1
|
Villanueva-Hayes C, Millership SJ. Imprinted Genes Impact Upon Beta Cell Function in the Current (and Potentially Next) Generation. Front Endocrinol (Lausanne) 2021; 12:660532. [PMID: 33986727 PMCID: PMC8112240 DOI: 10.3389/fendo.2021.660532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Beta cell failure lies at the centre of the aetiology and pathogenesis of type 2 diabetes and the epigenetic control of the expression of critical beta cell genes appears to play a major role in this decline. One such group of epigenetically-controlled genes, termed 'imprinted' genes, are characterised by transgenerational monoallelic expression due to differential allelic DNA methylation and play key functional roles within beta cells. Here, we review the evidence for this functional importance of imprinted genes in beta cells as well as their nutritional regulation by the diet and their altered methylation and/or expression in rodent models of diabetes and in type 2 diabetic islets. We also discuss imprinted genes in the context of the next generation, where dietary overnutrition in the parents can lead to their deregulation in the offspring, alongside beta cell dysfunction and defective glucose handling. Both the modulation of imprinted gene expression and the likelihood of developing type 2 diabetes in adulthood are susceptible to the impact of nutritional status in early life. Imprinted loci, therefore, represent an excellent opportunity with which to assess epigenomic changes in beta cells due to the diet in both the current and next generation.
Collapse
|
2
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Delonlay P, Simon A, Galmiche-Rolland L, Giurgea I, Verkarre V, Aigrain Y, Santiago-Ribeiro MJ, Polak M, Robert JJ, Bellanne-Chantelot C, Brunelle F, Nihoul-Fekete C, Jaubert F. Neonatal hyperinsulinism: clinicopathologic correlation. Hum Pathol 2007; 38:387-99. [PMID: 17303499 DOI: 10.1016/j.humpath.2006.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
Neonatal hyperinsulinism is a life-threatening disease that, when treated by total pancreatectomy, leads to diabetes and pancreatic insufficiency. A more conservative approach is now possible since the separation of the disease into a nonrecurring focal form, which is cured by partial surgery, and a diffuse form, which necessitates total pancreas removal only in cases of medical treatment failure. The pathogenesis of the disease is now divided into K-channel disease (hyperinsulinemic hypoglycemia, familial [HHF] 1 and 2), which can mandate surgery, and other metabolic causes, HHF 3 to 6, which are treated medically in most patients. The diffuse form is inherited as a recessive gene on chromosome 11, whereas most cases of the focal form are caused by a sulfonylurea receptor 1 defect inherited from the father, which is associated with a loss of heterozygosity on the corresponding part of the mother's chromosome 11. The rare bifocal forms result from a maternal loss of heterozygosity specific to each focus. Paternal disomy of chromosome 11 is a rare cause of a condition similar to Beckwith-Wiedemann syndrome. A preoperative PET scan with fluorodihydroxyphenylalanine and perioperative frozen-section confirmation are the types of studies done before surgery when needed. Adult variants of the disease are less well defined at the present time.
Collapse
Affiliation(s)
- P Delonlay
- Department of Pediatrics, Hospital Necker-Enfants Malades, Paris 75743, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hussain K. Ketotic hypoglycaemia in children with diazoxide responsive hyperinsulinism of infancy. Eur J Pediatr 2005; 164:387-90. [PMID: 15772812 DOI: 10.1007/s00431-005-1654-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
UNLABELLED Hyperinsulinism of infancy (HI) is a cause of persistent and recurrent hypoglycaemia in infancy and childhood, which if untreated can cause significant brain damage and mental retardation. The biochemical hallmark of hyperinsulinism is hypofattyacidaemic, hypoketotic hyperinsulinaemic hypoglycaemia. Diazoxide is the first line medical treatment for persistent HI. Diazoxide is an agonist of the pancreatic beta-cell KATP channel and inhibits insulin secretion. Children who develop recurrent hypoglycaemia while on therapy with diazoxide are thought to be unresponsive to this medication or non compliant with medical therapy. We report a novel observation of "ketotic" hypoglycaemia in two children on diazoxide therapy for persistent HI. Detailed assessment of the intermediary metabolites and hormones at the time of the hypoglycaemia showed appropriate insulin suppression with appropriate increases in the serum levels of non-esterified fatty acids and ketone bodies as well as an intact counter-regulatory hormone response. The precise mechanism of the hypoglycaemia is unclear. CONCLUSION These cases illustrate that recurrent hypoglycaemia while on diazoxide therapy may be due to other mechanisms and does not imply diazoxide unresponsiveness or non-compliance.
Collapse
Affiliation(s)
- Khalid Hussain
- The Institute of Child Health, Unit of Biochemistry, Endocrinology and Metabolism, University College London, 30 Guilford Street, WC1N 1EH, London, UK.
| |
Collapse
|
5
|
Cosgrove KE, Straub SG, Barnes PD, Chapman J, Sharp GW, Dunne MJ. Y-26763: ATP-sensitive K+ channel activation and the inhibition of insulin release from human pancreatic beta-cells. Eur J Pharmacol 2004; 486:133-9. [PMID: 14975702 DOI: 10.1016/j.ejphar.2003.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 12/03/2003] [Accepted: 12/12/2003] [Indexed: 11/18/2022]
Abstract
The effect of Y-26763 [(-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3-ol], a novel ATP-sensitive K(+) (K(ATP)) channel activator, was tested on insulin secretion from human pancreatic islets in vitro. Y-26763 was able to inhibit both glucose- and tolbutamide-induced insulin secretion from islets as assessed by radioimmunoassay. The mechanism for inhibition of insulin secretion was characterised using patch clamp electrophysiology on dispersed human pancreatic beta-cells which express K(ATP) channels comprised of Kir6.2 and SUR1, and the NES2Y human beta-cell line, transfected with Kir6.2DeltaC26. Y-26763 activated K(ATP) channels in a reversible manner with a similar activity to diazoxide. This required the presence of hydrolysable nucleotides and appeared to be mediated by interaction of Y-26763 with SUR1 since: (a) tolbutamide was able to reverse the actions of Y-26763 and (b) Y-26763 failed to activate Kir6.2DeltaC26 in the absence of SUR1. We conclude that Y-26763-induced inhibition of insulin release is dependent upon the activation of K(ATP) channels in human beta-cells.
Collapse
Affiliation(s)
- Karen E Cosgrove
- Division of Physiology and Pharmacology, School of Biological Sciences, The University of Manchester, G38 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Hussain K, Bitner-Glindzicz M, Blaydon D, Lindley KJ, Thompson DA, Kriss T, Rajput K, Ramadan DG, Al-Mazidi Z, Cosgrove KE, Dunne MJ, Aynsley-Green A. Infantile hyperinsulinism associated with enteropathy, deafness and renal tubulopathy: clinical manifestations of a syndrome caused by a contiguous gene deletion located on chromosome 11p. J Pediatr Endocrinol Metab 2004; 17:1613-21. [PMID: 15645695 DOI: 10.1515/jpem.2004.17.12.1613] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe the clinical features of a new syndrome causing hyperinsulinism in infancy (HI), severe enteropathy, profound sensorineural deafness, and renal tubulopathy in three children born to two pairs of consanguineous parents. This combination of clinical features is explained by a 122-kb contiguous gene deletion on the short arm of chromosome 11. It deletes 22 of the 39 exons of the gene coding for the SUR1 component of the KATP channel on the pancreatic beta-cell thereby causing severe HI. It also deletes all but two of the 28 exons of the USH1C gene, which causes Usher syndrome and is important for the normal development and function of the ear and the eye, the gastrointestinal tract, and the kidney, thereby accounting for the symptoms of deafness, vestibular dysfunction and retinal dystrophy seen in type 1 Usher syndrome, diarrhoea, malabsorption, and tubulopathy. This contiguous gene deletion provides important insights into the normal development of several body organ systems.
Collapse
Affiliation(s)
- Khalid Hussain
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust and Institute of Child Health, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hussain K, Aynsley-Green A. Hyperinsulinaemic hypoglycaemia in infancy and childhood--resolving the enigma. J Pediatr Endocrinol Metab 2004; 17:1375-84. [PMID: 15526715 DOI: 10.1515/jpem.2004.17.10.1375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Children with severe hypoglycaemia due to persistent hyperinsulinism in infancy (HI) generate some of the most formidable problems of management in contemporary paediatric endocrinology. Until recently its pathophysiology was an enigma, although it was thought to be due to an anatomical abnormality in the islets of Langerhans (so called 'nesidioblastosis'). During the last 6 years there has been an explosion of knowledge providing fundamental insights into the pathological mechanisms underpinning the abnormal insulin secretion. This knowledge has been facilitated by ENRHI, a programme of research funded by the European Union, which brings together clinicians and basic scientists from 14 different countries. This collaboration encompasses clinical paediatric endocrinology, intracellular biochemistry, membrane physiology and molecular biology. This collaboration has resulted in numerous publications generating new insights into the pathophysiology of HI and represents a paradigm for collaboration in paediatric endocrinology. This review article is based on a plenary lecture delivered at the European Society for Paediatric Endocrinology meeting in Montreal on behalf of the European Network for Research into Hyperinsulinism of Infancy (ENRHI).
Collapse
Affiliation(s)
- K Hussain
- The London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children, UK.
| | | |
Collapse
|
8
|
De Vroede M, Bax NMA, Brusgaard K, Dunne MJ, Groenendaal F. Laparoscopic diagnosis and cure of hyperinsulinism in two cases of focal adenomatous hyperplasia in infancy. Pediatrics 2004; 114:e520-2. [PMID: 15466080 DOI: 10.1542/peds.2003-1180-l] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Persistent hyperinsulinemic hypoglycemia of infancy or congenital hyperinsulinism of the neonate is a rare condition that may cause severe neurologic damage if the disease is unrecognized or inadequately treated. Current treatment aims to restore normal blood glucose levels by providing a carbohydrate-enriched diet and drugs that inhibit insulin secretion. If medical treatment fails, then surgery is required. Because congenital hyperinsulinism may be caused either by diffuse involvement of pancreatic beta-cells or by a focal cluster of abnormal beta-cells, the extent of pancreatectomy varies. We report on 2 patients with a focal form of the disease for whom diagnosis was made with laparoscopy. Laparoscopic enucleation of the lesion was curative.
Collapse
Affiliation(s)
- Monique De Vroede
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Montero Luis C, Pozo Román J, Muñoz Calvo MT, Martos Moreno G, Donoso MA, Rubio Cabezas O, Argente Oliver J. Síndrome de hiperinsulinismohiperamoniemia por mutación de novo en el exón 7 (G979A) del gen GLUD-1,con excelente respuesta a diazóxido. An Pediatr (Barc) 2004; 61:433-7. [PMID: 15530324 DOI: 10.1016/s1695-4033(04)78419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Hyperinsulinism-hyperammonemia syndrome is characterized by recurrent and symptomatic hypoglycemias in childhood, secondary to hyperinsulinism associated with mild and asymptomatic hyperammonemia. This syndrome is caused by dominantly expressed mutations of the glutamate dehydrogenase gene (10q23.3). These mutations modify control of enzyme activity and represent the second cause of congenital hyperinsulinism of known genetic etiology. Moreover, this syndrome is the first genetic disorder due to an increase of function in an enzyme of intermediary metabolism to have been identified. We present the case of a 16-month-old boy with symptomatic recurrent hypoglycemias from the end of the first year of life, caused by a de novo mutation in exon 7 (G979A) of the GDH gene, with excellent outcome after diazoxide treatment.
Collapse
Affiliation(s)
- C Montero Luis
- Servicio de Endocrinología Pediátrica, Departamento de Pediatría, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous entity and causes severe hypoglycemia in neonates and infants. The clinical heterogeneity is manifested by severity ranging from extremely severe, life-threatening disease to very mild clinical symptoms, which may even be difficult to identify. Furthermore, clinical responsiveness to medical and surgical management is extremely variable. Recent discoveries have begun to clarify the molecular etiology of this disease in about 50% of cases. Mutations in five different genes have been identified in patients with this clinical syndrome. Most cases are caused by mutations in the genes ABCC8 and KCNJ11 coding for either of the two subunits of the beta-cell KATP channel (SUR1 and Kir6.2). Recessive mutations of the beta-cell K(ATP) channel genes cause diffuse HI, whereas loss of heterozygosity together with inheritance of a paternal mutation causes focal adenomatous HI. In other cases, CHI is caused by mutations in genes coding for the beta-cell enzymes glucokinase (GK), glutamate dehydrogenase (GDH), and SCHAD. However, for as many as 50% of the cases, no genetic etiology has yet been determined. The study of the genetics of this disease has provided important new information regarding beta-cell physiology.
Collapse
|
11
|
Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in Infancy: From Basic Science to Clinical Disease. Physiol Rev 2004; 84:239-75. [PMID: 14715916 DOI: 10.1152/physrev.00022.2003] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dunne, Mark J., Karen E. Cosgrove, Ruth M. Shepherd, Albert Aynsley-Green, and Keith J. Lindley. Hyperinsulinism in Infancy: From Basic Science to Clinical Disease. Physiol Rev 84: 239–275, 2004; 10.1152/physrev.00022.2003.—Ion channelopathies have now been described in many well-characterized cell types including neurons, myocytes, epithelial cells, and endocrine cells. However, in only a few cases has the relationship between altered ion channel function, cell biology, and clinical disease been defined. Hyperinsulinism in infancy (HI) is a rare, potentially lethal condition of the newborn and early childhood. The causes of HI are varied and numerous, but in almost all cases they share a common target protein, the ATP-sensitive K+channel. From gene defects in ion channel subunits to defects in β-cell metabolism and anaplerosis, this review describes the relationship between pathogenesis and clinical medicine. Until recently, HI was generally considered an orphan disease, but as parallel defects in ion channels, enzymes, and metabolic pathways also give rise to diabetes and impaired insulin release, the HI paradigm has wider implications for more common disorders of the endocrine pancreas and the molecular physiology of ion transport.
Collapse
Affiliation(s)
- Mark J Dunne
- Research Division of Physiology and Pharmacology, The School of Biological Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
12
|
Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P. Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 2003; 33:742-50. [PMID: 12925032 DOI: 10.1046/j.1365-2362.2003.01207.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Abstract
Hyperinsulinism in infancy (HI) is the commonest cause of persistent and recurrent hypoglycaemia in the infancy and childhood period. HI is a heterogeneous disorder with respect to clinical presentation, histology, molecular biology and genetics. Recent advances have provided unique insights into the pathophysiology of this intriguing disease as well as providing an understanding of the normal physiological and biochemical mechanisms regulating insulin secretion from pancreatic beta-cells. The histological differentiation of focal and diffuse forms of HI has radically changed the surgical management to this disease. So far mutations in five different genes have been described which lead to dysregulated insulin secretion from beta-cells. Despite these advances the genetic defect is still unknown in about 60% of cases.
Collapse
Affiliation(s)
- K Hussain
- The London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK.
| | | |
Collapse
|
14
|
Abstract
Hyperinsulinism (HI) is the commonest cause of persistent or recurrent hypoglycaemia in childhood. HI is genetically and phenotypically diverse. Key management issues involve early diagnosis by insuring that appropriate investigations are undertaken at the point of hypoglycaemia, prevention of recurrent hypoglycaemia and clinical, biochemical and genetic characterisation of the HI syndrome. Children with persistent diazoxide resistant HI require investigation at specialist centres to differentiate those with a generalised disorder of the pancreas (diffuse HI; di-HI) from those with localised abnormalities within the pancreas (focal HI; fo-HI). Fo-HI may be managed by selective pancreatic resection of the focal abnormality. Di-HI is only managed by surgery if combination drug therapies are unable to prevent hypoglycaemia. Pancreatic beta-cell dysfunction persists following subtotal pancreatectomy of di-HI.
Collapse
Affiliation(s)
- Keith J Lindley
- The Institute of Child Health, University College London, London, UK.
| | | |
Collapse
|
15
|
Shiota C, Larsson O, Shelton KD, Shiota M, Efanov AM, Hoy M, Lindner J, Kooptiwut S, Juntti-Berggren L, Gromada J, Berggren PO, Magnuson MA. Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 2002; 277:37176-83. [PMID: 12149271 DOI: 10.1074/jbc.m206757200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-sensitive potassium channel is a key molecular complex for glucose-stimulated insulin secretion in pancreatic beta cells. In humans, mutations in either of the two subunits for this channel, the sulfonylurea type 1 receptor (Sur1) or Kir6.2, cause persistent hyperinsulinemic hypoglycemia of infancy. We have generated and characterized Sur1 null mice. Interestingly, these animals remain euglycemic for a large portion of their life despite constant depolarization of membrane, elevated cytoplasmic free Ca(2+) concentrations, and intact sensitivity of the exocytotic machinery to Ca(2+). A comparison of glucose- and meal-stimulated insulin secretion showed that, although Sur1 null mice do not secrete insulin in response to glucose, they secrete nearly normal amounts of insulin in response to feeding. Because Sur1 null mice lack an insulin secretory response to GLP-1, even though their islets exhibit a normal rise in cAMP by GLP-1, we tested their response to cholinergic stimulation. We found that perfused Sur1 null pancreata secreted insulin in response to the cholinergic agonist carbachol in a glucose-dependent manner. Together, these findings suggest that cholinergic stimulation is one of the mechanisms that compensate for the severely impaired response to glucose and GLP-1 brought on by the absence of Sur1, thereby allowing euglycemia to be maintained.
Collapse
Affiliation(s)
- Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Christesen HBT, Jacobsen BB, Odili S, Buettger C, Cuesta-Munoz A, Hansen T, Brusgaard K, Massa O, Magnuson MA, Shiota C, Matschinsky FM, Barbetti F. The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes 2002; 51:1240-6. [PMID: 11916951 DOI: 10.2337/diabetes.51.4.1240] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, a second case of hyperinsulinemic hypoglycemia due to activation of glucokinase is reported. The 14-year-old proband had a history of neonatal hypoglycemia, treated with diazoxide. He was admitted with coma and convulsions due to nonketotic hypoglycemia. His BMI was 34 kg/m(2), and his fasting blood glucose ranged from 2.1 to 2.7 mmol/l, associated with inappropriately high serum levels of insulin, C-peptide, and proinsulin. An oral glucose tolerance test (OGTT) showed exaggerated responses of these peptides followed by profound hypoglycemia. Treatment with diazoxide and chlorothiazide was effective. His mother never had clinical hypoglycemic symptoms, even though her fasting blood glucose ranged from 2.9 to 3.5 mmol/l. Increases in serum insulin, C-peptide, and proinsulin in response to an OGTT suggested a lower threshold for glucose-stimulated insulin release (GSIR). Screening for mutations in candidate genes revealed a heterozygous glucokinase mutation in exon 10, substituting valine for alanine at codon 456 (A456V) in the proband and his mother. The purified recombinant glutathionyl S-transferase fusion protein of the A456V glucokinase revealed a decreased glucose S(0.5) (the concentration of glucose needed to achieve the half-maximal rate of phosphorylation) from 8.04 (wild-type) to 2.53 mmol/l. The mutant's Hill coefficient was decreased, and its maximal specific activity k(cat) was increased. Mathematical modeling predicted a markedly lowered GSIR threshold of 1.5 mmol/l. The theoretical and practical implications are manifold and significant.
Collapse
|
17
|
Böhles H, Sewell AA, Gebhardt B, Reinecke-Lüthge A, Klöppel G, Marquardt T. Hyperinsulinaemic hypoglycaemia--leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency). J Inherit Metab Dis 2001; 24:858-62. [PMID: 11916319 DOI: 10.1023/a:1013944308881] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A male infant is described who presented with persistent hyperinsulinaemic hypoglycaemia, responding to diazoxide treatment. However, this therapy was discontinued because of seizures as a consequence of disturbed water and electrolyte balance. Glucose homeostasis could only be maintained by subtotal pancreatectomy, which was performed at 3 8/12 years of age. He developed a severe thrombosis, whereon a congenital disorder of glycosylation (CDG) was suspected. An abnormal transferrin isoelectric focusing pattern was found and the diagnosis of CDG Ia was confirmed by enzyme and molecular genetic analysis. This is the first patient with phosphomannomutase deficiency (McKusick 601785) described presenting with severe hyperinsulinaemic hypoglycaemia.
Collapse
Affiliation(s)
- H Böhles
- Department of Pediatrics, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingré HE, Berger R, van den Berg IE. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion. J Clin Invest 2001. [DOI: 10.1172/jci200111294] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 2001; 108:457-65. [PMID: 11489939 PMCID: PMC209352 DOI: 10.1172/jci11294] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 06/11/2001] [Indexed: 12/14/2022] Open
Abstract
A female infant of nonconsanguineous Indian parents presented at 4 months with a hypoglycemic convulsion. Further episodes of hypoketotic hypoglycemia were associated with inappropriately elevated plasma insulin concentrations. However, unlike other children with hyperinsulinism, this patient had a persistently elevated blood spot hydroxybutyrylcarnitine concentration when fed, as well as when fasted. Measurement of the activity of L-3-hydroxyacyl-CoA dehydrogenase in cultured skin fibroblasts with acetoacetyl-CoA substrate showed reduced activity. In fibroblast mitochondria, the activity was less than 5% that of controls. Sequencing of the short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) genomic DNA from the fibroblasts showed a homozygous mutation (C773T) changing proline to leucine at amino acid 258. Analysis of blood from the parents showed they were heterozygous for this mutation. Western blot studies showed undetectable levels of immunoreactive SCHAD protein in the child's fibroblasts. Expression studies showed that the P258L enzyme had no catalytic activity. We conclude that C773T is a disease-causing SCHAD mutation. This is the first defect in fatty acid beta-oxidation that has been associated with hyperinsulinism and raises interesting questions about the ways in which changes in fatty acid and ketone body metabolism modulate insulin secretion by the beta cell. The patient's hyperinsulinism was easily controlled with diazoxide and chlorothiazide.
Collapse
Affiliation(s)
- P T Clayton
- London Centre for Paediatric Endocrinology and Metabolism, Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, University College London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lawson K, Dunne MJ. Peripheral channelopathies as targets for potassium channel openers. Expert Opin Investig Drugs 2001; 10:1345-59. [PMID: 11772256 DOI: 10.1517/13543784.10.7.1345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Potassium channel openers (KCOs) are important tools that are often used to gain a greater understanding of K(+) channels. Agents that can induce or maintain the opening of K(+) channels also offer a therapeutic approach to controlling of cell excitability and offer a means of producing stability in biological systems. The pathogenesis of a broad range of peripheral disorders (e.g., LQT syndrome, hypokalemic periodic paralysis, hyperinsulinism in infancy and erectile dysfunction) are associated with dysfunctional K(+) channels due to mutations in genes encoding channel proteins. The therapeutic potential of KCOs in peripheral K(+) channelopathies is discussed. The identification of K(+) channel subtype-specific openers offers discrete modulation of cellular systems creating a realistic therapeutic advance in the treatment of K(+) channelopathies.
Collapse
Affiliation(s)
- K Lawson
- Division of Biomedical Sciences, Sheffield Hallam University, School of Science and Mathematics, City Campus, Sheffield, S1 1WB, UK.
| | | |
Collapse
|
21
|
Grimberg A, Ferry RJ, Kelly A, Koo-McCoy S, Polonsky K, Glaser B, Permutt MA, Aguilar-Bryan L, Stafford D, Thornton PS, Baker L, Stanley CA. Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 2001; 50:322-8. [PMID: 11272143 PMCID: PMC3313678 DOI: 10.2337/diabetes.50.2.322] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in the high-affinity sulfonylurea receptor (SUR)-1 cause one of the severe recessively inherited diffuse forms of congenital hyperinsulinism or, when associated with loss of heterozygosity, focal adenomatosis. We hypothesized that SUR1 mutations would render the beta-cell insensitive to sulfonylureas and to glucose. Stimulated insulin responses were compared among eight patients with diffuse hyperinsulinism (two mutations), six carrier parents, and ten normal adults. In the patients with diffuse hyperinsulinism, the acute insulin response to intravenous tolbutamide was absent and did not overlap with the responses seen in either adult group. There was positive, albeit significantly blunted, acute insulin response to intravenous dextrose in the patients with diffuse hyperinsulinism. Graded infusions of glucose, to raise and then lower plasma glucose concentrations over 4 h, caused similar rises in blood glucose but lower peak insulin levels in the hyperinsulinemic patients. Loss of acute insulin response to tolbutamide can identify children with diffuse SUR1 defects. The greater response to glucose than to tolbutamide indicates that ATP-sensitive potassium (KATP) channel-independent pathways are involved in glucose-mediated insulin release in patients with diffuse SUR1 defects. The diminished glucose responsiveness suggests that SUR1 mutations and lack of KATP channel activity may contribute to the late development of diabetes in patients with hyperinsulinism independently of subtotal pancreatectomy.
Collapse
Affiliation(s)
- A Grimberg
- Division of Pediatric Endocrinology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- C F Munns
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Brisbane, Queensland, Australia
| | | |
Collapse
|
23
|
Lawson K. Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin Investig Drugs 2000; 9:2269-80. [PMID: 11060806 DOI: 10.1517/13543784.9.10.2269] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malfunction in ion channels, due to mutations in genes encoding channel proteins or the presence of autoantibodies, are increasing being implicated in causing disease conditions, termed channelopathies. Dysfunction of potassium (K(+)) channels has been associated with the pathophysiology of a number of neurological, as well as peripheral, disorders (e.g., episodic ataxia, epilepsy, neuromyotonia, Parkinson's disease, congenital deafness, long QT syndrome). K(+) channels, which demonstrate a high degree of diversity and ubiquity, are fundamental in the control of membrane depolarisation and cell excitability. A common feature of K(+) channelopathies is a reduction or loss of membrane potential repolarisation. The identification of K(+) channel subtype specific openers will allow the recovery of the mechanism(s) responsible for counteraction of uncontrolled cellular depolarisation. Synthetic agents that demonstrate K(+) channel opening properties are available for a variety of K(+) channel subtypes (e.g., K(ATP), BK(Ca), GIRK and M-channel). This study reviews the realistic therapeutic potential that may be gained in a broad spectrum of clinical conditions by K(+) channel openers. K(+) channel openers would therefore identify dysfunctional K(+) channel as therapeutic targets for clinical benefit, in addition being able to modulate normally functioning K(+) channels to gain clinical management of pathophysiological events irrespective of the cause.
Collapse
Affiliation(s)
- K Lawson
- Biomedical Research Centre, Sheffield Hallam University, School of Science and Mathematics, City Campus, Sheffield, S1 1WB, UK.
| |
Collapse
|
24
|
Aynsley-Green A, Hussain K, Hall J, Saudubray JM, Nihoul-Fékété C, De Lonlay-Debeney P, Brunelle F, Otonkoski T, Thornton P, Lindley KJ. Practical management of hyperinsulinism in infancy. Arch Dis Child Fetal Neonatal Ed 2000; 82:F98-F107. [PMID: 10685981 PMCID: PMC1721064 DOI: 10.1136/fn.82.2.f98] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyperinsulinism in infancy is one of the most difficult problems to manage in contemporary paediatric endocrinology. Although the diagnosis can usually be achieved without difficulty, it presents the paediatrician with formidable day to day management problems. Despite recent advances in understanding the pathophysiology of hyperinsulinism, the neurological outcome remains poor, and there is often a choice of unsatisfactory treatments, with life long sequelae for the child and his or her family. This paper presents a state of the art overview on management derived from a consensus workshop held by the European network for research into hyperinsulinism (ENRHI). The consensus is presented as an educational aid for paediatricians and children's nurses. It offers a practical guide to management based on the most up to date knowledge. It presents a proposed management cascade and focuses on the clinical recognition of the disease, the immediate steps that should be taken to stabilise the infant during diagnostic investigations, and the principles of definitive treatment.
Collapse
Affiliation(s)
- A Aynsley-Green
- The London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, London
| | | | | | | | | | | | | | | | | | | |
Collapse
|