1
|
You J, Guo Y, Wang YJ, Zhang Y, Wang HF, Wang LB, Kang JJ, Feng JF, Yu JT, Cheng W. Clinical trajectories preceding incident dementia up to 15 years before diagnosis: a large prospective cohort study. Mol Psychiatry 2024; 29:3097-3105. [PMID: 38678085 DOI: 10.1038/s41380-024-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Dementia has a long prodromal stage with various pathophysiological manifestations; however, the progression of pre-diagnostic changes remains unclear. We aimed to determine the evolutional trajectories of multiple-domain clinical assessments and health conditions up to 15 years before the diagnosis of dementia. METHODS Data was extracted from the UK-Biobank, a longitudinal cohort that recruited over 500,000 participants from March 2006 to October 2010. Each demented subject was matched with 10 healthy controls. We performed logistic regressions on 400 predictors covering a comprehensive range of clinical assessments or health conditions. Their evolutional trajectories were quantified using adjusted odds ratios (ORs) and FDR-corrected p-values under consecutive timeframes preceding the diagnosis of dementia. FINDINGS During a median follow-up of 13.7 [Interquartile range, IQR 12.9-14.2] years until July 2022, 7620 subjects were diagnosed with dementia. In general, upon approaching the diagnosis, demented subjects witnessed worse functional assessments and a higher prevalence of health conditions. Associations up to 15 years preceding the diagnosis comprised declined physical strength (hand grip strength, OR 0.65 [0.63-0.67]), lung dysfunction (peak expiratory flow, OR 0.78 [0.76-0.81]) and kidney dysfunction (cystatin C, OR 1.13 [1.11-1.16]), comorbidities of coronary heart disease (OR 1.78 [1.67-1.91]), stroke (OR 2.34 [2.1-1.37]), diabetes (OR 2.03 [1.89-2.18]) and a series of mental disorders. Cognitive functions in multiple tests also demonstrate decline over a decade before the diagnosis. Inadequate activity (3-5 year, overall time of activity, OR 0.82 [0.73-0.92]), drowsiness (3-5 year, sleep duration, OR 1.13 [1.04-1.24]) and weight loss (0-5 year, weight, OR 0.9 [0.83-0.98]) only exhibited associations within five years before the diagnosis. In addition, serum biomarkers of enriched endocrine, dysregulations of ketones, deficiency of brand-chain amino acids and polyunsaturated fatty acids were found in a similar prodromal time window and can be witnessed as the last pre-symptomatic conditions before the diagnosis. INTERPRETATION Our findings present a comprehensive temporal-diagnostic landscape preceding incident dementia, which could improve selection for preventive and early disease-modifying treatment trials.
Collapse
Affiliation(s)
- Jia You
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yu Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yu-Jia Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yi Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Lin-Bo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- School of Data Science, Fudan University, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
| | - Jin-Tai Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China.
| |
Collapse
|
2
|
Rosenberg M, Beidelman ET, Chen X, Whiteson Kabudula C, Pettifor A, Bassil DT, Berkman L, Kahn K, Tollman S, Kobayashi LC. Effect of a cash transfer intervention on memory decline and dementia probability in older adults in rural South Africa. Proc Natl Acad Sci U S A 2024; 121:e2321078121. [PMID: 39298474 PMCID: PMC11459187 DOI: 10.1073/pnas.2321078121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/28/2024] [Indexed: 09/21/2024] Open
Abstract
Evidence on cash transfers as a population-level intervention to support healthy cognitive aging in low-income settings is sparse. We assessed the effect of a cash transfer intervention on cognitive aging outcomes in older South African adults. We leveraged the overlap in the sampling frames of a Phase 3 randomized cash transfer trial [HIV Prevention Trial Network (HPTN) 068, 2011-2015] and an aging cohort [Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community (HAALSI), 2014-2022] in rural Mpumalanga Province, South Africa. In 2011/12, young women and their primary caregivers were randomly assigned 1:1 to receive a monthly cash transfer or control. In 2014/2015, 862 adults aged 40+ y living in trial households were enrolled in the HAALSI cohort, with cognitive data collected in three waves over 7 y. We estimated the impact of the intervention on rate of memory decline and dementia probability scores. Memory decline in the cash transfer arm was 0.03 SD units (95% CI: 0.002, 0.05) slower per year than in the control arm. Dementia probability scores were three percentage points lower in the cash transfer arm than the control arm (β = -0.03; 95% CI: -0.05, -0.001). Effects were consistent across subgroups. A modestly sized household cash transfer delivered over a short period in mid- to later-life led to a meaningful slowing of memory decline and reduction in dementia probability 7 y later. Cash transfer programs could help stem the tide of new dementia cases in economically vulnerable populations in the coming decades.
Collapse
Affiliation(s)
- Molly Rosenberg
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN47405
- South African Medical Research Council/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2193, South Africa
| | - Erika T. Beidelman
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN47405
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, Indiana University School of Public Health-Bloomington, Bloomington, IN47405
| | - Chodziwadziwa Whiteson Kabudula
- South African Medical Research Council/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2193, South Africa
| | - Audrey Pettifor
- South African Medical Research Council/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2193, South Africa
- Department of Epidemiology, University of North Carolina-Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC27599
| | - Darina T. Bassil
- Center for Population and Development Studies, Harvard TH Chan School of Public Health, Cambridge, MA02138
| | - Lisa Berkman
- South African Medical Research Council/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2193, South Africa
- Center for Population and Development Studies, Harvard TH Chan School of Public Health, Cambridge, MA02138
| | - Kathleen Kahn
- South African Medical Research Council/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2193, South Africa
- Department of Epidemiology and Global Health, Umeå University, Umeå901 85, Sweden
| | - Stephen Tollman
- South African Medical Research Council/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2193, South Africa
- Department of Epidemiology and Global Health, Umeå University, Umeå901 85, Sweden
| | - Lindsay C. Kobayashi
- South African Medical Research Council/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg2193, South Africa
- Department of Epidemiology, Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, Ann Arbor, MI48109
| |
Collapse
|
3
|
Sim YJ, Townsend RF, Mills S, Stocker R, Stevenson E, McEvoy C, Fairley AM. Understanding engagement in diet and dementia prevention research among British South Asians: a short report of findings from a patient and public involvement group. J Hum Nutr Diet 2024; 37:899-908. [PMID: 38713734 DOI: 10.1111/jhn.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Dementia is a global public health challenge. Evidence suggests that individuals from South Asian communities are an at-risk group for dementia, partly as a result of early and cumulative exposure to known dementia risk factors, such as obesity and type 2 diabetes. There needs to be more culturally appropriate community engagement to increase awareness of dementia and identify better strategies to encourage participation in dementia-related research. METHODS We aimed to better understand the barriers and facilitators towards engaging with, and participating in, diet and dementia related research among British South Asians. This was achieved using a public and patient involvement (PPI) approach. A community-based, engagement event involving information sharing from experts and roundtable discussions with South Asian communities (n = 26 contributors) was held in June 2023 in Newcastle-upon-Tyne, UK. Collaboration from preidentified PPI representatives (n = 3) informed the content and structure of PPI activities, as well as recruitment. Data were synthesised using template analysis, a form of codebook thematic analysis. This involved deductively analysing data using relevant a priori themes, which were expanded upon, or modified, via inductive analysis. RESULTS The findings highlighted the importance of trust, representation and appreciation of cultural barriers as facilitators to engagement in diet and dementia risk reduction research. Consideration of language barriers, time constraints, social influences and how to embed community outreach activities were reported as driving factors to maximise participation. CONCLUSIONS This PPI work will inform the design and co-creation of a culturally adapted dietary intervention for brain health in accordance with the Medical Research Council and National Institute for Health and Care Research guidance for developing complex interventions.
Collapse
Affiliation(s)
- Yi J Sim
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca F Townsend
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Susanna Mills
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Stocker
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Stevenson
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claire McEvoy
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Andrea M Fairley
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Zhang S, Xiao Y, Cheng Y, Ma Y, Liu J, Li C, Shang H. Associations of sugar intake, high-sugar dietary pattern, and the risk of dementia: a prospective cohort study of 210,832 participants. BMC Med 2024; 22:298. [PMID: 39020335 PMCID: PMC11256505 DOI: 10.1186/s12916-024-03525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Limited evidence demonstrated the potential relationship between dietary sugar intake and dementia. This association demands further clarification in a large-scale population. METHODS A total of 210,832 participants from the UK Biobank cohort were included in this prospective cohort study. Absolute and relative sugar intake and high-sugar dietary scores were utilized to reflect dietary sugar intake. Absolute sugar intake was identified by the Oxford WebQ in the UK Biobank. Relative sugar intake was calculated by dividing the absolute sugar intake by total diet energy. High-sugar dietary pattern was identified using the method of reduced rank regression. Cox proportional hazards regression analyses and restricted cubic splines were performed to examine the longitudinal associations between dietary sugar intake and all-cause dementia and its main subtype, Alzheimer's disease. Explorative mediation analyses were conducted to explore underlying mechanisms. RESULTS Increased absolute sugar intake (g/day) was significantly associated with a higher risk of all-cause dementia (HR = 1.003, [95%CI: 1.002-1.004], p < 0.001) and Alzheimer's disease (1.002, [1.001-1.004], 0.005). Relative sugar intake (%g/kJ/day) also demonstrated significant associations with all-cause dementia (1.317, [1.173-1.480], p < 0.001) and Alzheimer's disease (1.249, [1.041-1.500], 0.017), while the high-sugar dietary score was only significantly associated with a higher risk of all-cause dementia (1.090, [1.045-1.136], p < 0.001). In addition, both sugar intake and high-sugar dietary score demonstrated significant non-linear relationships with all-cause dementia and Alzheimer's disease (all p values for non-linearity < 0.05). CONCLUSIONS Our study provided evidence that excessive sugar intake was associated with dementia. Controlling the excess consumption of dietary sugar may be of great public health implications for preventing dementia.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanzheng Ma
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiyong Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Correa LB, da Silva JS, Zanetti MA, Cônsolo NRB, Pfrimer K, Netto AS. The Effect of a Nutritional Intervention with the Use of Biofortified Beef Meat on Selected Biochemical Parameters in Blood from Older Adults. Nutrients 2024; 16:2281. [PMID: 39064724 PMCID: PMC11280052 DOI: 10.3390/nu16142281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate the effects of meat biofortified with antioxidants and canola oil on the health of older adults through blood parameters. Eighty institutionalized older persons were divided into four groups who received the following treatments: C-control meat with 46 µg/kg of meat with selenium, 3.80 g/kg of meat with vitamin E and 0.78 g/100 g of meat with conjugated linoleic acid (CLA); A-antioxidant meat with 422 µg/kg of meat with selenium, 7.65 g/kg of meat with vitamin E and 0.85 g/100 g of meat with CLA; O-oil meat with 57 µg/kg of meat with selenium, 3.98 g/kg of meat with vitamin E and 1.27 g/100 g of meat with CLA; OA-oil and antioxidant meat with 367 µg/kg of meat with selenium, 7.78 g/kg of meat with vitamin E and 1.08 g/100 g of meat with CLA. Blood samples were collected at 0, 45 and 90 days after the start of meat intake. Older adults who consumed ANT (A and AO) meat had higher concentrations of selenium (p = 0.039), vitamin E and HDL (higher concentrations of high-density lipoprotein, p = 0.048) in their blood. This study demonstrates that the consumption of Se- and vitamin E-biofortified meat increases the concentration of these metabolites in blood from older adults.
Collapse
Affiliation(s)
- Lisia Bertonha Correa
- Department of Animal Science, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (L.B.C.); (M.A.Z.)
| | - Janaina Silveira da Silva
- Department of Animal Science, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (L.B.C.); (M.A.Z.)
| | - Marcus Antonio Zanetti
- Department of Animal Science, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (L.B.C.); (M.A.Z.)
| | - Nara Regina Brandão Cônsolo
- Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-900, Brazil;
| | - Karina Pfrimer
- Department of Biotechnology and Nutrition, University of Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil;
- Program of Post-Graduation Nutrition and Metabolism, Department of Health Sciences, School Medical of Ribeirão Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto 14049-900, Brazil
| | - Arlindo Saran Netto
- Department of Animal Science, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (L.B.C.); (M.A.Z.)
| |
Collapse
|
6
|
Al Shamsi HSS, Rainey-Smith SR, Gardener SL, Sohrabi HR, Canovas R, Martins RN, Fernando WMADB. The Relationship between Diet, Depression, and Alzheimer's Disease: A Narrative Review. Mol Nutr Food Res 2024; 68:e2300419. [PMID: 38973221 DOI: 10.1002/mnfr.202300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/02/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW This narrative review evaluates the role of diet in the relationship between depression and Alzheimer's disease (AD). RECENT FINDINGS AD and depression are often comorbid, and depression appears to independently increase the future risk of AD. Evidence suggests diet influences the risk of both conditions directly and indirectly. Diet impacts neurochemical and biological processes that may affect the development and progression of depression and cognitive dysfunction. The dietary components offering the greatest protection against depression and AD are yet to be determined. Current evidence highlights the importance of polyphenolic compounds, folate, B vitamins, and polyunsaturated fatty acids, along with adherence to dietary patterns like the Mediterranean diet, which includes multiple beneficial dietary factors. SUMMARY The investigation of dietary factors in the prevention of depression and AD is a comparatively young field of research. Comprehensive highly characterised longitudinal datasets and advanced analytical approaches are required to further examine the complex relationship between diet, depression, and AD. There is a critical need for more research in this area to develop effective preventive strategies aimed at maintaining mental and physical health with advancing age.
Collapse
Affiliation(s)
- Hilal Salim Said Al Shamsi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia
| | - Rodrigo Canovas
- Health & Biosecurity, The Commonwealth Scientific and Industrial Research Organisation, Herston, Queensland, 4029, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia
| | - Warnakulasuriya Mary Ann Dipika Binosha Fernando
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
| |
Collapse
|
7
|
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024; 16:789. [PMID: 38542700 PMCID: PMC10975805 DOI: 10.3390/nu16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Andrea Lehoczki
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
8
|
Alam MT, Vásquez E, Etnier JL, Echeverria S. Dietary Adherence and Cognitive Performance in Older Adults by Nativity Status: Results from the National Health and Nutrition Examination Survey (NHANES), 2011-2014. Geriatrics (Basel) 2024; 9:25. [PMID: 38525742 PMCID: PMC10961773 DOI: 10.3390/geriatrics9020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Although adherence to dietary guidelines is associated with better cognitive performance, there may be differences by nativity status. This study aimed to investigate the association between adherence to the healthy eating index (HEI) and cognitive performance (CP) among United States (US)-born and foreign-born older adults (60+ years). Data were obtained from the 2011-2014 NHANES (n = 3065). Dietary adherence was assessed with HEI quintiles. CP (adequate vs. low) was examined using word listing (CERAD), animal naming (AFT), and the digit symbol substitution test (DSST). Weighted multivariable logistic regressions were used to examine associations. The US-born participants in higher dietary quintiles had adequate CP when compared to foreign-born participants. In adjusted models, the US-born participants in the highest HEI quintile had increased odds of adequate DSST scores (odds ratio: 1.95, 95% confidence interval: 1.15-3.28) compared with those in the lowest quintile. Patterns of association were generally reversed for foreign-born participants and were non-statistically significant. Future research should consider the influence of diets in delaying or preventing decline in cognition and evaluate nutritional factors that contribute to cognitive outcomes for the foreign-born population.
Collapse
Affiliation(s)
- Md Towfiqul Alam
- Department of Health Sciences, James Madison University, Harrisonburg, VA 22807, USA
| | - Elizabeth Vásquez
- Department of Epidemiology & Biostatistics, University at Albany, Albany, NY 12144, USA
| | - Jennifer L Etnier
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Sandra Echeverria
- Department of Public Health Education, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
9
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
10
|
Andrews V, Zammit G, O’Leary F. Dietary pattern, food, and nutritional supplement effects on cognitive outcomes in mild cognitive impairment: a systematic review of previous reviews. Nutr Rev 2023; 81:1462-1489. [PMID: 37027832 PMCID: PMC10563860 DOI: 10.1093/nutrit/nuad013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
CONTEXT Nutritional interventions may benefit cognition in people with mild cognitive impairment (MCI). However, evidence is yet to be synthesized in a way that can inform recommendations for clinical and public health settings. OBJECTIVE To systematically review evidence on the effect of dietary patterns, foods, and nutritional supplements on cognitive decline in individuals with MCI. DATA SOURCES Guided by the Preferred Reporting items for Systematic Review and Meta-Analysis Protocols 2015 statement, the Medline, EMBASE, and CINAHL databases, the JBI Database of Systematic Reviews and Implementation Reports, Cochrane Database of Systematic Reviews, and Database of Abstracts of Reviews of Effects were searched (publication years 2005 to 2020). Included studies were English-language systematic reviews and meta-analyses of randomized controlled trials and cohort studies reporting on the effectiveness of nutritional interventions on cognition of individuals with MCI. DATA EXTRACTION Two reviewers independently selected studies and extracted data on cognitive outcomes and adverse events. Review quality was assessed using AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews-2). Primary study overlap was managed following Cochrane Handbook guidelines. DATA ANALYSIS Of the 6677 records retrieved, 20 reviews were included, which, in turn, reported on 43 randomized controlled trials and 1 cohort study that, together, addressed 18 nutritional interventions. Most reviews were limited by quality and the small number of primary studies with small sample sizes. Reviews were mostly positive for B vitamins, omega-3 fatty acids, and probiotics (including 12, 11 and 4 primary studies, respectively). Souvenaid and the Mediterranean diet reduced cognitive decline or Alzheimer's disease progression in single trials with <500 participants. Findings from studies with a small number of participants suggest vitamin D, a low-carbohydrate diet, medium-chain triglycerides, blueberries, grape juice, cocoa flavanols, and Brazil nuts may improve individual cognitive subdomains, but more studies are needed. CONCLUSIONS Few nutritional interventions were found to convincingly improve cognition of individuals with MCI. More high-quality research in MCI populations is required to determine if nutritional treatments improve cognition and/or reduce progression to dementia. SYSTEMATIC REVIEW REGISTRATION Open Science Framework protocol identifier DOI:10.17605/OSF.IO/BEP2S.
Collapse
Affiliation(s)
- Victoria Andrews
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Gabrielle Zammit
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Fiona O’Leary
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
11
|
Mendes A. Impact of Lifestyle on Cognitive Decline, Part 2: Looking Beyond Diet. Br J Community Nurs 2023; 28:372-373. [PMID: 37527221 DOI: 10.12968/bjcn.2023.28.8.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Affiliation(s)
- Aysha Mendes
- Freelance Journalist, Specialising in Healthcare and Psychology
| |
Collapse
|
12
|
Martinsen A, Saleh RNM, Chouinard-Watkins R, Bazinet R, Harden G, Dick J, Tejera N, Pontifex MG, Vauzour D, Minihane AM. The Influence of APOE Genotype, DHA, and Flavanol Intervention on Brain DHA and Lipidomics Profile in Aged Transgenic Mice. Nutrients 2023; 15:2032. [PMID: 37432149 DOI: 10.3390/nu15092032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/12/2023] Open
Abstract
The apolipoprotein E4 (APOE4) genotype is predictive of Alzheimer's disease (AD). The brain is highly enriched with the omega-3 polyunsaturated fatty acid (n3-PUFA), docosahexaenoic acid (DHA). DHA's metabolism is defective in APOE4 carriers. Flavanol intake can play a role in modulating DHA levels. However, the impact of flavanol co-supplementation with fish oil on brain DHA uptake, status and partitioning, and according to APOE genotype is currently unknown. Here, using a humanised APOE3 and APOE4 targeted replacement transgenic mouse model, the interactive influence of cocoa flavanols (FLAV) and APOE genotype on the blood and subcortical brain PUFA status following the supplementation of a high fat (HF) enriched with DHA from fish oil (FO) was investigated. DHA levels increased in the blood (p < 0.001) and brain (p = 0.001) following supplementation. Compared to APOE3, a higher red blood cell (RBC) DHA (p < 0.001) was evident in APOE4 mice following FO and FLAV supplementation. Although FO did not increase the percentage of brain DHA in APOE4, a 17.1% (p < 0.05) and 20.0% (p < 0.001) higher DHA level in the phosphatidylcholine (PC) fraction in the HF FO and HF FO FLAV groups, and a 14.5% (p < 0.05) higher DHA level in the phosphatidylethanolamine (PE) fraction in the HF FO FLAV group was evident in these animals relative to the HF controls. The addition of FLAV (+/- FO) did not significantly increase the percentage of brain DHA in the group as a whole. However, a higher brain: RBC DHA ratio was evident in APOE3 only (p < 0.05) for HF FLAV versus HF. In conclusion, our data shows only modest effects of FLAV on the brain DHA status, which is limited to APOE3.
Collapse
Affiliation(s)
| | - Rasha N M Saleh
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Raphael Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Richard Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - James Dick
- Nutrition Analytical Service, Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Noemi Tejera
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
13
|
Janse A, van de Rest O, de Groot LCPGM, Witkamp RF. The Association of Vitamin D Status with Mild Cognitive Impairment and Dementia Subtypes: A Cross-Sectional Analysis in Dutch Geriatric Outpatients. J Alzheimers Dis 2023; 91:1359-1369. [PMID: 36641667 DOI: 10.3233/jad-220732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Vitamin D deficiency is associated with all-cause dementia and Alzheimer's disease (AD). At the same time, this knowledge is limited specifically for vascular dementia (VaD), while data regarding other subtypes of dementia are even more limited. OBJECTIVE To investigate the association of 25-hydroxy vitamin D (25(OH)D) status with dementia subtypes in an outpatient geriatric population. METHODS In a cross-sectional design, we analyzed data from 1,758 patients of an outpatient memory clinic in The Netherlands. Cognitive disorders were diagnosed by a multidisciplinary team according to international clinical standards. At each first-visit 25(OH)D levels were measured. Data were analyzed using ANCOVA in four models with age, gender, BMI, education, alcohol, smoking, season, polypharmacy, calcium, eGFR, and glucose as co-variates. 25(OH)D was treated as a continuous square rooted (sqr) variable. RESULTS In the fully adjusted model, reduced 25(OH)D serum levels (sqr) were found in AD (estimated mean 7.77±0.11 CI95% 7.55-7.99): and in VaD (estimated mean 7.60±0.16 CI95% 7.28-7.92) patients compared to no-dementia (ND) patients (estimated mean 8.27±0.09 CI95% 8.10-8.45) (ND-AD: p = 0.006, CI95% 0.08-0.92.; ND-VaD p = 0.004 CI95% 0.13-1.22). We did not find differences in 25(OH)D levels of mild cognitive impairment (MCI) or other dementia patients compared to ND patients, nor differences in comparing dementia subtypes. CONCLUSION We observed significantly lower 25(OH)D serum levels in both AD and VaD patients compared to no-dementia patients, but no significant differences between MCI and Lewy body and mixed dementia subtypes in this cross-sectional study of a geriatric outpatient clinic population.
Collapse
Affiliation(s)
- André Janse
- Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands.,Department of Geriatric Medicine, Gelderse Vallei Hospital, the Netherlands
| | - Ondine van de Rest
- Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| | | | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| |
Collapse
|
14
|
Impact of Nut Consumption on Cognition across the Lifespan. Nutrients 2023; 15:nu15041000. [PMID: 36839359 PMCID: PMC9965316 DOI: 10.3390/nu15041000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Cognitive health is a life-long concern affected by modifiable risk factors, including lifestyle choices, such as dietary intake, with serious implications for quality of life, morbidity, and mortality worldwide. In addition, nuts are a nutrient-dense food that contain a number of potentially neuroprotective components, including monounsaturated and polyunsaturated fatty acids, fiber, B-vitamins, non-sodium minerals, and highly bioactive polyphenols. However, increased nut consumption relates to a lower cardiovascular risk and a lower burden of cardiovascular risk factors that are shared with neurodegenerative disorders, which is why nuts have been hypothesized to be beneficial for brain health. The present narrative review discusses up-to-date epidemiological, clinical trial, and mechanistic evidence of the effect of exposure to nuts on cognitive performance. While limited and inconclusive, available evidence suggests a possible role for nuts in the maintenance of cognitive health and prevention of cognitive decline in individuals across the lifespan, particularly in older adults and those at higher risk. Walnuts, as a rich source of the plant-based polyunsaturated omega-3 fatty acid alpha-linolenic acid, are the nut type most promising for cognitive health. Given the limited definitive evidence available to date, especially regarding cognitive health biomarkers and hard outcomes, future studies are needed to better elucidate the impact of nuts on the maintenance of cognitive health, as well as the prevention and management of cognitive decline and dementia, including Alzheimer disease.
Collapse
|
15
|
Mahinrad S, Sorond F, Gorelick PB. The Role of Vascular Risk Factors in Cognitive Impairment and Dementia and Prospects for Prevention. Clin Geriatr Med 2023; 39:123-134. [PMID: 36404025 DOI: 10.1016/j.cger.2022.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the most challenging clinical expressions of population aging is cognitive impairment and dementia. Among risk factors for the development of dementia, modifiable vascular risk factors have emerged as contributors to both vascular and nonvascular types of dementia. Epidemiologic studies have been particularly informative in understanding the link between vascular risks and dementia across the life course. We discuss vascular risks for dementia and cognitive impairment and practical management recommendations.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 625 N. Michigan Avenue, 11th Floor, Suite 1150, Chicago, IL 60611, USA.
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 625 N. Michigan Avenue, 11th Floor, Suite 1150, Chicago, IL 60611, USA
| | - Philip B Gorelick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 625 N. Michigan Avenue, 11th Floor, Suite 1150, Chicago, IL 60611, USA
| |
Collapse
|
16
|
Eat for better cognition in older adults at risk for Alzheimer's disease. Nutrition 2023; 109:111969. [PMID: 36801704 DOI: 10.1016/j.nut.2022.111969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/10/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease is a worldwide public health problem. However, the treatment method and treatment effects are limited. The stages of preclinical Alzheimer's disease are thought to be a better intervention period. Thus, in this review, food is given focus and the intervention stage put forward. We summarized the role of diet, nutrient supplementation, and microbioecologics in cognitive decline and found that interventions such as modified Mediterranean-ketogenic diet, nuts, vitamin B, and Bifidobacterium breve A1 are beneficial to cognition protection. Eating, rather than just taking medicine, is suggested to be an effective treatment method for older adults at risk for Alzheimer's disease.
Collapse
|
17
|
Chen L, Jiao J, Zhang Y. Therapeutic approaches for improving cognitive function in the aging brain. Front Neurosci 2022; 16:1060556. [PMID: 36570840 PMCID: PMC9773601 DOI: 10.3389/fnins.2022.1060556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The rapid aging of populations around the world has become an unprecedented challenge. Aging is associated with cognitive impairment, including dementia and mild cognitive impairment. Successful drug development for improving or maintaining cognition in the elderly is critically important. Although 4 drugs for improving cognition in Alzheimer's disease have been approved, a variety of potential drugs targeting age-related cognitive impairment are still in development. In addition, non-pharmacological interventions, including cognition-oriented treatments, non-invasive brain stimulation physical exercise, and lifestyle-related interventions, have also been suggested as cognitive enhancers in the last decade. In this paper, we reviewed the recent evidence of pharmacological and non-pharmacological interventions aimed at improving or maintaining cognition in the elderly.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiao Jiao
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Satizabal CL, Himali JJ, Beiser AS, Ramachandran V, Melo van Lent D, Himali D, Aparicio HJ, Maillard P, DeCarli CS, Harris WS, Seshadri S. Association of Red Blood Cell Omega-3 Fatty Acids With MRI Markers and Cognitive Function in Midlife: The Framingham Heart Study. Neurology 2022; 99:e2572-e2582. [PMID: 36198518 PMCID: PMC9754651 DOI: 10.1212/wnl.0000000000201296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Diet may be a key contributor to brain health in midlife. In particular, omega-3 fatty acids have been related to better neurologic outcomes in older adults. However, studies focusing on midlife are lacking. We investigated the cross-sectional association of red blood cell (RBC) omega-3 fatty acid concentrations with MRI and cognitive markers of brain aging in a community-based sample of predominantly middle-aged adults and further explore effect modification by APOE genotype. METHODS We included participants from the Third-Generation and Omni 2 cohorts of the Framingham Heart Study attending their second examination. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations were measured from RBC using gas chromatography, and the Omega-3 index was calculated as EPA + DHA. We used linear regression models to relate omega-3 fatty acid concentrations to brain MRI measures (i.e., total brain, total gray matter, hippocampal, and white matter hyperintensity volumes) and cognitive function (i.e., episodic memory, processing speed, executive function, and abstract reasoning) adjusting for potential confounders. We further tested for interactions between omega-3 fatty acid levels and APOE genotype (e4 carrier vs noncarrier) on MRI and cognitive outcomes. RESULTS We included 2,183 dementia-free and stroke-free participants (mean age of 46 years, 53% women, 22% APOE-e4 carriers). In multivariable models, higher Omega-3 index was associated with larger hippocampal volumes (standard deviation unit beta ±standard error; 0.003 ± 0.001, p = 0.013) and better abstract reasoning (0.17 ± 0.07, p = 0.013). Similar results were obtained for DHA or EPA concentrations individually. Stratification by APOE-e4 status showed associations between higher DHA concentrations or Omega-3 index and larger hippocampal volumes in APOE-e4 noncarriers, whereas higher EPA concentrations were related to better abstract reasoning in APOE-e4 carriers. Finally, higher levels of all omega-3 predictors were related to lower white matter hyperintensity burden but only in APOE-e4 carriers. DISCUSSION Our results, albeit exploratory, suggest that higher omega-3 fatty acid concentrations are related to better brain structure and cognitive function in a predominantly middle-aged cohort free of clinical dementia. These associations differed by APOE genotype, suggesting potentially different metabolic patterns by APOE status. Additional studies in middle-aged populations are warranted to confirm these findings.
Collapse
Affiliation(s)
- Claudia L Satizabal
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD.
| | - Jayandra Jung Himali
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Alexa S Beiser
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Vasan Ramachandran
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Debora Melo van Lent
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Dibya Himali
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Hugo J Aparicio
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Pauline Maillard
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Charles S DeCarli
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - William S Harris
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Sudha Seshadri
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| |
Collapse
|
19
|
Kobayashi LC, Kabudula CW, Kabeto MU, Yu X, Tollman SM, Kahn K, Berkman LF, Rosenberg MS. Long-term household material socioeconomic resources and cognitive health in a population-based cohort of older adults in rural northeast South Africa, 2001-2015. SSM Popul Health 2022; 20:101263. [PMID: 36281246 PMCID: PMC9587313 DOI: 10.1016/j.ssmph.2022.101263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Material resources owned by households that affect daily living conditions may be salient for cognitive health during aging, especially in low-income settings, but there is scarce evidence on this topic. We investigated relationships between long-term trends in household material resources and cognitive function among older adults in a population-representative study in rural South Africa. Data were from baseline interviews with 4580 adults aged ≥40 in “Health and Ageing in Africa: A Longitudinal Study of an INDEPTH Community in South Africa” (HAALSI) in 2014/2015 linked to retrospective records on their household material resources from the Agincourt Health and Socio-Demographic Surveillance System (HDSS) from 2001 to 2013. Household material resources were assessed biennially in the Agincourt HDSS using a five-point index that captured dwelling materials, water and sanitation, sources of power, livestock, and technological amenities. Cognitive function was assessed in HAALSI and analyzed as a z-standardized latent variable capturing time orientation, episodic memory, and numeracy. We evaluated the relationships between quintiles of each of the mean resource index score, volatility in resource index score, and change in resource index score and subsequent cognitive function, overall and by resource type. Higher mean household resources were positively associated with cognitive function (βadj = 0.237 standard deviation [SD] units for the highest vs. lowest quintile of mean resource index score; 95% CI: 0.163–0.312; p-trend<0.0001), as were larger improvements over time in household resources (βadj = 0.122 SD units for the highest vs. lowest quintile of change in resources; 95% CI: 0.040–0.205; p-trend = 0.001). Results were robust to sensitivity analyses assessing heterogeneity by age and restricting to those with formal education. The findings were largely driven by technological amenities including refrigerators, stoves, telephones, televisions, and vehicles. These amenities may support cognitive function through improving nutrition and providing opportunities for cognitive stimulation through transportation and social contact outside of the home. Data were from a population-based longitudinal study of aging in rural South Africa. We found that household material resources may support cognitive health during aging. Greater improvements in resources over time were associated with better cognition. Results were driven by resources for cooking, transportation, and communication. Future research should study how household resources may promote cognitive health.
Collapse
Affiliation(s)
- Lindsay C. Kobayashi
- Center for Social Epidemiology and Population Health, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States,MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Corresponding author. Dr Lindsay Kobayashi, Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48103, United States.
| | - Chodziwadziwa Whiteson Kabudula
- MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohammed U. Kabeto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Xuexin Yu
- Center for Social Epidemiology and Population Health, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Stephen M. Tollman
- MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,International Network for the Demographic Evaluation of Populations and Their Health (INDEPTH), Accra, Ghana
| | - Kathleen Kahn
- MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,International Network for the Demographic Evaluation of Populations and Their Health (INDEPTH), Accra, Ghana
| | - Lisa F. Berkman
- MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Harvard Center for Population and Development Studies, Harvard T.H. Chan School of Public Health, Cambridge, MA, United States
| | - Molly S. Rosenberg
- MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| |
Collapse
|
20
|
Huang Y, Deng Y, Zhang P, Lin J, Guo D, Yang L, Liu D, Xu B, Huang C, Zhang H. Associations of fish oil supplementation with incident dementia: Evidence from the UK Biobank cohort study. Front Neurosci 2022; 16:910977. [PMID: 36161159 PMCID: PMC9489907 DOI: 10.3389/fnins.2022.910977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although numerous studies have investigated the association of dietary intake of omega-3 fatty acids with cognitive function and the risks of dementia, the relationship between fish oil supplementation and incident dementia in a large population-based cohort study has not yet well studied. Materials and methods A total of 211,094 community-dwelling older persons over 60 years from the UK Biobank cohorts enrolled between 2006 and 2010 that reported regularly taking fish oil and had no dementia at baseline, was included in the present study. All participants completed an electronic questionnaire regarding habitual use of supplements including fish oil. Results Overall, 83,283 (39.5%) participants reported regularly taking fish oil at baseline. Of 211,094 participants with the median age was 64.1 years, 5,274 participants developed dementia events during a median follow-up of 11.7 years, with 3,290 individuals derived from fish oil non-users. In the multivariable adjusted models, the adjusted hazard ratios (HRs) associated with fish oil supplementation for all-cause dementia, vascular dementia, frontotemporal dementia, and other dementia were 0.91 [CI = 0.84-0.97], 0.83 [CI = 0.71-0.97], 0.43 [CI = 0.26-0.72], 0.90 [CI = 0.82-0.98], respectively (all P < 0.05). However, no significant association between fish oil supplementation and Alzheimer's disease was found (HR = 1.00 [CI = 0.89-1.12], P = 0.977). In the subgroup analyses, the associations between use of fish oil and the risk of all-cause dementia (P for interaction = 0.007) and vascular dementia were stronger among men (P for interaction = 0.026). Conclusion Among older adults, regular fish oil supplementation was significantly associated with a lower risks of incident all-cause dementia, as well as vascular dementia, frontotemporal dementia and other dementia but not Alzheimer's disease. These findings support that habitual use of fish oils may be beneficial for the prevention of dementia in clinical practice.
Collapse
Affiliation(s)
- Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linjie Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyan Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chensihan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
- Department of Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Lai R, Hsu C, Yu B, Lo Y, Hsu Y, Chen M, Juang J. Vitamin D supplementation worsens Alzheimer's progression: Animal model and human cohort studies. Aging Cell 2022; 21:e13670. [PMID: 35822270 PMCID: PMC9381901 DOI: 10.1111/acel.13670] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/30/2023] Open
Abstract
Vitamin D deficiency has been epidemiologically linked to Alzheimer's disease (AD) and other dementias, but no interventional studies have proved causality. Our previous work revealed that the genomic vitamin D receptor (VDR) is already converted into a non-genomic signaling pathway by forming a complex with p53 in the AD brain. Here, we extend our previous work to assess whether it is beneficial to supplement AD mice and humans with vitamin D. Intriguingly, we first observed that APP/PS1 mice fed a vitamin D-sufficient diet showed significantly lower levels of serum vitamin D, suggesting its deficiency may be a consequence not a cause of AD. Moreover, supplementation of vitamin D led to increased Aβ deposition and exacerbated AD. Mechanistically, vitamin D supplementation did not rescue the genomic VDR/RXR complex but instead enhanced the non-genomic VDR/p53 complex in AD brains. Consistently, our population-based longitudinal study also showed that dementia-free older adults (n = 14,648) taking vitamin D3 supplements for over 146 days/year were 1.8 times more likely to develop dementia than those not taking the supplements. Among those with pre-existing dementia (n = 980), those taking vitamin D3 supplements for over 146 days/year had 2.17 times the risk of mortality than those not taking the supplements. Collectively, these animal model and human cohort studies caution against prolonged use of vitamin D by AD patients.
Collapse
Affiliation(s)
- Rai‐Hua Lai
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Chih‐Cheng Hsu
- National Center for Geriatrics and Welfare ResearchNational Health Research InstitutesMiaoliTaiwan
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
- Department of Health Services AdministrationChina Medical UniversityTaichungTaiwan
- Department of Family MedicineMin‐Sheng General HospitalTaoyuanTaiwan
| | - Ben‐Hui Yu
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Yu‐Ru Lo
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Yueh‐Ying Hsu
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Mei‐Hsin Chen
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Jyh‐Lyh Juang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesMiaoliTaiwan
- Ph.D. Program for AgingChina Medical UniversityTaichungTaiwan
| |
Collapse
|
22
|
McBean L, O'Reilly S. Diet quality interventions to prevent neurocognitive decline: a systematic review and meta-analysis. Eur J Clin Nutr 2022; 76:1060-1072. [PMID: 34732834 DOI: 10.1038/s41430-021-01032-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine the impact of diet quality interventions on neurocognitive decline in older adults. DESIGN Four databases were searched (Medline, EMBASE, CENTRAL and PsycINFO) for randomised controlled trials involving diet quality interventions and cognitive outcomes in older adults. Study quality was assessed using the Cochrane Risk of Bias tool. Outcomes selected for meta-analysis were memory and executive function, for which standardised mean differences (SMD) were calculated. Subgroup and sensitivity analyses were undertaken to explore causes of heterogeneity. Additional outcomes of global cognitive function, incident dementia, attention, language/verbal fluency, and processing speed were narratively synthesised. RESULTS Twelve studies were included, investigating the Mediterranean, Dietary Approaches to Stop Hypertension and Nordic diets. Risk of bias varied across studies. Dietary intervention had a significant effect on memory (SMD: 0.98; 95% CI: 0.39, 1.57; p = 0.001) and executive function (SMD: 2.02; 95% CI: 1.04, 3.01; p < 0.00001), although neither outcome was significant in sensitivity analyses. Heterogeneity was high (I2 = 99%) prior to sensitivity analyses and low (I2 = 0%) after. Results for narratively synthesised cognitive measures were inconsistent with no clear direction of effect. CONCLUSION The current body of evidence would suggest the effect of dietary intervention on neurocognitive decline in older adults is unclear given the considerable heterogeneity and bias present across studies. These findings should be interpreted with consideration to the limited number of studies that could be included and the large variation in study designs. Further randomised controlled trials with harmonised cognitive outcomes and assessments are needed to clarify direction of effect.
Collapse
Affiliation(s)
- Laura McBean
- School of Agriculture and Food Science, UCD, Belfield, Dublin, 4, Ireland
| | - Sharleen O'Reilly
- School of Agriculture and Food Science, UCD, Belfield, Dublin, 4, Ireland. .,UCD Institute of Food and Health, UCD, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
23
|
Martini AC, Gross TJ, Head E, Mapstone M. Beyond amyloid: Immune, cerebrovascular, and metabolic contributions to Alzheimer disease in people with Down syndrome. Neuron 2022; 110:2063-2079. [PMID: 35472307 PMCID: PMC9262826 DOI: 10.1016/j.neuron.2022.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
People with Down syndrome (DS) have increased risk of Alzheimer disease (AD), presumably conferred through genetic predispositions arising from trisomy 21. These predispositions necessarily include triplication of the amyloid precursor protein (APP), but also other Ch21 genes that confer risk directly or through interactions with genes on other chromosomes. We discuss evidence that multiple genes on chromosome 21 are associated with metabolic dysfunction in DS. The resulting dysregulated pathways involve the immune system, leading to chronic inflammation; the cerebrovascular system, leading to disruption of the blood brain barrier (BBB); and cellular energy metabolism, promoting increased oxidative stress. In combination, these disruptions may produce a precarious biological milieu that, in the presence of accumulating amyloid, drives the pathophysiological cascade of AD in people with DS. Critically, mechanistic drivers of this dysfunction may be targetable in future clinical trials of pharmaceutical and/or lifestyle interventions.
Collapse
Affiliation(s)
- Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas J Gross
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
24
|
McGrattan A, Stewart CJ, Cassidy A, Woodside JV, McEvoy CT. Diet Patterns, the Gut Microbiome, and Alzheimer's Disease. J Alzheimers Dis 2022; 88:933-941. [PMID: 35634849 DOI: 10.3233/jad-220205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Given the complex bidirectional communication system that exists between the gut microbiome and the brain, there is growing interest in the gut microbiome as a novel and potentially modifiable risk factor for Alzheimer's disease (AD). Gut dysbiosis has been implicated in the pathogenesis and progression of AD by initiating and prolonging neuroinflammatory processes. The metabolites of gut microbiota appear to be critical in the mechanism of the gut-brain axis. Gut microbiota metabolites, such as trimethylamine-n-oxide, lipopolysaccharide, and short chain fatty acids, are suggested to mediate systemic inflammation and intracerebral amyloidosis via endothelial dysfunction. Emerging data suggest that the fungal microbiota (mycobiome) may also influence AD pathology. Importantly, 60% of variation in the gut microbiome is attributable to diet, therefore modulating the gut microbiome through dietary means could be an effective approach to reduce AD risk. Given that people do not eat isolated nutrients and instead consume a diverse range of foods and combinations of nutrients that are likely to be interactive, studying the effects of whole diets provides the opportunity to account for the interactions between different nutrients. Thus, dietary patterns may be more predictive of real-life effect on gut microbiome and AD risk than foods or nutrients in isolation. Accumulating evidence from experimental and animal studies also show potential effects of gut microbiome on AD pathogenesis. However, data from human dietary interventions are lacking. Well-designed intervention studies are needed in diverse populations to determine the influence of diet on gut microbiome and inform the development of effective dietary strategies for prevention of AD.
Collapse
Affiliation(s)
- Andrea McGrattan
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, UK
| | | | - Aedín Cassidy
- Institute For Global Food Security, Queen's University Belfast, UK
| | - Jayne V Woodside
- Institute For Global Food Security, Queen's University Belfast, UK
| | - Claire T McEvoy
- Institute For Global Food Security, Queen's University Belfast, UK.,Global Brain Health Institute, University of California San Francisco, USA and Trinity College Dublin, Ireland
| |
Collapse
|
25
|
Huang X, Aihemaitijiang S, Ye C, Halimulati M, Wang R, Zhang Z. Development of the cMIND Diet and Its Association with Cognitive Impairment in Older Chinese People. J Nutr Health Aging 2022; 26:760-770. [PMID: 35934820 DOI: 10.1007/s12603-022-1829-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Cognitive impairment commonly occurs among older people worldwide. Although the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet was associated with better cognitive function and lower risk of cognitive impairment, it could not be applied to older Chinese due to the traditional dietary characteristics in China. We aimed to develop the Chinese version of the MIND (cMIND) diet and verify its association with cognitive impairment among older Chinese individuals. DESIGN A cross-sectional study. SETTING AND PARTICIPANTS We included a total of 11,245 participants from the Chinese Longitudinal Healthy Longevity Study (CLHLS) follow-up survey in 2018. The mean age of the participants at study baseline was 84.06 (±11.46) years. MEASUREMENTS We established the cMIND diet based on current evidence in the diet-cognition field, combined with Chinese dietary characteristics. The verification of its association with cognitive impairment was conducted using the data from the CLHLS follow-up survey. Adherence to the cMIND diet was assessed by the cMIND diet score, which was calculated from a food frequency questionnaire. Cognitive impairment was identified by the Mini-Mental State Examination. Instrumental activities of daily living (IADL) disability was defined according to the self-reported performance of eight activities. RESULTS The cMIND diet comprised 11 brain-healthy food groups and 1 unhealthy food group. The median cMIND diet score of all participants was 4.5 (from a total of 12 points) and the prevalence of cognitive impairment was 15.2%. Compared with the lowest tertile, the highest tertile score was associated with lower odds of cognitive impairment (odds ratio (OR)=0.60, 95% confidence interval (CI): 0.51-0.72) and IADL disability (OR=0.86, 95% CI: 0.75-0.98) in the full-adjusted model. CONCLUSION We developed the cMIND diet that was suitable for older Chinese individuals, and our results suggested that higher adherence to the cMIND diet was associated with reduced odds of cognitive impairment and IADL disability. In view of the limitations of cross-sectional design in the study, further research is clearly warranted.
Collapse
Affiliation(s)
- X Huang
- Zhaofeng Zhang, Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China, Email Address:
| | | | | | | | | | | |
Collapse
|
26
|
Liu X, Zhuang P, Li Y, Wu F, Wan X, Zhang Y, Jiao J. Association of fish oil supplementation with risk of incident dementia: A prospective study of 215,083 older adults. Clin Nutr 2022; 41:589-598. [DOI: 10.1016/j.clnu.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/25/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
27
|
Power R, Nolan JM, Prado-Cabrero A, Roche W, Coen R, Power T, Mulcahy R. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin Nutr 2021; 41:405-414. [PMID: 34999335 DOI: 10.1016/j.clnu.2021.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/22/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Accumulating evidence suggests that omega-3 fatty acids (ω-3FAs), carotenoids and vitamin E can improve cognitive performance. However, their collective impact on cognition has not yet been investigated in healthy individuals. This study investigated the combined effect of ω-3FA, carotenoid and vitamin E supplementation on the cognitive performance of older adults. METHODS Cognitively healthy individuals aged ≥65 years consumed daily 1 g fish oil (of which 430 mg docosahexaenoic acid, 90 mg eicosapentaenoic acid), 22 mg carotenoids (10 mg lutein, 10 mg meso-zeaxanthin, 2 mg zeaxanthin) and 15 mg vitamin E or placebo for 24 months in a double-blind, placebo-controlled, randomised clinical trial. RESULTS Following 24-month supplementation, individuals in the active group (n = 30; aged 69.03 ± 4.41 years; 56.7% female) recorded significantly fewer errors in working memory tasks than individuals receiving placebo (n = 30; aged 69.77 ± 3.74 years; 70% female) (point estimate effect sizes ranged 0.090-0.105). Interestingly, as the cognitive load of the working memory tasks increased, the active group outperformed the placebo group. Statistically significant improvements in tissue carotenoid concentrations, serum xanthophyll carotenoid concentrations and plasma ω-3FA concentrations were also observed in the active group versus placebo (point estimate effect sizes ranged 0.078-0.589). Moreover, the magnitude of change of carotenoid concentrations in tissue, and ω-3FA and carotenoid concentrations in blood were related to the magnitude of change in working memory performance. CONCLUSION These results support a biologically plausible rationale whereby these nutrients work synergistically, and in a dose-dependent manner, to improve working memory in cognitively healthy older adults. Increasing nutritional intake of carotenoids and ω-3FAs may prove beneficial in reducing cognitive decline and dementia risk in later life. STUDY ID NUMBER ISRCTN10431469; https://doi.org/10.1186/ISRCTN10431469.
Collapse
Affiliation(s)
- Rebecca Power
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - John M Nolan
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - Warren Roche
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - Robert Coen
- Mercer's Institute for Successful Ageing, St. James's Hospital, 31 St. James's Walk, Rialto, Dublin, E191, Ireland.
| | - Tommy Power
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - Ríona Mulcahy
- Age-Related Care Unit, Health Service Executive, University Hospital Waterford, Dunmore Road, Waterford, X91 ER8E, Ireland; Royal College of Surgeons Ireland, 123 Stephen's Green, Saint Peter's, Dublin, D02 YN7, Ireland.
| |
Collapse
|
28
|
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021; 13:nu13114080. [PMID: 34836334 PMCID: PMC8624903 DOI: 10.3390/nu13114080] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple factors combined are currently recognized as contributors to cognitive decline. The main independent risk factor for cognitive impairment and dementia is advanced age followed by other determinants such as genetic, socioeconomic, and environmental factors, including nutrition and physical activity. In the next decades, a rise in dementia cases is expected due largely to the aging of the world population. There are no hitherto effective pharmaceutical therapies to treat age-associated cognitive impairment and dementia, which underscores the crucial role of prevention. A relationship among diet, physical activity, and other lifestyle factors with cognitive function has been intensively studied with mounting evidence supporting the role of these determinants in the development of cognitive decline and dementia, which is a chief cause of disability globally. Several dietary patterns, foods, and nutrients have been investigated in this regard, with some encouraging and other disappointing results. This review presents the current evidence for the effects of dietary patterns, dietary components, some supplements, physical activity, sleep patterns, and social engagement on the prevention or delay of the onset of age-related cognitive decline and dementia.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; +39-0916554828
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Flora Inzerillo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy;
- UOC of Neurology, University Hospital “Paolo Giaccone”, 90100 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| |
Collapse
|
29
|
Li L, Xu W, Tan CC, Cao XP, Wei BZ, Dong CW, Tan L. A gene-environment interplay between omega-3 supplementation and APOE ε4 provides insights for Alzheimer's disease precise prevention amongst high-genetic-risk population. Eur J Neurol 2021; 29:422-431. [PMID: 34710256 DOI: 10.1111/ene.15160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The present study aimed to explore whether and how omega-3 (ω-3) supplementation could interact with genetic factors to modulate cognitive functions, amyloid pathologies, and Alzheimer's disease (AD) risk. METHODS A total of 1,670 non-demented participants (mean age 73 years, 47% females, 41% APOE ε4 carriers) were followed up for 10 years. Hierarchical regressions, linear mixed-effects models, and Cox proportional hazards models were used to examine the interaction effects of ω-3 supplementation with APOE ε4 and polygenic hazard scores, after adjusting for age, gender, education, cognitive diagnosis, insomnia, depression, anxiety, and cardiovascular risk score. RESULTS Individuals who progress to AD during the follow-up tend to take a shorter duration of ω-3 at baseline than those stable, for whom the difference remained significant only amongst APOE ε4 carriers (p < 0.01). The interaction term (APOE ε4 × ω-3) accounted for a significant amount of variance in cognition and cerebral amyloid burden. Long-term ω-3 use protected cognition (especially memory function) and lowered amyloid burden and AD risk only amongst APOE ε4 carriers. Mediation analysis suggested that amyloid pathologies, brain reserve capacities, and brain metabolism mediated the relationships of ω-3 use with memory and global cognition for APOE ε4 (+) carriers. Similar interaction and mediation effects were also indicated amongst high-risk subjects defined by polygenic hazard scores. CONCLUSIONS Long-term ω-3 intake may have a role in AD prevention in genetically at-risk populations.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,Department of Neurology, Linyi People's Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bao-Zhen Wei
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Cheng-Wen Dong
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
30
|
Abstract
With growing and ageing populations, the incidence of dementia is expected to triple globally by 2050. In the absence of effective drugs to treat or reverse the syndrome, dietary approaches which prevent or delay disease onset have considerable population health potential. Prospective epidemiological studies and mechanistic insight from experimental models strongly support a positive effect of a high fish and long chain n-3 fatty acid (EPA and DHA) intake on a range of cognitive outcomes and dementia risk, with effect sizes equivalent to several years of ageing between the highest and lowest consumers. As reviewed here, an effect of EPA and DHA on neuroinflammation and oxylipin production is likely to in part mediate the neurophysiological benefits. However, randomised controlled trials (RCTs) with EPA and DHA supplementation have produced mixed findings. Insight into the likely modulators of response to intervention and factors which should be considered for future RCTs are given. Furthermore, the impact of APOE genotype on disease risk and response to EPA and DHA supplementation is summarised. The prevalence of dementia is several-fold higher in APOE4 females (about 13% Caucasian populations) relative to the general population, who are emerging as a subgroup who may particularly benefit from DHA intervention, prior to the development of significant pathology.
Collapse
|
31
|
Rao CB, Peatfield JC, McAdam KPWJ, Nunn AJ, Georgieva DP. A Focus on the Reminiscence Bump to Personalize Music Playlists for Dementia. J Multidiscip Healthc 2021; 14:2195-2204. [PMID: 34421303 PMCID: PMC8374316 DOI: 10.2147/jmdh.s312725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Music and memory are inextricably linked, and the recollection of music varies according to age. In order to create personalized music playlists tailored for people living with dementia, this study aimed to determine the age at which healthy individuals could best recall music that was popular at the time. Methods A survey was designed asking participants to identify the number of songs they recalled from a random selection of 10 from the 100 most popular songs from each year, presented in random order of years, from 1945 to 2015. Of the 311 individuals born between 1929 and 2002, who responded to the survey, 157 met the inclusion criteria. Results The median peak of recollection was between the ages of 13 and 19 across all age-cohorts, with participants recalling a maximum median number of 6–8 songs in all of the age-cohorts. There was no evidence of a difference in the peak age of recollection between those who recognized seven or more songs in at least 1 year and those who recognized fewer than seven songs in all years. Conclusion The peak of recollection of popular music occurs in the teenage years, regardless of era of birth. Music from this “reminiscence bump” provides a rich source of retained music that should be tapped when creating playlists of meaningful music for people living with dementia.
Collapse
Affiliation(s)
- Chirag B Rao
- UCL Medical School, University College London, London, UK
| | - John C Peatfield
- The Department of English Language and Literature, University College London, London, UK
| | | | - Andrew J Nunn
- Medical Research Council Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | | |
Collapse
|
32
|
Vauzour D, Rendeiro C, D’Amato A, Waffo-Téguo P, Richard T, Mérillon JM, Pontifex MG, Connell E, Müller M, Butler LT, Williams CM, Spencer JPE. Anthocyanins Promote Learning through Modulation of Synaptic Plasticity Related Proteins in an Animal Model of Ageing. Antioxidants (Basel) 2021; 10:antiox10081235. [PMID: 34439483 PMCID: PMC8388918 DOI: 10.3390/antiox10081235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Anthocyanin-rich foods, such as berries, reportedly ameliorate age-related cognitive deficits in both animals and humans. Despite this, investigation into the mechanisms which underpin anthocyanin-mediated learning and memory benefits remains relatively limited. The present study investigates the effects of anthocyanin intake on a spatial working memory paradigm, assessed via the cross-maze apparatus, and relates behavioural test performance to underlying molecular mechanisms. Six-week supplementation with pure anthocyanins (2% w/w), administered throughout the learning phase of the task, improved both spatial and psychomotor performances in aged rats. Behavioural outputs were accompanied by changes in the expression profile of key proteins integral to synaptic function/maintenance, with upregulation of dystrophin, protein kinase B (PKB/Akt) and tyrosine hydroxylase, and downregulation of apoptotic proteins B-cell lymphoma-extra-large (Bcl-xL) and the phosphorylated rapidly accelerated fibrosarcoma (p-Raf). Separate immunoblot analysis supported these observations, indicating increased activation of extracellular signal-related kinase (ERK1), Akt Ser473, mammalian target of rapamycin (mTOR) Ser2448, activity-regulated cytoskeleton-associated protein (Arc/Arg 3.1) and brain-derived neurotrophic factor (BDNF) in response to anthocyanin treatment, whilst α-E-catenin, c-Jun N-terminal kinase (JNK1) and p38 protein levels decreased. Together, these findings suggest that purified anthocyanin consumption enhances spatial learning and motor coordination in aged animals and can be attributed to the modulation of key synaptic proteins, which support integrity and maintenance of synaptic function.
Collapse
Affiliation(s)
- David Vauzour
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
- Correspondence: ; Tel.: +44-1603-591-732
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Pierre Waffo-Téguo
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Tristan Richard
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Jean Michel Mérillon
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Matthew G. Pontifex
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Emily Connell
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Michael Müller
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Laurie T. Butler
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Claire M. Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK;
| | - Jeremy P. E. Spencer
- Molecular Nutrition Group, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK;
| |
Collapse
|
33
|
Jafari Z, Perani D, Kolb BE, Mohajerani MH. Bilingual experience and intrinsic functional connectivity in adults, aging, and Alzheimer's disease. Ann N Y Acad Sci 2021; 1505:8-22. [PMID: 34309857 DOI: 10.1111/nyas.14666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The past decade marked the beginning of the use of resting-state functional connectivity (RSFC) imaging in bilingualism studies. This paper intends to review the latest evidence of changes in RSFC in language and cognitive control networks in bilinguals during adulthood, aging, and early Alzheimer's disease, which can add to our understanding of brain functional reshaping in the context of second language (L2) acquisition. Because of high variability in bilingual experience, recent studies mostly focus on the role of the main aspects of bilingual experience (age of acquisition (AoA), language proficiency, and language usage) on intrinsic functional connectivity (FC). Existing evidence accounts for stronger FC in simultaneous rather than sequential bilinguals in language and control networks, and the modulation of the AoA impact by language proficiency and usage. Studies on older bilingual adults show stronger FC in language and frontoparietal networks and preserved FC in posterior brain regions, which can protect the brain against cognitive decline and neurodegenerative processes. Altered RSFC in language and control networks subsequent to L2 training programs also is associated with improved global cognition in older adults. This review ends with a brief discussion of potential confounding factors in bilingualism research and conclusions and suggestions for future research.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Daniela Perani
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
34
|
Short-term effects of a Mediterranean-style dietary pattern on cognition and mental well-being: a systematic review of clinical trials. Br J Nutr 2021; 128:1247-1256. [PMID: 34236017 DOI: 10.1017/s0007114521002567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the long-term effects of a Mediterranean-style dietary pattern (MDP) on cognition and overall mental well-being have been consistently described, the short-term effects of the MDP on cognitive performance, mood and anxiety have not been as widely reviewed. Therefore, the aims of this systematic review were to synthesise the evidence from randomised controlled trials (RCT), to examine whether a MDP can alter cognition and overall mental well-being in the short-term (up to 10 d). This will also be used to identify research gaps and to inform the design of future acute RCT in the area. Ovid Embase, Ovid MEDLINE and Web of Science Core Collection were searched from inception to 8 December 2020. The data were synthesised narratively with no quantitative synthesis. The detailed protocol is available on PROSPERO, with the registration number CRD42021221085. A total of 3002 studies were initially identified. After the deduplication and screening stages, four studies (three articles and one conference proceeding) were eligible to be included. Despite the very limited data obtained, the literature suggests that a MDP can improve cognition and mood in the short-term. Specifically, improvements in attention, alertness and contentment were consistently reported. A MDP appears as a promising strategy to improve short-term cognitive and mental health. A limitation of this review is the small number of studies identified; therefore, future studies are required to confirm these initial novel findings and to provide granularity as to which domains are most responsive and in which population subgroups.
Collapse
|
35
|
Duplantier SC, Gardner CD. A Critical Review of the Study of Neuroprotective Diets to Reduce Cognitive Decline. Nutrients 2021; 13:nu13072264. [PMID: 34208980 PMCID: PMC8308213 DOI: 10.3390/nu13072264] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) and other dementias are now the seventh leading cause of death in the world and are projected to affect 115.4 million people by 2050. Delaying the onset of AD by just five years is estimated to reduce the cost and prevalence of the disease by half. There is no cure for AD nor any drug therapies to halt its progression once the disease begins. Lifestyle choices including diet are being seen as a viable complementary therapy to reduce cognitive decline, the hallmark of AD. Mediterranean, DASH (Dietary Approaches to Stop Hypertension), and MIND (Mediterranean-DASH Intervention for Neurodegenerative Delay) diets have biological mechanisms supporting their potential neuroprotective benefits, but the findings of study outcomes about these benefits have been inconsistent. This paper analyzed five Randomized Clinical Trials (RCTs) (from 2000 to 2021) and 27 observational studies (from 2010 to 2021) focused on the link between cognitive health and the Mediterranean/DASH/MIND diets to identify gaps and challenges that could lead to inconsistent results. These include a lack of accuracy in assessing food intake, multiple dietary pattern scoring systems, a shifting metric among studies focused on the Mediterranean diet, a lack of standards in the tools used to assess cognitive decline, and studies that were underpowered or had follow-up periods too short to detect cognitive change. Insights from these gaps and challenges are summarized in recommendations for future RCTs, including both pragmatic and explanatory RCTs.
Collapse
Affiliation(s)
- Sally C. Duplantier
- The USC Leonard School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA;
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
36
|
Nakazaki E, Mah E, Sanoshy K, Citrolo D, Watanabe F. Citicoline and Memory Function in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Nutr 2021; 151:2153-2160. [PMID: 33978188 PMCID: PMC8349115 DOI: 10.1093/jn/nxab119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 04/05/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Supplementation of citicoline (CDP-choline), a naturally occurring mononucleotide, has shown beneficial effects on memory function and behavior in populations with a wide range of impairments. However, few studies have investigated its effect in healthy older populations. OBJECTIVE The objective of this study was to investigate the effects of citicoline (Cognizin®), on memory in healthy elderly populations with age-associated memory impairment (AAMI). METHODS A total of 100 healthy men and women aged between 50 and 85 y with AAMI participated in this randomized, double-blind, placebo-controlled trial. Participants were randomized to receive placebo (n = 51) or citicoline (n = 49; 500 mg/d) for 12 wk. Memory function was assessed at baseline and end of the intervention (12 wk) using computerized tests (Cambridge Brain Sciences, Ontario, Canada). Safety measurements included adverse events query, body weight, blood pressure, and hematology and metabolic panel. Intent-to-treat analysis was conducted using ANCOVA for the primary and secondary outcome variables with Bonferroni correction for multiple comparisons. RESULTS A total of 99 out of 100 participants completed the study in its entirety. After the 12-wk intervention, participants supplemented with citicoline showed significantly greater improvements in secondary outcomes of episodic memory (assessed by the Paired Associate test), compared with those on placebo (mean: 0.15 vs. 0.06, respectively, P = 0.0025). Composite memory (secondary outcome), calculated using the scores of 4 memory tests, also significantly improved to a greater extent following citicoline supplementation (mean: 3.78) compared with placebo (mean: 0.72, P = 0.0052). CONCLUSIONS Dietary supplementation of citicoline for 12 wk improved overall memory performance, especially episodic memory, in healthy older males and females with AAMI. The findings suggest that regular consumption of citicoline may be safe and potentially beneficial against memory loss due to aging. This trial was registered at clinicaltrials.gov as NCT03369925.
Collapse
Affiliation(s)
| | - Eunice Mah
- Biofortis Innovation Services, Addison, IL 60101, USA
| | | | - Danielle Citrolo
- Scientific and Regulatory Affairs, Kyowa Hakko USA Inc., New York, NY 10016, USA
| | - Fumiko Watanabe
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd, Tsukuba, Ibaraki, 305–0841, Japan
| |
Collapse
|
37
|
Melzer TM, Manosso LM, Yau SY, Gil-Mohapel J, Brocardo PS. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. Int J Mol Sci 2021; 22:5026. [PMID: 34068525 PMCID: PMC8126018 DOI: 10.3390/ijms22095026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Consuming a balanced, nutritious diet is important for maintaining health, especially as individuals age. Several studies suggest that consuming a diet rich in antioxidants and anti-inflammatory components such as those found in fruits, nuts, vegetables, and fish may reduce age-related cognitive decline and the risk of developing various neurodegenerative diseases. Numerous studies have been published over the last decade focusing on nutrition and how this impacts health. The main objective of the current article is to review the data linking the role of diet and nutrition with aging and age-related cognitive decline. Specifically, we discuss the roles of micronutrients and macronutrients and provide an overview of how the gut microbiota-gut-brain axis and nutrition impact brain function in general and cognitive processes in particular during aging. We propose that dietary interventions designed to optimize the levels of macro and micronutrients and maximize the functioning of the microbiota-gut-brain axis can be of therapeutic value for improving cognitive functioning, particularly during aging.
Collapse
Affiliation(s)
- Thayza Martins Melzer
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Luana Meller Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma 88806-000, SC, Brazil;
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| |
Collapse
|
38
|
Leclerc M, Dudonné S, Calon F. Can Natural Products Exert Neuroprotection without Crossing the Blood-Brain Barrier? Int J Mol Sci 2021; 22:ijms22073356. [PMID: 33805947 PMCID: PMC8037419 DOI: 10.3390/ijms22073356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Stéphanie Dudonné
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48697); Fax: +1-(418)-654-2761
| |
Collapse
|
39
|
Abstract
SUMMARY
As we age, there are characteristic changes in our thinking, reasoning and memory skills (referred to as cognitive ageing). However, variation between people in the timing and degree of change experienced suggests that a range of factors determine individual cognitive ageing trajectories. This narrative review considers some of the lifestyle factors that might promote (or harm) cognitive health. The focus on lifestyle factors is because these are potentially modifiable by individuals or may be the targets of behavioural or societal interventions. To support that, the review briefly considers people's beliefs and attitudes about cognitive ageing; the nature and timing of cognitive changes across the lifespan; and the genetic contributions to cognitive ability level and change. In introducing potentially modifiable determinants, a framing that draws evidence derived from epidemiological studies of dementia is provided, before an overview of lifestyle and behavioural predictors of cognitive health, including education and occupation, diet and activity.
Collapse
|
40
|
Zheng J, Zhou R, Li F, Chen L, Wu K, Huang J, Liu H, Huang Z, Xu L, Yuan Z, Mao C, Wu X. Association between dietary diversity and cognitive impairment among the oldest-old: Findings from a nationwide cohort study. Clin Nutr 2021; 40:1452-1462. [PMID: 33740515 DOI: 10.1016/j.clnu.2021.02.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Dietary diversity is widely recommended in national and international guidelines; however, whether the beneficial effects on cognitive function still apply in the oldest-old (80+) has rarely been studied. This study aimed to evaluate the associations of dietary diversity with cognitive function among the oldest-old in a large prospective cohort in China. METHODS We conducted a long-term prospective analysis on 11,970 participants aged 80+ (6581 octogenarians, 3730 nonagenarians, and 1659 centenarians). We constructed the baseline dietary diversity score (DDS) based on eight food items of a food frequency questionnaire. Mini-mental state examination (MMSE) was used to classify the participants as having cognitive impairment or not and was also used as a continuous metric. Non-linear associations of DDS with cognitive impairment was evaluated by cox models with penalized splines. We used mixed-effect models for longitudinal data with repeated measurements of MMSE (for up to seven time during the follow-up between 1998 and 2014). RESULTS We documented 4778 cognitive impairment during 46,738 person-years of follow-up. Each one unit increase in DDS was associated with a 4% lower risk of cognitive impairment (adjusted hazard ratio (HR): 0.96; 95% confidential interval (CI): 0.94-0.98). Compared to participants with DDS of 0 score, those with a DDS of 1-2, 3-4, and higher than 5 scores had a lower cognitive impairment risk, the HRs were 0.86 (0.79-0.95), 0.82 (0.74-0.91), and 0.72 (0.64-0.82) respectively, and a significant trend emerged (p < 0.001). Compared with DDS of zero score, a DDS of 1-2,3-4, ≥5 was related to slower MMSE decline (β = 0.128, 0.162, 0.301, respectively, p < 0.01). CONCLUSIONS Even after the age of 80, dietary diversity may offer a simple and straightforward mean of identifying and screening individuals at high risk for cognitive impairment. Recommendation of dietary diversity may be advocated to attenuate cognitive decline and decrease the risk of cognitive impairment in the oldest-old, especially in a low income or middle-income countries.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Furong Li
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Liren Chen
- Department of Regional Research, School of Social Sciences, Waseda University, Tokyo, Japan
| | - Keyi Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Jinghan Huang
- Department of Biostatistics, School of Public Health, Boston University, Boston, USA
| | - Huamin Liu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiwei Huang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Xu
- Department of Nutrition and Food Hygiene, School of Public Health (Guangdong Provincial Key Laboratory for Food, Nutrition and Health), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zelin Yuan
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China.
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
41
|
Zhou Z, Zhong S, Liang Y, Zhang X, Zhang R, Kang K, Qu H, Xu Y, Zhao C, Zhao M. Serum Uric Acid and the Risk of Dementia: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2021; 13:625690. [PMID: 33716713 PMCID: PMC7947796 DOI: 10.3389/fnagi.2021.625690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: This meta-analysis aimed to evaluate the relationship between serum uric acid (UA) and the risk of dementia and its subtypes. Methods: Embase, PubMed, and Web of Science were searched from inception to July 2020. Random-effect models were employed to analyze the standard mean difference (SMD) with the corresponding 95% confidence intervals (CI). Results: Twenty-three eligible studies involving 5,575 participants were identified. The overall results showed lower levels of UA in dementia relative to non-dementia controls [SMD = −0.32 (−0.64; −0.01) p = 0.04]. The subgroup analysis of the type of dementia demonstrated a significant association of UA with Alzheimer's disease (AD) [SMD = −0.58 (−1.02; −0.15) p = 0.009] and Parkinson's disease with dementia (PDD) [SMD = −0.33 (−0.52; −0.14) p = 0.001] but not with vascular dementia (VaD). The stratification analysis of the concentrations of UA revealed that the UA quartile 1–2 was negatively correlated with dementia and neurodegenerative subtypes (p < 0.05), whereas a positive correlation of UA quartile 4 with dementia was noted (p = 0.028). Additionally, the meta-regression analysis on confounders showed that not age, body mass index, diabetes mellitus, hypertension, or smoking but education (p = 0.003) exerted an influence of the UA in the risk estimate of dementia. Conclusions: Low concentrations of UA (< 292 μmol/L or 4.91 mg/dL) is a potential risk factor for AD and PDD but not for VaD. The mechanism of different concentrations of the UA in dementia needs to be confirmed through further investigation.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Liang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Huiling Qu
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, China
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States.,Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
42
|
Abstract
Aging is characterized by the functional decline of tissues and organs and increased risk of aging-associated disorders, which pose major societal challenges and are a public health priority. Despite extensive human genetics studies, limited progress has been made linking genetics with aging. There is a growing realization that the altered assembly, structure and dynamics of the gut microbiota actively participate in the aging process. Age-related microbial dysbiosis is involved in reshaping immune responses during aging, which manifest as immunosenescence (insufficiency) and inflammaging (over-reaction) that accompany many age-associated enteric and extraenteric diseases. The gut microbiota can be regulated, suggesting a potential target for aging interventions. This review summarizes recent findings on the physiological succession of gut microbiota across the life-cycle, the roles and mechanisms of gut microbiota in healthy aging, alterations of gut microbiota and aging-associated diseases, and the gut microbiota-targeted anti-aging strategies.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People's Hospital, Lishui, Zhejiang, China
| | - Shaochang Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Minihane AM. Nutrition and brain health. NUTR BULL 2020. [DOI: 10.1111/nbu.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Marie Minihane
- Nutrition and Preventive Medicine Norwich Medical School BCRE University of East Anglia (UEA) Norwich UK
- Norwich Institute of Healthy Ageing Norwich UK
| |
Collapse
|