1
|
Ma H, Xing C, Wei H, Li Y, Wang L, Liu S, Wu Q, Sun C, Ning G. Berberine attenuates neuronal ferroptosis via the AMPK-NRF2-HO-1-signaling pathway in spinal cord-injured rats. Int Immunopharmacol 2024; 142:113227. [PMID: 39321704 DOI: 10.1016/j.intimp.2024.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Ferroptosis, characterized by iron-dependent accumulation of lipid peroxides, plays an important role in spinal cord injury (SCI). Berberine (BBR), as a lipid peroxide scavenger, has been widely used in treating other diseases; however, its role in ferroptosis has not been fully elucidated. Therefore, here, to test our hypothesis that BBR can reduce the severity of SCI and promote motor function recovery by inhibiting neuronal ferroptosis, we evaluated the changes in ferroptosis-related indicators after BBR administration by establishing a cellular ferroptosis model and an SCI contusion model. We found that BBR administration significantly reduces lipid peroxidation damage, maintains normal mitochondrial function, reduces excessive accumulation of iron ions, enhances antioxidant capacity, and activates the ferroptosis defense system in vivo and in vitro. Mechanistically, BBR alleviates neuronal ferroptosis by inducing adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and up-regulating nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) protein expression to promote glutathione production. BBR administration also significantly improves motor function recovery in SCI rats. Meanwhile, applying the AMPK inhibitor Compound C blocks the neuroprotective and all other effects of BBR. Collectively, our findings demonstrate that BBR can attenuate neuronal ferroptosis after SCI by activating the AMPK-NRF2-HO-1 pathway.
Collapse
Affiliation(s)
- Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Haitao Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China.
| |
Collapse
|
2
|
Xu D, Zhang L, Song C, Zhang D, Xing C, Lv J, Bian H, Zhu M, Han M, Yu Y, Su L. Acacetin targets STING to alleviate the destabilization of the medial meniscus-induced osteoarthritis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8863-8878. [PMID: 38856915 DOI: 10.1007/s00210-024-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Osteoarthritis (OA) is a common joint disorder affecting about 7% of the global population, primarily characterized by the gradual loss of articular cartilage. This degeneration results from local inflammation, matrix depletion, and direct cartilage damage. A critical element in this process is the activation of the stimulator of the interferon genes (STING) pathway. Emerging evidence highlights its potential as a therapeutic target, with natural products showing promise as inhibitors. Our study centers on Acacetin, a basic unit of polyketides known for its anti-inflammatory properties. Prior research has highlighted its potential interaction with STING based on the structure. Thus, this study aimed to assess the effectiveness of Acacetin as a STING inhibitor and its protective role against OA. In vitro experiments showed that Acacetin pretreatment not only mitigated interleukin-1β (IL-1β)-induced cytotoxicity but also decreased the inflammatory response and degeneration in chondrocytes stimulated IL-1β. In vivo studies revealed that Acacetin administration significantly reduced articular cartilage destruction, abnormal bone remodeling, and osteophyte formation in a model of OA induced by destabilization of the medial meniscus (DMM). Mechanistically, Acacetin was found to interact directly with STING, and inhibit IL-1β-induced activation of STING, along with the subsequent phosphorylation of the TBK1/NF-κB pathway in chondrocytes. In conclusion, our findings establish Acacetin as an effective inhibitor of STING that protects chondrocytes from IL-1β-induced damage and slows the progression of OA in mice.
Collapse
Affiliation(s)
- Dingjun Xu
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Linjie Zhang
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Chenyu Song
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Dinglei Zhang
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Minyu Zhu
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minxuan Han
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China.
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China.
| |
Collapse
|
3
|
Liu L, Yao Z, Zhang H, Wu C, Guo X, Lin Y, Zhang H, Zeng C, Bai X, Cai D, Lai P. Deapi-platycodin D3 attenuates osteoarthritis development via suppression of PTP1B. J Bone Miner Res 2024; 39:1673-1687. [PMID: 39298571 DOI: 10.1093/jbmr/zjae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Dysregulated chondrocyte metabolism is an essential risk factor for osteoarthritis (OA) progression. Maintaining cartilage homeostasis represents a promising therapeutic strategy for the treatment of OA. However, no effective disease-modifying therapy is currently available to OA patients. To discover potential novel drugs for OA, we screened a small-molecule natural product drug library and identified deapi-platycodin D3 (D-PDD3), which was subsequently tested for its effect on extracellular matrix (ECM) properties and on OA progression. We found that D-PDD3 promoted the generation of ECM components in cultured chondrocytes and cartilage explants and that intra-articular injection of D-PDD3 delayed disease progression in a trauma-induced mouse model of OA. To uncover the underlying molecular mechanisms supporting these observed functions of D-PDD3, we explored the targets of D-PDD3 via screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry. The results suggested that D-PDD3 targeted tyrosine-protein phosphatase non-receptor type 1 (PTP1B), deletion of which restored chondrocyte homeostasis and markedly attenuated destabilization of the medial meniscus induced OA. Further cellular and molecular analyses showed that D-PDD3 maintained cartilage homeostasis by directly binding to PTP1B and consequently suppressing the PKM2/AMPK pathway. These findings demonstrated that D-PDD3 was a potential therapeutic drug for the treatment of OA and that PTP1B served as a protein target for the development of drugs to treat OA. This study provided significant insights into the development of therapeutics for OA treatment, which, in turn, helped to improve the quality of life of OA patients and to reduce the health and economic burden.
Collapse
Affiliation(s)
- Liangliang Liu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zihao Yao
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chunyu Wu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiongtian Guo
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yongzhi Lin
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongbo Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chun Zeng
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Pinglin Lai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
El-Haddad ME, El-Refaie WM, Hammad GO, El-Massik MA. Targeted non-invasive Metformin-Curcumin co-loaded nanohyaluosomes halt osteoarthritis progression and improve articular cartilage structure: A preclinical study. Int J Pharm 2024; 666:124845. [PMID: 39427700 DOI: 10.1016/j.ijpharm.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects the quality of life in elderly and young populations. Current therapies using corticosteroids and non-steroidal anti-inflammatory drugs via parenteral or oral routes show limited ability to retard progression of the disease and achieve long term effectiveness and safety. Herein, the potential of MT-Cur combinatorial nano-formulations in OA management was explored for the first time. MT-Cur loaded nanohyaluosomes (MT-Cur-HL1) were designed for topical administration of the combined therapy in OA. The optimized MT-Cur-HL1 showed particle size 247.7 ± 3.7 nm, zeta potential -37.3 ± 0.4 mV; and entrapment efficiency (%EE) 70.22 %±0.303 and 76.7 %±0.077 for MT and Cur, respectively. MT-Cur-HL1 exhibited sustained drug release over 24 h and were stable over 3 months at 4 °C in terms of P.S., ZP and %EE. A detailed preclinical study, using MIA-induced osteoarthritis rat model, revealed the most significant anti-arthritic effect and halted OA progression of MT-Cur-HL1. This was proved to be mainly through the potentiation of p-AMPK signaling that ultimately led to suppression of its downstream TLR4/ NF-κB signaling pathway with subsequent reduction in MMP13 and ADAMTS5 induced chondrocytes degeneration. This study proved that this trajectory effectively promotes a significant improvement in the articular cartilage structure and reinforcement of joint mobility with an efficient antinociceptive effect. In conclusion, the novel MT-Cur coloaded nanohyaluosomes offer a promising non-invasive approach for the local management of OA.
Collapse
Affiliation(s)
- Mennatallah E El-Haddad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ghada O Hammad
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
5
|
Sun Z, Tang J, You T, Zhang B, Liu Y, Liu J. lncRNA OIP5-AS1 promotes mitophagy to alleviate osteoarthritis by upregulating PPAR-γ to activate the AMPK/Akt/mTOR pathway. Mod Rheumatol 2024; 34:1265-1276. [PMID: 38441253 DOI: 10.1093/mr/roae015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/21/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common chronic joint degenerative disease. Herein, we investigated long non-coding RNA Opa-interacting protein 5-antisense transcript 1's (OIP5-AS1) in regulating mitophagy during OA. METHODS RNA immunoprecipitation and RNA pull-down verified the relationship between molecules. Cell counting kit-8 detected cell viability. Enzyme-linked immunosorbent assay evaluated inflammatory cytokines secretion. Flow cytometry measured the contents of reactive oxygen species (ROS) and calcium. Immunofluorescence staining analysed TOMM20 and LC3B levels. JC-1 staining was adopted to measure mitochondrial membrane potential. The changes of mitophagy were analysed by transmission electron microscopy. RESULTS Lipopolysaccharide (LPS) treatment contributed to the decrease of chondrocyte viability, and calcium level and inhibited mitochondrial membrane potential, while elevating the secretion of inflammatory factors, ROS, and TOMM20 expression. OIP5-AS1 overexpression inhibited LPS-induced chondrocyte injury and activated mitophagy. OIP5-AS1 upregulated the peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA level to regulate adenosine monophosphate-activated protein kinase (AMPK)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) signalling by interacting with FUS. PPAR-γ overexpression alleviated LPS-induced chondrocyte injury by activating AMPK/Akt/mTOR signalling. PPAR-γ knockdown reversed the promotion of OIP5-AS1 upregulation on mitophagy. CONCLUSIONS OIP5-AS1 promotes PPAR-γ expression to activate the AMPK/Akt/mTOR signalling, thereby enhancing mitophagy and alleviating OA progression.
Collapse
Affiliation(s)
- Zhilu Sun
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Jie Tang
- The First Affiliated Hospital, Department of Pain, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Ting You
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Bihong Zhang
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Yu Liu
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| |
Collapse
|
6
|
Zeng Y, Yu S, Lu L, Zhang J, Xu C. Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway. Nanomedicine (Lond) 2024; 19:2357-2373. [PMID: 39360651 PMCID: PMC11492688 DOI: 10.1080/17435889.2024.2403324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Aim: Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.Materials & methods: In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and ex vivo cultured human OA cartilage explants.Results: We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.Conclusion: Altogether, our findings demonstrated GDN hold great potential for OA treatment.
Collapse
Affiliation(s)
- Yiming Zeng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shun Yu
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Lin Lu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chen Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
7
|
Santos SAAR, Damasceno MDBMV, Sessle BJ, Vieira-Neto AE, de Oliveira Leite G, Magalhães FEA, Tavares KCS, Benevides SC, Campos AR. Sex differences in the orofacial antinociceptive effect of metformin and the role of transient receptor potential channels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03475-z. [PMID: 39356320 DOI: 10.1007/s00210-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Metformin is classified as a biguanide and is used in the treatment of type 2 diabetes. It is used worldwide and has been investigated in drug repositioning. The present study aims to investigate whether there is sexual dimorphism in the orofacial antinociceptive effect of metformin and the participation of TRP channels. Acute nociceptive behavior was induced by administering cinnamaldehyde or capsaicin to the upper lip. Nociceptive behavior was assessed through orofacial rubbing, and the effects of pre-treatment with metformin (125 or 250 mg/Kg) or vehicle (control) were tested on the behavior. Nociceptive behavior was also induced by formalin injected into the temporomandibular joint. The chronic pain model involved infraorbital nerve transection (IONX) was evaluated using Von Frey electronic filaments. Trpv1 gene expression was analyzed in the nerve ganglion. Docking experiments were performed. Metformin, but not the vehicle, produced antinociception (p < 0.0001) in all acute nociceptive behaviors in both sexes, and these effects were attenuated by the TRPV1 antagonist capsazepine and the TRPA1 antagonist HC-030031. In IONX with better (**p < 0.01, ****p < 0.0001 vs. control) results in females. TRPV1 gene expression was observed in the metformin treated group (*p < 0.05 vs. control). Docking experiments revealed that metformin may interact with TRPV1 and TRPA1 channels. Metformin promotes orofacial antinociception in both sexes in acute pain and is more effective in chronic pain in females than in males, through the modulation of TRPV1 and TRPA1 channels. These preclinical findings suggest a potential repositioning of metformin as an analgesic agent in acute and chronic orofacial pain states.
Collapse
Affiliation(s)
| | | | - Barry John Sessle
- Department of Physiology and Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | - Francisco Ernani Alves Magalhães
- Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
- Department of Nutrition and Health, State University of Ceará, Fortaleza, Brazil
| | | | | | - Adriana Rolim Campos
- Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil.
- Universidade de Fortaleza Núcleo de Biologia Experimental, Av. Washington Soares, 1321 Edson Queiroz, Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
Zhang Y, Zhou Y. Advances in targeted therapies for age-related osteoarthritis: A comprehensive review of current research. Biomed Pharmacother 2024; 179:117314. [PMID: 39167845 DOI: 10.1016/j.biopha.2024.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that disproportionately impacts the elderly population on a global scale. As aging is a significant risk factor for OA, there is a growing urgency to develop specific therapies that target the underlying mechanisms of aging associated with this condition. This summary seeks to offer a thorough introduction of ongoing research efforts aimed at developing therapies to combat senescence in the context of OA. Cellular senescence plays a pivotal role in both the deterioration of cartilage integrity and the perpetuation of chronic inflammation and tissue remodeling. Consequently, targeting SnCs has emerged as a promising therapeutic approach to alleviate symptoms and hinder the progression of OA. This review examines a range of approaches, including senolytic drugs targeting SnCs, senomorphics that modulate the senescence-associated secretory phenotype (SASP), and interventions that enhance immune system clearance of SnCs. Novel methodologies, such as utilizing novel materials for exosome delivery and administering anti-aging medications with precision, offer promising avenues for the precise treatment of OA. Accumulating evidence underscores the potential of targeting senescence in OA management, potentially facilitating the development of more effective and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Yantao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuan 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuan 430060, China.
| |
Collapse
|
9
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
10
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
11
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
12
|
Chen M, Li F, Qu M, Jin X, He T, He S, Chen S, Yao Q, Wang L, Chen D, Wu X, Xiao G. Pip5k1γ promotes anabolism of nucleus pulposus cells and intervertebral disc homeostasis by activating CaMKII-Ampk pathway in aged mice. Aging Cell 2024; 23:e14237. [PMID: 38840443 PMCID: PMC11488325 DOI: 10.1111/acel.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Degenerative disc disease (DDD) represents a significant global health challenge, yet its underlying molecular mechanisms remain elusive. This study aimed to investigate the role of type 1 phosphatidylinositol 4-phosphate 5-kinase (Pip5k1) in intervertebral disc (IVD) homeostasis and disease. All three Pip5k1 isoforms, namely Pip5k1α, Pip5k1β, and Pip5k1γ, were detectable in mouse and human IVD tissues, with Pip5k1γ displaying a highest expression in nucleus pulposus (NP) cells. The expression of Pip5k1γ was significantly down-regulated in the NP cells of aged mice and patients with severe DDD. To determine whether Pip5k1γ expression is required for disc homeostasis, we generated a Pip5k1γfl/fl; AggrecanCreERT2 mouse model for the conditional knockout of the Pip5k1γ gene in aggrecan-expressing IVD cells. Our findings revealed that the conditional deletion of Pip5k1γ did not affect the disc structure or cellular composition in 5-month-old adult mice. However, in aged (15-month-old) mice, this deletion led to several severe degenerative disc defects, including decreased NP cellularity, spontaneous fibrosis and cleft formation, and a loss of the boundary between NP and annulus fibrosus. At the molecular level, the absence of Pip5k1γ reduced the anabolism of NP cells without markedly affecting their catabolic or anti-catabolic activities. Moreover, the loss of Pip5k1γ significantly dampened the activation of the protective Ampk pathway in NP cells, thereby accelerating NP cell senescence. Notably, Pip5k1γ deficiency blunted the effectiveness of metformin, a potent Ampk activator, in activating the Ampk pathway and mitigating lumbar spine instability (LSI)-induced disc lesions in mice. Overall, our study unveils a novel role for Pip5k1γ in promoting anabolism and maintaining disc homeostasis, suggesting it as a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Feiyun Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Minghao Qu
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Shuangshuang He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Lin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaohao Wu
- Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- VA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
13
|
Bai L, Zhang X, Han Z, Yang X, Hao Y. Injectable porous microspheres for articular cartilage regeneration through in situ stem cell recruitment and macrophage polarization. Acta Biomater 2024; 185:429-440. [PMID: 38997077 DOI: 10.1016/j.actbio.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
In situ mesenchymal stem cells (MSCs) regenerative therapy holds promising potential for treating osteoarthritis. However, MSCs engraftment and intra-articular inflammation limit the therapeutic efficacy of this approach. This study introduces porous microspheres (PMs) composed of aldehyde-modified poly(lactic-co-glycolic acid), that encapsulate platelet derived growth factor-AB and kartogenin. Metformin (Met) is also incorporated onto the microsphere through a Schiff base reaction to create PMs@Met. In vitro, in vivo and ex experiments revealed that PMs@Met can be injected into the joint cavity, effectively recruiting endogenous MSCs in situ. This approach creates a favorable environment for MSCs proliferation. It also controls the intra-articular inflammatory environment by modulating the polarization of synovial macrophages, ultimately promoting cartilage repair. In summary, our study presents an innovative tissue engineering strategy for the treatment of osteoarthritis-induced articular cartilage injuries. STATEMENT OF SIGNIFICANCE: Cell therapy using autologous mesenchymal stem cells (MSCs) has potential to slow the progression of osteoarthritis (OA). Nonetheless, there are some disadvantages to adopting in situ MSCs therapy, including difficulties with MSC engraftment into cartilage-deficient regions, the effect of intra-articular inflammation on MSC therapeutic efficacy, and attaining selective chondrogenic MSC differentiation. We created injectable PLGA microspheres (PMs) that were loaded with PDGF-AB and KGN. Metformin was bonded to the surface of microspheres using a Schiff base reaction. The microspheres can recruit intra-articular MSCs and encourage their development into chondrocytes. The microspheres actively modulate the inflammatory joint environment by altering synovial macrophage polarization, thereby supporting MSCs in effective cartilage treatment. To summarize, microspheres hold great potential in the treatment of OA.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China
| | - Xiaoyu Zhang
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China
| | - Zeyu Han
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China
| | - Xing Yang
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China.
| | - Yuefeng Hao
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China.
| |
Collapse
|
14
|
Fu K, Si S, Jin X, Zhang Y, Duong V, Cai Q, Li G, Oo WM, Zheng X, Boer CG, Zhang Y, Wei X, Zhang C, Gao Y, Hunter DJ. Exploring antidiabetic drug targets as potential disease-modifying agents in osteoarthritis. EBioMedicine 2024; 107:105285. [PMID: 39153411 PMCID: PMC11378937 DOI: 10.1016/j.ebiom.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteoarthritis is a leading cause of disability, and disease-modifying osteoarthritis drugs (DMOADs) could represent a pivotal advancement in treatment. Identifying the potential of antidiabetic medications as DMOADs could impact patient care significantly. METHODS We designed a comprehensive analysis pipeline involving two-sample Mendelian Randomization (MR) (genetic proxies for antidiabetic drug targets), summary-based MR (SMR) (for mRNA), and colocalisation (for drug-target genes) to assess their causal relationship with 12 osteoarthritis phenotypes. Summary statistics from the largest genome-wide association meta-analysis (GWAS) of osteoarthritis and gene expression data from the eQTLGen consortium were utilised. FINDINGS Seven out of eight major types of clinical antidiabetic medications were identified, resulting in fourteen potential drug targets. Sulfonylurea targets ABCC8/KCNJ11 were associated with increased osteoarthritis risk at any site (odds ratio (OR): 2.07, 95% confidence interval (CI): 1.50-2.84, P < 3 × 10-4), while PPARG, influenced by thiazolidinediones (TZDs), was associated with decreased risk of hand (OR: 0.61, 95% CI: 0.48-0.76, P < 3 × 10-4), finger (OR: 0.50, 95% CI: 0.35-0.73, P < 3 × 10-4), and thumb (OR: 0.49, 95% CI: 0.34-0.71, P < 3 × 10-4) osteoarthritis. Metformin and GLP1-RA, targeting GPD1 and GLP1R respectively, were associated with reduced risk of knee and finger osteoarthritis. In the SMR analyses, gene expression of KCNJ11, GANAB, ABCA1, and GSTP1, targeted by antidiabetic drugs, was significantly linked to at least one osteoarthritis phenotype and was replicated across at least two gene expression datasets. Additionally, increased KCNJ11 expression was related to decreased osteoarthritis risk and co-localised with at least one osteoarthritis phenotype. INTERPRETATION Our findings suggest a potential therapeutic role for antidiabetic drugs in treating osteoarthritis. The results indicate that certain antidiabetic drug targets may modify disease progression, with implications for developing targeted DMOADs. FUNDING This study was funded by the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (2022), the Shanghai Municipal Health Commission Health Industry Clinical Research Project (Grant No. 20224Y0139), Beijing Natural Science Foundation (Grant No. 7244458), and the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (Grant No. GZC20230130).
Collapse
Affiliation(s)
- Kai Fu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| | - Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xinzhong Jin
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Vicky Duong
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| | - Qianying Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyi Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Win Min Oo
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia; Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine Mandalay, Mandalay, Myanmar
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, Rotterdam, the Netherlands
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Xiaojuan Wei
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - David J Hunter
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Lee Y, Kim HE, Kwak JS, Park CS, Chun JS. The cereblon-AMPK (AMP-activated protein kinase) axis in chondrocytes regulates the pathogenesis of osteoarthritis. Osteoarthritis Cartilage 2024:S1063-4584(24)01364-5. [PMID: 39218203 DOI: 10.1016/j.joca.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE AMP-activated protein kinase (AMPK) dysregulation is implicated in osteoarthritis (OA), but the mechanisms underlying this dysregulation remain unclear. We investigated the role of cereblon, a substrate-recognition protein within the E3-ligase ubiquitin complex, in AMPK dysregulation and OA pathogenesis. METHODS Cereblon expression was examined in human (n = 5) and mouse (n = 10) OA cartilage. The role of cereblon was investigated through its adenoviral overexpression (n = 10) or knockout (KO, n = 15) in the destabilization of the medial meniscus (DMM)-operated mice. The therapeutic potentials of the chemical cereblon degrader, TD-165, and the AMPK activator, metformin, were assessed through intra-articular (IA) injection to mice (n = 15). RESULTS Immunostaining revealed that cereblon is upregulated in human and mouse OA cartilage. In DMM model mice, cartilage destruction was exacerbated by overexpression of cereblon in mouse joint tissues (OARSI grade; 1.11 [95% CI: 0.50 to 2.75]), but inhibited in global (-2.50 [95% CI: -3.00 to -1.17]) and chondrocyte-specific (-2.17 [95% CI: -3.14 to -1.06]) cereblon KO mice. The inhibitory effects were more pronounced in mice fed a high-fat diet compared to a regular diet. The degradation of cereblon through IA injection of TD-165 inhibited OA cartilage destruction (-2.47 [95% CI: -3.22 to -1.56]). Mechanistically, cereblon exerts its catabolic effects by negatively modulating AMPK activity within chondrocytes. Consistently, activation of AMPK by IA injection of metformin inhibited posttraumatic OA cartilage destruction (-1.20 ([95% CI: -1.89 to -0.45]). CONCLUSIONS The cereblon-AMPK axis acts as a catabolic regulator of OA pathogenesis and seems to be a promising therapeutic target in animal models of OA.
Collapse
Affiliation(s)
- Yeon Lee
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyo-Eun Kim
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ji-Sun Kwak
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
16
|
Luo Q, Zhang S, Yang Q, Deng Y, Yi H, Li X. Causal factors for osteoarthritis risk revealed by mendelian randomization analysis. Aging Clin Exp Res 2024; 36:176. [PMID: 39172202 PMCID: PMC11341639 DOI: 10.1007/s40520-024-02812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Osteoarthritis (OA), a prevalent chronic disease among the elderly, presents a complex pathogenesis and currently lacks effective treatment. Traditional observational studies are time-consuming, labor-intensive, susceptible to confounding factors, and cannot establish causal relationships. Mendelian randomization (MR) analysis, leveraging genetic variation to assess causal associations between exposures and outcomes, offers a cost-effective and efficient alternative. Over the past decade, large-scale genome-wide association studies have identified numerous genetic variants linked to OA risk factors, facilitating MR study design. In this review, we systematically identified 52 MR studies meeting specific criteria and evaluated their quality, exploring the impact of lifestyle, nutrition, comorbidities, circulating metabolites, plasma proteins, and other health factors on OA risk. We discuss the results and potential mechanisms of MR findings, addressing conflicting evidence based on existing literature and our prior research. With the ongoing expansion of genome-wide association data, we anticipate MR's role in future OA studies to broaden, particularly in drug development research using targeted MR approaches. We thus aim for this paper to offer valuable insights for researchers and clinicians in related fields.
Collapse
Affiliation(s)
- Qingfeng Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shiyong Zhang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Qiyuan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuyi Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hengjing Yi
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xingsheng Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
17
|
Zhou F, Qian HY, Wang K, Gu YJ, Liu PL, Zhang L, Chen L, Song Y, Chen YN, Zhang HL. Metformin relieves bone cancer pain by reducing TGFβRI-TRPV1 signaling in rats. Heliyon 2024; 10:e34991. [PMID: 39157315 PMCID: PMC11328085 DOI: 10.1016/j.heliyon.2024.e34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Common cancer complications include bone cancer pain (BCP), which was not sufficiently alleviated by traditional analgesics. More safe and effective therapy was urgent needed. Metformin relieved osteoarthritis pain, but the analgesia of Metformin in BCP was not well studied. The study aimed to explore the Metformin-mediated analgesic effect and its molecular mechanisms in BCP rats. We demonstrated that Walker 256 cell transplantation into the medullary cavity of the tibia worsened mechanical allodynia in BCP rats, increased the expression of TGFβ1 in the metastatic bone tissue, and raised the expression of TGFβRI and TRPV1 in the L4-6 dorsal root ganglion (DRG) of BCP rats. While, selectively blockade of TGFβRI by SD208 could obviously elevated the paw withdraw threshold (PWT) of BCP rats, together with decreased TRPV1 expression in L4-6 DRG. Notably, continuous Metformin treatment reduced TGFβ1, TGFβRI and TRPV1 expression, and relieved mechanical allodynia of BCP rats in a long-term effect. In conclusion, these results illustrated that Metformin ameliorated bone cancer pain, and the downregulation of TGFβ1-TGFβRI-TRPV1 might be a potential mechanism of Metformin-mediated analgesia in BCP.
Collapse
Affiliation(s)
- Fang Zhou
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - He-Ya Qian
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ke Wang
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou 215128, China
| | - Yong-Juan Gu
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Pei-Lin Liu
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Long Chen
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Yu Song
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ya-Nan Chen
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Lee H, Choe J, Son MH, Lee IH, Lim MJ, Jeon J, Yang S. A Novel BD2-Selective Inhibitor of BRDs Mitigates ROS Production and OA Pathogenesis. Antioxidants (Basel) 2024; 13:943. [PMID: 39199189 PMCID: PMC11352053 DOI: 10.3390/antiox13080943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Bromodomain and extra-terminal domain (BET) family proteins regulate transcription and recognize lysine residues in histones. Selective BET inhibitors targeting one domain have attracted attention because they maintain normal physiological activities, whereas pan (nonselective) BET inhibitors do not. Osteoarthritis (OA) is a joint disorder characterized by cartilage degeneration for which no treatment currently exists. Here, we investigated whether the selective inhibition of BET proteins is an appropriate therapeutic strategy for OA. We focused on the development and characterization of 2-(4-(2-(dimethylamino)ethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (BBC0906), a novel bromodomain 2 (BD2)-specific inhibitor designed to suppress OA progression. Using a DNA-encoded chemical library (DEL) screening approach, BBC0906 was identified because of its high affinity with the BD2 domain of BET proteins. BBC0906 effectively reduced reactive oxygen species (ROS) production and suppressed catabolic factor expression in chondrocytes in vitro. Moreover, in an OA mouse model induced by the destabilization of the medial meniscus (DMM), BBC0906 intra-articular injection attenuated cartilage degradation and alleviated OA. Importantly, BBC0906 selectively inhibits the BD2 domain, thus minimizing its potential side effects. We highlighted the therapeutic potential of targeting BET proteins to modulate oxidative stress and suppress cartilage degradation in OA. BBC0906 is a promising candidate for OA treatment, offering improved safety and efficacy.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jihye Choe
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - Min-Hee Son
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - In-Hyun Lee
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - Min Ju Lim
- Department of Biomedical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea;
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
19
|
Ji Z, Ren X, Jin J, Ye X, Yu H, Fang W, Li H, Zhao Y, Tao S, Kong X, Cheng J, Shan Z, Chen J, Yao Q, Zhao F, Liu J. Injectable hydrogel encapsulating siMMP13 with anti-ROS and anti-apoptotic functions for osteoarthritis treatment. J Nanobiotechnology 2024; 22:466. [PMID: 39095867 PMCID: PMC11297633 DOI: 10.1186/s12951-024-02740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease characterized by the progressive degeneration of articular cartilage, leading to pain, stiffness, and loss of joint function. The pathogenesis of OA involves multiple factors, including increased intracellular reactive oxygen species (ROS), enhanced chondrocyte apoptosis, and disturbances in cartilage matrix metabolism. These processes contribute to the breakdown of the extracellular matrix (ECM) and the loss of cartilage integrity, ultimately resulting in joint damage and dysfunction. RNA interference (RNAi) therapy has emerged as a promising approach for the treatment of various diseases, including hATTR and acute hepatic porphyria. By harnessing the natural cellular machinery for gene silencing, RNAi allows for the specific inhibition of target genes involved in disease pathogenesis. In the context of OA, targeting key molecules such as matrix metalloproteinase-13 (MMP13), which plays a critical role in cartilage degradation, holds great therapeutic potential. RESULTS In this study, we developed an innovative therapeutic approach for OA using a combination of liposome-encapsulated siMMP13 and NG-Monomethyl-L-arginine Acetate (L-NMMA) to form an injectable hydrogel. The hydrogel served as a delivery vehicle for the siMMP13, allowing for sustained release and targeted delivery to the affected joint. Experiments conducted on destabilization of the medial meniscus (DMM) model mice demonstrated the therapeutic efficacy of this composite hydrogel. Treatment with the hydrogel significantly inhibited the degradation of cartilage matrix, as evidenced by histological analysis showing preserved cartilage structure and reduced loss of proteoglycans. Moreover, the hydrogel effectively suppressed intracellular ROS accumulation in chondrocytes, indicating its anti-oxidative properties. Furthermore, it attenuated chondrocyte apoptosis, as demonstrated by decreased levels of apoptotic markers. CONCLUSION In summary, the injectable hydrogel containing siMMP13, endowed with anti-ROS and anti-apoptotic properties, may represent an effective therapeutic strategy for osteoarthritis in the future.
Collapse
Affiliation(s)
- Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
| | - Xiaobin Ren
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, P.R. China
| | - Jiayan Jin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Xin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Hao Yu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, P.R. China
| | - Wenhan Fang
- College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, P.R. China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Yihao Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Jiao Cheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China
| | - Qingqing Yao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, P.R. China.
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China.
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, No. 3, Qingchun Road East, Hangzhou, 310016, P.R. China.
| |
Collapse
|
20
|
Kuswanto W, Baker MC. Repurposing drugs for the treatment of osteoarthritis. Osteoarthritis Cartilage 2024; 32:886-895. [PMID: 38821468 DOI: 10.1016/j.joca.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Currently, no disease-modifying therapies for osteoarthritis (OA) exist, and attempts to identify novel cellular targets have been challenging. Risk factors for OA include advanced age, obesity, and metabolic syndrome. This creates an attractive opportunity to repurpose existing drugs that are used to treat comorbidities commonly encountered in patients with OA, if those drugs possess OA disease modifying properties. METHODS This narrative review incorporates findings from knee or hand OA randomized clinical trials, post-hoc clinical trial analyses, prospective cohort studies, and observational data. RESULTS Drugs used for the treatment of rheumatoid arthritis (methotrexate; TNFa, IL-1, and IL-6 pathway inhibitors; hydroxychloroquine), atopic/allergic disease (anti-histamines), osteoporosis (bisphosphonates and vitamin D), type 2 diabetes (metformin and GLP-1 agonists), and cardiovascular disease (atorvastatin, fish oil, and beta blockers) were reviewed for their potential benefit in OA. This review outlines the successful attributes of repurposed drugs, the challenges in repurposing drugs, and strategies for future clinical trials to support OA drug repurposing. Potential drug candidates for OA may be identified through the use of existing datasets and via collaborations with researchers in other fields to include OA endpoints in future clinical trials. CONCLUSION Given the association of OA with several commonly treated comorbidities, drug repurposing is an appealing approach that could provide a favorable benefit-to-risk ratio for chronic OA treatment.
Collapse
Affiliation(s)
- Wilson Kuswanto
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Gilead Sciences Inc, Foster City, CA, USA
| | - Matthew C Baker
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Aiad AAE, El-Haggar SM, El-Barbary AM, El-Afify DR. Metformin as adjuvant therapy in obese knee osteoarthritis patients. Inflammopharmacology 2024; 32:2349-2359. [PMID: 38869746 PMCID: PMC11300470 DOI: 10.1007/s10787-024-01495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
AIMS This study aimed at investigating the efficacy of metformin as adjuvant therapy for obese knee osteoarthritis (OA) patients, considering its anti-inflammatory and cartilage-protective effects. PATIENTS AND METHODS In this randomized, double-blind, placebo-controlled study, 50 obese knee OA patients were assigned randomly to two groups, the metformin group (n = 25) which was treated with metformin 500 mg orally BID plus celecoxib 200 mg orally once daily, and the placebo group (n = 25) which was treated with placebo tablets BID plus celecoxib 200 mg orally once daily for 12 weeks. Cartilage Oligomeric Matrix Protein (COMP), C-terminal cross-linked telopeptide of type I collagen (CTX-1), and Interleukin 1-beta (IL-1β) serum levels were measured, while Western Ontario and McMaster Universities Arthritis Index (WOMAC) score assessed knee pain, stiffness, and physical function at baseline and after 12 weeks. RESULTS Following a 12-week treatment, the metformin group exhibited significantly reduced levels of COMP, CTX-1, and IL-1β in the serum compared to the placebo group (p = 0.0081, p = 0.0106, and p = 0.0223, respectively). Furthermore, metformin group produced significant improvements in WOMAC total scale (p < 0.0001), specifically in knee pain, stiffness, and physical function compared to placebo group (p < 0.0001, p < 0.0001, and p < 0.0001, respectively). CONCLUSION Metformin as an adjuvant therapy in obese knee OA patients may have beneficial effects on cartilage degradation and inflammation, as evidenced by the significant decreases in serum COMP, CTX-1, and IL-1β levels. Additionally, metformin may improve clinical outcomes, as shown by the significant improvements in WOMAC scores. CLINICALTRIALS GOV ID NCT05638893/Registered December 6, 2022 - Retrospectively.
Collapse
Affiliation(s)
- Amany Abd Elaal Aiad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | | | - Amal Mohamed El-Barbary
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Dalia Refat El-Afify
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
22
|
Gan D, Tao C, Jin X, Wu X, Yan Q, Zhong Y, Jia Q, Wu L, Huo S, Qin L, Xiao G. Piezo1 activation accelerates osteoarthritis progression and the targeted therapy effect of artemisinin. J Adv Res 2024; 62:105-117. [PMID: 37758057 PMCID: PMC11331168 DOI: 10.1016/j.jare.2023.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a devastating whole-joint disease affecting a large population worldwide with no cure; its mechanism remains poorly defined. Abnormal mechanical stress is the main pathological factor of OA. OBJECTIVES To investigate the effects of Piezo1 activation on OA development and progression and to explore Piezo1-targeting OA treatment. METHODS The expression levels of Piezo1 were determined in human OA cartilage and experimental OA mice. Mice with genetic Piezo1 deletion in chondrocytes or intra-articular injection of the Piezo1 activator Yoda1 were utilized to determine the effects on DMM-induced OA progression. Effects of artemisinin (ART), a potent antimalarial drug, on Piezo1 activation, chondrocyte metabolism and OA lesions were determined. RESULTS Piezo1 expression was elevated in articular chondrocytes in human OA and DMM-induced mouse OA cartilage. Piezo1 deletion in chondrocytes largely attenuates DMM-induced OA-like phenotypes. In contrast, intra-articular injection of Yoda1 aggravates the knee joint OA lesions in mice. PIEZO1 activation increases, while PIEZO1 siRNA knockdown decreases, expression of RUNX2 and catabolic enzymes MMP13 and ADAMTS5 in primary human articular chondrocytes in a PI3K-AKT dependent manner. We have provided strong evidence supporting that ART is a novel and potent inhibitor of Piezo1 activation in primary OA-HACs and all cell lines examined, including human endothelial HUVEC cells, ATDC5 chondrocyte-like cells and MLO-Y4 osteocytes-like cells. Results from in vitro experiments confirmed that ART decreases the Yoda1-induced increases in the levels of OA-related genes and p-PI3K and p-AKT proteins in OA-HACs and alleviates DMM-induced OA lesions in mice. CONCLUSIONS We establish a critical role of Piezo1 in promoting OA development and progression and define ART as a potential OA treatment.
Collapse
Affiliation(s)
- Donghao Gan
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Qinnan Yan
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Qingyun Jia
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| | - Lisheng Wu
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| | - Shaochuan Huo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
23
|
Anis MW, Iqbal A, Younus MI, Aamir A, Khalid W. Metformin: pioneering a path forward in knee osteoarthritis care? Ann Med Surg (Lond) 2024; 86:4333-4335. [PMID: 39118681 PMCID: PMC11305807 DOI: 10.1097/ms9.0000000000002318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
| | | | | | - Ali Aamir
- Dow Medical College, Karachi, Pakistan
| | | |
Collapse
|
24
|
Yang W, Yang Y, Wang Y, Gao Z, Zhang J, Gao W, Chen Y, Lu Y, Wang H, Zhou L, Wang Y, Li J, Tao H. Metformin prevents the onset and progression of intervertebral disc degeneration: New insights and potential mechanisms (Review). Int J Mol Med 2024; 54:71. [PMID: 38963023 PMCID: PMC11232665 DOI: 10.3892/ijmm.2024.5395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Metformin has been the go‑to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP‑activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.
Collapse
Affiliation(s)
- Wenzhi Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yong Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zongshi Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jingtang Zhang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weimin Gao
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanjun Chen
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - You Lu
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Haoyu Wang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lingyan Zhou
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yifan Wang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
25
|
Chen M, Liu Y, Li Y, Liu X. Tumor-targeted nano-assemblies for energy-blocking cocktail therapy in cancer. Acta Biomater 2024; 184:368-382. [PMID: 38908417 DOI: 10.1016/j.actbio.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Starvation therapy aims to "starve" tumor cells by cutting off their nutritional supply. However, due to the complex and varied energy metabolism of tumors, targeting a single nutrient supply often fails to yield significant therapeutic benefits. This study proposes a tumor energy cocktail therapy that combines metformin, an oxidative phosphorylation inhibitor, with 2-deoxy-d-glucose (2-DG), a glycolysis inhibitor, to target tumor cells. To minimize the dosage of both drugs, we have developed a drug delivery strategy that prepared metformin as a nanoderivative, denoted as MA-dots. These MA-dots not only preserve the antitumor properties of metformin but also serve as a targeted delivery platform for 2-DG, ensuring its direct reach to the tumor site. Upon reaching the acidic tumor environment, the composite disintegrates, releasing 2-DG to inhibit glycolysis by targeting hexokinase 2 (HK2), the key enzyme in glycolysis, while MA-dots inhibit mitochondrial OXPHOS. This dual action significantly reduces ATP production in tumor cells, leading to apoptosis. In human lung tumor cells, the half-maximal inhibitory concentration (IC50) of 2-DG@MA-dots was significantly lower than that of either metformin or 2-DG alone, showing a nearly 100-fold and 30-fold reduction in IC50 values to 11.78 µg mL-1, from 1159 µg mL-1 and 351.20 µg mL-1, respectively. In studies with A549 tumor-bearing mice, the combination of low-dose 2-DG and metformin did not impede tumor growth, whereas 2-DG@MA-dots markedly decreased tumor volume, with the mean final tumor volume in the combination treatment group being approximately 89 times greater than that in the 2-DG@MA-dot group. STATEMENT OF SIGNIFICANCE: Metformin is a promising antitumor agent capable of modulating mitochondrial oxidative phosphorylation to inhibit cancer growth. However, its antitumor efficacy is limited when used alone due to compensatory energy mechanisms. Hence, we introduced glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to inhibit an alternative tumor energy pathway. In our study, we developed a drug delivery strategy using metformin-derived nanomedicine (MA-dots) to load 2-DG. This approach enables the co-delivery of both drugs and their synergistic effect at the tumor site, disrupting both energy pathways and introducing an innovative "energy cocktail therapy".
Collapse
Affiliation(s)
- Manling Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, PR China
| | - Yidu Liu
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, PR China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, PR China.
| | - Xue Liu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, PR China; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, PR Singapore.
| |
Collapse
|
26
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
27
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Fazio A, Di Martino A, Brunello M, Traina F, Marvi MV, Mazzotti A, Faldini C, Manzoli L, Evangelisti C, Ratti S. The involvement of signaling pathways in the pathogenesis of osteoarthritis: An update. J Orthop Translat 2024; 47:116-124. [PMID: 39021400 PMCID: PMC11254498 DOI: 10.1016/j.jot.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/09/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
Osteoarthritis (OA) is one of the most common disabling pathologies, characterized by joint pain and reduced function, significantly worsening the quality of life. Even if important progresses have been made in OA research, little is yet known about the precise cellular and molecular mechanisms underlying OA. Understanding dysregulated signaling networks and their crosstalk in OA may offer a strong opportunity for the development of combined targeted therapies. Hence, this review highlights the recent findings on the main pathways involved in OA development, including Wnt, Notch, Hedgehog, MAPK, AMPK, and JAK/STAT, providing insights on current targeted therapies in OA patients' management. The translational potential of this article The identification of key signaling pathways involved in OA development and the investigation of their signaling crosstalk could pave the way for more effective treatments and improved management of OA patients in the future.
Collapse
Affiliation(s)
- Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Alberto Di Martino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- Ist Orthopedic Department, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Matteo Brunello
- Ist Orthopedic Department, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Francesco Traina
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- Ortopedia-Traumatologia e Chirurgia Protesica e dei Reimpianti d'anca e di Ginocchio, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Antonio Mazzotti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- Ist Orthopedic Department, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- Ist Orthopedic Department, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
29
|
Zhou H, Zou L, Ren H, Shen Z, Lin Y, Cai H, Zhang J. Cathelicidin-BF regulates the AMPK/SIRT1/NF-κB pathway to ameliorate murine osteoarthritis: In vitro and in vivo studie. Int Immunopharmacol 2024; 134:112201. [PMID: 38718660 DOI: 10.1016/j.intimp.2024.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease with a significant prevalence that causes cartilage damage and can lead to disability. The main factors contributing to the onset and progression of OA include inflammation and degeneration of the extracellular matrix. Cathelicidin-BF (BF-30), a natural peptide derived from Bungarus fasciatus venom, has shown multiple important pharmacological effects. However, the action mechanism of BF-30 in OA treatment remains to be elucidated. In this research, X-ray and Safranin O staining were employed to evaluate the imageology and histomorphology differences in the knee joints of mice in vivo. Techniques such as Western blot analysis, RT-qPCR, ELISA, and immunofluorescence staining were applied to examine gene and protein level changes in in vitro experiments. It was found that BF-30 significantly decreased inflammation and enhanced extracellular matrix metabolism. For the first time, it was demonstrated that the positive effects of BF-30 are mediated through the activation of the AMPK/SIRT1/NF-κB pathway. Moreover, when BF-30 was co-administered with Compound C, an AMPK inhibitor, the therapeutic benefits of BF-30 were reversed in both in vivo and in vitro settings. In conclusion, the findings suggest that BF-30 could be a novel therapeutic agent for OA improvement.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China.
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Hui Ren
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhenyu Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Yuanqu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Haikang Cai
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China.
| | - Jingdong Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
30
|
Chapman JH, Ghosh D, Attari S, Ude CC, Laurencin CT. Animal Models of Osteoarthritis: Updated Models and Outcome Measures 2016-2023. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:127-146. [PMID: 38983776 PMCID: PMC11233113 DOI: 10.1007/s40883-023-00309-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2024]
Abstract
Purpose Osteoarthritis (OA) is a global musculoskeletal disorder that affects primarily the knee and hip joints without any FDA-approved disease-modifying therapies. Animal models are essential research tools in developing therapies for OA; many animal studies have provided data for the initiation of human clinical trials. Despite this, there is still a need for strategies to recapitulate the human experience using animal models to better develop treatments and understand pathogenesis. Since our last review on animal models of osteoarthritis in 2016, there have been exciting updates in OA research and models. The main purpose of this review is to update the latest animal models and key features of studies in OA research. Method We used our existing classification method and screened articles in PubMed and bibliographic search for animal OA models between 2016 and 2023. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results Recent studies were analyzed and classified. We also identified ex vivo models as an area of ongoing research. Each animal model offers its own benefit in the study of OA and there are a full range of outcome measures that can be assessed. Despite the vast number of models, each has its drawbacks that have limited translating approved therapies for human use. Conclusion Depending on the outcome measures and objective of the study, researchers should pick the best model for their work. There have been several exciting studies since 2016 that have taken advantage of regenerative engineering techniques to develop therapies and better understand OA. Lay Summary Osteoarthritis (OA) is a chronic debilitating disease without any cure that affects mostly the knee and hip joints and often results in surgical joint replacement. Cartilage protects the joint from mechanical forces and degrades with age or in response to injury. The many contributing causes of OA are still being investigated, and animals are used for preclinical research and to test potential new treatments. A single consensus OA animal model for preclinical studies is non-existent. In this article, we review the many animal models for OA and provide a much-needed update on studies and model development since 2016.
Collapse
Affiliation(s)
- James H. Chapman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Seyyedmorteza Attari
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Chinedu C. Ude
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Bimolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
31
|
Zhang G, Qin J, Xu W, Liu M, Wu R, Qin Y. Gene expression and immune infiltration analysis comparing lesioned and preserved subchondral bone in osteoarthritis. PeerJ 2024; 12:e17417. [PMID: 38827307 PMCID: PMC11141552 DOI: 10.7717/peerj.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Osteoarthritis (OA) is a degenerative disease requiring additional research. This study compared gene expression and immune infiltration between lesioned and preserved subchondral bone. The results were validated using multiple tissue datasets and experiments. Methods Differentially expressed genes (DEGs) between the lesioned and preserved tibial plateaus of OA patients were identified in the GSE51588 dataset. Moreover, functional annotation and protein-protein interaction (PPI) network analyses were performed on the lesioned and preserved sides to explore potential therapeutic targets in OA subchondral bones. In addition, multiple tissues were used to screen coexpressed genes, and the expression levels of identified candidate DEGs in OA were measured by quantitative real-time polymerase chain reaction. Finally, an immune infiltration analysis was conducted. Results A total of 1,010 DEGs were identified, 423 upregulated and 587 downregulated. The biological process (BP) terms enriched in the upregulated genes included "skeletal system development", "sister chromatid cohesion", and "ossification". Pathways were enriched in "Wnt signaling pathway" and "proteoglycans in cancer". The BP terms enriched in the downregulated genes included "inflammatory response", "xenobiotic metabolic process", and "positive regulation of inflammatory response". The enriched pathways included "neuroactive ligand-receptor interaction" and "AMP-activated protein kinase signaling". JUN, tumor necrosis factor α, and interleukin-1β were the hub genes in the PPI network. Collagen XI A1 and leucine-rich repeat-containing 15 were screened from multiple datasets and experimentally validated. Immune infiltration analyses showed fewer infiltrating adipocytes and endothelial cells in the lesioned versus preserved samples. Conclusion Our findings provide valuable information for future studies on the pathogenic mechanism of OA and potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Gang Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
- Department of Orthopedics, Harbin First Hospital, Harbin, China
- Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Qin
- Department of Emergency, Harbin First Hospital, Harbin, China
| | - Wenbo Xu
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
| | - Meina Liu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Rilige Wu
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital, Beijing, China
| | - Yong Qin
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Hu B, Qiao W, Cao Y, Fu X, Song J. A sono-responsive antibacterial nanosystem co-loaded with metformin and bone morphogenetic protein-2 for mitigation of inflammation and bone loss in experimental peri-implantitis. Front Bioeng Biotechnol 2024; 12:1410230. [PMID: 38854857 PMCID: PMC11157067 DOI: 10.3389/fbioe.2024.1410230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Background Dental implants have become an increasingly popular option for replacing missing teeth, and the prevalence of peri-implantitis has also increased, which is expected to become a public health problem worldwide and cause high economic and health burdens. This scenario highlights the need for new therapeutic options to treat peri-implantitis. Methods In this study, we proposed a novel sono-responsive antibacterial nanosystem co-loaded with metformin (Met) and bone morphogenetic protein-2 (BMP-2) to promote efficacy in treating peri-implantitis. We introduced the zeolitic imidazolate framework-8 (ZIF-8) as a carrier for hematoporphyrin monomethyl ether (HMME) to enhance the antibacterial effect of sonodynamic antibacterial therapy and tested its reactive oxygen species (ROS) production efficiency and bactericidal effect in vitro. Afterward, HMME-loaded ZIF-8, BMP-2-loaded polylactic acid-glycolic acid (PLGA), and Met were incorporated into gelatin methacryloyl (GelMA) hydrogels to form HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels, and the biocompatibility of which was determined in vitro and in vivo. A bacterial-induced peri-implantitis model in the maxilla of rats was established to detect the effects of the composite hydrogels with adjunctive use of ultrasound on regulating inflammation and promoting bone tissue repair in vivo. Results The results indicated that HMME@ZIF-8 with ultrasound stimulation demonstrated more better ROS production efficiency and antimicrobial efficacy. The composite hydrogels had good biocompatibility. Ultrasound-assisted application of the composite hydrogels reduced the release of the inflammatory factors IL-6 and TNF-α and reduced bone loss around the implant in rats with bacterial-induced peri-implantitis. Conclusion Our observations suggest that HMME@ZIF-8 may be a new good sonosensitizer material for sonodynamic antibacterial therapy. The use of HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels in combination with ultrasound can provide a novel option for treating peri-implantitis in the future.
Collapse
Affiliation(s)
- Bo Hu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wang Qiao
- Department of Stomatology, Shapingba Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
33
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
34
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
35
|
Han T, Zhu T, Lu Y, Wang Q, Bian H, Chen J, Qiao L, He TC, Zheng Q. Collagen type X expression and chondrocyte hypertrophic differentiation during OA and OS development. Am J Cancer Res 2024; 14:1784-1801. [PMID: 38726262 PMCID: PMC11076255 DOI: 10.62347/jwgw7377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chondrocyte hypertrophy and the expression of its specific marker, the collagen type X gene (COL10A1), constitute key terminal differentiation stages during endochondral ossification in long bone development. Mutations in the COL10A1 gene are known to cause schmid type metaphyseal chondrodysplasia (SMCD) and spondyloepiphyseal dyschondrodysplasia (SMD). Moreover, abnormal COL10A1 expression and aberrant chondrocyte hypertrophy are strongly correlated with skeletal diseases, notably osteoarthritis (OA) and osteosarcoma (OS). Throughout the progression of OA, articular chondrocytes undergo substantial changes in gene expression and phenotype, including a transition to a hypertrophic-like state characterized by the expression of collagen type X, matrix metalloproteinase-13, and alkaline phosphatase. This state is similar to the process of endochondral ossification during cartilage development. OS, the most common pediatric bone cancer, exhibits characteristics of abnormal bone formation alongside the presence of tumor tissue containing cartilaginous components. This observation suggests a potential role for chondrogenesis in the development of OS. A deeper understanding of the shifts in collagen X expression and chondrocyte hypertrophy phenotypes in OA or OS may offer novel insights into their pathogenesis, thereby paving the way for potential therapeutic interventions. This review systematically summarizes the findings from multiple OA models (e.g., transgenic, surgically-induced, mechanically-loaded, and chemically-induced OA models), with a particular focus on their chondrogenic and/or hypertrophic phenotypes and possible signaling pathways. The OS phenotypes and pathogenesis in relation to chondrogenesis, collagen X expression, chondrocyte (hypertrophic) differentiation, and their regulatory mechanisms were also discussed. Together, this review provides novel insights into OA and OS therapeutics, possibly by intervening the process of abnormal endochondral-like pathway with altered collagen type X expression.
Collapse
Affiliation(s)
- Tiaotiao Han
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Tianxiang Zhu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Department of Human Anatomy, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Huiqin Bian
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Jinnan Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Longwei Qiao
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Tong-Chuan He
- The Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
- The Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
36
|
Yuan Z, Yang L, Li Y, Li X, Peng C, Pan J, Cai D. FTH1 protects against osteoarthritis by MAPK pathway inhibition of extracellular matrix degradation. BMC Musculoskelet Disord 2024; 25:282. [PMID: 38609896 PMCID: PMC11010333 DOI: 10.1186/s12891-024-07411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE Ferritin heavy chain 1 (FTH1) is an important subunit of ferro-storing proteins and is indispensable for iron metabolism. Though it has been extensively studied in numerous organs and diseases, the relationship between FTH1 and osteoarthritis (OA) is unclear. DESIGN Primary murine chondrocytes and cartilage explants were treated with FTH1 siRNA for 72 h. Mice were injected with adenovirus expressing FTH1 after destabilized medial meniscus (DMM) surgery. These approaches were used to determine the effect of FTH1 expression on the pathophysiology of OA. RESULTS FTH1 expression was down regulated in OA patients and mice after DMM surgery. Knock down of FTH1 induced articular cartilage damage and extracellular matrix degradation in cartilage explants. Further, over expression of FTH1 reduced the susceptibility of chondrocytes to ferroptosis and reversed decrements in SOX9 and aggrecan after DMM surgery. Moreover, FTH1 relieved OA by inhibition of the chondrocyte MAPK pathway. CONCLUSION This study found FTH1 to play an essential role in extracellular matrix degradation, ferroptosis, and chondrocytes senescence during OA progression. Further, injection of adenovirus expressing FTH1 may be a potential strategy for OA prevention and therapy.
Collapse
Affiliation(s)
- Zhikun Yuan
- Department of Orthopedics, Shijie Hospital of Dongguan City, Dongguan, China
| | - Lingfeng Yang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third School of Clinical Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yanhui Li
- Department of Pathology, Shijie Hospital of Dongguan City, Dongguan, China
| | - Xuming Li
- Department of Orthopedics, Shijie Hospital of Dongguan City, Dongguan, China
| | - Changgui Peng
- Department of Orthopedics, Shijie Hospital of Dongguan City, Dongguan, China
| | - Jianying Pan
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third School of Clinical Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third School of Clinical Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Li W, Lv Z, Wang P, Xie Y, Sun W, Guo H, Jin X, Liu Y, Jiang R, Fei Y, Tan G, Jiang H, Wang X, Liu Z, Wang Z, Xu N, Gong W, Wu R, Shi D. Near Infrared Responsive Gold Nanorods Attenuate Osteoarthritis Progression by Targeting TRPV1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307683. [PMID: 38358041 PMCID: PMC11040380 DOI: 10.1002/advs.202307683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 02/16/2024]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease worldwide, with the main pathological manifestation of articular cartilage degeneration. It have been investigated that pharmacological activation of transient receptor potential vanilloid 1 (TRPV1) significantly alleviated cartilage degeneration by abolishing chondrocyte ferroptosis. In this work, in view of the thermal activated feature of TRPV1, Citrate-stabilized gold nanorods (Cit-AuNRs) is conjugated to TRPV1 monoclonal antibody (Cit-AuNRs@Anti-TRPV1) as a photothermal switch for TRPV1 activation in chondrocytes under near infrared (NIR) irradiation. The conjugation of TRPV1 monoclonal antibody barely affect the morphology and physicochemical properties of Cit-AuNRs. Under NIR irradiation, Cit-AuNRs@Anti-TRPV1 exhibited good biocompatibility and flexible photothermal responsiveness. Intra-articular injection of Cit-AuNRs@Anti-TRPV1 followed by NIR irradiation significantly activated TRPV1 and attenuated cartilage degradation by suppressing chondrocytes ferroptosis. The osteophyte formation and subchondral bone sclerosis are remarkably alleviated by NIR-inspired Cit-AuNRs@Anti-TRPV1. Furthermore, the activation of TRPV1 by Cit-AuNRs@Anti-TRPV1 evidently improved physical activities and alleviated pain of destabilization of the medial meniscus (DMM)-induced OA mice. The study reveals Cit-AuNRs@Anti-TRPV1 under NIR irradiation protects chondrocytes from ferroptosis and attenuates OA progression, providing a potential therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Weitong Li
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Zhongyang Lv
- Department of OrthopedicsNanjing Jinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Peng Wang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Ya Xie
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Wei Sun
- Department of OrthopedicThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyin214400China
| | - Hu Guo
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Xiaoyu Jin
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalClinical College of Xuzhou Medical UniversityXuzhou Medical UniversityNanjingJiangsu221004China
| | - Yuxiang Fei
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Guihua Tan
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Huiming Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Xucai Wang
- Co‐Innovation Center for Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Zizheng Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Nuo Xu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Wenli Gong
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Rui Wu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalClinical College of Xuzhou Medical UniversityXuzhou Medical UniversityNanjingJiangsu221004China
| |
Collapse
|
38
|
Diekman BO, Loeser RF. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthritis Cartilage 2024; 32:365-371. [PMID: 38049031 PMCID: PMC10984800 DOI: 10.1016/j.joca.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE The correlation between age and incidence of osteoarthritis (OA) is well known but the causal mechanisms involved are not completely understood. This narrative review summarizes selected key findings from the past 30 years that have elucidated key aspects of the relationship between aging and OA. METHODS The peer-reviewed English language literature was searched on PubMed using keywords including senescence, aging, cartilage, and osteoarthritis, for original studies and reviews published from 1993 to 2023 with a major focus on more recent studies. Manuscripts most relevant to aging and OA that examined one or more of the hallmarks of aging were selected for further review. RESULTS All proposed hallmarks of aging have been observed in articular cartilage and some have also been described in other joint tissues. Hallmarks include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, disabled macroautophagy, chronic inflammation, and dysbiosis. There is evidence that these age-related changes contribute to the development of OA in part by promoting cellular senescence. Senescence may therefore serve as a downstream mediator that connects numerous aging hallmarks to OA, likely through the senescence-associated secretory phenotype that is characterized by increased production of proinflammatory cytokines and matrix metalloproteinases. CONCLUSIONS Progress over the past 30 years has provided the foundation for emerging therapies, such as senolytics and senomorphics, that hold promise for OA disease modification. Mechanistic studies utilizing physiologically-aged animals and cadaveric human joint tissues will be important for continued progress.
Collapse
Affiliation(s)
- Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27599, USA.
| | - Richard F Loeser
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
39
|
Xu YD, Liang XC, Li ZP, Wu ZS, Yang J, Jia SZ, Peng R, Li ZY, Wang XH, Luo FJ, Chen JJ, Cheng WX, Zhang P, Zha ZG, Zeng R, Zhang HT. Apoptotic body-inspired nanotherapeutics efficiently attenuate osteoarthritis by targeting BRD4-regulated synovial macrophage polarization. Biomaterials 2024; 306:122483. [PMID: 38330742 DOI: 10.1016/j.biomaterials.2024.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/16/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) is the most well-studied BET protein that is important for the innate immune response. We recently revealed that targeting BRD4 triggers apoptosis in tumor-associated macrophages, but its role in synovial macrophages and joint inflammation is largely unknown. Herein, we demonstrated that BRD4 was highly expressed in the iNOS-positive M1 macrophages in the human and mouse osteoarthritis (OA) synovium, and conditional knockout of BRD4 in the myeloid lineage using Lyz2-cre; BRD4flox/flox mice significantly abolished anterior cruciate ligament transection (ACLT)-induced M1 macrophage accumulation and synovial inflammation. Accordingly, we successfully constructed apoptotic body-inspired phosphatidylserine-containing nanoliposomes (PSLs) loaded with the BRD4 inhibitor JQ1 to regulate inflammatory macrophages. JQ1-loaded PSLs (JQ1@PSLs) exhibited a higher cellular uptake by macrophages than fibroblast-like synoviocytes (FLSs) in vitro and in vivo, as well as the reduction in proinflammatory M1 macrophage polarization. Intra-articular injections of JQ1@PSLs showed prolonged retention within the joint, and remarkably reduced synovial inflammation and joint pain via suppressing M1 polarization accompanied by reduced TRPA1 expression by targeted inhibition of BRD4 in the macrophages, thus attenuating cartilage degradation during OA development. The results show that BRD4-inhibiting JQ1@PSLs can targeted-modulate macrophage polarization, which opens a new avenue for efficient OA therapy via a "Trojan horse".
Collapse
Affiliation(s)
- Yi-Di Xu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Xiang-Chao Liang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhao-Sheng Wu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Jie Yang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Shi-Zhen Jia
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rui Peng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Xiao-He Wang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Fang-Ji Luo
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Jia-Jing Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Wen-Xiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China.
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
40
|
Pi P, Zeng L, Zeng Z, Zong K, Han B, Bai X, Wang Y. The role of targeting glucose metabolism in chondrocytes in the pathogenesis and therapeutic mechanisms of osteoarthritis: a narrative review. Front Endocrinol (Lausanne) 2024; 15:1319827. [PMID: 38510704 PMCID: PMC10951080 DOI: 10.3389/fendo.2024.1319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can affect almost any joint, mainly resulting in joint dysfunction and pain. Worldwide, OA affects more than 240 million people and is one of the leading causes of activity limitation in adults. However, the pathogenesis of OA remains elusive, resulting in the lack of well-established clinical treatment strategies. Recently, energy metabolism alterations have provided new insights into the pathogenesis of OA. Accumulating evidence indicates that glucose metabolism plays a key role in maintaining cartilage homeostasis. Disorders of glucose metabolism can lead to chondrocyte hypertrophy and extracellular matrix degradation, and promote the occurrence and development of OA. This article systematically summarizes the regulatory effects of different enzymes and factors related to glucose metabolism in OA, as well as the mechanism and potential of various substances in the treatment of OA by affecting glucose metabolism. This provides a theoretical basis for a better understanding of the mechanism of OA progression and the development of optimal prevention and treatment strategies.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Keqiang Zong
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- School of Physical Education, Qiqihar University, Heilongjiang, Qiqihar, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
41
|
Song Y, Wu S, Zhang R, Zhong Q, Zhang X, Sun X. Therapeutic potential of hydrogen sulfide in osteoarthritis development. Front Pharmacol 2024; 15:1336693. [PMID: 38370481 PMCID: PMC10869529 DOI: 10.3389/fphar.2024.1336693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
The pathological mechanisms and treatments of osteoarthritis (OA) are critical topics in medical research. This paper reviews the regulatory mechanisms of hydrogen sulfide (H2S) in OA and the therapeutic potential of H2S donors. The review highlights the importance of changes in the endogenous H2S pathway in OA development and systematically elaborates on the role of H2S as a third gaseous transmitter that regulates inflammation, oxidative stress, and pain associated with OA. It also explains how H2S can lessen bone and joint inflammation by inhibiting leukocyte adhesion and migration, reducing pro-inflammatory mediators, and impeding the activation of key inflammatory pathways such as nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). Additionally, H2S is shown to mitigate mitochondrial dysfunction and endoplasmic reticulum stress, and to modulate Nrf2, NF-κB, PI3K/Akt, and MAPK pathways, thereby decreasing oxidative stress-induced chondrocyte apoptosis. Moreover, H2S alleviates bone and joint pain through the activation of Kv7, K-ATP, and Nrf2/HO-1-NQO1 pathways. Recent developments have produced a variety of H2S donors, including sustained-release H2S donors, natural H2S donors, and synthetic H2S donors. Understanding the role of H2S in OA can lead to the discovery of new therapeutic targets, while innovative H2S donors offer promising new treatments for patients with OA.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
42
|
Chen S, Xu H, He Y, Meng C, Fan Y, Qu Y, Wang Y, Zhou W, Huang X, You H. Carveol alleviates osteoarthritis progression by acting on synovial macrophage polarization transformation: An in vitro and in vivo study. Chem Biol Interact 2024; 387:110781. [PMID: 37967808 DOI: 10.1016/j.cbi.2023.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023]
Abstract
Osteoarthritis (OA) is a heterogeneous disease that affects the entire joint. Its pathogenesis involves hypertrophy and hyperplasia of synovial cells and polarization infiltration of macrophages, in which macrophages, as a potential target, can delay the progression of the disease by improving the immune microenvironment in OA. To investigate the role and regulatory mechanism of Carveol in cartilage and synovial macrophage reprogramming and crosstalk during the development of OA. RAW264.7 mouse macrophage cell line was mainly used to stimulate macrophages to polarization towards M1 and M2 by LPS, IL4+IL13, respectively. Different concentrations of Carveol were given to intervene, and macrophage culture medium was collected to intervene mouse C57BL6J chondrocytes. ROS assay kit, western blotting, cellular immunofluorescence, scanning microscope and section histology were used to evaluate the effect of Carveol on anti-M1-polarization, M2-polarization promotion and cartilage protection. The mouse destabilization of medial meniscus (DMM) model was observed by micro-CT scan and histology. We found that CA could inhibit the increase of macrophage inflammation level under the intervention of LPS and promote the production of M2 anti-inflammatory substances under the intervention of IL-4+IL13. In addition, Carveol activated NRF2/HO-1/NQO1 pathway and enhanced ROS clearance in chondrocytes under the intervention of macrophage culture medium. The phosphorylation of I-κBα is inhibited, which further reduces the phosphorylation of P65 downstream of nuclear factor-κB (NF-κB) signaling pathway. In addition, Carveol inhibits mitogen activated protein kinase (MAPK) signaling molecules P-JNK, P-ERK and P-P38, and inhibits the production of inflammatory mediators. In vivo, Carveol can reduce osteophytes and bone spurs induced by DMM, reduce hypertrophy of synovial cells, reduce infiltration of macrophages, inhibit subchondral bone destruction, and reduce articular cartilage erosion. Our study suggests that synovial macrophages are potential targets for OA treatment, and Carveol is an effective candidate for OA treatment.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Chen Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Wei Zhou
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China.
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China.
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China.
| |
Collapse
|
43
|
Lim YZ, Wang Y, Urquhart DM, Estee MM, Wluka AE, Heritier S, Cicuttini FM. Metformin for knee osteoarthritis with obesity: study protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open 2023; 13:e079489. [PMID: 38070903 PMCID: PMC10729261 DOI: 10.1136/bmjopen-2023-079489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Over half of the populations with knee osteoarthritis (OA) have obesity. These individuals have many other shared metabolic risk factors. Metformin is a safe, inexpensive, well-tolerated drug that has pleiotropic effects, including structural protection, anti-inflammatory and analgesic effects in OA, specifically the knee. The aim of this randomised, double-blind, placebo-controlled trial is to determine whether metformin reduces knee pain over 6 months in individuals with symptomatic knee OA who are overweight or obese. METHODS AND ANALYSIS One hundred and two participants with symptomatic knee OA and overweight or obesity will be recruited from the community in Melbourne, Australia, and randomly allocated in a 1:1 ratio to receive either metformin 2 g or identical placebo daily for 6 months. The primary outcome is reduction of knee pain [assessed by 100 mm Visual Analogue Scale (VAS)] at 6 months. The secondary outcomes are OMERACT-OARSI (Outcome Measures in Rheumatology-Osteoarthritis Research Society International) responder criteria [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain, function and participant's global assessment (VAS)] at 6 months; change in knee pain, stiffness, function using WOMAC at 6 months and quality of life at 6 months. Adverse events will be recorded. The primary analysis will be by intention to treat, including all participants in their randomised groups. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Alfred Hospital Ethics Committee (708/20) and Monash University Human Research Ethics Committee (28498). Written informed consent will be obtained from all the participants. The findings will be disseminated through peer-review publications and conference presentations. TRIAL REGISTRATION NUMBER ACTRN12621000710820 .
Collapse
Affiliation(s)
- Yuan Z Lim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Yuanyuan Wang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Donna M Urquhart
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Mahnuma Mahfuz Estee
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Anita E Wluka
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Stephane Heritier
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Flavia M Cicuttini
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
44
|
An F, Zhang J, Gao P, Xiao Z, Chang W, Song J, Wang Y, Ma H, Zhang R, Chen Z, Yan C. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy. Front Cell Dev Biol 2023; 11:1297024. [PMID: 38143922 PMCID: PMC10748422 DOI: 10.3389/fcell.2023.1297024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Ferroptosis, characterized by iron accumulation and lipid peroxidation, is a form of iron-driven cell death. Mitophagy is a type of selective autophagy, where degradation of damaged mitochondria is the key mechanism for maintaining mitochondrial homeostasis. Additionally, Chaperone-mediated autophagy (CMA) is a biological process that transports individual cytoplasmic proteins to lysosomes for degradation through companion molecules such as heat shock proteins. Research has demonstrated the involvement of ferroptosis, mitophagy, and CMA in the pathological progression of Osteoarthritis (OA). Furthermore, research has indicated a significant correlation between alterations in the expression of reactive oxygen species (ROS), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factors (HIFs) and the occurrence of OA, particularly in relation to ferroptosis and mitophagy. In light of these findings, our study aims to assess the regulatory functions of ferroptosis and mitophagy/CMA in the pathogenesis of OA. Additionally, we propose a mechanism of crosstalk between ferroptosis and mitophagy, while also examining potential pharmacological interventions for targeted therapy in OA. Ultimately, our research endeavors to offer novel insights and directions for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haizhen Ma
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rui Zhang
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhendong Chen
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
45
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
46
|
Cheng C, Wu Y, Huang Y, Xue Q, Wang Y, Liao F, Wang X, Miao C. Epigenetic modification and exosome effects on autophagy in osteoarthritis. Biochem Pharmacol 2023; 218:115930. [PMID: 37979704 DOI: 10.1016/j.bcp.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that leads to joint pain and stiffness and is one of the leading causes of disability and pain worldwide. Autophagy is a highly conserved self-degradation process, and its abnormal function is closely related to human diseases, including OA. Abnormal autophagy regulates cell aging, matrix metalloproteinase metabolism, and reactive oxygen metabolism, which are key in the occurrence and development of OA. There is evidence that drugs directly or indirectly targeting autophagy significantly hinder the progress of OA. In addition, the occurrence and development of autophagy in OA are regulated by many factors, including epigenetic modification, exosomes, crucial autophagy molecules, and signaling pathway regulation. Autophagy, as a new therapeutic target for OA, has widely influenced the pathological mechanism of OA. However, determining how autophagy affects OA pathology and its use in the treatment and diagnosis of targets still need further research.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiaomei Wang
- Department of Humanistic Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
47
|
Yang Z, Jiang W, Xiong C, Shang J, Huang Y, Zhou X, Zhang S. Calcipotriol suppresses GPX4-mediated ferroptosis in OA chondrocytes by blocking the TGF-β1 pathway. Cytokine 2023; 171:156382. [PMID: 37782985 DOI: 10.1016/j.cyto.2023.156382] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Globally, tens of millions of individuals experience osteoarthritis (OA), a degenerative joint condition for which a definitive cure is currently lacking. This condition is characterized by joint inflammation and the progressive deterioration of articular cartilage. In this study, western blotting, quantitative reverse-transcription polymerase chain reaction, and immunofluorescence analysis were performed to elucidate the molecular mechanisms by which calcipotriol alleviates chondrocyte ferroptosis. The effect of calcipotriol on reactive oxygen species and lipid peroxidation levels in chondrocytes was assessed using dihydroethidium staining and the fluorescent dye BODIPY. To replicate OA, the destabilized medial meniscus model was employed, followed by the injection of calcipotriol into the knee articular cavity. Morphological analysis was conducted through hematoxylin and eosin staining, safranin O-Fast green staining, and micro-computed tomography analysis. Immunohistochemical analysis was performed to validate the effect of calcipotriol in vivo. Our results demonstrate that the expression of SOX9, col2a1, and Aggrecan, as well as MMP13 and ADAMTS5 protein expression levels, decrease upon treatment with calcipotriol in interleukin-1β stimulated chondrocytes. Despite these promising outcomes, the exact mechanism underlying calcipotriol's therapeutic effect on OA remains uncertain. We discovered that calcipotriol inhibits chondrocyte GPX4-mediated ferroptosis by suppressing the expression of transforming growth factor-β1. Furthermore, our study established an in vivo model of OA using rats with medial meniscus instability. Our experiments on rats with OA revealed that intra-articular calcipotriol injection significantly reduces cartilage degradation caused by the disease. Our findings suggest that calcipotriol can mitigate OA by impeding GPX4-mediated ferroptosis of chondrocytes, achieved through the suppression of the TGF-β1 pathway.
Collapse
Affiliation(s)
- Zhicheng Yang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, China
| | - Chenwei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China; Department of Orthopedics, Zhangjiajie People's Hospital, Zhangjiajie 427000, China
| | - JingJing Shang
- Department of Pharmacy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China; Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai Province 811800, China.
| | - Su Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
48
|
Ren X, Zhuang H, Jiang F, Zhang Y, Zhou P. Barasertib impedes chondrocyte senescence and alleviates osteoarthritis by mitigating the destabilization of heterochromatin induced by AURKB. Biomed Pharmacother 2023; 166:115343. [PMID: 37634474 DOI: 10.1016/j.biopha.2023.115343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage loss that causes disability worldwide. The accumulation of senescent chondrocytes in aging human cartilage contributes to the high incidence of OA. Heterochromatin instability, the hallmark and driving factor of senescence, regulates the expression of the senescence-associated secretory phenotype that induces inflammation and cartilage destruction. However, the role of heterochromatin instability in OA progression remains unclear. In this work, we identified AURKB as a key senescence-associated chromatin regulator using bioinformatics methods. We found that AURKB was upregulated in OA cartilage and chondrocytes exposed to abnormal mechanical strain. Overexpression of AURKB could cause senescence and heterochromatin instability. Furthermore, the AURKB inhibitor Barasertib reversed senescence and heterochromatin instability in chondrocytes and alleviated OA in a rat model. Mechanistically, abnormal mechanical strain increased AURKB levels through the Piezo1/Ca2+ signaling axis. Blocking Piezo1/Ca2+ signaling by short interfering RNA against Piezo1 and Ca2+ chelator BAPTA could reduce the expression of AURKB and alleviate senescence in chondrocytes exposed to abnormal mechanical strain. In conclusion, our data confirmed that abnormal mechanical strain increases the expression of AURKB by activating the Piezo1/Ca2+ signaling axis, leading to destabilized heterochromatin and senescence in chondrocytes, whereas Barasertib consolidates heterochromatin, counteracts senescence and alleviates OA.
Collapse
Affiliation(s)
- Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuze Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
49
|
Sun K, Guo J, Guo Z, Hou L, Liu H, Hou Y, He J, Guo F, Ye Y. The roles of the Hippo-YAP signalling pathway in Cartilage and Osteoarthritis. Ageing Res Rev 2023; 90:102015. [PMID: 37454824 DOI: 10.1016/j.arr.2023.102015] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Osteoarthritis (OA) is an age-related disease, characterized by cartilage degeneration. The pathogenesis of OA is complicated and the current therapeutic approaches for OA are limited. Cartilage, an integral part of the skeletal system composed of chondrocytes, is essential for skeletal development, tissue patterning, and maintaining the normal activity of joints. The development, homeostasis and degeneration of cartilage are tightly associated with OA. Over the past decade, accumulating evidence indicates that Hippo/YAP is a vital biochemical signalling pathway that strictly governs tissue development and homeostasis. The joint tissues, especially for cartilage, are sensitive to changes of Hippo/YAP signalling. In this review, we summarize the role of Hippo/YAP signalling in cartilage and discuss its involvement in OA progression from points of cartilage degradation, subchondral bone remodeling, and synovial alteration. We also highlight the potential therapeutic implications of Hippo/YAP signalling and further discuss current limitations and controversy on Hippo/YAP-based application for OA treatment.
Collapse
Affiliation(s)
- Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junchen He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
50
|
Lu K, Wang Q, Hao L, Wei G, Wang T, Lu WW, Xiao G, Tong L, Zhao X, Chen D. miR-204 ameliorates osteoarthritis pain by inhibiting SP1-LRP1 signaling and blocking neuro-cartilage interaction. Bioact Mater 2023; 26:425-436. [PMID: 36969105 PMCID: PMC10033455 DOI: 10.1016/j.bioactmat.2023.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Osteoarthritis (OA) is a painful degenerative joint disease and is the leading cause of chronic disability among elderly individuals. To improve the quality of life for patients with OA, the primary goal for OA treatment is to relieve the pain. During OA progression, nerve ingrowth was observed in synovial tissue and articular cartilage. These abnormal neonatal nerves act as nociceptors to detect OA pain signals. The molecular mechanisms for transmitting OA pain in the joint tissues to the central nerve system (CNS) is currently unknown. MicroRNA miR-204 has been demonstrated to maintain the homeostasis of joint tissues and have chondro-protective effect on OA pathogenesis. However, the role of miR-204 in OA pain has not been determined. In this study, we investigated interactions between chondrocytes and neural cells and evaluated the effect and mechanism of miR-204 delivered by exosome in the treatment of OA pain in an experimental OA mouse model. Our findings demonstrated that miR-204 could protect OA pain by inhibition of SP1- LDL Receptor Related Protein 1 (LRP1) signaling and blocking neuro-cartilage interaction in the joint. Our studies defined novel molecular targets for the treatment of OA pain.
Collapse
Affiliation(s)
- Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
| | - Qingyun Wang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
| | - Liuzhi Hao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guizheng Wei
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200011, China
| | - William W. Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
- Corresponding author. Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
| |
Collapse
|