1
|
Liu X, Zhang J, Chen Z, Xiao J, Zhou A, Fu Y, Cao Y. Cluster-determinant 36 (CD36) mediates intestinal absorption of dietary astaxanthin and affects its secretion. Food Res Int 2023; 173:113328. [PMID: 37803639 DOI: 10.1016/j.foodres.2023.113328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
The functional activity of dietary astaxanthin is closely related to its absorption, and the absorption of dietary carotenoids mainly mediated by transmembrane transport protein (TTP) has become the mainstream research direction in recent years. However, the main TTP mediating astaxanthin absorption and its potential mechanisms are still unclear. Hence, based on the preliminary screening results, this study aims to elucidate the role of cluster-determinant 36 (CD36) mediating astaxanthin absorption from the perspective of expression levels through in vitro cell model, in situ single-pass intestinal perfusion model and in vivo mice model. The results showed that astaxanthin uptake was significantly increased by 45.13% in CD36 overexpressing cells and decreased by 20.92% in the case of sulfo-N-succinimidyl oleate (SSO) inhibition. A similar trend also appeared in the duodenum and jejunum by in situ model. Moreover, astaxanthin uptake in the small intestine of CD36 knockout mice was significantly reduced by 88.22%. Furthermore, the inhibition or knockout of CD36 suppressed the expression of other transporters (SR-BI and NPC1L1). Interestingly, CD36 was also involved in the downstream secretion pathway, which is manifested by interfering with the expression of related proteins (ERK1/2, MTP, ApoB48, and ApoAI). Therefore, these results indicate the important role of CD36 in astaxanthin transmembrane transport for the first time, providing vital exploration way for the absorption of dietary fat-soluble substances.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yongshui Fu
- Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou 510095, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhu Q, Iwai R, Okaguchi T, Shirasaka Y, Tamai I. Apple juice relieves loperamide-induced constipation in rats by downregulating the intestinal apical sodium-dependent bile acid transporter ASBT. Food Funct 2023; 14:4836-4846. [PMID: 37129213 DOI: 10.1039/d3fo00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Apples are known to exhibit various beneficial effects on human health. In the present study, we investigated the effect of continuous intake of apple juice (AJ) on constipation status. A single dose of loperamide in rats as the constipation model markedly decreased the weight and number of fecal pellets compared to saline-administered rats as a control. After the administration of AJ twice a day for seven days, recovery of defecation close to that of the control was observed in loperamide-treated rats. In addition, the total bile acid content in the feces increased from day 4 after the administration of AJ. Among hepatic and intestinal transporters and enzymes that regulate bile acids, the mRNA expression of the apical sodium-dependent bile acid transporter (Asbt, slc10a2) was decreased by AJ in rats. Furthermore, the Asbt-mediated bile acid transport activity in the rat ileum decreased after AJ administration. Moreover, in human colonic cancer-derived Caco-2 cells, AJ exposure for 24 and 48 h decreased the expressions of ASBT mRNA and protein, and the uptake activity of taurocholic acid in both 7- and 21-d cultures. Several components of AJ, such as procyanidins, decreased the expression of ASBT in Caco-2 cells. In conclusion, ASBT downregulation is a possible mechanism responsible for the constipation-relieving effect of apples, and procyanidins may play a role in downregulating ASBT, which leads to the beneficial effects of apples against constipation. Although it is generally agreed that the common dietary compositions play a role in constipation relief, the novel specific mechanism of apples found in this study would facilitate understanding food functions.
Collapse
Affiliation(s)
- Qiunan Zhu
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Ryusuke Iwai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Takehiro Okaguchi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Yoshiyuki Shirasaka
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
3
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
4
|
Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats. Br J Nutr 2022; 127:1621-1630. [PMID: 34256877 DOI: 10.1017/s0007114521002610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enterohepatic circulation of 12α-hydroxylated (12αOH) bile acid (BA) is enhanced depending on the energy intake in high-fat diet-fed rats. Such BA metabolism can be reproduced using a diet supplemented with cholic acid (CA), which also induces simple steatosis, without inflammation and fibrosis, accompanied by some other symptoms that are frequently observed in the condition of non-alcoholic fatty liver in rats. We investigated whether supplementation of the diet with raffinose (Raf) improves hepatic lipid accumulation induced by the CA-fed condition in rats. After acclimation to the AIN-93-based control diet, male Wistar rats were fed diets supplemented with a combination of Raf (30 g/kg diet) and/or CA (0·5 g/kg diet) for 4 weeks. Dietary Raf normalised hepatic TAG levels (two-way ANOVA P < 0·001 for CA, P = 0·02 for Raf and P = 0·004 for interaction) in the CA-supplemented diet-fed rats. Dietary Raf supplementation reduced hepatic 12αOH BA concentration (two-way ANOVA P < 0·001 for CA, P = 0·003 for Raf and P = 0·03 for interaction). The concentration of 12αOH BA was reduced in the aortic and portal plasma. Raf supplementation increased acetic acid concentration in the caecal contents (two-way ANOVA P = 0·001 as a main effect). Multiple regression analysis revealed that concentrations of aortic 12αOH BA and caecal acetic acid could serve as predictors of hepatic TAG concentration (R2 = 0·55, P < 0·001). However, Raf did not decrease the secondary 12αOH BA concentration in the caecal contents as well as the transaminase activity in the CA diet-fed rats. These results imply that dietary Raf normalises hepatic lipid accumulation via suppression of enterohepatic 12αOH BA circulation.
Collapse
|
5
|
Wang J, Bakker W, Zheng W, de Haan L, Rietjens IMCM, Bouwmeester H. Exposure to the mycotoxin deoxynivalenol reduces the transport of conjugated bile acids by intestinal Caco-2 cells. Arch Toxicol 2022; 96:1473-1482. [PMID: 35224661 PMCID: PMC9013688 DOI: 10.1007/s00204-022-03256-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Conjugated bile acids are synthesized in liver and subsequently secreted into the intestinal lumen from which they are actively reabsorbed and transported back to liver. The efficient enterohepatic circulation of conjugated bile acids is important to maintain homeostasis. The mycotoxin deoxynivalenol (DON) is a fungal secondary metabolite that contaminates cereal food. Upon human exposure, it can cause intestinal dysfunction. We explored the effects of DON exposure on the intestinal absorption of conjugated bile acids and the expression of bile acid transporters using an in vitro model based on Caco-2 cell layers grown in transwells. Our study shows that the transport rate of taurocholic acid (TCA) is decreased after 48-h pre-exposure of the Caco-2 cells to 2 µM DON, which is a realistic intestinal DON concentration. Exposure to DON downregulates expression of the genes coding for the apical sodium-dependent bile acid transporter (ASBT), the ileal bile acid-binding protein (IBABP) and the organic solute transporter α (OSTα), and it counteracts the agonist activity of Farnesoid X receptor (FXR) agonist GW4064 on these genes. In addition, the transport of ten taurine or glycine-conjugated bile acids in a physiological relevant mixture by the intestinal Caco-2 cell layers was decreased after pre-exposure of the cells to DON, pointing at a potential for DON-mediated accumulation of the conjugated bile acids at the intestinal luminal side. Together the results reveal that DON inhibits intestinal bile acid reabsorption by reducing the expression of bile acid transporters thereby affecting bile acid intestinal kinetics, leading to bile acid malabsorption in the intestine. Our study provides new insights into the hazards of DON exposure.
Collapse
Affiliation(s)
- Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Weijia Zheng
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
6
|
Gaillard D, Masson D, Garo E, Souidi M, Pais de Barros JP, Schoonjans K, Grober J, Besnard P, Thomas C. Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. Int J Mol Sci 2021; 22:7163. [PMID: 34281217 PMCID: PMC8269105 DOI: 10.3390/ijms22137163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Hypercholesterolemia is a major risk factor for atherosclerosis and cardiovascular diseases. Although resistant to hypercholesterolemia, the mouse is a prominent model in cardiovascular research. To assess the contribution of bile acids to this protective phenotype, we explored the impact of a 2-week-long dietary cholesterol overload on cholesterol and bile acid metabolism in mice. METHODS Bile acid, oxysterol, and cholesterol metabolism and transport were assessed by quantitative real-time PCR, western blotting, GC-MS/MS, or enzymatic assays in the liver, the gut, the kidney, as well as in the feces, the blood, and the urine. RESULTS Plasma triglycerides and cholesterol levels were unchanged in mice fed a cholesterol-rich diet that contained 100-fold more cholesterol than the standard diet. In the liver, oxysterol-mediated LXR activation stimulated the synthesis of bile acids and in particular increased the levels of hydrophilic muricholic acids, which in turn reduced FXR signaling, as assessed in vivo with Fxr reporter mice. Consequently, biliary and basolateral excretions of bile acids and cholesterol were increased, whereas portal uptake was reduced. Furthermore, we observed a reduction in intestinal and renal bile acid absorption. CONCLUSIONS These coordinated events are mediated by increased muricholic acid levels which inhibit FXR signaling in favor of LXR and SREBP2 signaling to promote efficient fecal and urinary elimination of cholesterol and neo-synthesized bile acids. Therefore, our data suggest that enhancement of the hydrophilic bile acid pool following a cholesterol overload may contribute to the resistance to hypercholesterolemia in mice. This work paves the way for new therapeutic opportunities using hydrophilic bile acid supplementation to mitigate hypercholesterolemia.
Collapse
Affiliation(s)
- Dany Gaillard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- Department of Cell & Developmental Biology, and The Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Masson
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Biochemistry Department, University Hospital François Mitterrand, 21000 Dijon, France
| | - Erwan Garo
- IGBMC, CNRS UMR 7104, INSERM U 1258, 67400 Illkirch, France;
| | - Maamar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Jean-Paul Pais de Barros
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Lipidomic Facility, Université de Bourgogne Franche-Comté (UBFC), 21078 Dijon, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Life Science Faculty, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Jacques Grober
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| | - Philippe Besnard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Physiologie de la Nutrition, AgroSup Dijon, 21000 Dijon, France
| | - Charles Thomas
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| |
Collapse
|
7
|
Wu S, Zhang C, Xu F, Li K, Li A, Wu J. Effects of different intensity of exercise on tissue injury and gene expression in obese rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:705-712. [PMID: 34239671 PMCID: PMC8255194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Weight loss is an important aspect of chronic disease prevention and management, with increasing rates of overweight and obesity worldwide. Drugs and surgery are popular approaches to lose weight. Given their potential harm to the body, exercise is an alternative widely accepted approach. However, participation in high intensity exercise entails an inherent risk of sports-related injuries. In this study, a rat model fed with high fat diet was employed to investigate the effects of different intensity of exercise prescription on both weight loss and tissue injury after exercise and to find a proper exercise prescription for losing weight with minimal tissues injuries. We inferred that 3% weight bearing might be the proper exercise prescription for high fat diet-fed rats in our experimental setting.
Collapse
Affiliation(s)
- Shujia Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Wuhan UniversityWuhan 430072, China
| | - Cheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Wuhan UniversityWuhan 430072, China
| | - Feng Xu
- Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan UniversityWuhan 430072, China
| | - Ke Li
- Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan UniversityWuhan 430072, China
| | - Anke Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Wuhan UniversityWuhan 430072, China
| | - Junzhu Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Wuhan UniversityWuhan 430072, China
| |
Collapse
|
8
|
Yang N, Dong YQ, Jia GX, Fan SM, Li SZ, Yang SS, Li YB. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed Pharmacother 2020; 132:110835. [PMID: 33035828 DOI: 10.1016/j.biopha.2020.110835] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Bile acids has gradually become a new focus in various diseases, and ASBT as a transporter responsible for the reabsorption of ileal bile acids, is a key hinge associated to the bile acids-cholesterol balance and bile acids of enterohepatic circulation. The cumulative studies have also shown that ASBT is a promising target for treatment of liver, gallbladder, intestinal and metabolic diseases. This article briefly reviewed the process of bile acids enterohepatic circulation, as well as the regulations of ASBT expression, covering transcription factors, nuclear receptors and gut microbiota. In addition, the relationship between ASBT and various diseases were discussed in this paper. According to the structural classification of ASBT inhibitors, the research status of ASBT inhibitors and potential ASBT inhibitors of traditional Chinese medicine (such resveratrol, jatrorrhizine in Coptis chinensis) were summarized. This review provides a basis for the development of ASBT inhibitors and the treatment strategy of related diseases.
Collapse
Affiliation(s)
- Na Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Ya-Qian Dong
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guo-Xiang Jia
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Si-Miao Fan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shan-Ze Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shen-Shen Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
9
|
Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: Current and future challenges. Pharmacol Ther 2020; 212:107539. [PMID: 32201314 DOI: 10.1016/j.pharmthera.2020.107539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
|
10
|
Jiang X, Pan D, Zhang T, Liu C, Zhang J, Su M, Wu Z, Zeng X, Sun Y, Guo Y. Novel milk casein–derived peptides decrease cholesterol micellar solubility and cholesterol intestinal absorption in Caco-2 cells. J Dairy Sci 2020; 103:3924-3936. [DOI: 10.3168/jds.2019-17586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
|
11
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
12
|
Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019; 11:nu11112588. [PMID: 31661763 PMCID: PMC6893479 DOI: 10.3390/nu11112588] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, the main contributor to coronary heart disease, is characterised by an accumulation of lipids such as cholesterol in the arterial wall. Reverse cholesterol transport (RCT) reduces cholesterol via its conversion into bile acids (BAs). During RCT in non-hepatic peripheral tissues, cholesterol is transferred to high-density lipoprotein (HDL) particles and returned to the liver for conversion into BAs predominantly via the rate-limiting enzyme, cholesterol 7 α-hydroxylase (CYP7A1). Numerous reports have described that polyphenol induced increases in BA excretion and corresponding reductions in total and LDL cholesterol in animal and in-vitro studies, but the process whereby this occurs has not been extensively reviewed. There are three main mechanisms by which BA excretion can be augmented: (1) increased expression of CYP7A1; (2) reduced expression of intestinal BA transporters; and (3) changes in the gut microbiota. Here we summarise the BA metabolic pathways focusing on CYP7A1, how its gene is regulated via transcription factors, diurnal rhythms, and microRNAs. Importantly, we will address the following questions: (1) Can polyphenols enhance BA secretion by modulating the CYP7A1 biosynthetic pathway? (2) Can polyphenols alter the BA pool via changes in the gut microbiota? (3) Which polyphenols are the most promising candidates for future research? We conclude that while in rodents some polyphenols induce CYP7A1 expression predominantly by the LXRα pathway, in human cells, this may occur through FXR, NF-KB, and ERK signalling. Additionally, gut microbiota is important for the de-conjugation and excretion of BAs. Puerarin, resveratrol, and quercetin are promising candidates for further research in this area.
Collapse
|
13
|
Xiao L, Pan G. An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: The apical sodium-dependent bile acid transporter (SLC10A2/ASBT). Clin Res Hepatol Gastroenterol 2017; 41:509-515. [PMID: 28336180 DOI: 10.1016/j.clinre.2017.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 02/04/2023]
Abstract
The enterohepatic circulation of bile acids (BAs) is governed by specific transporters expressed in the liver and the intestine and plays a critical role in the digestion of fats and oils. During this process, the majority of the BAs secreted from the liver is reabsorbed in intestinal epithelial cells via the apical sodium-dependent bile acid transporter (ASBT/SLC10A2) and then transported into the portal vein. Previous studies revealed that regulation of the ASBT involves BAs and cholesterol. In addition, abnormal ASBT expression and function might lead to some diseases associated with disorders in the enterohepatic circulation of BAs and cholesterol homeostasis, such as diarrhoea and gallstones. However, decreasing cholesterol or BAs by partly inhibiting ASBT-mediated transport might be used for treatments of hypercholesterolemia, cholestasis and diabetes. This review mainly discusses the regulation of the ASBT by BAs and cholesterol and its relevance to diseases and treatment.
Collapse
Affiliation(s)
- Ling Xiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Shi AX, Zhou Y, Zhang XY, Zhao YS, Qin HY, Wang YP, Wu XA. Irinotecan-induced bile acid malabsorption is associated with down-regulation of ileal Asbt ( Slc10a2 ) in mice. Eur J Pharm Sci 2017; 102:220-229. [DOI: 10.1016/j.ejps.2017.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022]
|
15
|
Dermadi D, Valo S, Ollila S, Soliymani R, Sipari N, Pussila M, Sarantaus L, Linden J, Baumann M, Nyström M. Western Diet Deregulates Bile Acid Homeostasis, Cell Proliferation, and Tumorigenesis in Colon. Cancer Res 2017; 77:3352-3363. [PMID: 28416481 DOI: 10.1158/0008-5472.can-16-2860] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/08/2017] [Accepted: 04/10/2017] [Indexed: 01/12/2023]
Abstract
Western-style diets (WD) high in fat and scarce in fiber and vitamin D increase risks of colorectal cancer. Here, we performed a long-term diet study in mice to follow tumorigenesis and characterize structural and metabolic changes in colon mucosa associated with WD and predisposition to colorectal cancer. WD increased colon tumor numbers, and mucosa proteomic analysis indicated severe deregulation of intracellular bile acid (BA) homeostasis and activation of cell proliferation. WD also increased crypt depth and colon cell proliferation. Despite increased luminal BA, colonocytes from WD-fed mice exhibited decreased expression of the BA transporters FABP6, OSTβ, and ASBT and decreased concentrations of secondary BA deoxycholic acid and lithocholic acid, indicating reduced activity of the nuclear BA receptor FXR. Overall, our results suggest that WD increases cancer risk by FXR inactivation, leading to BA deregulation and increased colon cell proliferation. Cancer Res; 77(12); 3352-63. ©2017 AACR.
Collapse
Affiliation(s)
- Denis Dermadi
- Department of Biosciences, Genetics, University of Helsinki, Helsinki, Finland. .,Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Satu Valo
- Department of Biosciences, Genetics, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Saara Ollila
- Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Medicum, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Viikki Metabolomics Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Marjaana Pussila
- Department of Biosciences, Genetics, University of Helsinki, Helsinki, Finland
| | - Laura Sarantaus
- Department of Biosciences, Genetics, University of Helsinki, Helsinki, Finland
| | - Jere Linden
- Department of Basic Veterinary Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Medicum, University of Helsinki, Helsinki, Finland
| | - Minna Nyström
- Department of Biosciences, Genetics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Kakizuka S, Takeda T, Komiya Y, Koba A, Uchi H, Yamamoto M, Furue M, Ishii Y, Yamada H. Dioxin-Produced Alteration in the Profiles of Fecal and Urinary Metabolomes: A Change in Bile Acids and Its Relevance to Toxicity. Biol Pharm Bull 2016; 38:1484-95. [PMID: 26424014 DOI: 10.1248/bpb.b15-00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated dioxin-induced changes in metabolomes in pubertal rat excrement. The administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or restricting dietary intake (pair-fed group) markedly altered the metabolomic profile including lipids, hormones, and vitamins in the urine and feces. TCDD caused an increase in the fecal chenodeoxycholic acid and taurocholic acid content and in urinary adrenaline and 17β-estradiol, while the urinary melatonin level was reduced by TCDD. These changes were not observed in the pair-fed group. In accordance with the elevated level of fecal bile acids, TCDD reduced the intestinal expression of the apical sodium-dependent bile salt transporter, which plays a role in resorbing bile acids from the bile duct. In addition, CYP7A1, a rate-limiting enzyme for bile acid biosynthesis, was attenuated by TCDD treatment, although TCDD induced hepatic CYP8B1, an enzyme essential for cholic acid synthesis. Supplying cholic acid or chenodeoxycholic acid to TCDD-exposed rats tended to restore the TCDD-produced reduction in serum triglycerides, whereas no similar trend was observed in wasting syndrome and lipid accumulation in the liver. These results suggest that: 1) TCDD alters the circulating levels of bile acids and hormones via a mechanism distinct from an attenuation in dietary intake, although the majority of TCDD-induced changes in nutrient contents in the excrement is due to a reduction in food intake; and 2) TCDD facilitates the excretion of bile acids and disrupts their biosynthesis, resulting in the disturbance of lipid homeostasis.
Collapse
Affiliation(s)
- Saki Kakizuka
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
18
|
A single element in the 3'UTR of the apical sodium-dependent bile acid transporter controls both stabilization and destabilization of mRNA. Biochem J 2014; 462:547-53. [PMID: 24946903 DOI: 10.1042/bj20140070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
mRNA stability appears to play a key role in the ontogenic regulation of the apical sodium-dependent bile acid transporter (ASBT). The RNA-binding proteins Hu antigen R (HuR) and tristetraprolin (TTP) stabilize and destabilize ASBT mRNA, respectively. Potential HuR-binding sites were assessed by sequence analysis in the context of prior in vitro functional analyses of the rat ASBT 3'UTR. Wild-type and mutant-binding sites were investigated by gel-shift analysis using IEC-6 cell extracts. The functional consequences of binding site mutations were assessed using two different hybrid reporter constructs linking the 3'UTR element to either a luciferase or a β-globin coding mRNA sequence. A specific metastasis-associated gene 1 (MTA1) cis-element was identified in the ASBT 3'UTR that became associated with proteins in IEC-6 cell extracts and could be supershifted by anti-HuR or anti-TTP antibodies. Mutation of this cis-element abrogated the gel shift of IEC-6 proteins. Furthermore, hybrid constructs containing a mutant MTA1 element had reduced responses to modulation of HuR or TTP. For the first time, we have identified a single specific sequence element in the 3'UTR of the rat ASBT mRNA that mediates counter-regulatory changes in mRNA abundance in response to both HuR and TTP.
Collapse
|
19
|
Tsuei J, Chau T, Mills D, Wan YJY. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med (Maywood) 2014; 239:1489-504. [PMID: 24951470 DOI: 10.1177/1535370214538743] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because of increasingly widespread sedentary lifestyles and diets high in fat and sugar, the global diabetes and obesity epidemic continues to grow unabated. A substantial body of evidence has been accumulated which associates diabetes and obesity to dramatically higher risk of cancer development, particularly in the liver and gastrointestinal tract. Additionally, diabetic and obese individuals have been shown to suffer from dysregulation of bile acid (BA) homeostasis and dysbiosis of the intestinal microbiome. Abnormally elevated levels of cytotoxic secondary BAs and a pro-inflammatory shift in gut microbial profile have individually been linked to numerous enterohepatic diseases including cancer. However, recent findings have implicated a detrimental interplay between BA dysregulation and intestinal dysbiosis that promotes carcinogenesis along the gut-liver axis. This review seeks to examine the currently investigated interactions between the regulation of BA metabolism and activity of the intestinal microbiota and how these interactions can drive cancer formation in the context of diabesity. The precarcinogenic effects of BA dysregulation and gut dysbiosis including excessive inflammation, heightened oxidative DNA damage, and increased cell proliferation are discussed. Furthermore, by focusing on the mediatory roles of BA nuclear receptor farnesoid x receptor, ileal transporter apical sodium dependent BA transporter, and G-coupled protein receptor TGR5, this review attempts to connect BA dysregulation, gut dysbiosis, and enterohepatic carcinogenesis at a mechanistic level. A better understanding of the intricate interplay between BA homeostasis and gut microbiome can yield novel avenues to combat the impending rise in diabesity-related cancers.
Collapse
Affiliation(s)
- Jessica Tsuei
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| | - Thinh Chau
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| | - David Mills
- Department of Food Science and Technology, Department of Viticulture and Enology, Foods for Health Institute, University of California, Davis, CA 95616, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California at Davis Medical Center, Sacramento, CA 95831, USA
| |
Collapse
|
20
|
Ma L, Jüttner M, Kullak-Ublick GA, Eloranta JJ. Regulation of the gene encoding the intestinal bile acid transporter ASBT by the caudal-type homeobox proteins CDX1 and CDX2. Am J Physiol Gastrointest Liver Physiol 2012; 302:G123-33. [PMID: 22016432 DOI: 10.1152/ajpgi.00102.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The apical sodium-dependent bile acid transporter (ASBT) is expressed abundantly in the ileum and mediates bile acid absorption across the apical membranes. Caudal-type homeobox proteins CDX1 and CDX2 are transcription factors that regulate genes involved in intestinal epithelial differentiation and proliferation. Aberrant expression of both ASBT and CDXs in Barrett's esophagus (BE) prompted us to study, whether the expression of the ASBT gene is regulated by CDXs. Short interfering RNA-mediated knockdown of CDXs resulted in reduced ASBT mRNA expression in intestinal cells. CDXs strongly induced the activity of the ASBT promoter in reporter assays in esophageal and intestinal cells. Nine CDX binding sites were predicted in silico within the ASBT promoter, and binding of CDXs to six of them was verified in vitro and within living cells by electrophoretic mobility shift assays and chromatin immunoprecipitation assays, respectively. RNAs were extracted from esophageal biopsies from 20 BE patients and analyzed by real-time PCR. Correlation with ASBT expression was found for CDX1, CDX2, and HNF-1α in BE biopsies. In conclusion, the human ASBT promoter is activated transcriptionally by CDX1 and CDX2. Our finding provides a possible explanation for the reported observation that ASBT is aberrantly expressed in esophageal metaplasia that also expresses CDX transcription factors.
Collapse
Affiliation(s)
- Li Ma
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
21
|
Letona AZ, Niot I, Laugerette F, Athias A, Monnot MC, Portillo MP, Besnard P, Poirier H. CLA-enriched diet containing t10,c12-CLA alters bile acid homeostasis and increases the risk of cholelithiasis in mice. J Nutr 2011; 141:1437-44. [PMID: 21628634 DOI: 10.3945/jn.110.136168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mice fed a mixture of CLA containing t10,c12-CLA lose fat mass and develop hyperinsulinemia and hepatic steatosis due to an accumulation of TG and cholesterol. Because cholesterol is the precursor in bile acid (BA) synthesis, we investigated whether t10,c12-CLA alters BA metabolism. In Expt. 1, female C57Bl/6J mice were fed a standard diet for 28 d supplemented with a CLA mixture (1 g/100 g) or not (controls). In Expt. 2, the feeding period was reduced to 4, 6, and 10 d. In Expt. 3, mice were fed a diet supplemented with linoleic acid, c9,t11-CLA, or t10,c12-CLA (0.4 g/100 g) for 28 d. In Expt. 1, the BA pool size was greater in CLA-fed mice than in controls and the entero-hepatic circulation of BA was altered due to greater BA synthesis and ileal reclamation. This resulted from higher hepatic cholesterol 7α-hydroxylase (CYP7A1) and ileal apical sodium BA transporter expressions in CLA-fed mice. Furthermore, hepatic Na(+)/taurocholate co-transporting polypeptide (NTCP) (-52%) and bile salt export pump (BSEP) (-77%) protein levels were lower in CLA-fed mice than in controls, leading to a greater accumulation of BA in the plasma (+500%); also, the cholesterol saturation index and the concentration of hydrophobic BA in the bile were greater in CLA-fed mice, changes associated with the presence of cholesterol crystals. Expt. 2 suggests that CLA-mediated changes were caused by hyperinsulinemia, which occurred after 6 d of the CLA diet before NTCP and BSEP mRNA downregulation (10 d). Expt. 3 demonstrated that only t10,c12-CLA altered NTCP and BSEP mRNA levels. In conclusion, t10,c12-CLA alters BA homeostasis and increases the risk of cholelithiasis in mice.
Collapse
Affiliation(s)
- Amaia Zabala Letona
- Physiologie de la Nutrition, UMR INSERM U 866/ Université de Bourgogne, AgroSup Dijon, 21000 Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kumar P, Malhotra P, Ma K, Singla A, Hedroug O, Saksena S, Dudeja PK, Gill RK, Alrefai WA. SREBP2 mediates the modulation of intestinal NPC1L1 expression by curcumin. Am J Physiol Gastrointest Liver Physiol 2011; 301:G148-55. [PMID: 21527728 PMCID: PMC3129937 DOI: 10.1152/ajpgi.00119.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcumin, the major phenolic compound in the spice turmeric, exhibits numerous biological effects, including lowering plasma cholesterol and preventing diet-induced hypercholesterolemia. The mechanisms underlying the hypocholesterolemic effect of curcumin are not fully understood. In this regard, intestinal Niemann-Pick C1-like 1 (NPC1L1) cholesterol transporter, the molecular target of intestinal cholesterol absorption inhibitor ezetimibe, plays an essential role in the maintenance of cholesterol homeostasis. The current studies were designed to investigate the effect of curcumin on NPC1L1 function, expression, and promoter activity in intestinal Caco-2 monolayers. NPC1L1 function was evaluated by the measurement of ezetimibe-sensitive [(3)H]cholesterol esterification. Relative abundance of NPC1L1 mRNA and protein was evaluated by real-time PCR and Western blotting, respectively. Luciferase assays were used to measure NPC1L1 promoter activity. Our results showed that curcumin significantly inhibited ezetimibe-sensitive cholesterol esterification in a dose-dependent manner with a maximum decrease (by 52% compared with control) occurring at 50 μM concentration. Curcumin treatment of Caco-2 monolayers also significantly decreased NPC1L1 mRNA and protein expression. Similarly, the promoter activity of the NPC1L1 gene was inhibited significantly (55%) by 50 μM curcumin. The decrease in NPC1L1 promoter activity by curcumin was associated with a reduction in the expression and the DNA-binding activity of the sterol response element-binding protein 2 (SREBP2) transcription factor. Furthermore, the overexpression of active SREBP2 protected NPC1L1 from the inhibitory effect of curcumin. Our studies demonstrate that curcumin directly modulates intestinal NPC1L1 expression via transcriptional regulation and the involvement of SREBP2 transcription factor.
Collapse
Affiliation(s)
- Pradeep Kumar
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pooja Malhotra
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ke Ma
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Amika Singla
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Omar Hedroug
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ravinder K. Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A. Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
23
|
Abstract
In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na(+) taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTalpha-OSTbeta. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
24
|
Abstract
In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na(+) taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTalpha-OSTbeta. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
25
|
Differentiated CaCo-2 cells as an in-vitro model to evaluate de-novo apolipoprotein A-I production in the small intestine. Eur J Gastroenterol Hepatol 2009; 21:642-9. [PMID: 19445040 DOI: 10.1097/meg.0b013e328321b0c8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Increasing HDL cholesterol concentrations by stimulating de-novo apolipoprotein A-I (apoA-I) production in the liver and/or in the small intestine is a potential strategy to reduce coronary heart disease risk. Although there is quite some knowledge concerning regulatory effects in the liver, less is known concerning potential agents that could elevate de-novo apoA-I production in the small intestine. METHODS Therefore, we compared side-by-side effects of various peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, retinoid-X-receptor alpha, and farnesoid-X-receptor agonists on de-novo apoA-I production in differentiated CaCo-2 and HepG2 cells. RESULTS For PPARa agonists, we showed that GW7647 elevated apoA-I concentrations in the medium of both cell models, whereas WY14643 elevated only de-novo apoA-I concentrations in differentiated CaCo-2 cells. Unexpectedly, fenofibric acid lowered apoA-I medium concentrations in both cell lines, which could not be explained by a lack of PPAR transactivation or a lack of retinoid-X-receptor a activation. For farnesoid-X-receptor agonists, chenodeoxycholic acid strongly reduced apoA-I concentrations both in differentiated CaCo-2 and HepG2 cells, whereas GW4064 and taurocholate only lowered apoA-I in CaCo-2 cells (GW4064) or in HepG2 cells (taurocholate). However, overall effects of all individual components on apoA-I production in differentiated CaCo-2 and HepG2 cells were highly correlated (r = 0.68; P = 0.037; N=9). CONCLUSION We conclude that differentiated CaCo-2 cells are suitable models to study de-novo small intestinal apoA-I production in vitro enabling the possibility to screen for potential bioactive dietary components. This cell model may also determine small-intestinal-specific effects, as some discrepancy was found between both cell models.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Increased plasma levels of C-reactive protein (CRP), a hepatic acute phase reactant, predict risk for coronary heart disease. There has been interest in identifying genetic determinants of CRP as a means of better understanding its regulation and its relation to coronary heart disease. We here review recent findings that have linked plasma CRP levels to single nucleotide polymorphisms in hepatic nuclear factor (HNF) 1-alpha, a transcription factor with a wide range of functions, including many involved in cholesterol, bile acid, and lipoprotein metabolism. RECENT FINDINGS Two genome-wide association studies have identified single nucleotide polymorphisms in several genes that are strongly related to plasma CRP levels, including several on chromosome 12 in the vicinity of the HNF1A gene. The CRP gene promoter has two HNF1-alpha-binding sites. Recently, it has been demonstrated that HNF1-alpha is required for cytokine-driven CRP expression and that this involves formation of a complex with STAT3 and c-Fos. SUMMARY Based on the recent genetic findings as well as delineation of the role of HNF1-alpha in regulating the expression of the CRP gene, it appears that this transcription factor may play a key role in linking metabolic and inflammatory pathways underlying the pathogenesis of coronary heart disease.
Collapse
|
27
|
Renner O, Harsch S, Schaeffeler E, Schwab M, Klass DM, Kratzer W, Stange EF. Mutation screening of apical sodium-dependent bile acid transporter (SLC10A2): novel haplotype block including six newly identified variants linked to reduced expression. Hum Genet 2009; 125:381-91. [PMID: 19184108 DOI: 10.1007/s00439-009-0630-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/20/2009] [Indexed: 12/25/2022]
Abstract
The apical sodium-dependent bile acid transporter (SLC10A2) plays a key role in the reabsorption of luminal bile acids into the enterohepatic circulation. Rare variations in SLC10A2 have been reported to be associated with Crohn's disease, primary bile acid malabsorption and familial hypertriglyceridemia; however, variants associated with reduced SLC10A2 expression have not been reported to date. In this study, we have performed a sequence analysis of SLC10A2 using genomic DNA of 93 individuals. A new haplotype structure was identified including ten variants with complete linkage disequilibrium (LD' = 1.0, r (2) = 1.0) of which six polymorphisms were novel. The sequence variants were confirmed in three independent cohorts (n = 1,290) by a recently established MALDI-TOF MS iPLEX assay. Remarkably, haplotype carriers with the minor allele exhibited significant reduced ileal SLC10A2 expression on mRNA levels (2.6-fold, P = 0.0009) and protein levels (2.4-fold, P = 0.0157). In future studies a single tag SNP selected of this haplotype block will provide reliable genetic testing to investigate systemically the influence of the SLC10A2 haplotype for disease susceptibility and/or drug response.
Collapse
Affiliation(s)
- Olga Renner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376, Stuttgart, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
In recent years the discovery of a number of major transporter proteins expressed in the liver and intestine specifically involved in bile acid transport has led to improved understanding of bile acid homeostasis and the enterohepatic circulation. Sodium (Na(+))-dependent bile acid uptake from portal blood into the liver is mediated primarily by the Na(+) taurocholate co-transporting polypeptide (NTCP), while secretion across the canalicular membrane into the bile is carried out by the bile salt export pump (BSEP). In the ileum, absorption of bile acids from the lumen into epithelial cells is mediated by the apical Na(+) bile salt transporter (ASBT), whereas exit into portal blood across the basolateral membrane is mediated by the organic solute transporter alpha/beta (OSTalpha/beta) heterodimer. Regulation of transporter gene expression and function occurs at several different levels: in the nucleus, members of the nuclear receptor superfamily, regulated by bile acids and other ligands are primarily involved in controlling gene expression, while cell signalling events directly affect transporter function, and subcellular localization. Polymorphisms, dysfunction, and impaired adaptive responses of several of the bile acid transporters, e.g. BSEP and ASBT, results in liver and intestinal disease. Bile acid transporters are now understood to play central roles in driving bile flow, as well as adaptation to various pathological conditions, with complex regulation of activity and function in the nucleus, cytoplasm, and membrane.
Collapse
Affiliation(s)
- A Kosters
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
Miyata M, Matsuda Y, Nomoto M, Takamatsu Y, Sato N, Hamatsu M, Dawson PA, Gonzalez FJ, Yamazoe Y. Cholesterol feeding prevents hepatic accumulation of bile acids in cholic acid-fed farnesoid X receptor (FXR)-null mice: FXR-independent suppression of intestinal bile acid absorption. Drug Metab Dispos 2008; 37:338-44. [PMID: 18988759 DOI: 10.1124/dmd.108.022590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cholic acid (CA) feeding of farnesoid X receptor (Fxr)-null mice results in markedly elevated hepatic bile acid levels and liver injury. In contrast, Fxr-null mice fed cholesterol plus CA (CA+Chol) do not exhibit liver injury, and hepatic bile acid levels and bile acid pool size are reduced 51 and 40%, respectively, compared with CA-treated Fxr-null mice. These decreases were not observed in wild-type mice. Despite a reduced bile acid pool size, hepatic Cyp7a1 mRNA expression was increased in Fxr-null mice fed the CA+Chol diet, and biliary bile acid output was not changed. Analysis of other potential protective mechanisms revealed significant decreases in portal blood bile acid concentrations and a reduced ileal bile acid absorption capacity, as estimated using an in situ loop method. Fecal bile acid excretion was also increased in Fxr-null mice fed the CA+Chol versus CA diet. The decreased ileal bile acid absorption correlated with decreased ileal apical sodium-dependent bile salt transporter (ASBT) protein expression in brush-border membranes. These results suggest a critical role for ileal bile acid absorption in regulation of hepatic bile acid levels in Fxr-null mice fed CA+Chol. Furthermore, experiments with Fxr-null mice suggest that cholesterol feeding can down-regulate ASBT expression through a pathway independent of FXR.
Collapse
Affiliation(s)
- Masaaki Miyata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 2007; 24:1803-23. [PMID: 17404808 DOI: 10.1007/s11095-007-9289-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/28/2007] [Indexed: 12/11/2022]
Abstract
Specific transporters expressed in the liver and the intestine, play a critical role in driving the enterohepatic circulation of bile acids. By preserving a circulating pool of bile acids, an important factor influencing bile flow, these transporters are involved in maintaining bile acid and cholesterol homeostasis. Enterohepatic circulation of bile acids is fundamentally composed of two major processes: secretion from the liver and absorption from the intestine. In the hepatocytes, the vectorial transport of bile acids from blood to bile is ensured by Na+ taurocholate co-transporting peptide (NTCP) and organic anion transport polypeptides (OATPs). After binding to a cytosolic bile acid binding protein, bile acids are secreted into the canaliculus via ATP-dependent bile salt excretory pump (BSEP) and multi drug resistant proteins (MRPs). Bile acids are then delivered to the intestinal lumen through bile ducts where they emulsify dietary lipids and cholesterol to facilitate their absorption. Intestinal epithelial cells reabsorb the majority of the secreted bile acids through the apical sodium dependent bile acid transporter (ASBT) and sodium independent organic anion transporting peptide (OATPs). Cytosolic ileal bile acid binding protein (IBABP) mediates the transcellular movement of bile acids to the basolateral membrane across which they exit the cells via organic solute transporters (OST). An essential role of bile acid transporters is evident from the pathology associated with their genetic disruption or dysregulation of their function. Malfunctioning of hepatic and intestinal bile acid transporters is implicated in the pathophysiology of cholestatic liver disease and the depletion of circulating pool of bile acids, respectively. Extensive efforts have been recently made to enhance our understanding of the structure, function and regulation of the bile acid transporters and exploring new potential therapeutics to treat bile acid or cholesterol related diseases. This review will highlight current knowledge about structure, function and molecular characterization of bile acid transporters and discuss the implications of their defects in various hepatic and intestinal disorders.
Collapse
Affiliation(s)
- Waddah A Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
31
|
Alrefai WA, Annaba F, Sarwar Z, Dwivedi A, Saksena S, Singla A, Dudeja PK, Gill RK. Modulation of human Niemann-Pick C1-like 1 gene expression by sterol: Role of sterol regulatory element binding protein 2. Am J Physiol Gastrointest Liver Physiol 2007; 292:G369-76. [PMID: 17008555 DOI: 10.1152/ajpgi.00306.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is an essential intestinal component of cholesterol absorption. However, little is known about the molecular regulation of intestinal NPC1L1 expression and promoter activity. We demonstrated that human NPC1L1 mRNA expression was significantly decreased by 25-hydroxycholesterol but increased in response to cellular cholesterol depletion achieved by incubation with Mevinolin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase) in human intestinal Caco-2 cells. We also showed that a -1741/+56 fragment of the NPC1L1 gene demonstrated high promoter activity in Caco-2 cells that was reduced by 25-hydroxycholesterol and stimulated by cholesterol depletion. Interestingly, we showed that the NPC1L1 promoter is remarkably transactivated by the overexpression of sterol regulatory element (SRE) binding protein (SREBP)-2, suggesting its involvement in the sterol-induced alteration in NPC1L1 promoter activity. Finally, we identified two putative SREs in the human NPC1L1 promoter and established their essential roles in mediating the effects of cholesterol on promoter activity. Our study demonstrated the modulation of human NPC1L1 expression and promoter activity by cholesterol in a SREBP-2-dependent mechanism.
Collapse
Affiliation(s)
- Waddah A Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois, and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Okuwaki M, Takada T, Iwayanagi Y, Koh S, Kariya Y, Fujii H, Suzuki H. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR-1 elements shared with FXR. Pharm Res 2006; 24:390-8. [PMID: 17177110 DOI: 10.1007/s11095-006-9163-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 09/08/2006] [Indexed: 02/02/2023]
Abstract
PURPOSE Recently identified organic solute transporter (Ost) alpha and beta are located on the basolateral membrane of enterocytes and may be responsible for the intestinal absorption of many substrates including bile acids. In the present study, the mechanism governing the transcriptional regulation of their expression was investigated. METHODS AND RESULTS To clarify the transcriptional regulation of Osts, reporter gene assays were performed using mouse Ostalpha/beta promoter-luciferase reporter constructs. Co-transfection of the constructs with farnesoid X receptor (FXR) and retinoid X receptor alpha (RXRalpha) or liver X receptor alpha (LXRalpha) and RXRalpha into Caco-2 cells induced the transcriptional activities of both Ost alpha and beta and further increases were observed following treatment with each agonist. Sequence analyses indicated the presence of IR-1 regions in Ostalpha and Ostbeta promoters, which was confirmed by the finding that the deletion of IR-1 sequences abolished the response to FXR and LXRalpha. Furthermore, mutations in IR-1 reduced the FXR- and LXRalpha-dependent transactivation of Ostalpha/beta. Together with the detection of direct binding of FXR/RXRalpha and LXRalpha/RXRalpha to the IR-1 elements, the presence of functional FXRE/LXRE was revealed in the promoter region of both Ostalpha and Ostbeta. In addition, the stimulatory effect of FXR/RXRalpha and LXRalpha/RXRalpha on Ostalpha, but not on Ostbeta, was further enhanced by HNF-4alpha. CONCLUSIONS It was concluded that LXRalpha/RXRalpha transcriptionally regulate mouse Ostalpha/beta via IR-1 elements shared with FXR/RXRalpha. Exposure to FXR/LXRalpha modulators may affect the disposition of Ostalpha/beta substrates.
Collapse
Affiliation(s)
- Masae Okuwaki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|