1
|
Mochizuki R, Toida T, Ogra Y. Determination of adalimumab by HPLC with fluorescence detection using the König reaction. Talanta 2024; 282:127044. [PMID: 39413715 DOI: 10.1016/j.talanta.2024.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Monoclonal antibody drugs (mAb) are widely used to treat various diseases. Keeping quality of mAbs is crucial to maximize efficacy and minimize adverse effects. To this end, mAb content in the drug product must be precisely quantified. As methods for the determination of mAbs, absorbance measurement at 280 nm, the ligand binding assay based on ELISA, or the LC-MS/MS method based on the surrogate peptide approach is usually used. However, these methods have drawbacks in terms of selectivity, reliability, and cost, respectively. The present method is based on the surrogate peptide approach where a peptide specific to the mAb is determined by a post-column derivatization LC system with fluorescence detection and the König reaction, which is usually used for the detection of cyanide and its derivatives. The detection mechanism was the production of cyanide from the surrogate peptide by chloramine T and the generated cyanide was detected by the König reaction. In this study, adalimumab was used as a model target protein. The calculated LOD and LOQ of the present method were 0.31 μg/mL and 0.94 μg/mL, respectively. The intra-day accuracies and precisions were 127.1 % and 2.94 % for 5 μg of adalimumab and 101.6 % and 10.2 % for 50 μg of adalimumab, respectively. The inter-day accuracies and precisions were 121.8 % and 5.71 % for 5 μg of adalimumab and 101.8 % and 6.98 % for 50 μg of adalimumab, respectively. Our quantitatively determined amount of adalimumab in Humira® was in good agreement with the specified value. This method only requires a conventional LC system, not an LC-MS/MS system. By extending the application of the König reaction, we open the door to a new surrogate peptide approach for the determination of proteins including monoclonal antibody drugs.
Collapse
Affiliation(s)
- Ryu Mochizuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, Chiba, 60-8675, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, Chiba, 60-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, Chiba, 60-8675, Japan.
| |
Collapse
|
2
|
Wallaeys C, Garcia-Gonzalez N, Timmermans S, Vandewalle J, Vanderhaeghen T, De Beul S, Dufoor H, Eggermont M, Moens E, Bosteels V, De Rycke R, Thery F, Impens F, Verbanck S, Lienenklaus S, Janssens S, Blumberg RS, Iwawaki T, Libert C. Paneth cell TNF signaling induces gut bacterial translocation and sepsis. Cell Host Microbe 2024; 32:1725-1743.e7. [PMID: 39243761 DOI: 10.1016/j.chom.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The cytokine tumor necrosis factor (TNF) plays important roles in limiting infection but is also linked to sepsis. The mechanisms underlying these paradoxical roles are unclear. Here, we show that TNF limits the antimicrobial activity of Paneth cells (PCs), causing bacterial translocation from the gut to various organs. This TNF-induced lethality does not occur in mice with a PC-specific deletion in the TNF receptor, P55. In PCs, TNF stimulates the IFN pathway and ablates the steady-state unfolded protein response (UPR), effects not observed in mice lacking P55 or IFNAR1. TNF triggers the transcriptional downregulation of IRE1 key genes Ern1 and Ern2, which are key mediators of the UPR. This UPR deficiency causes a significant reduction in antimicrobial peptide production and PC antimicrobial activity, causing bacterial translocation to organs and subsequent polymicrobial sepsis, organ failure, and death. This study highlights the roles of PCs in bacterial control and therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Natalia Garcia-Gonzalez
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Somara De Beul
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Hester Dufoor
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Melanie Eggermont
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Elise Moens
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Victor Bosteels
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Laboratory for ER Stress and Inflammation, VIB-UniversityGent Center for Inflammation Research, Ghent 9052, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; VIB Center for Inflammation Research and Bioimaging Core, VIB, Ghent 9052, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium; VIB Proteomics Core, VIB, Ghent 9052, Belgium
| | - Serge Verbanck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Sophie Janssens
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Laboratory for ER Stress and Inflammation, VIB-UniversityGent Center for Inflammation Research, Ghent 9052, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium.
| |
Collapse
|
3
|
Simonato LE, de Arruda JAA, Louredo BVR, Vargas PA, Tomo S. Drug-induced sarcoidosis-like reaction to adalimumab in the oral mucosa of a patient with Crohn's Disease. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101543. [PMID: 37402424 DOI: 10.1016/j.jormas.2023.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND The drug-induced sarcoidosis-like reaction (DISR) is a condition clinically and pathologically similar to sarcoidosis but is induced by certain drugs. A few cases of DISR associated with the use of TNF-α antagonists have been reported in the literature. CASE REPORT A 49-year-old female patient with a diagnosis of Crohn's Disease under treatment with adalimumab presented with a 2-month-long ulcerated swelling in the left lower fornix. Histological analysis of the biopsy specimen revealed multiple non-caseating granulomas multinucleated cells and epithelioid macrophages surrounded by lymphocytes. The lesion is under symptomatic control with a topical corticosteroid, and the patient is being monitored for manifestation in other organs and systems. CONCLUSION Lesions of DISR may occur isolated in the oral mucosa. Therefore, this complication must be considered in the differential diagnosis of oral granulomatous lesions in patients under treatment with anti-TNF-α drugs.
Collapse
Affiliation(s)
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Campinas State University, Piracicaba, São Paulo, Brazil
| | - Saygo Tomo
- Pathology Department, School of Dentistry, University of São Paulo, Av. Professor Lineu Prestes, 2227, São Paulo CEP 05508-000, Brazil.
| |
Collapse
|
4
|
Ning S, Zhang Z, Zhou C, Wang B, Liu Z, Feng B. Cross-talk between macrophages and gut microbiota in inflammatory bowel disease: a dynamic interplay influencing pathogenesis and therapy. Front Med (Lausanne) 2024; 11:1457218. [PMID: 39355844 PMCID: PMC11443506 DOI: 10.3389/fmed.2024.1457218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a group of chronic immune-mediated gastrointestinal disorders. The etiology of IBD is multifactorial, involving genetic susceptibility, environmental factors, and a complex interplay between the gut microbiota and the host's immune system. Intestinal resident macrophages play an important role in the pathogenesis and progress of IBD, as well as in maintaining intestinal homeostasis and facilitating tissue repair. This review delves into the intricate relationship between intestinal macrophages and gut microbiota, highlighting their pivotal roles in IBD pathogenesis. We discuss the impact of macrophage dysregulation and the consequent polarization of different phenotypes on intestinal inflammation. Furthermore, we explore the compositional and functional alterations in gut microbiota associated with IBD, including the emerging significance of fungal and viral components. This review also examines the effects of current therapeutic strategies, such as 5-aminosalicylic acid (5-ASA), antibiotics, steroids, immunomodulators, and biologics, on gut microbiota and macrophage function. We underscore the potential of fecal microbiota transplantation (FMT) and probiotics as innovative approaches to modulate the gut microbiome in IBD. The aim is to provide insights into the development of novel therapies targeting the gut microbiota and macrophages to improve IBD management.
Collapse
Affiliation(s)
- Shiyang Ning
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Shanghai, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
D'Souza BN, Yadav M, Chaudhary PP, Ratley G, Lu MY, Alves DA, Myles IA. Derivation of novel metabolic pathway score identifies alanine metabolism as a targetable influencer of TNF-alpha signaling. Heliyon 2024; 10:e33502. [PMID: 39035522 PMCID: PMC11259870 DOI: 10.1016/j.heliyon.2024.e33502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Background Better understanding of the interaction between metabolism and immune response will be key to understanding physiology and disease. Tumor Necrosis Factor-alpha (TNFα) has been studied widely. However, despite the extensive knowledge about TNFα, the cytokine appears to induce not only variable, but often contradictory, effects on inflammation and cell proliferation. Despite advancements in the metabolomics field, it is still difficult to analyze the types of multi-dose, multi-time point studies needed for elucidating the varied immunologic responses induced by TNFα. Results We studied the dose and time course effects of TNFα on murine fibroblast cultures and further elucidated these connections using selective blockade of the TNF receptors (TNFR1 and TNFR2). To streamline analysis, we developed a method to collate the metabolic pathway output from MetaboAnalyst into a single value for the Index of pathway significance (IPS). Using this metric, we tested dose-, time-, and receptor-dependent effects of TNFα signaling on cell metabolism. Guided by these results, we then demonstrate that alanine supplementation enriched TNFR1-related responses in both cell and mouse models. Conclusions Our results suggest that TNFα, particularly when signaling through TNFR1, may preferentially use alanine metabolism for energy. These results are limited in by cell type used and immune outputs measured. However, we anticipate that our novel method may assist other researchers in identifying metabolic targets that influence their disease or model of interest through simplifying the analysis of multi-condition experiments. Furthermore, our results endorse the consideration of follow up studies in immunometabolism to improve outcomes in TNF-mediated diseases.
Collapse
Affiliation(s)
- Brandon N. D'Souza
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manoj Yadav
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Prem Prashant Chaudhary
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace Ratley
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Max Yang Lu
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section (IDPS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian A. Myles
- Labratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Gorenjak M, Gole B, Goričan L, Jezernik G, Prosenc Zmrzljak U, Pernat C, Skok P, Potočnik U. Single-Cell Transcriptomic and Targeted Genomic Profiling Adjusted for Inflammation and Therapy Bias Reveal CRTAM and PLCB1 as Novel Hub Genes for Anti-Tumor Necrosis Factor Alpha Therapy Response in Crohn's Disease. Pharmaceutics 2024; 16:835. [PMID: 38931955 PMCID: PMC11207411 DOI: 10.3390/pharmaceutics16060835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The lack of reliable biomarkers in response to anti-TNFα biologicals hinders personalized therapy for Crohn's disease (CD) patients. The motivation behind our study is to shift the paradigm of anti-TNFα biomarker discovery toward specific immune cell sub-populations using single-cell RNA sequencing and an innovative approach designed to uncover PBMCs gene expression signals, which may be masked due to the treatment or ongoing inflammation; Methods: The single-cell RNA sequencing was performed on PBMC samples from CD patients either naïve to biological therapy, in remission while on adalimumab, or while on ustekinumab but previously non-responsive to adalimumab. Sieves for stringent downstream gene selection consisted of gene ontology and independent cohort genomic profiling. Replication and meta-analyses were performed using publicly available raw RNA sequencing files of sorted immune cells and an association analysis summary. Machine learning, Mendelian randomization, and oligogenic risk score methods were deployed to validate DEGs highly relevant to anti-TNFα therapy response; Results: This study found PLCB1 in CD4+ T cells and CRTAM in double-negative T cells, which met the stringent statistical thresholds throughout the analyses. An additional assessment proved causal inference of both genes in response to anti-TNFα therapy; Conclusions: This study, jointly with an innovative design, uncovered novel candidate genes in the anti-TNFα response landscape of CD, potentially obscured by therapy or inflammation.
Collapse
Affiliation(s)
- Mario Gorenjak
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Boris Gole
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Larisa Goričan
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | - Gregor Jezernik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
| | | | - Cvetka Pernat
- Department of Gastroenterology, Division of Internal Medicine, Maribor University Medical Centre, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia; (C.P.); (P.S.)
| | - Pavel Skok
- Department of Gastroenterology, Division of Internal Medicine, Maribor University Medical Centre, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia; (C.P.); (P.S.)
| | - Uroš Potočnik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (B.G.); (L.G.); (G.J.); (U.P.)
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
7
|
Kruckow KL, Murray E, Shayhidin E, Rosenberg AF, Bowdish DME, Orihuela CJ. Chronic TNF exposure induces glucocorticoid-like immunosuppression in the alveolar macrophages of aged mice that enhances their susceptibility to pneumonia. Aging Cell 2024; 23:e14133. [PMID: 38459711 PMCID: PMC11296116 DOI: 10.1111/acel.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.
Collapse
Affiliation(s)
- Katherine L. Kruckow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth Murray
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elnur Shayhidin
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Alexander F. Rosenberg
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Dawn M. E. Bowdish
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Carlos J. Orihuela
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
8
|
Fan Y, Wang X, Yan G, Gao H, Yang M. Rectal delivery of 89Zr-labeled infliximab-loaded nanoparticles enables PET imaging-guided localized therapy of inflammatory bowel disease. J Mater Chem B 2023; 11:11228-11234. [PMID: 37990919 DOI: 10.1039/d3tb02128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Inflammatory bowel diseases (IBDs) like Crohn's disease and ulcerative colitis involve chronic gastrointestinal inflammation. The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) drives IBD pathogenesis. Anti-TNF-α therapies using monoclonal antibodies (mAbs) like infliximab (INF) help treat IBD but have limitations. We developed inflammation-targeting polyphenol-poloxamer nanoparticles loaded with the anti-inflammatory mAb INF (INF@PPNP) as a novel IBD therapy. Characterization showed that INF@PPNP had favorable stability and purity. Radiolabeling INF@PPNP with 89Zr enabled tracking localization with positron emission tomography (PET) imaging. Rectal administration of 89Zr-INF@PPNP led to colon delivery with remarkably reduced systemic exposure versus intravenous INF revealed by non-invasive PET imaging. 89Zr-INF@PPNP retention at inflamed foci indicated prolonged INF@PPNP action. INF@PPNP rectally achieved similar anti-inflammatory effects as intravenously injected INF, demonstrating the high therapeutic potential. Our findings support the use of nanoparticle-based rectal administration for localized drug delivery, prolonging drug activity and minimizing systemic exposure, ultimately offering an effective approach for treating IBD.
Collapse
Affiliation(s)
- Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi 214105, P. R. China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China.
| | - Ge Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China.
| | - Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi 214105, P. R. China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China.
| |
Collapse
|
9
|
Wang D, Zhang J, Yang D, Wang J, Li J, Han Y, Kang Z, Zhang H. Electroacupuncture restores intestinal mucosal barrier through TLR4/NF-κB p65 pathway in functional dyspepsia-like rats. Anat Rec (Hoboken) 2023; 306:2927-2938. [PMID: 34713984 DOI: 10.1002/ar.24800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder with high morbidity. Electroacupuncture (EA) has been applied to treat FD for a long time. The aim of this study was to investigate the effects of EA and its mechanism about intestinal mucosal barrier in rodent model of FD. Male Sprague-Dawley rats were randomly divided into the control group and the model group. Then, the rats in model group were established to the FD model by multifactor interventions. In Experiment 1, qualified FD-like rats were randomly divided into three groups: FD, EA, and acupuncture (AP) groups. The interventions of EA and AP lasted 14 days, food intake, and body weight were recorded every 5 days. In Experiment 2, qualified FD-like rats were randomly divided into five groups: FD, EA, AP, EA + TAK242, and TAK242 groups. The interventions of EA and AP lasted 14 days, while TAK242 injection continued for 6 days. The rats were sacrificed for the measurement of serum Interleukin- 6 (IL-6) and Tumor necrosis factor-α (TNF-α) assayed by ELISA. Western blotting was used to assess the expression of TLR4, Myd88, NF-κB p65, p-NF-κB p65, TRAF6, ZO-1, and occludin in the duodenum. The transmission electron microscope was used to observe the ultrastructure of intestinal epithelial cells. Compared with the rats in the group FD, the rats in EA group had significantly increase of body weight, food intake, and protein expressions of ZO-1 and occludin, while expressions of TLR4, Myd88, NF-κB p65, p-NF-κB p65, TRAF6 in the duodenum and IL-6, and TNF-α in serum were decreased. The EA + TAK242 treatment had similar effects to the EA treatment but with increased potency; compared with EA, AP showed similar but reduced effects. Our data demonstrated that EA is more effective than AP in improving intestine mucosal barrier. The possible mechanisms of EA may involve the TLR4/NF-κB p65 pathway.
Collapse
Affiliation(s)
- Dan Wang
- Chongqing Medical University, College of Traditional Chinese Medicine, Chongqing, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Hubei University of Chinese Medicine, Wuhan, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daye Yang
- Hubei University of Chinese Medicine, Wuhan, China
| | - Junying Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Li
- Hubei University of Chinese Medicine, Wuhan, China
| | - Yongli Han
- Hubei University of Chinese Medicine, Wuhan, China
| | - Zhaoxia Kang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | |
Collapse
|
10
|
Imbrizi M, Magro F, Coy CSR. Pharmacological Therapy in Inflammatory Bowel Diseases: A Narrative Review of the Past 90 Years. Pharmaceuticals (Basel) 2023; 16:1272. [PMID: 37765080 PMCID: PMC10537095 DOI: 10.3390/ph16091272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory Bowel Diseases had their first peak in incidence in countries in North America, Europe, and Oceania and are currently experiencing a new acceleration in incidence, especially in Latin America and Asia. Despite technological advances, 90 years after the development of the first molecule for the treatment of IBD, we still do not have drugs that promote disease remission in a generalized way. We carried out a narrative review on therapeutic advances in the treatment of IBD, the mechanisms of action, and the challenges facing the therapeutic goals in the treatment of IBD. Salicylates are still used in the treatment of Ulcerative Colitis. Corticosteroids have an indication restricted to the period of therapeutic induction due to frequent adverse events, while technologies with less systemic action have been developed. Most immunomodulators showed a late onset of action, requiring a differentiated initial strategy to control the disease. New therapeutic perspectives emerged with biological therapy, initially with anti-TNF, followed by anti-integrins and anti-interleukins. Despite the different mechanisms of action, there are similarities between the general rates of effectiveness. These similar results were also evidenced in JAK inhibitors and S1p modulators, the last therapeutic classes approved for the treatment of IBD.
Collapse
Affiliation(s)
- Marcello Imbrizi
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas 13083-970, SP, Brazil
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Claudio Saddy Rodrigues Coy
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas 13083-970, SP, Brazil
| |
Collapse
|
11
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
12
|
Kim ES, Kim SK, Park DI, Kim HJ, Lee YJ, Koo JS, Kim ES, Yoon H, Lee JH, Kim JW, Shin SJ, Kim HW, Kim HS, Park YS, Kim YS, Kim TO, Lee J, Choi CH, Han DS, Chun J, Kim HS. Comparison of the Pharmacokinetics of CT-P13 Between Crohn's Disease and Ulcerative Colitis. J Clin Gastroenterol 2023; 57:601-609. [PMID: 35470308 DOI: 10.1097/mcg.0000000000001715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/20/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND We aimed to compare trough infliximab levels and the development of antidrug antibody (ADA) for 1 year between Crohn's disease (CD) and ulcerative colitis (UC) patients who were biologic-naive, and to evaluate their impact on clinical outcomes. METHODS This was a prospective, multicenter, observational study. Biologic-naive patients with moderate to severe CD or UC who started CT-P13, an infliximab biosimilar, therapy were enrolled. Trough drug and ADA levels were measured periodically for 1 year after CT-P13 initiation. RESULTS A total of 267 patients who received CT-P13 treatment were included (CD 168, UC 99). The rates of clinical remission (72% vs. 32.3%, P <0.001) at week 54 were significantly higher in CD than in UC. The median trough drug level (μg/mL) was significantly higher in CD than in UC up to week 14 (week 2, 18.7 vs. 14.7, P <0.001; week 6, 12.5 vs. 8.6, P <0.001; week 14, 3.4 vs. 2.5, P =0.001). The median ADA level (AU/mL) was significantly lower in CD than in UC at week 2 (6.3 vs. 6.5, P =0.046), week 30 (7.9 vs. 11.8, P =0.007), and week 54 (9.3 vs. 12.3, P =0.032). Development of ADA at week 2 [adjusted odds ratio (aOR)=0.15, P =0.026], initial C-reactive protein level (aOR=0.87, P =0.032), and CD over UC (aOR=1.92, P <0.001) were independent predictors of clinical remission at week 54. CONCLUSION Infliximab shows more favorable pharmacokinetics, including high drug trough and low ADA levels, in CD than in UC, which might result in better clinical outcomes for 1-year infliximab treatment in CD patients.
Collapse
Affiliation(s)
- Eun Soo Kim
- Department of Internal Medicine, Kyungpook National University, School of Medicine
| | - Sung Kook Kim
- Department of Internal Medicine, Kyungpook National University, School of Medicine
| | - Dong Il Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine
| | - Hyo Jong Kim
- Center for Crohn's and Colitis, Kyung Hee University Hospital
| | - Yoo Jin Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu
| | - Ja Seol Koo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ansan Hospital, Korea University College of Medicine, Ansan
| | - Eun Sun Kim
- Department of Internal Medicine, Korea University College of Medicine
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam
| | - Ji Hyun Lee
- Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital
| | - Ji Won Kim
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine
| | - Sung Jae Shin
- Department of Internal Medicine, Ajou University School of Medicine, Suwon
| | - Hyung Wook Kim
- Department of Internal Medicine, Pusan National University School of Medicine And Medical Research Institute
| | - Hyun-Soo Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju
| | - Young Sook Park
- Department of Internal Medicine, Eulji University School of Medicine, Eulji Hospital
| | - You Sun Kim
- Department of Internal Medicine, Seoul Paik Hospital, Inje University College of Medicine
| | - Tae Oh Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan
| | - Jun Lee
- Department of Internal Medicine, Chosun University, School of Medicine
| | - Chang Hwan Choi
- Department of Internal Medicine, College of Medicine, Chung-Ang University
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University College of Medicine, Guri, Korea
| | - Jaeyoung Chun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
| | - Hyun Soo Kim
- Department of Internal Medicine, Chonnam University Medical School, Gwangju
| |
Collapse
|
13
|
Liu J, Di B, Xu LL. Recent advances in the treatment of IBD: Targets, mechanisms and related therapies. Cytokine Growth Factor Rev 2023; 71-72:1-12. [PMID: 37455149 DOI: 10.1016/j.cytogfr.2023.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Inflammatory bowel disease (IBD), as a representative inflammatory disease, currently has multiple effective treatment options available and new therapeutic strategies are being actively explored to further increase the treatment options for patients with IBD. Furthermore, biologic agents and small molecule drugs developed for ulcerative colitis (UC) and Crohn's disease (CD) have evolved toward fewer side effects and more accurate targeting. Novel inhibitors that target cytokines (such as IL-12/23 inhibitors, PDE4 inhibitors), integrins (such as integrin inhibitors), cytokine signaling pathways (such as JAK inhibitors, SMAD7 blocker) and cell signaling receptors (such as S1P receptor modulator) have become the preferred treatment choice for many IBD patients. Conventional therapies such as 5-aminosalicylic acid, corticosteroids, immunomodulators and anti-tumor necrosis factor agents continue to demonstrate therapeutic efficacy, particularly in combination with drug therapy. This review integrates research from chemical, biological and adjuvant therapies to evaluate current and future IBD therapies, highlighting the mechanism of action of each therapy and emphasizing the potential of development prospects.
Collapse
Affiliation(s)
- Juan Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
14
|
Reinert T, Gahoual R, Mignet N, Kulus A, Allez M, Houzé P, François YN. Simultaneous quantification and structural characterization of monoclonal antibodies after administration using capillary zone electrophoresis-tandem mass spectrometry. J Pharm Biomed Anal 2023; 233:115446. [PMID: 37209497 DOI: 10.1016/j.jpba.2023.115446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Monoclonal antibodies (mAbs) are demonstrating major success in various therapeutic areas such as oncology and the treatment of immune disorders. Over the past two decades, novel analytical methodologies allowed to address the challenges of mAbs characterization in the context of their production. However, after administration only their quantification is performed and insights regarding their structural evolution remain limited. For instance, clinical practice has recently highlighted significant inter-patient differences in mAb clearance and unexpected clinical responses, without providing alternative interpretations. Here, we report the development of a novel analytical strategy based on capillary zone electrophoresis coupled to tandem mass spectrometry (CE-MS/MS) for the simultaneous absolute quantification and structural characterization of infliximab (IFX) in human serum. CE-MS/MS quantification was validated over the range 0.4-25 µg·mL-1 corresponding to the IFX therapeutic window and achieved a LOQ of 0.22 µg·mL-1 (1.5 nM) while demonstrating outstanding specificity compared to the ELISA assay. CE-MS/MS allowed structural characterization and estimation of the relative abundance of the six major N-glycosylations expressed by IFX. In addition, the results allowed characterization and determination of the level of modification of post-translational modifications (PTMs) hotspots including deamidation of 4 asparagine and isomerization of 2 aspartate. Concerning N-glycosylation and PTMs, a new normalization strategy was developed to measure the variation of modification levels that occur strictly during the residence time of IFX in the patient's system, overcoming artefactual modifications induced by sample treatment and/or storage. The CE-MS/MS methodology was applied to the analysis of samples from patients with Crohn's disease. The data identified a gradual deamidation of a particular asparagine residue located in the complementary determining region that correlated with IFX residence time, while the evolution of IFX concentration showed significant variability among patients.
Collapse
Affiliation(s)
- Tessa Reinert
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France; Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France
| | - Rabah Gahoual
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France.
| | - Nathalie Mignet
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France
| | - Alexandre Kulus
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Matthieu Allez
- Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm, U1160 Paris, France
| | - Pascal Houzé
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France; Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| |
Collapse
|
15
|
Kohli A, Moss AC. Personalizing therapy selection in inflammatory bowel disease. Expert Rev Clin Immunol 2023; 19:431-438. [PMID: 37051666 DOI: 10.1080/1744666x.2023.2185605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a complex disease, caused by aberrant immune responses to environmental stimuli where genetic, metabolomic, and environmental variables interact to cause mucosal inflammation. This review sheds light on the different drug and patient related factors that affect personalization of biologics in IBD treatment. AREAS COVERED We utilized the online research database PubMed to carry out literature search pertaining to therapies in IBD. We incorporated a combination of primary literature as well as review articles and meta-analyses in writing this clinical review. In this paper, we discuss the mechanisms of action for different biologics, the genotype and phenotype of patients, and pharmacokinetics/pharmacodynamics of drugs, as factors that influence response rates. We also touch upon the role of artificial intelligence in treatment personalization. EXPERT OPINION The future of IBD therapeutics is one of precision medicine, based on the identification of aberrant signaling pathways unique to individual patients as well as exploring the exposome, diet, viruses, and epithelial cell dysfunction as part of disease pathogenesis. We need global cooperation for pragmatic study designs as well as equitable access to machine learning/artificial intelligence technology to reach the unfulfilled potential of IBD care.
Collapse
Affiliation(s)
- Arushi Kohli
- Division of Gastroenterology and Hepatology, Boston Medical Center, Boston, MA, USA
| | - Alan C Moss
- Division of Gastroenterology and Hepatology, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
16
|
Schnur S, Wahl V, Metz JK, Gillmann J, Hans F, Rotermund K, Zäh RK, Brück DA, Schneider M, Hittinger M. Inflammatory bowel disease addressed by Caco-2 and monocyte-derived macrophages: an opportunity for an in vitro drug screening assay. IN VITRO MODELS 2022; 1:365-383. [PMID: 37520160 PMCID: PMC9630817 DOI: 10.1007/s44164-022-00035-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Inflammatory bowel disease (IBD) is a widespread disease, affecting a growing demographic. The treatment of chronic inflammation located in the GI-tract is dependent on the severity; therefore, the IBD treatment pyramid is commonly applied. Animal experimentation plays a key role for novel IBD drug development; nevertheless, it is ethically questionable and limited in its throughput. Reliable and valid in vitro assays offer the opportunity to overcome these limitations. We combined Caco-2 with monocyte-derived macrophages and exposed them to known drugs, targeting an in vitro-in vivo correlation (IVIVC) with a focus on the severity level and its related drug candidate. This co-culture assay addresses namely the intestinal barrier and the immune response in IBD. The drug efficacy was analyzed by an LPS-inflammation of the co-culture and drug exposure according to the IBD treatment pyramid. Efficacy was defined as the range between LPS control (0%) and untreated co-culture (100%) independent of the investigated read-out (TEER, Papp, cytokine release: IL-6, IL-8, IL-10, TNF-α). The release of IL-6, IL-8, and TNF-α was identified as an appropriate readout for a fast drug screening ("yes-no response"). TEER showed a remarkable IVIVC correlation to the human treatment pyramid (5-ASA, Prednisolone, 6-mercaptopurine, and infliximab) with an R2 of 0.68. Similar to the description of an adverse outcome pathway (AOP) framework, we advocate establishing an "Efficacy Outcome Pathways (EOPs)" framework for drug efficacy assays. The in vitro assay offers an easy and scalable method for IBD drug screening with a focus on human data, which requires further validation. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00035-8.
Collapse
Affiliation(s)
- Sabrina Schnur
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
- PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Vanessa Wahl
- PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Julia K. Metz
- PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | | | - Fabian Hans
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
- PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | | | - Ralf-Kilian Zäh
- Department of Automation, Microcontroller, Signals; School of Engineering, University of Applied Sciences, htw saar, Saarbrücken, Germany
| | - Dietmar A. Brück
- Department of Automation, Microcontroller, Signals; School of Engineering, University of Applied Sciences, htw saar, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marius Hittinger
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
- PharmBioTec Research and Development GmbH, Saarbrücken, Germany
- 3RProducts Marius Hittinger, Blieskastel, Germany
| |
Collapse
|
17
|
AKİN AT, EL BECHİR ML, KAYMAK E, CEYLAN T, SAYAN M, DEĞER N, KARABULUT D, TOLUK A. Naringinin ratlarda bakteriyel endotoksin kaynaklı ince bağırsak hasarı üzerindeki anti-inflamatuvar ve anti-apoptotik etkileri. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1124641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Amaç. Bu çalışmanın amacı, birçok biyolojik özelliği bulunan naringinin (NRG) ratlarda bakteriyel endotoksin kaynaklı ince bağırsak hasarı üzerine anti-inflamatuar ve antiapoptotik etkilerinin araştırılmasıdır.
Gereç ve Yöntem: Bu amaçla, 40 adet dişi Wistar albino ırkı rat 4 gruba ayrılmıştır: Kontrol (hiçbir uygulama yapılmayan grup), LPS (10 mg/kg/ip lipopolisakkarit uygulanan grup), NRG (14 gün boyunca 100 mg/kg/ip naringin uygulanan grup) ve LPS+NRG (10 mg/kg/ip lipopolisakkarit uygulamasından önce 14 gün boyunca naringin uygulanan grup). Deneysel prosedürün uygulanmasından sonra, deney hayvanlarının ince barsak dokuları çıkarıldı ve doku takibi protokolüne göre hazırlandı. Barsak dokusundaki histopatolojik değişiklikleri değerlendirmek amacıyla Hematoksilen-Eozin boyaması gerçekleştirildi ve histopatolojik değişiklikler açısından deney gruplarının karşılaştırılması amacıyla hasar skorlaması yapıldı. Ayrıca, immunohistokimyasal boyamalar ile TNF- ve Kaspaz-3 ekspresyon seviyeleri belirlendi ve gruplar arasında bu proteinlerin ekspresyon seviyelerindeki değişikliklerin belirlenmesi için immunohistokimyasal boyanma yoğunluğu skorlandı.
Bulgular: LPS grubunda epitel ve Brunner bezlerinde hasar, mononüklear hücre infiltrasyonu, hemorajik alanlar belirlendi. Ayrıca TNF- ve Kaspaz-3 ekspresyonları bu grupta anlamlı bir şekilde arttı. Ancak, NRG uygulamaları bu parametreler açısından LPS+NRG grubundaki deney hayvanlarının ince barsak dokusunda güçlü bir koruyucu etki gösterdi.
Sonuç: Bu çalışma, 100 mg/kg NRG enjeksiyonunun endotoksin kaynaklı enfeksiyonun bağırsak mukozası üzerindeki olumsuz etkilerine karşı koruyucu bir ajan olarak kabul edilebileceğini ve daha ileri klinik çalışmalarda göz ardı edilmemesi gerektiğini göstermiştir.
Collapse
Affiliation(s)
| | | | | | - Tayfun CEYLAN
- KAPADOKYA MESLEK YÜKSEKOKULU, KAPADOKYA MESLEK YÜKSEKOKULU
| | | | | | | | | |
Collapse
|
18
|
Identification of Novel Loci Involved in Adalimumab Response in Crohn’s Disease Patients Using Integration of Genome Profiling and Isoform-Level Immune-Cell Deconvoluted Transcriptome Profiling of Colon Tissue. Pharmaceutics 2022; 14:pharmaceutics14091893. [PMID: 36145641 PMCID: PMC9500628 DOI: 10.3390/pharmaceutics14091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Crohn’s disease is a consequence of dysregulated inflammatory response to the host’s microbiota. Although anti-TNF treatment improves the quality of the patient’s life, a large proportion of patients lose response to the treatment. The past decade of research has led to a continuum of studies showcasing the heterogeneity of anti-TNF response; thus, the aim of the present study was to dissect transcriptome-wide findings to transcript isoform specific levels and combine the analyses with refined information of immune cell landscapes in colon tissue, and subsequently select promising candidates using gene ontology and genomic integration. We enrolled Slovenian Crohn’s disease patients who were naïve with respect to adalimumab treatment. We performed colon tissue RNA sequencing and peripheral blood mononuclear cell DNA genotyping with a subsequent contemporary integrative approach to combine immune cell deconvoluted isoform transcript specific transcriptome analysis, gene ontology layering and genomic data. We identified nine genes (MACF1, CTSE, HDLBP, HSPA9, HLA-DMB, TAP2, LGMN, ANAPC11, ACP5) with 15 transcripts and 16 variants involved in the adalimumab response. Our study identified loci, some of which were previously shown to contribute to inflammatory bowel disease susceptibility, as novel loci involved in adalimumab response in Crohn’s disease patients.
Collapse
|
19
|
Yan G, Wang X, Fan Y, Lin J, Yan J, Wang L, Pan D, Xu Y, Yang M. Immuno-PET Imaging of TNF-α in Colitis Using 89Zr-DFO-infliximab. Mol Pharm 2022; 19:3632-3639. [PMID: 36039398 DOI: 10.1021/acs.molpharmaceut.2c00411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) neutralization has become increasingly important in the treatment of inflammatory bowel diseases (IBD). A series of monoclonal antibodies were approved in the clinic for anti-TNF-α therapy. However, a comprehensive assessment of TNF-α levels throughout the colon, which facilitates the diagnosis of IBD and predicts anti-TNF-α efficacy, remains challenging. Here, we radiolabeled infliximab with long-lived radionuclides 89Zr for immuno-positron emission tomography (PET) imaging of TNF-α in vivo. The increased TNF-α level was detected in the inflammatory colon of the dextran sodium sulfate-induced colitis mice. The immuno-PET imaging of 89Zr-desferrioxamine-infliximab reveals a high uptake (7.1 ± 0.3%ID/g) in the inflammatory colon, which is significantly higher than in the healthy control and blocked groups. The colon-to-muscle ratio reached more than 10 and was maintained at a high level for 10 h after injection. The ex vivo biodistribution study also verified the superior uptake in the inflammatory colon. This study provides an in vivo immune-PET approach to molecular imaging of the pro-inflammatory cytokine TNF-α. It is promising in diagnosing and predicting efficacy in both IBD and other autoimmune diseases.
Collapse
Affiliation(s)
- Ge Yan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xinyu Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yeli Fan
- College of Environmental Engineering, Wuxi University, Wuxi 214105, PR China
| | - Jianhan Lin
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Junjie Yan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yuping Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Min Yang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| |
Collapse
|
20
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
21
|
Bar-Yoseph H, Blatt A, Gerassy S, Pressman S, Mousa A, Sabo E, Waterman M, Ungar B, Ben-Horin S, Chowers Y. Differential Serum-intestinal Dynamics of Infliximab and Adalimumab in Inflammatory Bowel Disease Patients. J Crohns Colitis 2022; 16:884-892. [PMID: 34849649 DOI: 10.1093/ecco-jcc/jjab208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Therapeutic drug monitoring is used to guide anti-tumour necrosis factor [TNF] therapy. However, the associations between serum drug levels [SDL], TNF-bound, and free anti-TNF in the target tissue are incompletely defined. We aimed to assess the interactions between these parameters in inflammatory bowel disease [IBD] patients. METHODS: ENZYME-LINKED IMMUNOSORBENT assays [ELISA assays] were used to detect free drug and TNF-drug complexes in intestinal tissues. Concurrent SDL, anti-drug antibodies [ADA], pharmacotherapy, clinical response, endoscopic appearance, and histological severity were determined. Comparisons between anti-TNFs and paired inflamed/non-inflamed tissue were performed. Variables were correlated and potential interactions detected using multivariate analysis. RESULTS A total of 95 biopsies taken from 49 anti-TNF treated IBD patients [26 receiving infliximab and 23 adalimumab] were studied. Free drug levels were higher in inflamed compared with non-inflamed paired specimens. Tissue free-drug and TNF-drug complexes levels were higher in adalimumab-treated patients. In adalimumab-treated patients, SDL were correlated with free drug, but not TNF-drug complex levels, in both inflamed and non-inflamed segments. In infliximab-treated patients, higher SDL were associated with the presence of tissue free drug in both inflamed and non-inflamed segments, whereas TNF-drug complexes were mostly detected in non-inflamed but not in inflamed tissue. In the presence of ADA, neither free drug nor TNF-infliximab complexes were measured in the tissue. Tissue levels did not correlate well with clinical, endoscopic, or histological scores. CONCLUSIONS SDL correlated with tissue free drug levels; however, different dynamics were observed for TNF-drug complex levels. Infliximab and adalimumab tissue drug dynamics differ. Better understanding of these interactions may allow future therapeutic optimisation.
Collapse
Affiliation(s)
- Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Alexandra Blatt
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Shiran Gerassy
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Sigal Pressman
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Amjad Mousa
- Department of Internal Medicine H, Rambam Health Care Campus, Haifa, Israel
| | - Edmond Sabo
- Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.,Department of Pathology, Carmel Medical Center, Haifa, Israel
| | - Matti Waterman
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Bella Ungar
- Department of Gastroenterology, Chaim Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shomron Ben-Horin
- Department of Gastroenterology, Chaim Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Chowers
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.,Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel
| | | |
Collapse
|
22
|
Zhang B, Zhong Q, Liu N, Song P, Zhu P, Zhang C, Sun Z. Dietary Glutamine Supplementation Alleviated Inflammation Responses and Improved Intestinal Mucosa Barrier of LPS-Challenged Broilers. Animals (Basel) 2022; 12:ani12131729. [PMID: 35804628 PMCID: PMC9265045 DOI: 10.3390/ani12131729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary In commercial intense industry, birds have to undergo a series of physical, social and microbial stress. LPS, a structural substance of gram-negative bacterial membrane and an effective immune stimulator for human and animal immune system, can impair growth performance, elevate the production of inflammatory cytokines and destroy the morphology of broilers’ small intestine. Moreover, LPS challenge also can reduce the expression levels of tight junction proteins and ruin the integrity of mucosal barrier of broilers. However, glutamine is considered to be conditionally essential for gut homeostasis and barrier function and maybe a useful strategy to attenuate immunological stress and improve intestine function in response to stressful conditions. Our study showed that 1% Gln supplementation improved the growth performance, alleviated the inflammatory responses and ameliorated the intestinal permeability and the integrity of intestinal mucosa barrier of LPS-challenged broilers. Abstract The present study was conducted to investigate the effects of glutamine (Gln) supplementation on intestinal inflammatory reaction and mucosa barrier of broilers administrated with lipopolysaccharide (LPS) stimuli. A total of 120 1-d-old male broilers were randomly divided into four treatments in a 2 × 2 experimental arrangement, containing immune challenge (injected with LPS in a dose of 0 or 500 μg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). The results showed that growth performance of broilers intra-abdominally injected with LPS was impaired, and Gln administration alleviated the adverse effects on growth performance induced by LPS challenge. Furthermore, Gln supplementation reduced the increased concentration of circulating tumor necrosis factor-α, interleukin-6 and interleukin-1β induced by LPS challenge. Meanwhile, D-lactic acid and diamine oxidase concentration in plasma were also decreased by Gln supplementation. In addition, the shorter villus height, deeper crypt depth and the lower ratio of villus height to crypt depth of duodenum, jejunum and ileum induced by LPS stimulation were reversed by Gln supplementation. Gln administration beneficially increased LPS-induced reduction in the expression of intestine tight junction proteins such as zonula occludens protein 1 (ZO-1), claudin-1 and occludin except for the ZO-1 in duodenum and occludin in ileum. Moreover, Gln supplementation downregulated the mRNA expression of toll-like receptor 4, focal adhesion kinase, myeloid differentiation factor 88 and IL-1R-associated kinase 4 in TLR4/FAK/MyD88 signaling pathway. Therefore, it can be concluded that Gln administration could attenuate LPS-induced inflammatory responses and improve intestinal barrier damage of LPS-challenged broilers.
Collapse
Affiliation(s)
- Bolin Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China;
| | - Ning Liu
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Peiyong Song
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Peng Zhu
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Caichao Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China;
- Correspondence:
| |
Collapse
|
23
|
Ylisaukko-Oja T, Puttonen M, Jokelainen J, Koivusalo M, Tamminen K, Torvinen S, Voutilainen M. Dose-escalation of adalimumab, golimumab or ustekinumab in inflammatory bowel diseases: characterization and implications in real-life clinical practice. Scand J Gastroenterol 2022; 57:415-423. [PMID: 34927504 DOI: 10.1080/00365521.2021.2014950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Dose-escalation is a common practice to optimize treatment with subcutaneously administered biologicals in Crohn's disease (CD) and ulcerative colitis (UC). However, limited data is available on the extent of dose-escalation in real-life. Here, we analyzed treatment persistence, dose-escalation, concomitant corticosteroid use, and costs of adalimumab, golimumab, and ustekinumab in inflammatory bowel diseases (IBD). METHODS This was a nationwide, retrospective, non-interventional registry study. All adult patients who were diagnosed with CD or UC and had purchased adalimumab, golimumab, or ustekinumab from Finnish pharmacies between 2008 and 2018 were included in the study and followed up for 24 months after treatment initiation. RESULTS A total of 2884 patients were included in the analyses. For adalimumab, treatment persistence was higher for CD patients compared to UC patients both at months 12 (46.2% versus 37.1%; p < .0001) and 24 (26.1% versus 19.7%; p < 0.0001). For golimumab (UC), treatment persistence was 48.3% at month 12 and 28.1% at month 24. The 12-month treatment persistence rate for patients on ustekinumab (CD) was 47.1%. Cumulative doses exceeding the regular dosing according to the summary of product characteristics (SPC), was observed for adalimumab in CD during the first 6 months of treatment (62.9% of the treatment periods), golimumab in the later stages of the UC treatment (52-54% of treatment periods at months 7-24), and ustekinumab during the first 6 months (70.7%). CONCLUSIONS Based on this study, dose-escalation of subcutaneously administered biologicals is a common clinical practice in IBD. This has implications for treatment costs, use of concomitant medications, and treatment outcomes.
Collapse
Affiliation(s)
- Tero Ylisaukko-Oja
- MedEngine Oy, Helsinki, Finland.,Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Minna Puttonen
- Takeda Oy, Helsinki, Finland.,Division of Pharmaceutical Technology and Chemistry, Industrial Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Jokelainen
- MedEngine Oy, Helsinki, Finland.,Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | | | | | | | - Markku Voutilainen
- Division of Medicine, Turku University Hospital, Turku, Finland.,Department of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
24
|
Ordutowski H, Dal Dosso F, De Wispelaere W, Van Tricht C, Vermeire S, Geukens N, Gils A, Spasic D, Lammertyn J. Next generation point-of-care test for therapeutic drug monitoring of adalimumab in patients diagnosed with autoimmune diseases. Biosens Bioelectron 2022; 208:114189. [PMID: 35366427 DOI: 10.1016/j.bios.2022.114189] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 01/06/2023]
Abstract
Therapeutic drug monitoring (TDM) of adalimumab (ADM) at the point-of-care (POC) is key to prevent loss of response but has not been accomplished to date because true POC testing solutions are still lacking. Here, we present a novel "whole blood in - result out" self-powered microfluidic chip for detecting ADM within 30 min to enable TDM at POC. Hereto, we first demonstrated on-chip plasma separation from whole blood, followed by downscaling an ADM ELISA with maintained specificity and sensitivity in plasma. This assay was then performed on a robust and easy-to-use microfluidic chip we designed based on (i)SIMPLE technology, allowing autonomous function upon single finger press activation, which was successfully validated with patient samples. Herein, we prove the potential of our technology to detect targets starting from whole blood introduced directly on-chip and to integrate various immunoassays, both for TDM and other in vitro diagnostics applications, like infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Belgium
| | - Nick Geukens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium; PharmAbs, The KU Leuven Antibody Center, Leuven, Belgium
| | - Ann Gils
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, Belgium.
| | | |
Collapse
|
25
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Tumor Necrosis Factor Alpha Effects on the Porcine Intestinal Epithelial Barrier Include Enhanced Expression of TNF Receptor 1. Int J Mol Sci 2021; 22:ijms22168746. [PMID: 34445450 PMCID: PMC8395858 DOI: 10.3390/ijms22168746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) has been shown to impair the intestinal barrier, inducing and maintaining inflammatory states of the intestine. The aim of the current study was to analyze functional, molecular and regulatory effects of TNFα in a newly established non-transformed jejunal enterocyte model, namely IPEC-J2 monolayers. Incubation with 1000 U/mL TNFα induced a marked decrease in transepithelial electrical resistance (TEER), and an increase in permeability for the paracellular flux marker [3H]-D-mannitol compared to controls. Immunoblots revealed a significant decrease in tight junction (TJ) proteins occludin, claudin-1 and claudin-3. Moreover, a dose-dependent increase in the TNF receptor (TNFR)-1 was detected, explaining the exponential nature of pro-inflammatory effects, while TNFR-2 remained unchanged. Recovery experiments revealed reversible effects after the removal of the cytokine, excluding apoptosis as a reason for the observed changes. Furthermore, TNFα signaling could be inhibited by the specific myosin light chain kinase (MLCK) blocker ML-7. Results of confocal laser scanning immunofluorescence microscopy were in accordance with all quantitative changes. This study explains the self-enhancing effects of TNFα mediated by MLCK, leading to a differential regulation of TJ proteins resulting in barrier impairment in the intestinal epithelium.
Collapse
|
27
|
Caballol B, Gudiño V, Panes J, Salas A. Ulcerative colitis: shedding light on emerging agents and strategies in preclinical and early clinical development. Expert Opin Investig Drugs 2021; 30:931-946. [PMID: 34365869 DOI: 10.1080/13543784.2021.1965122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an inflammatory disease of the large intestine. Progress in preclinical therapeutic target discovery and clinical trial design has resulted in the approval of new therapies. Nonetheless, remission rates remain below 30% thus underlining the need for novel, more effective therapies. AREAS COVERED This paper reviews current experimental techniques available for drug testing in intestinal inflammation and examines new therapies in clinical development for the treatment of UC. The authors searched the literature for 'ulcerative colitis' AND 'preclinical' OR 'drug target/drug name' (i.e. infliximab, vedolizumab, IL-12, IL-23, JAK, etc.). Studies that included preclinical in vivo or in vitro experiments are discussed. The clinicaltrial.gov site was searched for 'ulcerative colitis' AND 'Recruiting' OR 'Active, not recruiting' AND 'Interventional (Clinical Trial)' AND 'early phase 1' OR 'phase 1' OR 'phase 2' OR 'phase 3.' EXPERT OPINION Using in vivo, ex vivo, and/or in vitro models could increase the success rates of drugs moving to clinical trials, and hence increase the efficiency of this costly process. Selective JAK1 inhibitors, S1P modulators, and anti-p19 antibodies are the most promising options to improve treatment effectiveness. The development of drugs with gut-restricted exposure may provide increased efficacy and an improved safety.
Collapse
Affiliation(s)
- Berta Caballol
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Julian Panes
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
28
|
Fujimura T, Yamada Y, Umeyama T, Kudo Y, Kanamori H, Mori T, Shimizu T, Kato M, Kawaida M, Hosoe N, Hasegawa Y, Matsubara K, Shimojima N, Shinoda M, Obara H, Naganuma M, Kitagawa Y, Hoshino K, Kuroda T. Maintenance treatment with infliximab for ulcerative ileitis after intestinal transplantation: A case report. World J Clin Cases 2021; 9:5270-5279. [PMID: 34307578 PMCID: PMC8283613 DOI: 10.12998/wjcc.v9.i19.5270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Evidence has been published on the successful applications of the anti-tumor necrosis factor alpha antibody infliximab, such as induction therapy, salvage treatment for acute cellular rejection, and treatment for chronic ulcerative inflammation, in intestinal transplant recipients. However, the optimal protocol for the effective use of infliximab remains largely undetermined due to scarcity of available clinical data. We report a continuative application of infliximab as maintenance therapy for recurrent chronic ulcerative ileitis in a recipient of isolated intestinal transplantation (ITx).
CASE SUMMARY The patient was a 11-year-old boy with intestinal motility disorder classified as a hypogenic type of intestinal dysganglionosis. The patient underwent living-donor related intestinal transplant. His immunosuppression regimen consisted of daclizumab, tacrolimus, and steroids. Although he did not show rejection while on tacrolimus monotherapy, routine screening endoscopy showed several ulcerative lesions in the distal end of the graft 2 years after the intestinal transplant. Endoscopic work up to evaluate the progression of anemia revealed stenosis with ulcerative inflammatory changes and multiple longitudinal ulcers in the graft. Since the endoscopic findings suggested ulcerative lesions in Crohn’s disease, infliximab treatment was considered. Treatment with infliximab and a small dose of oral prednisolone afforded successful withdrawal of total parenteral nutrition and maintenance of a well-functioning graft without infectious complications for 5 years since the administration of the first dose of infliximab.
CONCLUSION Infliximab is effective as maintenance therapy for recurrent chronic ulcerative ileitis in an isolated ITx patient.
Collapse
Affiliation(s)
- Takumi Fujimura
- Department of Pediatric Surgery, National Saitama Hospital, Wako Shi, Saitama 351-0102, Japan
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Yamada
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoshige Umeyama
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yumi Kudo
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroki Kanamori
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Teizaburo Mori
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takahiro Shimizu
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mototoshi Kato
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Miho Kawaida
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naoki Shimojima
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Digestive Diseases Center, International University of Health and Welfare, Mita Hospital, Tokyo 108-8329, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Naganuma
- Department of Gastroenterology and Hepatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ken Hoshino
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
29
|
Grijalvo S, Ocampo SM, Perales JC, Eritja R. Preparation of Lipid-Conjugated siRNA Oligonucleotides for Enhanced Gene Inhibition in Mammalian Cells. Methods Mol Biol 2021; 2282:119-136. [PMID: 33928573 DOI: 10.1007/978-1-0716-1298-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleic acid conjugates are promising drugs for treating gene-related diseases. Conjugating specific units like lipids, cell-penetrating peptides, polymers, antibodies, and aptamers either at the 3'- or 5'-termini of a siRNA duplex molecule has resulted in a plethora of siRNA bioconjugates with improved stabilities in bloodstream and better pharmacokinetic values than unmodified siRNAs. In this sense, lipid-siRNA conjugates have attracted a remarkable interest for their potential value in facilitating cellular uptake. In this chapter, we describe a series of protocols involving the synthesis of siRNA oligonucleotides carrying either neutral or cationic lipids at the 3'- and 5'-termini. The resulting lipid-siRNA conjugates are aimed to be used as exogenous effectors for inhibiting gene expression by RNA interference. A protocol for the formulation of lipid siRNA using sonication in the presence of serum is described yielding interesting transfection properties for cell culture without the use of transfecting agents.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Barcelona, Spain. .,Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Research Council (CSIC), Barcelona, Spain.
| | - Sandra M Ocampo
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Barcelona, Spain.,Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Research Council (CSIC), Barcelona, Spain.,Department of Physiologic Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Carlos Perales
- Department of Physiologic Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ramon Eritja
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Barcelona, Spain. .,Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Research Council (CSIC), Barcelona, Spain.
| |
Collapse
|
30
|
Patel S, Wadhwa M. Therapeutic use of specific tumour necrosis factor inhibitors in inflammatory diseases including COVID-19. Biomed Pharmacother 2021; 140:111785. [PMID: 34126316 PMCID: PMC8162906 DOI: 10.1016/j.biopha.2021.111785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused significant devastation globally. Despite the development of several vaccines, with uncertainty around global uptake and vaccine efficacy, the need for effective therapeutic agents remains. Increased levels of cytokines including tumour necrosis factor are significant in the pathogenesis of COVID-19 and associated with poor outcomes including ventilator requirement and mortality. Repurposing tumour necrosis factor blocker therapy used in conditions such as rheumatoid arthritis and inflammatory bowel disease seems promising, with early feasibility data showing a reduction in circulation of pro-inflammatory cytokines and encouraging the evaluation of such interventions in preventing disease progression and clinical deterioration in patients with COVID-19. Here, we examine the biological activities of tumour necrosis factor inhibitors indicative of their potential in COVID-19 and briefly outline the randomised control trials assessing their benefit-risk profile in COVID-19 therapy.
Collapse
Affiliation(s)
- Serena Patel
- Downing College, Regent Street, Cambridge CB2 1DQ, UK; Ipswich Hospital, Heath Road, Ipswich IP4 5PD, UK
| | - Meenu Wadhwa
- NIBSC, MHRA, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
31
|
Märker-Hermann E. [Update: enterogenic spondylarthritis]. Z Rheumatol 2021; 80:539-551. [PMID: 34046687 DOI: 10.1007/s00393-021-01014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Spondylarthritis (SpA) is one of the most frequent extraintestinal manifestations of chronic inflammatory bowel disease (IBD). Several arthritogenic enterobacterial infections can induce sequelae such as reactive SpA. Studies on the gut-synovium axis in view of genetic, immunological, clinical and therapeutic aspects has made enterogenic SpA a model disease of all forms of SpA. The same applies for investigating IBD, as subclinical gut inflammation seen in SpA patients has provided significant evidence for a better understanding of mucosa-associated early immune events in Crohn's disease (CD). This article summarizes the pathognomonic clinical features, diagnostic steps, differential diagnosis and current pathogenetic models of enterogenic SpA. Knowledge of pathogenetic contexts leads to concrete treatment recommendations. These vary individually depending on the underlying IBD, on the inflammatory intestinal or rheumatic activity and on the rheumatological manifestation pattern.
Collapse
Affiliation(s)
- Elisabeth Märker-Hermann
- Klinik Innere Medizin IV Rheumatologie, klinische Immunologie und Nephrologie, Helios Dr. Horst Schmidt-Kliniken Wiesbaden, Ludwig-Erhard-Str. 100, 65199, Wiesbaden, Deutschland.
| |
Collapse
|
32
|
Lovatt J, Gascoyne-Binzi D, Hussey T, Garside M, McGill F, Selinger CP. Screening for TB in Hospitalised Patients with Inflammatory Bowel Disease before Anti-TNF Therapy: Is QuantiFERON ® Gold Testing Useful? J Clin Med 2021; 10:jcm10091816. [PMID: 33919426 PMCID: PMC8122329 DOI: 10.3390/jcm10091816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Background—Tumour necrosis factor alpha (TNFα) plays an important role in the pathogenesis of inflammatory bowel disease (IBD) and in immunity to Mycobacterium tuberculosis. Patients should be tested for latent tuberculosis infection using interferon-gamma release assays (IGRA/QF) prior to anti-TNFα therapy. Indeterminate QF results can delay anti-TNFα therapy. We sought to investigate factors associated with indeterminate QF results. Method—Retrospective study of all IGRA tests requested for gastroenterology patients in 2017. We compared inpatients and outpatients and investigated factors potentially associated with QF usefulness (steroid exposure, C-reactive protein (CRP), hypoalbuminaemia, thrombophilia). Results—We included 286 outpatients and 74 inpatients with IBD. Significantly more inpatients had an indeterminate IGRA (52.7% vs. 3.14% in outpatients; p < 0.0001). Laboratory parameters reflecting inflammation (high CRP, low albumin, low haemoglobin and high platelets) were also associated with an indeterminate QF (p < 0.0001). Exposure to steroids was more common in patients with an indeterminate QF (p < 0.0001). A binary logistic regression analysis revealed inpatient status and steroid exposure to be independently predictive of an indeterminate QF (p < 0.0001). Conclusion—There is a high chance of indeterminate QF results in inpatients. QF testing should ideally be performed in the outpatient setting at diagnosis.
Collapse
Affiliation(s)
- Jessica Lovatt
- Gastroenterology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (J.L.); (M.G.)
| | | | - Thomas Hussey
- Anaesthetics, Bradford Teaching Hospitals NHS Foundation Trust, Bradford BD9 6RJ, UK;
| | - Maya Garside
- Gastroenterology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (J.L.); (M.G.)
| | - Fiona McGill
- Infectious Diseases, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK;
- Medical Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Christian P. Selinger
- Gastroenterology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (J.L.); (M.G.)
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: ; Tel.: +44-113-206-8768
| |
Collapse
|
33
|
Dapsone Ameliorates Colitis through TLR4/NF-kB Pathway in TNBS Induced Colitis Model in Rat. Arch Med Res 2021; 52:595-602. [PMID: 33814208 DOI: 10.1016/j.arcmed.2021.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Crohn's disease (CD), a type of inflammatory bowel disease (IBD), emerges with severe gastrointestinal (GI) tract inflammation, sometimes known as hostile abdomen. Conventional treatment of CD has several limitations such as insufficient response to treatment, and intolerable side effects of drugs. In addition, the high cost of biologic drugs prevents patients from continuing their treatment. Dapsone showed vigorous anti-inflammatory effects on the skin diseases, lung diseases and inflammatory diseases of the nervous system. Hence, we decided to investigate the effect of dapsone on animal model of CD. METHODS In this study, colitis was induced by instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS) 100 mg/kg. Rats were treated with daily gavage of dapsone (10, 12.5 and 20 mg/kg). Seven days after induction of colitis, specimens were collected for pathological and molecular assessments. RESULTS Dapsone (12.5 and 20 mg/kg) preserved the histologic architecture of the colon and prevented crypts irregularity. Additionally, it decreased tissue edema and hindered inflammatory cells infiltration. Besides, all doses of dapsone decreased tissue concentration of tumor necrosis factor α (TNF-α) and interferon γ (INFγ). Western blot revealed that dapsone could attenuate inflammation via downregulation of toll-like receptor 4 (TLR4) and dephosphorylation of nuclear factor kB (NF-kB). CONCLUSION Based on these findings, dapsone attenuates inflammation and decreases TNF-α and INF-γ in animal model of CD. It acts through TLR4/NF-kB pathway to exert these effects.
Collapse
|
34
|
Ali FEM, M Elfiky M, Fadda WA, Ali HS, Mahmoud AR, Mohammedsaleh ZM, Abd-Elhamid TH. Regulation of IL-6/STAT-3/Wnt axis by nifuroxazide dampens colon ulcer in acetic acid-induced ulcerative colitis model: Novel mechanistic insight. Life Sci 2021; 276:119433. [PMID: 33794250 DOI: 10.1016/j.lfs.2021.119433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
AIM Ulcerative colitis (UC) is a common intestinal problem characterized by the diffusion of colon inflammation and immunity dysregulation. Nifuroxazide, a potent STAT-3 inhibitor, exhibits diverse pharmacological properties. The present study aimed to elucidate a novel anti-colitis mechanism of nifuroxazide against the acetic acid-induced UC model. METHODS Rats were grouped into control (received vehicle), UC (2 ml of 5% acetic acid by intrarectal infusion), UC plus sulfasalazine (100 mg/kg/day, P.O.), UC plus nifuroxazide (25 mg/kg/day, P.O.), and UC plus nifuroxazide (50 mg/kg/day, P.O.) and lasted for 6 days. RESULTS The present study revealed that nifuroxazide significantly reduced UC measures, hematological changes, and histological alteration. In addition, treatment with nifuroxazide significantly down-regulated serum CRP as well as the colonic expressions of MPO, IL-6, TNF-α, TLR-4, NF-κB-p65, JAK1, STAT-3, DKK1 in a dose-dependent manner. Besides, our results showed that the colonic Wnt expression was up-regulated with nifuroxazide treatment. In a dose-dependent manner, nifuroxazide markedly alleviated acetic acid-induced cellular infiltration and improved ulcer healing by increasing intestinal epithelial cell regeneration. SIGNIFICANCE Our results collectively indicate that nifuroxazide is an effective anti-colitis agent through regulation of colon inflammation and proliferation via modulation IL-6/STAT-3/Wnt signaling pathway.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mohamed M Elfiky
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt
| | - Walaa A Fadda
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
35
|
Dutta N, Lillehoj PB, Estrela P, Dutta G. Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near Future. BIOSENSORS 2021; 11:94. [PMID: 33806879 PMCID: PMC8004910 DOI: 10.3390/bios11030094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Cytokines are soluble proteins secreted by immune cells that act as molecular messengers relaying instructions and mediating various functions performed by the cellular counterparts of the immune system, by means of a synchronized cascade of signaling pathways. Aberrant expression of cytokines can be indicative of anomalous behavior of the immunoregulatory system, as seen in various illnesses and conditions, such as cancer, autoimmunity, neurodegeneration and other physiological disorders. Cancer and autoimmune diseases are particularly adept at developing mechanisms to escape and modulate the immune system checkpoints, reflected by an altered cytokine profile. Cytokine profiling can provide valuable information for diagnosing such diseases and monitoring their progression, as well as assessing the efficacy of immunotherapeutic regiments. Toward this goal, there has been immense interest in the development of ultrasensitive quantitative detection techniques for cytokines, which involves technologies from various scientific disciplines, such as immunology, electrochemistry, photometry, nanotechnology and electronics. This review focusses on one aspect of this collective effort: electrochemical biosensors. Among the various types of biosensors available, electrochemical biosensors are one of the most reliable, user-friendly, easy to manufacture, cost-effective and versatile technologies that can yield results within a short period of time, making it extremely promising for routine clinical testing.
Collapse
Affiliation(s)
- Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA;
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
36
|
Omics data integration identifies ELOVL7 and MMD gene regions as novel loci for adalimumab response in patients with Crohn's disease. Sci Rep 2021; 11:5449. [PMID: 33750834 PMCID: PMC7970911 DOI: 10.1038/s41598-021-84909-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Response to anti-TNF therapy is of pivotal importance in patients with Crohn’s disease (CD). Here we integrated our and previously reported PBMC derived transcriptomic and genomic data for identification of biomarkers for discrimination between responders and non-responders to anti-TNF therapy. CD patients, who were naïve with respect to the treatment with biologicals, were enrolled in the study. DNA and RNA were extracted from peripheral blood mononuclear cells. RNA-seq was performed using BGISEQ-500. Genotyping was performed using Infinium Global Screening Array. Association regressions were carried out with 12 week response to adalimumab as an outcome variable. RNA-seq analysis confirmed 7 out of 65 previously suggested genes involved in anti-TNF response. Subsequently, analysis of single nucleotide variants in regions of confirmed genes identified 5 variants near MMD and two in ELOVL7 intronic regions associated with treatment response to anti-TNF. Functional analysis has shown that rs1465352, rs4422035 and rs78620886 are listed at H3K9ac_Pro histone modification epigenetic mark. The present study confirmed MMD and ELOVL7 involvement in anti-TNF response and revealed that the regulation of MMD and ELOVL7 gene regions in ADA response may be a part of a complex interplay extending from genetic to epigenetic and to transcriptomic level.
Collapse
|
37
|
Comparative analysis of adverse events between infliximab and adalimumab in Crohn's disease management: a Brazilian single-centre experience. JOURNAL OF COLOPROCTOLOGY 2021. [DOI: 10.1016/j.jcol.2013.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Introduction Data is scarce regarding adverse events (AE) of biological therapy used in the management of Crohn's Disease (CD) among Brazilian patients.
Objectives To analyse AE prevalence and profile in patients with CD treated with Infliximab (IFX) or Adalimumab (ADA) and to verify whether there are differences between the two drugs.
Method Retrospective observational single-centre study of CD patients on biological therapy. Variables analysed: Demographic data, Montreal classification, biological agent adminis- tered, treatment duration, presence and type of AE and the need for treatment interruption.
Results Forty-nine patients were analysed, 25 treated with ADA and 24 with IFX. The groups were homogeneous in relation to the variables studied. The average follow-up period for the group treated with ADA was 19.3 months and 21.8 months for the IFX group (p = 0.585). Overall, 40% (n = 10) of patients taking ADA had AE compared with 50% (n = 12) of IFX users (p = 0.571). There was a tendency towards higher incidence of cutaneous and infusion reac- tions in the IFX group and higher incidence of infections in the ADA treated group, although without significant difference.
Conclusions No difference was found in the AE prevalence and profile between ADA and IFX CD patients in the population studied.
Collapse
|
38
|
Herndon K, Dewitt A, Gillion A, Pattanaik D. Infusion-related angioedema associated with infliximab-abda: Case report. Am J Health Syst Pharm 2020; 78:108-112. [DOI: 10.1093/ajhp/zxaa321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Purpose
A case of infusion-related angioedema associated with the use of an infliximab biosimilar (infliximab-abda) is reported in order to bring awareness that this adverse effect is still highly possible in biosimilars, similar to the reference infliximab biologic.
Summary
A 37-year-old white male with a past medical history significant for ileocolonic fistulizing Crohn’s disease, depression, and gastroesophageal reflux disease (GERD) presented to an emergency department with shortness of breath, urticaria, and tongue swelling that had developed shortly after initiation of an infusion of infliximab-abda. The patient had no documented allergies at the time of presentation. The patient was taking oral budesonide 9 mg daily and oral azathioprine 50 mg daily for treatment of Crohn’s disease. Other medications included oral omeprazole 40 mg every morning for GERD and oral sertraline 100 mg daily for depression. The patient’s tongue swelling worsened, and he was intubated for airway protection. The patient received supportive care treatment for angioedema with intravenous (IV) dexamethasone 8 mg every 8 hours, IV diphenhydramine 50 mg every 8 hours, and IV famotidine 20 mg every 12 hours. He was extubated approximately 43 hours later and observed overnight in a medical intensive care unit. He was transferred to a general medicine unit the next day for further care. The total hospital length of stay was 4 days.
Conclusion
A 37-year-old man developed infusion-related angioedema with use of infliximab-abda. Discontinuation of the biosimilar product along with supportive care brought about resolution of angioedema. There are no prior published reports of infusion-related angioedema reactions secondary to infliximab-abda use.
Collapse
Affiliation(s)
- Kyle Herndon
- Memphis Veterans Affairs Medical Center, Memphis, TN
| | | | - Amanda Gillion
- Memphis Veterans Affairs Medical Center, Memphis, TN, and College of Pharmacy, University of Tennessee, Memphis, TN
| | - Debendra Pattanaik
- Memphis Veterans Affairs Medical Center, Memphis, TN, and College of Medicine, University of Tennessee, Memphis, TN
| |
Collapse
|
39
|
Allard-Chamard H, Mishra HK, Nandi M, Mayhue M, Menendez A, Ilangumaran S, Ramanathan S. Interleukin-15 in autoimmunity. Cytokine 2020; 136:155258. [PMID: 32919253 DOI: 10.1016/j.cyto.2020.155258] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Interleukin-15 (IL-15) is a member of the IL-2 family of cytokines, which use receptor complexes containing the common gamma (γc) chain for signaling. IL-15 plays important roles in innate and adaptative immune responses and is implicated in the pathogenesis of several immune diseases. The IL-15 receptor consists of 3 subunits namely, the ligand-binding IL-15Rα chain, the β chain (also used by IL-2) and the γc chain. IL-15 uses a unique signaling pathway whereby IL-15 associates with IL-15Rα during biosynthesis, and this complex is 'trans-presented' to responder cells that expresses the IL-2/15Rβγc receptor complex. IL-15 is subject to post-transcriptional and post-translational regulation, and evidence also suggests that IL-15 cis-signaling can occur under certain conditions. IL-15 has been implicated in the pathology of various autoimmune diseases such as rheumatoid arthritis, autoimmune diabetes, inflammatory bowel disease, coeliac disease and psoriasis. Studies with pre-clinical models have shown the beneficial effects of targeting IL-15 signaling in autoimmunity. Unlike therapies targeting other cytokines, anti-IL-15 therapies have not yet been successful in humans. We discuss the complexities of IL-15 signaling in autoimmunity and explore potential immunotherapeutic approaches to target the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Hemant K Mishra
- Vet & Biomedical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marian Mayhue
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
40
|
Pavia CS, Plummer MM. Clinical implications of nicotine as an antimicrobial agent and immune modulator. Biomed Pharmacother 2020; 129:110404. [PMID: 32603888 PMCID: PMC7320263 DOI: 10.1016/j.biopha.2020.110404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
Nicotine is perhaps the most important and potent, pharmacologically active substance in tobacco products. This commentary examines the possible effects that nicotine has on microbial viability and also on the host's immune system as it responds to the indigenous microflora (the microbiome) due to nicotine-induced changes to the indigenous microbial environment and any associated antigenic stimulation / immunization that may occur. To our knowledge, the analysis of such profound microbiologic changes attributable to a tobacco-related product, such as nicotine, has not been fully explored in the context of its consequences on the viability of the microbiome/microbiota and on some of the host's basic physiologic processes, such as the immune response, and its possible association on the induction and persistence of certain immunologically related diseases. Future studies should be aimed at uncovering the molecular mechanisms involved in such interactions, especially in the context of manipulating them for therapeutic purposes.
Collapse
Affiliation(s)
- Charles S Pavia
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA; Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA.
| | - Maria M Plummer
- Department of Clinical Specialties, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA.
| |
Collapse
|
41
|
Daub H, Traxler L, Ismajli F, Groitl B, Itzen A, Rant U. The trimer to monomer transition of Tumor Necrosis Factor-Alpha is a dynamic process that is significantly altered by therapeutic antibodies. Sci Rep 2020; 10:9265. [PMID: 32518229 PMCID: PMC7283243 DOI: 10.1038/s41598-020-66123-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
The cytokine tumor necrosis factor-alpha (TNF-α) readily forms homotrimers at sub-nM concentrations to promote inflammation. For the treatment of inflammatory diseases with upregulated levels of TNF-α, a number of therapeutic antibodies are currently used as scavengers to reduce the active TNF-α concentration in patients. Despite their clinical success, the mode-of-action of different antibody formats with regard to a stabilization of the trimeric state is not entirely understood. Here, we use a biosensor with dynamic nanolevers to analyze the monomeric and trimeric states of TNF-α together with the binding kinetics of therapeutic biologics. The intrinsic trimer-to-monomer decay rate k = 1.7 × 10−3 s−1 could be measured directly using a microfluidic system, and antibody binding affinities were analyzed in the pM range. Trimer stabilization effects are quantified for Adalimumab, Infliximab, Etanercept, Certolizumab, Golimumab for bivalent and monovalent binding formats. Clear differences in trimer stabilization are observed, which may provide a deeper insight into the mode-of-action of TNF-α scavengers.
Collapse
Affiliation(s)
- Herwin Daub
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany. .,Center for Integrated Protein Science Munich, Technische Universität München, Department Chemistry, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Lukas Traxler
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| | - Fjolla Ismajli
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| | - Bastian Groitl
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich, Technische Universität München, Department Chemistry, Lichtenbergstrasse 4, 85748, Garching, Germany.,Department of Biochemistry and Signaltransduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Ulrich Rant
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| |
Collapse
|
42
|
Kalovyrna N, Apokotou O, Boulekou S, Paouri E, Boutou A, Georgopoulos S. A 3'UTR modification of the TNF-α mouse gene increases peripheral TNF-α and modulates the Alzheimer-like phenotype in 5XFAD mice. Sci Rep 2020; 10:8670. [PMID: 32457323 PMCID: PMC7250826 DOI: 10.1038/s41598-020-65378-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine, involved in Alzheimer's disease pathogenesis. Anti-TNF-α therapeutic approaches currently used in autoimmune diseases have been proposed as a therapeutic strategy in AD. We have previously examined the role of TNF-α and anti-TNF-α drugs in AD, using 5XFAD mice, and we have found a significant role for peripheral TNF-α in brain inflammation. Here we investigated the role of mouse TNF-α on the AD-like phenotype of 5XFAD mice using a knock-in mouse with deletion of the 3'UTR of the endogenous TNF-α (TNFΔARE/+) that develops rheumatoid arthritis and Crohn's disease. 5XFAD/TNFΔARE/+ mice showed significantly decreased amyloid deposition. Interestingly, microglia but not astrocytes were activated in 5XFAD/ TNFΔARE/+ brains. This microglial activation was associated with increased infiltrating peripheral leukocytes and perivascular macrophages and synaptic degeneration. APP levels and APP processing enzymes involved in Aβ production remained unchanged, suggesting that the reduced amyloid burden can be attributed to the increased microglial and perivascular macrophage activation caused by TNF-α. Peripheral TNF-α levels were increased while brain TNF-α remained the same. These data provide further evidence for peripheral TNF-α as a mediator of inflammation between the periphery and the brain.
Collapse
Affiliation(s)
- Nikoleta Kalovyrna
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Olympia Apokotou
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Sotiria Boulekou
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Evi Paouri
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Athena Boutou
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Spiros Georgopoulos
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
43
|
Nicolela Susanna F, Pavesio C. A review of ocular adverse events of biological anti-TNF drugs. J Ophthalmic Inflamm Infect 2020; 10:11. [PMID: 32337619 PMCID: PMC7184065 DOI: 10.1186/s12348-020-00202-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
The recent introduction of biological agents has revolutionized the treatment of chronic immune-inflammatory diseases; however, this new therapy did not come without significant side effects.Through large controlled studies indicating decrease in the number of uveitis flares, the role of TNF inhibitors therapy for non-infectious uveitis gained more ground. Paradoxically to its therapeutic effect, there are reports associating these drugs with the onset or recurrence of inflammatory eye disease.A number of studies have suggested possible roles for anti-TNF-α agents in precipitating or worsening an underlying inflammatory process, including the hypothesis of a disequilibrium in cytokine balance, but to date the mechanisms responsible for these adverse events are not fully understood.A PubMed literature search was performed using the following terms: ophthalmic complication, uveitis, inflammatory eye disease, optic neuritis, neuropathy, adverse events, anti-TNF, TNF alpha inhibitor, infliximab, etanercept, adalimumab, golimumab, certolizumab, and biologics. The data presented in this study was mainly derived from the use of TNF inhibitors in rheumatology, essentially because these drugs have been used for a longer period in this medical field.Many of the ocular adverse events reported on this review may be considered a paradoxical effect of anti-TNF therapy. We found a variety of data associating new onset of uveitis with anti-TNF therapy for rheumatic conditions, predominantly under etanercept.In conclusion, although there is increasing data on ocular adverse events, it remains to be seen whether the suggested link between TNF inhibitors and the onset of ocular inflammation is substantiated by more quality data. Nevertheless, the awareness of potential treatment side effects with anti-TNF should be highlighted.
Collapse
Affiliation(s)
| | - Carlos Pavesio
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
44
|
Cyanidin Chloride Induces Apoptosis by Inhibiting NF-κB Signaling through Activation of Nrf2 in Colorectal Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9040285. [PMID: 32230772 PMCID: PMC7222181 DOI: 10.3390/antiox9040285] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and a leading cause of cancer-related deaths in developed countries. Anthocyanins are a class of flavonoids, widely distributed in food, exhibiting important biological effects. Cyanidin chloride (CyCl) is the common type of anthocyanin with antioxidative and anti-inflammatory potential. The present study aimed to investigate the molecular mechanisms underlying the chemotherapeutic effects of CyCl in colorectal cancer cells. We found that CyCl treatment induced apoptosis as well as a significant inhibition of cellular proliferation and colony formation in three colon cancer HCT116, HT29, and SW620 cells. In addition, CyCl suppressed nuclear factor-kappa B (NF-κB) signaling and induced the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in tumor necrosis factor-alpha (TNF-α)-stimulated colon cancer cells. Nrf2 and NF-κB are two key transcription factors regulating antioxidative responses and cellular proliferation, respectively. In this study, knockdown of Nrf2 by small interfering RNA (siRNA) transfection inhibited the effect of CyCl on NF-κB signaling and apoptosis, suggesting that there is functional crosstalk between Nrf2 and NF-κB. Our findings demonstrate the important role of Nrf2 in inducing apoptosis through the involvement of NF-κB signaling in colorectal cancer cells, suggesting that CyCl may be used as a potential therapeutic agent for CRC.
Collapse
|
45
|
Choi SY, Kang B, Choe YH. Serum Infliximab Cutoff trough Level Values for Maintaining Hematological Remission in Pediatric Inflammatory Bowel Disease. Gut Liver 2020; 13:541-548. [PMID: 30970435 PMCID: PMC6743797 DOI: 10.5009/gnl18129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Background/Aims Infliximab (IFX) often loses its therapeutic effect in initial responders with inflammatory bowel disease (IBD) over time. Low serum IFX trough levels (TLs) are linked to poor clinical response and outcomes. Maintenance of optimal therapeutic IFX concentrations is important for sustaining response and achieving good clinical outcomes. Measurement of serum IFX TLs is helpful for determining a further proper therapeutic plan. However, adequate therapeutic IFX TLs in pediatric IBD is uncertain. We aimed to identify the cutoff values for IFX TLs associated with laboratory response to IFX maintenance therapy. Methods Patients with pediatric IBD who had received IFX infusions between December 2008 and March 2015 at Samsung Medical Center were retrospectively investigated. We analyzed 239 blood samples that were collected from 103 pediatric patients. We measured IFX TLs at induction (6 and 14 weeks) and during maintenance therapy (>22 weeks, 8 weeks interval) by fluid-phase radioimmunoassays. Results A significant association was found between the erythrocyte sedimentation rate (ESR) and IFX TLs during maintenance (correlation coefficient, -0.11; p=0.0005). A cutoff value of 18 mm/hr for ESR was used to define higher levels. Receiver operating characteristic analysis identified optimal cutoff values: IFX TL >1.58 µg/mL (sensitivity 82% and specificity 73%). Conclusions Cutoff values are considered a prerequisite for further investigating the clinical usefulness of measurements of IFX in patients maintained with IFX treatment.
Collapse
Affiliation(s)
- So Yoon Choi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ben Kang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yon Ho Choe
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Angelison L, Almer S, Davidsdottir L, Hammarlund P, Lindgren S, Hindorf U, Marsal J, Hertervig E. Short and long-term efficacy of adalimumab in ulcerative colitis: a real-life study. Scand J Gastroenterol 2020; 55:154-162. [PMID: 31961234 DOI: 10.1080/00365521.2020.1713210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: Randomized controlled trials have shown the effectiveness of Adalimumab in ulcerative colitis. However, real-life data is scarce. We aimed to assess the effectiveness and predictive factors of effectiveness in a large Swedish cohort.Methods: Retrospective capture of data from local registries at five Swedish IBD centers. Clinical response and remission rates were assessed at three months after starting adalimumab treatment and patients were followed until colectomy or need for another biological. Bio-naive patients were compared to bio experienced patients. Factors associated with short term responses were assessed using logistic regression model. Failure on drug was assessed using a Cox proportional hazards regression model.Results: 118 patients (59 males, 59 females) with median age 34.4 years (IQR 27.0-51.4) were included. Median disease duration was 4.3 years (IQR 2.0-9.0) and follow-up 1.27 years (IQR 0.33-4.1). A clinical corticosteroid-free remission was achieved by 38/118 (32.2%) and response by 91/118 (77%) after three months. CRP >3 mg/l at baseline was predictive of short-term failure to reach corticosteroid-free remission. Factors associated with survival on the drug were male gender, CRP <3 mg/l and absence of primary sclerosing cholangitis. Patients >42 years of age at diagnosis were more likely to respond to adalimumab and remain on treatment compared to patients <20 years.Conclusions: An elevated CRP-level, primary sclerosing cholangitis and female gender were predictors of treatment failure. In contrast older age at diagnosis was a predictor of short-term clinical response and drug survival. Prior infliximab failure, regardless of cause, did not influence the outcome of adalimumab treatment.
Collapse
Affiliation(s)
- Leif Angelison
- Department of Medicine, Helsingborg Hospital, Helsingborg, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sven Almer
- Department of Medicine, Karolinska Institutet, Solna, Sweden.,Division of Gastroenterology, Department of Gastroenterology, Dermatology, Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Loa Davidsdottir
- Department of Medicine, Karolinska Institutet, Solna, Sweden.,Division of Gastroenterology, Department of Gastroenterology, Dermatology, Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Hammarlund
- Department of Medicine, Ängelholm Hospital, Ängelholm, Sweden
| | - Stefan Lindgren
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Gastroenterology, Skane University Hospital, Lund/Malmö, Sweden
| | - Ulf Hindorf
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jan Marsal
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Gastroenterology, Skane University Hospital, Lund/Malmö, Sweden
| | - Erik Hertervig
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Gastroenterology, Skane University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
47
|
Physiologic intestinal 18F-FDG uptake is associated with alteration of gut microbiota and proinflammatory cytokine levels in breast cancer. Sci Rep 2019; 9:18273. [PMID: 31797893 PMCID: PMC6892830 DOI: 10.1038/s41598-019-54680-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
The clinical significance of physiologic Fluorine-18-fluorodeoxyglucose (18F-FDG) intestinal uptake (IU) based on the predicted link with gut microbiota dysbiosis and inflammatory cytokine production was investigated in a cohort of breast cancer patients. A total of 114 patients were visually classified into the lower or higher IU group. The maximum and mean standardized uptake values of total bowel (TB SUVmax and TB SUVmean) were measured. The gut microbial abundance of the Citrobacter genus of the Enterobacteriaceae family showed a significant positive correlation with TB SUVmax and TB SUVmean (q = 0.021 and q = 0.010). The unclassified Ruminococcaceae showed a significant negative correlation with TB SUVmax (q = 0.010). The level of tumor necrosis factor alpha (TNF-α) was significantly increased in the high IU group (p = 0.017). The TNF-α levels showed a significant positive correlation with TB SUVmax (rho = 0.220 and p = 0.018) and TB SUVmean (rho = 0.250 and p = 0.007). Therefore, our findings suggest that the physiologic intestinal uptake may reflect subclinical inflammation and differences in the composition of the gut microbiome in breast cancer patients.
Collapse
|
48
|
Mohandas S, Vairappan B. Pregnane X receptor activation by its natural ligand Ginkgolide-A improves tight junction proteins expression and attenuates bacterial translocation in cirrhosis. Chem Biol Interact 2019; 315:108891. [PMID: 31697926 DOI: 10.1016/j.cbi.2019.108891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor expressed ubiquitously along gut-liver-axis. Inflammatory bowel disorders have been reported to implicate PXR in maintaining tight junction (TJ) integrity and countering inflammation. However, the hepatoprotective role of PXR activation in soothing bacterial translocation in liver cirrhosis has not been explored. Ginkgolide A (GA), a terpene trilactone from Ginkgo Biloba extract, is a natural ligand of rodent and human PXR. This study aims to investigate the effect of GA in activating PXR and improving associated tight junction integrity and reducing bacterial translocation in gut-liver axis of CCl4 induced cirrhosis model. METHODS Swiss albino mice were administered with CCl4 (0.5 ml/kg body weight, i.p) in corn oil for 12 weeks at an interval of two times a week. Following ascites induction, mice were randomized & administered 100 mg/kg body weight of GA through oral gavage for 2 weeks. At termination, blood, gut and liver tissues were collected for biochemical and molecular studies. RESULTS When compared to naïve mice, protein expression of hepatic and small intestinal PXR, CYP3A, ZO-1 and occludin were found to be significantly (p < 0.01) decreased in CCl4 induced cirrhotic mice. Treatment with GA to cirrhotic mice significantly (p < 0.05) induced the expression of both hepatic and small intestinal PXR, CYP3A, ZO-1 and Occludin. Furthermore, increased (p < 0.01) hepatic and small intestinal NFκB was observed in CCl4 induced cirrhotic mice that was significantly (p < 0.05) lowered following GA treatment. Over expression of TLR4/MyD88/NFκB axis and its downstream pro-inflammatory mediators TNF-α, IL6 and IFN-γ were observed in CCl4 induced mice, and these indices were abrogated significantly after GA treatment. Furthermore, significantly increased plasma levels of bacterial translocation markers LBP and procalcitonin were found in CCl4 mice, which were reduced significantly (p < 0.05 & p < 0.0001) after GA treatment. CONCLUSION In conclusion, our data supports the hypothesis that, GA treatment to CCl4 induced cirrhotic mice, activated hepatic and small intestinal PXR and diminished inflammation, thereby improving tight junction integrity and attenuating bacterial translocation.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| |
Collapse
|
49
|
Silva LB, dos Santos Neto AP, Maia SM, dos Santos Guimarães C, Quidute IL, Carvalho ADA, Júnior SA, Leão JC. The Role of TNF-α as a Proinflammatory Cytokine in Pathological Processes. Open Dent J 2019. [DOI: 10.2174/1874210601913010332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TNF-α is a member of the vast cytokine family being considered a proinflammatory substance produced many by macrophages and other cells belonging to the innate immunity, many of them classified as indeed Antigen Presenting Cells (APCs) involved in the complex chemotactic process of activation of the adaptive immunity. The aim of this work was to accomplish a literature review concerning the main pathologies that have TNF-α as a modulating agent in other to bring light to the main interactions present in the inflammation installed.
Collapse
|
50
|
Wu KC, Zhong Y, Maher J. Predicting Human Infection Risk: Do Rodent Host Resistance Models Add Value? Toxicol Sci 2019; 170:260-272. [DOI: 10.1093/toxsci/kfz116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractUse of genetically engineered rodents is often considered a valuable exercise to assess potential safety concerns associated with the inhibition of a target pathway. When there are potential immunomodulatory risks associated with the target, these genetically modified animals are often challenged with various pathogens in an acute setting to determine the risk to humans. However, the applicability of the results from infection models is seldom assessed when significant retrospective human data become available. Thus, the purpose of the current review is to compare the outcomes of infectious pathogen challenge in mice with genetic deficiencies in TNF-α, IL17, IL23, or Janus kinase pathways with infectious outcomes caused by inhibitors of these pathways in humans. In general, mouse infection challenge models had modest utility for hazard identification and were generally only able to predict overall trends in infection risk. These models did not demonstrate significant value in evaluating specific types of pathogens that are either prevalent (ie rhinoviruses) or of significant concern (ie herpes zoster). Similarly, outcomes in mouse models tended to overestimate the severity of infection risk in human patients. Thus, there is an emerging need for more human-relevant models that have better predictive value. Large meta-analyses of multiple clinical trials or post-marketing evaluations remains the gold-standard for characterizing the true infection risk to patients.
Collapse
Affiliation(s)
- Kai Connie Wu
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| | - Yu Zhong
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| | - Jonathan Maher
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|