am J Respir Cell Mol Biol 2021; 64:357-367. [PMID: 33296297 DOI: 10.1165/rcmb.2020-0086oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D (VitD) has pleiotropic effects. VitD deficiency is closely involved with obesity and may contribute to the development of lung fibrosis and aggravation of airway hyperresponsiveness (AHR). We evaluated the causal relationship between VitD deficiency and the lung pathologies associated with obesity. In vivo effects of VitD supplementation were analyzed using high-fat diet (HFD)-induced obese mice and TGF-β1 (transforming growth factor-β1) triple transgenic mice. Effects of VitD supplementation were also evaluated in both BEAS-2B and primary lung cells from the transgenic mice. Obese mice had decreased 25-OH VitD and VitD receptor expressions with increases of insulin resistance, renin and angiotensin-2 system (RAS) activity, and leptin. In addition, lung pathologies such as a modest increase in macrophages, enhanced TGF-β1, IL-1β, and IL-6 expression, lung fibrosis, and AHR were found. VitD supplementation to HFD-induced obese mice recovered these findings. TGF-β1-overexpressing transgenic mice enhanced macrophages in BAL fluid, lung expression of RAS, epithelial-mesenchymal transition markers, AHR, and lung fibrosis. VitD supplementation also attenuated these findings in addition to the attenuation of the expressions of TGF-β1, and phosphorylated Smad-2/3 in lung. Supplementing in vitro-stimulated BEAS-2B and primary lung cells with VitD inhibited TGF-β1 expression, supporting the suppressive effect of VitD for TGF-β1 expression. These results suggest that obesity leads to VitD deficiency and worsens insulin resistance while enhancing the expression of leptin, RAS, TGF-β1, and proinflammatory cytokines. These changes may contribute to the development of lung fibrosis and AHR. VitD supplementation rescues these changes and may have therapeutic potential for asthma with obesity.
Collapse
Affiliation(s)
| | | | - Hye Jung Park
- Department of Internal Medicine and Gangnam Severance Hospital, and
| | | | - Sung-Ryeol Kim
- Institute for Allergy
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Institute for Allergy
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hyun Lee
- Institute for Allergy
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Won Park
- Institute for Allergy
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Isola G, Palazzo G, Polizzi A, Murabito P, Giuffrida C, Lo Gullo A. Association of Systemic Sclerosis and Periodontitis with Vitamin D Levels. Nutrients 2021; 13:nu13020705. [PMID: 33672176 PMCID: PMC7926920 DOI: 10.3390/nu13020705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to analyze the association among systemic sclerosis (SSc), periodontitis (PT); we also evaluated the impact of PT and SSc on vitamin D levels. Moreover, we tested the association with potential confounders. A total of 38 patients with SSc, 40 subjects with PT, 41 subjects with both PT and SSc, and 41 healthy controls were included in the study. The median vitamin D levels in PT subject were 19.1 (17.6-26.8) ng/mL, while SSc + PT group had vitamin d levels of 15.9 (14.7-16.9) ng/mL, significantly lower with respect to SSc patients (21.1 (15.4-22.9) ng/mL) and to healthy subjects (30.5 (28.8-32.3) ng/mL) (p < 0.001). In all subjects, vitamin D was negatively associated with c-reactive protein (CRP) (p < 0.001) and with probing depth (PD), clinical attachment level (CAL), bleeding on probing (BOP), and plaque score (PI) (p < 0.001 for all parameters) and positively related to the number of teeth (p < 0.001). Moreover, univariate regression analysis demonstrated an association among high low-density lipoproteins (LDL) cholesterol (p = 0.021), CRP (p = 0.014), and PT (p < 0.001) and reduced levels of vitamin D. The multivariate regression analysis showed that PT (p = 0.011) and CRP (p = 0.031) were both predictors of vitamin D levels. Subjects with PT and SSc plus PT had significant lower vitamin D values with respect to SSc and to healthy subjects. In addition, PT seems negatively associated with levels of vitamin D in all analyzed patients.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
- Correspondence: ; Tel.: +39-095-7435359
| | - Giuseppe Palazzo
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Paolo Murabito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Clemente Giuffrida
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.G.); (A.L.G.)
| | - Alberto Lo Gullo
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.G.); (A.L.G.)
| |
Collapse
|
42
|
Dees C, Pötter S, Zhang Y, Bergmann C, Zhou X, Luber M, Wohlfahrt T, Karouzakis E, Ramming A, Gelse K, Yoshimura A, Jaenisch R, Distler O, Schett G, Distler JH. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J Clin Invest 2021; 130:2347-2363. [PMID: 31990678 DOI: 10.1172/jci122462] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/17/2020] [Indexed: 12/28/2022] Open
Abstract
Fibroblasts are key effector cells in tissue remodeling. They remain persistently activated in fibrotic diseases, resulting in progressive deposition of extracellular matrix. Although fibroblast activation may be initiated by external factors, prolonged activation can induce an "autonomous," self-maintaining profibrotic phenotype in fibroblasts. Accumulating evidence suggests that epigenetic alterations play a central role in establishing this persistently activated pathologic phenotype of fibroblasts. We demonstrated that in fibrotic skin of patients with systemic sclerosis (SSc), a prototypical idiopathic fibrotic disease, TGF-β induced the expression of DNA methyltransferase 3A (DNMT3A) and DNMT1 in fibroblasts in a SMAD-dependent manner to silence the expression of suppressor of cytokine signaling 3 (SOCS3) by promoter hypermethylation. Downregulation of SOCS3 facilitated activation of STAT3 to promote fibroblast-to-myofibroblast transition, collagen release, and fibrosis in vitro and in vivo. Reestablishment of the epigenetic control of STAT3 signaling by genetic or pharmacological inactivation of DNMT3A reversed the activated phenotype of SSc fibroblasts in tissue culture, inhibited TGF-β-dependent fibroblast activation, and ameliorated experimental fibrosis in murine models. These findings identify a pathway of epigenetic imprinting of fibroblasts in fibrotic disease with translational implications for the development of targeted therapies in fibrotic diseases.
Collapse
Affiliation(s)
- Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sebastian Pötter
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yun Zhang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiang Zhou
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus Luber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Wohlfahrt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, Zurich, Switzerland
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery - Orthopedic Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg Hw Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
43
|
Panfili FM, Roversi M, D'Argenio P, Rossi P, Cappa M, Fintini D. Possible role of vitamin D in Covid-19 infection in pediatric population. J Endocrinol Invest 2021; 44:27-35. [PMID: 32557271 PMCID: PMC7299247 DOI: 10.1007/s40618-020-01327-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Covid-19 is a pandemic of unprecedented proportion, whose understanding and management is still under way. In the emergency setting new or available therapies to contrast the spread of COVID-19 are urgently needed. Elderly males, especially those affected by previous diseases or with comorbidities, are more prone to develop interstitial pneumonia that can deteriorate evolving to ARDS (acute respiratory distress syndrome) that require hospitalization in Intensive Care Units (ICUs). Even children and young patients are not spared by SARS-CoV 2 infection, yet they seem to develop a milder form of disease. In this setting the immunomodulatory role of Vitamin D, should be further investigated. METHODS We reviewed the literature about the immunomodulatory role of Vitamin D collecting data from the databases Medline and Embase. RESULTS Vitamin D proved to interact both with the innate immune system, by activating Toll-like receptors (TLRs) or increasing the levels of cathelicidins and β-defensins, and adaptive immune system, by reducing immunoglobulin secretion by plasma cells and pro-inflammatory cytokines production, thus modulating T cells function. Promising results have been extensively described as regards the supplementation of vitamin D in respiratory tract infections, autoimmune diseases and even pulmonary fibrosis. CONCLUSIONS In this review, we suggest that vitamin D supplementation might play a role in the prevention and/or treatment to SARS-CoV-2 infection disease, by modulating the immune response to the virus both in the adult and pediatric population.
Collapse
Affiliation(s)
- F M Panfili
- Pediatric Academic Department, University of Rome Tor Vergata, Rome, Italy
| | - M Roversi
- Pediatric Academic Department, University of Rome Tor Vergata, Rome, Italy
| | - P D'Argenio
- Division of Immunology and Infectious Diseases, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - P Rossi
- Division of Immunology and Infectious Diseases, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - M Cappa
- Endocrinology Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - D Fintini
- Endocrinology Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Rome, Italy.
| |
Collapse
|
44
|
Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021; 30:121-131. [PMID: 32931037 DOI: 10.1111/exd.14193] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-β pathway, which are druggable and which may be transferable from bench to bedside.
Collapse
Affiliation(s)
- Clara Dees
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Debomita Chakraborty
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
45
|
Evans RM, Lippman SM. Shining Light on the COVID-19 Pandemic: A Vitamin D Receptor Checkpoint in Defense of Unregulated Wound Healing. Cell Metab 2020; 32:704-709. [PMID: 32941797 PMCID: PMC7486067 DOI: 10.1016/j.cmet.2020.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 pneumonitis can quickly strike to incapacitate the lung, leading to severe disease and sometimes death. In this perspective, we suggest that vitamin D deficiency and the failure to activate the vitamin D receptor (VDR) can aggravate this respiratory syndrome by igniting a wounding response in stellate cells of the lung. The FDA-approved injectable vitamin D analog, paricalcitol, suppresses stellate cell-derived murine hepatic and pancreatic pro-inflammatory and pro-fibrotic changes. Therefore, we suggest a possible parallel program in the pulmonary stellate cells of COVID-19 patients and propose repurposing paricalcitol infusion therapy to restrain the COVID-19 cytokine storm. This proposed therapy could prove important to people of color who have higher COVID-19 mortality rates and lower vitamin D levels.
Collapse
Affiliation(s)
- Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Scott M Lippman
- Moores Cancer Center, UC San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Wang D, Lin L, Lei K, Zeng J, Luo J, Yin Y, Li Y, Zhang L, Nie X, Zuo D, Sun L. Vitamin D3 analogue facilitates epithelial wound healing through promoting epithelial-mesenchymal transition via the Hippo pathway. J Dermatol Sci 2020; 100:120-128. [PMID: 32938565 DOI: 10.1016/j.jdermsci.2020.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Wound healing is a complex physiological process that is crucial for reestablishing the epithelial barrier following injury. OBJECTIVE The aim of this study was to demonstrate the efficacy of calcipotriol, a synthetic vitamin D3 analogue, in wound healing in an acute mice wound model. METHODS An excision wound model was established in mice, and the wound healing activity of calcipotriol was evaluated. Human keratinocyte cell lines, HaCaT and NHEK, were utilized in in vitro skin wound healing model. Cytokine expression levels were measured by real-time PCR and ELISA assay. The expression of epithelial-mesenchymal transition (EMT)-associated molecules and the phosphorylation of Yes-associated protein (YAP) was determined by western blotting. RESULTS The increase in re-epithelialization by calcipotriol treatment early in the wound was associated with the EMT process. A scratch assay using HaCaT and NHEK cells also showed that calcipotriol administration resulted in effective wound closure. We demonstrated that calcipotriol promoted keratinocyte migration by interfering with the Hippo pathway. Calcipotriol-mediated enhancement of cell migration is related to downregulated phosphorylation of YAP and increased levels of YAP and PDZ-binding motif (TAZ). Mechanistically, we defined that calcipotriol facilitated the crosstalk between the YAP/TAZ and TGF-β/Smad signaling pathways, eliciting EMT in keratinocytes during the wound healing process. CONCLUSIONS These results suggest that the positive effect of calcipotriol on keratinocyte migration is mediated by the induction of EMT via the regulation of Hippo pathway, which promotes the acceleration of wound closure.
Collapse
Affiliation(s)
- Di Wang
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Lin
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Lei
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Zeng
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Immunology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Yin
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Immunology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yao Li
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Liyun Zhang
- Department of Immunology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoli Nie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Immunology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ledong Sun
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Genome-wide association study for circulating fibroblast growth factor 21 and 23. Sci Rep 2020; 10:14578. [PMID: 32884031 PMCID: PMC7471933 DOI: 10.1038/s41598-020-71569-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/06/2020] [Indexed: 11/09/2022] Open
Abstract
Fibroblast growth factors (FGFs) 21 and 23 are recently identified hormones regulating metabolism of glucose, lipid, phosphate and vitamin D. Here we conducted a genome-wide association study (GWAS) for circulating FGF21 and FGF23 concentrations to identify their genetic determinants. We enrolled 5,000 participants from Taiwan Biobank for this GWAS. After excluding participants with diabetes mellitus and quality control, association of single nucleotide polymorphisms (SNPs) with log-transformed FGF21 and FGF23 serum concentrations adjusted for age, sex and principal components of ancestry were analyzed. A second model additionally adjusted for body mass index (BMI) and a third model additionally adjusted for BMI and estimated glomerular filtration rate (eGFR) were used. A total of 4,201 participants underwent GWAS analysis. rs67327215, located within RGS6 (a gene involved in fatty acid synthesis), and two other SNPs (rs12565114 and rs9520257, located between PHC2-ZSCAN20 and ARGLU1-FAM155A respectively) showed suggestive associations with serum FGF21 level (P = 6.66 × 10–7, 6.00 × 10–7 and 6.11 × 10–7 respectively). The SNPs rs17111495 and rs17843626 were significantly associated with FGF23 level, with the former near PCSK9 gene and the latter near HLA-DQA1 gene (P = 1.04 × 10–10 and 1.80 × 10–8 respectively). SNP rs2798631, located within the TGFB2 gene, was suggestively associated with serum FGF23 level (P = 4.97 × 10–7). Additional adjustment for BMI yielded similar results. For FGF23, further adjustment for eGFR had similar results. We conducted the first GWAS of circulating FGF21 levels to date. Novel candidate genetic loci associated with circulating FGF21 or FGF23 levels were found. Further replication and functional studies are needed to support our findings.
Collapse
|
48
|
Vitamin D's Effect on Immune Function. Nutrients 2020; 12:nu12051248. [PMID: 32353972 PMCID: PMC7281985 DOI: 10.3390/nu12051248] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Ever since its discovery by Windhaus, the importance of the active metabolite of vitamin D (1,25-dihydroxyvitamin D3; 1,25-(OH)2D3) has been ever expanding. In this review, the attention is shifted towards the importance of the extra-skeletal effects of vitamin D, with special emphasis on the immune system. The first hint of the significant role of vitamin D on the immune system was made by the discovery of the presence of the vitamin D receptor on almost all cells of the immune system. In vitro, the overwhelming effect of supra-physiological doses of vitamin D on the individual components of the immune system is very clear. Despite these promising pre-clinical results, the translation of the in vitro observations to solid clinical effects has mostly failed. Nevertheless, the evidence of a link between vitamin D deficiency and adverse outcomes is overwhelming and clearly points towards avoidance of vitamin D deficiency especially in early life.
Collapse
|
49
|
Evaluation of Salivary Cytokines and Vitamin D Levels in Periodontopathic Patients. Int J Mol Sci 2020; 21:ijms21082669. [PMID: 32290474 PMCID: PMC7215766 DOI: 10.3390/ijms21082669] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease (PD) is an inflammatory condition of the tissues supporting the teeth, which is widespread among the adult population. Evidence shows a relationship between PD and vitamin D levels, which is involved in the regulation of bone metabolism, mineral homeostasis, and inflammatory response. This study aimed to perform a simultaneous evaluation of inflammatory mediators and vitamin D levels in saliva in periodontopathic patients to better understand their role in periodontal disease. In this observational study, clinical periodontal parameter examination was performed for each patient. Moreover, the saliva levels of 25(OH)D3, TGFβ, IL-35, IL-17A, and MMP9 were evaluated using an ELISA assay. An increase in TGFβ, IL-35, MMP9, and IL-17A salivary levels and a reduction in 25(OH)D3 levels were observed in periodontopathic patients with respect to the healthy controls. The present study revealed significant positive correlation between cytokines and highly negative correlation between 25(OH)D3 and salivary cytokine levels. Further studies are needed to better understand if salivary cytokines and vitamin D evaluation may represent a new approach for detection and prevention of progressive diseases, such as PD.
Collapse
|
50
|
Chen PL, Hong JB, Shen LJ, Chen YT, Wang SJ, Liao YH. The efficacy and safety of topical rapamycin-calcitriol for facial angiofibromas in patients with tuberous sclerosis complex: a prospective, double-blind, randomized clinical trial. Br J Dermatol 2020; 183:655-663. [PMID: 32064596 DOI: 10.1111/bjd.18949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The efficacy of topical rapamycin is well documented for tuberous sclerosis complex (TSC)-related facial angiofibromas (FAs). Calcitriol has been shown to lessen skin fibrosis and may be therapeutically beneficial to FAs. OBJECTIVES To evaluate whether topical rapamycin-calcitriol combination is an effective and safe treatment for TSC-related FAs. METHODS Fifty-two patients with TSC with FAs were enrolled in this prospective study including three 12-week periods. In period 1, either topical rapamycin 0·1% or calcitriol 0·0003% single-agent therapy vs. their combination was applied in a double-blind, left-right-randomized, split-face comparison. The primary outcome was the reduction of modified Facial Angiofibroma Severity Index (mFASI) at week 12. In period 2, the patients were reassigned to use on both cheeks the ointment that resulted in the better primary outcome in period 1. The treatment was discontinued in period 3 (week 25-36) and a follow-up mFASI was scored to evaluate the degree of recurrence. RESULTS The mean changes in mFASI at week 12 compared with baseline were -0·92, -0·44 and -1·09 for rapamycin (P ≤ 0·001), calcitriol (P = 0·039) and rapamycin-calcitriol combination (P ≤ 0·001), respectively. Although rapamycin-calcitriol combination and rapamycin had similar statistically significant decreases of mFASI at week 12, rapamycin-calcitriol combination resulted in faster improvement in erythema, greater reduction of papule elevation and longer durability after discontinuing treatment than rapamycin alone. The treatments were well tolerated. CONCLUSIONS This randomized clinical trial demonstrates that topical rapamycin-calcitriol combination therapy is an effective and safe regimen for TSC-related FAs. What is already known about this topic? Facial angiofibromas (FAs) cause substantial psychological distress in individuals with tuberous sclerosis complex (TSC), but invasive procedural treatments are not applicable to all patients. Topical rapamycin has been demonstrated as an effective and safe treatment regimen for TSC-related FAs. What does this study add? Compared with baseline (day 0), both topical rapamycin 0·1% and rapamycin 0·1%-calcitriol 0·0003% combination ointment achieved statistically significant reductions in modified Facial Angiofibroma Severity Index at week 12. Compared with rapamycin alone, extended use of the rapamycin-calcitriol combination regimen until week 24 showed more effectiveness in decreasing papule elevation and could maintain a longer therapeutic effect after treatment discontinuation. Linked Comment: Lee. Br J Dermatol 2020; 183:604-606.
Collapse
Affiliation(s)
- P L Chen
- Graduate Institute of Medical Genomics and Proteomics, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - J B Hong
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - L J Shen
- Graduate Institute of Clinical Pharmacy/School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y T Chen
- Graduate Institute of Medical Genomics and Proteomics, Taipei, Taiwan
| | - S J Wang
- Graduate Institute of Medical Genomics and Proteomics, Taipei, Taiwan
| | - Y H Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|