1
|
Ijaz A, Collins AJ, Moreno-Cabañas A, Bradshaw L, Hutchins K, Betts JA, Podlogar T, Wallis GA, Gonzalez JT. Exogenous Glucose Oxidation During Exercise Is Positively Related to Body Size. Int J Sport Nutr Exerc Metab 2025; 35:12-23. [PMID: 39332815 DOI: 10.1123/ijsnem.2024-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/29/2024]
Abstract
There is little evidence that body size alters exogenous glucose oxidation rates during exercise. This study assessed whether larger people oxidize more exogenous glucose during exercise than smaller people. Fifteen cyclists were allocated into two groups based on body mass (SMALL, <70 kg body mass, n = 9, two females) or (LARGE, >70 kg body mass, n = 6) matched for lactate threshold (SMALL: 2.3 ± 0.4 W/kg, LARGE: 2.3 ± 0.3 W/kg). SMALL completed 120 min of cycling at 95% of lactate threshold1. LARGE completed two trials in a random order, one at 95% of lactate threshold1 (thereby exercising at the same relative intensity [RELATIVE]) and one at an absolute intensity matched to SMALL (ABSOLUTE). In all trials, cyclists ingested 90 g/hr of 13C-enriched glucose. Total exogenous glucose oxidation was (mean ± SD) 33 ± 8 g/hr in SMALL versus 45 ± 13 g/hr in LARGE-RELATIVE (mean difference: 13 g/hr, 95% confidence interval [2, 24] g/hr, p = .03). Large positive correlations were observed for measures of exogenous carbohydrate oxidation versus body size (body mass, height, and body surface area; e.g., body surface area vs. peak exogenous glucose oxidation, r = .85, 95% confidence interval [.51, .95], p < .01). When larger athletes reduced the intensity from RELATIVE to ABSOLUTE, total exogenous glucose oxidation was 39 ± 7 g/hr (p = .43 vs. LARGE-RELATIVE). In conclusion, the capacity for exogenous glucose oxidation is, on average, higher in larger athletes than smaller athletes during exercise. The extent to which this is due to higher absolute exercise intensity requires further research, but body size may be a consideration in tailoring sports nutrition guidelines for carbohydrate intake during exercise.
Collapse
Affiliation(s)
- Abdullah Ijaz
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Adam J Collins
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Alfonso Moreno-Cabañas
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | - Louise Bradshaw
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Katie Hutchins
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Tim Podlogar
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
2
|
Streekstra EJ, Keuper-Navis M, van den Heuvel JJWM, van den Broek P, Greupink R, Stommel MWJ, de Boode WP, Botden SMBI, Russel FGM, van de Steeg E, de Wildt SN. The potential of enteroids derived from children and adults to study age-dependent differences in intestinal CYP3A4/5 metabolism. Eur J Pharm Sci 2024; 201:106868. [PMID: 39084538 DOI: 10.1016/j.ejps.2024.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drug metabolism in the intestinal wall affects bioavailability of orally administered drugs and is influenced by age. Hence, it is important to fully understand the drug metabolizing capacity of the gut to predict systemic exposure. The aim of this study was to investigate the potential of enteroids as a tool to study CYP3A4/5 -mediated metabolism in both children and adults. Bioconversion of midazolam, a CYP3A4/5 model substrate, was studied using enteroid monolayers as well as tissue explants in the Ussing chamber, both derived from pediatric [median (range age): 54 weeks (2 days - 13 years), n = 21] and adult (n = 5) tissue. Caco-2 cellular monolayers were employed as controls. In addition, mRNA expression of CYP3A4 was determined in enteroid monolayers (n = 11), tissue (n = 23) and Caco-2 using RT-qPCR. Midazolam metabolism was successfully detected in all enteroid monolayers, as well as in all tissue explants studied in the Ussing chamber, whereas Caco-2 showed no significant metabolite formation. The extracted fraction of midazolam was similar between enteroid monolayers and tissue. The fraction of midazolam extracted increased with age in enteroid monolayers derived from 0 to 70 week old donors. No statistically significant correlation was observed in tissue likely due to high variability observed and the smaller donor numbers included in the study. At the level of gene expression, CYP3A4 increased with age in tissues (n = 32), while this was not reflected in enteroid monolayers (n = 16). Notably, asymmetric metabolite formation was observed in enteroids and tissue, with higher metabolite formation on the luminal side of the barrier. In summary, we demonstrated that enteroids can be used to measure CYP3A4/5 midazolam metabolism, which we show is similar as observed in fresh isolated tissue. This was the case both in children and adults, indicating the potential of enteroids to predict intestinal metabolism. This study provides promising data to further develop enteroids to study drug metabolism in vitro and potentially predict oral absorption for special populations as an alternative to using fresh tissue.
Collapse
Affiliation(s)
- Eva J Streekstra
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Jeroen J W M van den Heuvel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Petra van den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willem P de Boode
- Department of Pediatrics, Division of Neonatology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Sanne M B I Botden
- Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Fragki S, Piersma AH, Westerhout J, Kienhuis A, Kramer NI, Zeilmaker MJ. Applicability of generic PBK modelling in chemical hazard assessment: A case study with IndusChemFate. Regul Toxicol Pharmacol 2022; 136:105267. [DOI: 10.1016/j.yrtph.2022.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
|
4
|
Ananda Rao A, Johncy S. Tennis Courts in the Human Body: A Review of the Misleading Metaphor in Medical Literature. Cureus 2022; 14:e21474. [PMID: 35223255 PMCID: PMC8863270 DOI: 10.7759/cureus.21474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Medical literature is home to fancy descriptions, poetic metaphors, and ingenious comparisons. However, some comparisons can disguise the knowledge gap. Large surfaces in the human body, like the alveolar surface for gas exchange, villi for food absorption, and the endothelial lining of blood vessels, are frequently compared to a “tennis court.” This narrative review explores this metaphor in detail, the discrepancies and factual inaccuracies across medical literature. It highlights the inappropriate use of Euclidean geometry and introduces fractal geometry, a language to define roughness.
Collapse
|
5
|
Ashmawy SM, Eltahan DA, Osman MA, Essa EA. Influence of Piperine and Omeprazole on The Regional Absorption of Daclatasvir from Rabbit Intestine. Biopharm Drug Dispos 2022; 43:33-44. [PMID: 34997607 DOI: 10.1002/bdd.2308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 01/02/2022] [Indexed: 11/11/2022]
Abstract
The study assessed the site dependent intestinal absorption of daclatasvir and investigated the effects of piperine and omeprazole on such absorption utilizing in situ rabbit intestinal perfusion technique. The intestinal absorption of daclatasvir was assessed in four segments: duodenum, jejunum, ileum, and colon. The effect of co-perfusion with omeprazole was monitored through the tested anatomical sites. The effect of piperine, a P-glycoprotein (P-gp) inhibitor on daclatasvir absorption from jejunum and ileum was tested. The results showed that daclatasvir was incompletely absorbed from the rabbit small and large intestine. The absorptive clearance per unit length (PeA/L) was site dependent and was ranked as colon > duodenum > jejunum > ileum. This rank is the opposite of the rank of P-gp intestinal content suggesting possible influence for P-gp. Co-perfusion with omeprazole increased PeA/L and this was evidenced also with reduced the L95% of daclatasvir from both small and large intestinal segments. Significant enhancement in daclatasvir absorption through jejunum and ileum was shown in presence of piperine. Daclatasvir showed site dependent intestinal absorption in a manner suggesting its affection by P-gp efflux. This effect was inhibited by piperine. Co-administration of daclatasvir with omeprazole can enhance intestinal absorption a phenomenon which requires extension to human pharmacokinetic investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Dina A Eltahan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| |
Collapse
|
6
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
7
|
Valkama E, Haluska O, Lehto VP, Korhonen O, Pajula K. Production and stability of amorphous solid dispersions produced by a Freeze-drying method from DMSO. Int J Pharm 2021; 606:120902. [PMID: 34293468 DOI: 10.1016/j.ijpharm.2021.120902] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/17/2023]
Abstract
Freeze drying is known to be able to produce an amorphous product, but this approach has been mostly used with water-based media. With APIs which are virtually water insoluble, a more appropriate freeze-drying medium would be an organic solvent. Little is known about this approach in terms of forming a stable freeze-dried amorphous product stabilized by small molecule excipient out of organic solvents. In the present study, freeze-drying of APIs from DMSO solutions was used to produce stable solid dispersions from binary mixtures of APIs containing at least one poorly water soluble or practically water-insoluble API. The developed freeze-drying method produced amorphous binary solid dispersions which remained amorphous for at least two days while the 13 best binary dispersions remained stable at room temperature for the entire study period of 127 days. Average residual DMSO levels in dried dispersions were 3.5% ± 1.6%. The developed method proved feasible in producing relatively stable amorphous solid dispersions from practically water insoluble drug compounds which could subsequently be used in further research purposes.
Collapse
Affiliation(s)
- Eetu Valkama
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ondřej Haluska
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Katja Pajula
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
8
|
Yusof SR, Abbott NJ, Avdeef A. Impact of capillary flow hydrodynamics on carrier-mediated transport of opioid derivatives at the blood-brain barrier, based on pH-dependent Michaelis-Menten and Crone-Renkin analyses. Eur J Pharm Sci 2017; 106:274-286. [PMID: 28614733 DOI: 10.1016/j.ejps.2017.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/01/2022]
Abstract
Most studies of blood-brain barrier (BBB) permeability and transport are conducted at a single pH, but more detailed information can be revealed by using multiple pH values. A pH-dependent biophysical model was applied to the mechanistic analysis of published pH-dependent BBB luminal uptake data from three opioid derivatives in rat: pentazocine (Suzuki et al., 2002a, 2002b), naloxone (Suzuki et al., 2010a), and oxycodone (Okura et al., 2008). Two types of data were processed: in situ brain perfusion (ISBP) and brain uptake index (BUI). The published perfusion data were converted to apparent luminal permeability values, Papp, and analyzed by the pCEL-X program (Yusof et al., 2014), using the pH-dependent Crone-Renkin equation (pH-CRE) to determine the impact of cerebrovascular flow on the Michaelis-Menten transport parameters (Avdeef and Sun, 2011). For oxycodone, the ISBP data had been measured at pH7.4 and 8.4. The present analysis indicates a 7-fold lower value of the cerebrovascular flow velocity, Fpf, than that expected in the original study. From the pyrilamine-inhibited data, the flow-corrected passive intrinsic permeability value was determined to be P0=398×10-6cm·s-1. The uptake data indicate that the neutral form of oxycodone is affected by a transporter at pH8.4. The extent of the cation uptake was less certain from the available data. For pentazocine, the brain uptake by the BUI method had been measured at pH5.5, 6.5, and 7.4, in a concentration range 0.1-40mM. Under similar conditions, ISBP data were also available. The pH-CRE determined values of Fpf from both methods were nearly the same, and were smaller than the expected value in the original publication. The transport of the cationic pentazocine was not fully saturated at pH5.5 at 40mM. The transport of the neutral species at pH7.4 appeared to reach saturation at 40mM pentazocine concentration, but not at 12mM. In the case of naloxone, a pH-dependent Michaelis-Menten equation (pH-MME) analysis of the data indicated a smooth sigmoidal transition from a higher capacity uptake process affecting cationic naloxone (pH5.0-7.0) to a lower capacity uptake process affecting the neutral drug (pH8.0-8.5), with cross-over point near pH7.4. Evidently, measurements at multiple pH values can reveal important information about both cerebrovascular flow and BBB transport kinetics.
Collapse
Affiliation(s)
- Siti R Yusof
- HICoE Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - N Joan Abbott
- King's College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, 150 Stamford St., London SE1 9NH, UK
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue, #102, New York, NY 10128, USA.
| |
Collapse
|
9
|
Levitt DG, Levitt MD. Protein losing enteropathy: comprehensive review of the mechanistic association with clinical and subclinical disease states. Clin Exp Gastroenterol 2017; 10:147-168. [PMID: 28761367 PMCID: PMC5522668 DOI: 10.2147/ceg.s136803] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein losing enteropathy (PLE) has been associated with more than 60 different conditions, including nearly all gastrointestinal diseases (Crohn’s disease, celiac, Whipple’s, intestinal infections, and so on) and a large number of non-gut conditions (cardiac and liver disease, lupus, sarcoidosis, and so on). This review presents the first attempt to quantitatively understand the magnitude of the PLE in relation to the associated pathology for three different disease categories: 1) increased lymphatic pressure (e.g., lymphangiectasis); 2) diseases with mucosal erosions (e.g., Crohn’s disease); and 3) diseases without mucosal erosions (e.g., celiac disease). The PLE with lymphangiectasis results from rupture of the mucosal lymphatics, with retrograde drainage of systemic lymph into the intestinal lumen with the resultant loss of CD4 T cells, which is diagnostic. Mucosal erosion PLE results from macroscopic breakdown of the mucosal barrier, with the epithelial capillaries becoming the rate-limiting factor in albumin loss. The equation derived to describe the relationship between the reduction in serum albumin (CP) and PLE indicates that gastrointestinal albumin clearance must increase by at least 17 times normal to reduce the CP by half. The strengths and limitations of the two quantitative measures of PLE (51Cr-albumin or α1-antitrypsin [αAT] clearance) are reviewed. αAT provides a simple quantitative diagnostic test that is probably underused clinically. The strong, unexplained correlation between minor decreases in CP and subsequent mortality in seemingly healthy individuals raises the question of whether subclinical PLE could account for the decreased CP and, if so, could the mechanism responsible for PLE play a role in the increased mortality? A large-scale study correlating αAT clearance with serum albumin concentrations will be required in order to determine the role of PLE in the regulation of the serum albumin concentration of seemingly healthy subjects.
Collapse
Affiliation(s)
- David G Levitt
- Department of Integrative Biology and Physiology, University of Minnesota
| | - Michael D Levitt
- Research Service, Veterans Affairs Medical Center, Minneapolis, MN, USA
| |
Collapse
|
10
|
Fröhlich E, Mercuri A, Wu S, Salar-Behzadi S. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds. Front Pharmacol 2016; 7:181. [PMID: 27445817 PMCID: PMC4919356 DOI: 10.3389/fphar.2016.00181] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
Modern strategies in drug development employ in silico techniques in the design of compounds as well as estimations of pharmacokinetics, pharmacodynamics and toxicity parameters. The quality of the results depends on software algorithm, data library and input data. Compared to simulations of absorption, distribution, metabolism, excretion, and toxicity of oral drug compounds, relatively few studies report predictions of pharmacokinetics and pharmacodynamics of inhaled substances. For calculation of the drug concentration at the absorption site, the pulmonary epithelium, physiological parameters such as lung surface and distribution volume (lung lining fluid) have to be known. These parameters can only be determined by invasive techniques and by postmortem studies. Very different values have been reported in the literature. This review addresses the state of software programs for simulation of orally inhaled substances and focuses on problems in the determination of particle deposition, lung surface and of lung lining fluid. The different surface areas for deposition and for drug absorption are difficult to include directly into the simulations. As drug levels are influenced by multiple parameters the role of single parameters in the simulations cannot be identified easily.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of GrazGraz, Austria
| | | | - Shengqian Wu
- Research Center Pharmaceutical Engineering GmbHGraz, Austria
| | | |
Collapse
|
11
|
Kwon KC, Daniell H. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells. Mol Ther 2016; 24:1342-50. [PMID: 27378236 PMCID: PMC5023392 DOI: 10.1038/mt.2016.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022] Open
Abstract
Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood–brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Maharaj AR, Edginton AN. Examining Small Intestinal Transit Time as a Function of Age: Is There Evidence to Support Age-Dependent Differences among Children? Drug Metab Dispos 2016; 44:1080-9. [DOI: 10.1124/dmd.115.068700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
|
13
|
Xiao Y, Kwon KC, Hoffman BE, Kamesh A, Jones NT, Herzog RW, Daniell H. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells. Biomaterials 2016; 80:68-79. [PMID: 26706477 PMCID: PMC4706487 DOI: 10.1016/j.biomaterials.2015.11.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/17/2015] [Accepted: 11/29/2015] [Indexed: 02/06/2023]
Abstract
Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance.
Collapse
Affiliation(s)
- Yuhong Xiao
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kwang-Chul Kwon
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brad E Hoffman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aditya Kamesh
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah T Jones
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roland W Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Olivares-Morales A, Lennernäs H, Aarons L, Rostami-Hodjegan A. Translating Human Effective Jejunal Intestinal Permeability to Surface-Dependent Intrinsic Permeability: a Pragmatic Method for a More Mechanistic Prediction of Regional Oral Drug Absorption. AAPS JOURNAL 2015; 17:1177-92. [PMID: 25986421 DOI: 10.1208/s12248-015-9758-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/20/2015] [Indexed: 01/09/2023]
Abstract
Regional intestinal effective permeability (P(eff)) values are key for the understanding of drug absorption along the whole length of the human gastrointestinal (GI) tract. The distal regions of the GI tract (i.e. ileum, ascending-transverse colon) represent the main sites for GI absorption when there is incomplete absorption in the upper GI tract, e.g. for modified release formulations. In this work, a new and pragmatic method for the estimation of (passive) intestinal permeability in the different intestinal regions is being proposed, by translating the observed differences in the available mucosal surface area along the human GI tract into corrections of the historical determined jejunal P(eff) values. These new intestinal P(eff) values or "intrinsic" P(eff)(P(eff,int)) were subsequently employed for the prediction of the ileal absorption clearance (CL(abs,ileum)) for a set of structurally diverse compounds. Additionally, the method was combined with a semi-mechanistic absorption PBPK model for the prediction of the fraction absorbed (f(abs)). The results showed that P(eff,int) can successfully be employed for the prediction of the ileal CL(abs) and the f(abs). P(eff,int) also showed to be a robust predictor of the f(abs) when the colonic absorption was allowed in the PBPK model, reducing the overprediction of f(abs) observed for lowly permeable compounds when using the historical P(eff) values. Due to its simplicity, this approach provides a useful alternative for the bottom-up prediction of GI drug absorption, especially when the distal GI tract plays a crucial role for a drug's GI absorption.
Collapse
Affiliation(s)
- Andrés Olivares-Morales
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK,
| | | | | | | |
Collapse
|
15
|
Sjögren E, Dahlgren D, Roos C, Lennernäs H. Human in Vivo Regional Intestinal Permeability: Quantitation Using Site-Specific Drug Absorption Data. Mol Pharm 2015; 12:2026-39. [DOI: 10.1021/mp500834v] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Erik Sjögren
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - David Dahlgren
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Carl Roos
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
16
|
Dahlgren D, Roos C, Sjögren E, Lennernäs H. Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods. J Pharm Sci 2014; 104:2702-26. [PMID: 25410736 DOI: 10.1002/jps.24258] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022]
Abstract
Regional in vivo human intestinal effective permeability (Peff ) is calculated by measuring the disappearance rate of substances during intestinal perfusion. Peff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the intestinal Peff of novel drugs. This review compiles historical Peff data from 273 individual measurements of 80 substances from 61 studies performed in all parts of the human intestinal tract. These substances include: drugs, monosaccharaides, amino acids, dipeptides, vitamins, steroids, bile acids, ions, fatty acids, and water. The review also discusses the determination and prediction of Peff using in vitro and in silico methods such as quantitative structure-activity relationship, Caco-2, Ussing chamber, animal intestinal perfusion, and physiologically based pharmacokinetic (PBPK) modeling. Finally, we briefly outline how to acquire accurate human intestinal Peff data by deconvolution of plasma concentration-time profiles following regional intestinal bolus dosing.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Carl Roos
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Kravtsov D, Mashukova A, Forteza R, Rodriguez MM, Ameen NA, Salas PJ. Myosin 5b loss of function leads to defects in polarized signaling: implication for microvillus inclusion disease pathogenesis and treatment. Am J Physiol Gastrointest Liver Physiol 2014; 307:G992-G1001. [PMID: 25258405 PMCID: PMC4233287 DOI: 10.1152/ajpgi.00180.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microvillus inclusion disease (MVID) is an autosomal recessive condition resulting in intractable secretory diarrhea in newborns due to loss-of-function mutations in myosin Vb (Myo5b). Previous work suggested that the apical recycling endosomal (ARE) compartment is the primary location for phosphoinositide-dependent protein kinase 1 (PDK1) signaling. Because the ARE is disrupted in MVID, we tested the hypothesis that polarized signaling is affected by Myo5b dysfunction. Subcellular distribution of PDK1 was analyzed in human enterocytes from MVID/control patients by immunocytochemistry. Using Myo5b knockdown (kd) in Caco-2BBe cells, we studied phosphorylated kinases downstream of PDK1, electrophysiological parameters, and net water flux. PDK1 was aberrantly localized in human MVID enterocytes and Myo5b-deficient Caco-2BBe cells. Two PDK1 target kinases were differentially affected: phosphorylated atypical protein kinase C (aPKC) increased fivefold and phosohoprotein kinase B slightly decreased compared with control. PDK1 redistributed to a soluble (cytosolic) fraction and copurified with basolateral endosomes in Myo5b kd. Myo5b kd cells showed a decrease in net water absorption that could be reverted with PDK1 inhibitors. We conclude that, in addition to altered apical expression of ion transporters, depolarization of PDK1 in MVID enterocytes may lead to aberrant activation of downstream kinases such as aPKC. The findings in this work suggest that PDK1-dependent signaling may provide a therapeutic target for treating MVID.
Collapse
Affiliation(s)
- Dmitri Kravtsov
- 1Department of Pediatrics, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut;
| | - Anastasia Mashukova
- 2Department of Physiology, Nova Southeastern University, Ft. Lauderdale, Florida; ,3Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Radia Forteza
- 3Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Maria M. Rodriguez
- 4Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadia A. Ameen
- 1Department of Pediatrics, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut;
| | - Pedro J. Salas
- 3Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| |
Collapse
|
18
|
Oral delivery of ACE2/Ang-(1-7) bioencapsulated in plant cells protects against experimental uveitis and autoimmune uveoretinitis. Mol Ther 2014; 22:2069-2082. [PMID: 25228068 DOI: 10.1038/mt.2014.179] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023] Open
Abstract
Hyperactivity of the renin-angiotensin system (RAS) resulting in elevated Angiotensin II (Ang II) contributes to all stages of inflammatory responses including ocular inflammation. The discovery of angiotensin-converting enzyme 2 (ACE2) has established a protective axis of RAS involving ACE2/Ang-(1-7)/Mas that counteracts the proinflammatory and hypertrophic effects of the deleterious ACE/AngII/AT1R axis. Here we investigated the hypothesis that enhancing the systemic and local activity of the protective axis of the RAS by oral delivery of ACE2 and Ang-(1-7) bioencapsulated in plant cells would confer protection against ocular inflammation. Both ACE2 and Ang-(1-7), fused with the non-toxic cholera toxin subunit B (CTB) were expressed in plant chloroplasts. Increased levels of ACE2 and Ang-(1-7) were observed in circulation and retina after oral administration of CTB-ACE2 and Ang-(1-7) expressing plant cells. Oral feeding of mice with bioencapsulated ACE2/Ang-(1-7) significantly reduced endotoxin-induced uveitis (EIU) in mice. Treatment with bioencapsulated ACE2/Ang-(1-7) also dramatically decreased cellular infiltration, retinal vasculitis, damage and folding in experimental autoimmune uveoretinitis (EAU). Thus, enhancing the protective axis of RAS by oral delivery of ACE2/Ang-(1-7) bioencapsulated in plant cells provide an innovative, highly efficient and cost-effective therapeutic strategy for ocular inflammatory diseases.
Collapse
|
19
|
Shenoy V, Kwon KC, Rathinasabapathy A, Lin S, Jin G, Song C, Shil P, Nair A, Qi Y, Li Q, Francis J, Katovich MJ, Daniell H, Raizada MK. Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension 2014; 64:1248-59. [PMID: 25225206 DOI: 10.1161/hypertensionaha.114.03871] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin-angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature. Besides, fusion to a transmucosal carrier helps effective systemic absorption from the intestine on oral delivery. We hypothesized that bioencapsulating ACE2 or Ang-(1-7) fused to the cholera nontoxin B subunit would enable development of an oral delivery system that is effective in treating PH. PH was induced in male Sprague Dawley rats by monocrotaline administration. Subset of animals was simultaneously treated with bioencapsulaed ACE2 or Ang-(1-7) (prevention protocol). In a separate set of experiments, drug treatment was initiated after 2 weeks of PH induction (reversal protocol). Oral feeding of rats with bioencapsulated ACE2 or Ang-(1-7) prevented the development of monocrotaline-induced PH and improved associated cardiopulmonary pathophysiology. Furthermore, in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested disease progression, along with improvement in right heart function, and decrease in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung injury. Our study provides proof-of-concept for a novel low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology for pulmonary disease therapeutics.
Collapse
Affiliation(s)
- Vinayak Shenoy
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Kwang-Chul Kwon
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Anandharajan Rathinasabapathy
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Shina Lin
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Guiying Jin
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Chunjuan Song
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Pollob Shil
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Anand Nair
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Yanfei Qi
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Qiuhong Li
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Joseph Francis
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Michael J Katovich
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Henry Daniell
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.).
| | - Mohan K Raizada
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.).
| |
Collapse
|
20
|
Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, Brouwers J, Flanagan T, Harwood M, Heinen C, Holm R, Juretschke HP, Kubbinga M, Lindahl A, Lukacova V, Münster U, Neuhoff S, Nguyen MA, Peer AV, Reppas C, Hodjegan AR, Tannergren C, Weitschies W, Wilson C, Zane P, Lennernäs H, Langguth P. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 2014; 57:99-151. [DOI: 10.1016/j.ejps.2014.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/11/2023]
|
21
|
Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb) 2014; 5:1130-40. [PMID: 23817533 DOI: 10.1039/c3ib40126j] [Citation(s) in RCA: 495] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Existing in vitro models of human intestinal function commonly rely on use of established epithelial cell lines, such as Caco-2 cells, which form polarized epithelial monolayers but fail to mimic more complex intestinal functions that are required for drug development and disease research. We show here that a microfluidic 'Gut-on-a-Chip' technology that exposes cultured cells to physiological peristalsis-like motions and liquid flow can be used to induce human Caco-2 cells to spontaneously undergo robust morphogenesis of three-dimensional (3D) intestinal villi. The cells of that line these villus structures are linked by tight junctions, and covered by brush borders and mucus. They also reconstitute basal proliferative crypts that populate the villi along the crypt-villus axis, and form four different types of differentiated epithelial cells (absorptive, mucus-secretory, enteroendocrine, and Paneth) that take characteristic positions similar to those observed in living human small intestine. Formation of these intestinal villi also results in exposure of increased intestinal surface area that mimics the absorptive efficiency of human intestine, as well enhanced cytochrome P450 3A4 isoform-based drug metabolizing activity compared to conventional Caco-2 cell monolayers cultured in a static Transwell system. The ability of the human Gut-on-a-Chip to recapitulate the 3D structures, differentiated cell types, and multiple physiological functions of normal human intestinal villi may provide a powerful alternative in vitro model for studies on intestinal physiology and digestive diseases, as well as drug development.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Wyss Institute for Biologically Inspired Engineering at Harvard University, CLSB Bldg. 5th floor, 3 Blackfan Circle, Boston, MA 02115, USA.
| | | |
Collapse
|
22
|
Raffa RB, Pergolizzi JV, Taylor R, Decker JF, Patrick JT. Acetaminophen (Paracetamol) Oral Absorption and Clinical Influences. Pain Pract 2013; 14:668-77. [DOI: 10.1111/papr.12130] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/15/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Robert B. Raffa
- Department of Pharmaceutical Sciences; Temple University School of Pharmacy; Philadelphia Pennsylvania U.S.A
| | - Joseph V. Pergolizzi
- Department of Medicine; Johns Hopkins University School of Medicine; Baltimore Maryland U.S.A
- Department of Pharmacology; Temple University School of Medicine; Philadelphia Pennsylvania U.S.A
- Department of Anesthesiology; Georgetown University School of Medicine; Washington District of Columbia U.S.A
| | | | | | | |
Collapse
|
23
|
Saeidi N, Meoli L, Nestoridi E, Gupta NK, Kvas S, Kucharczyk J, Bonab AA, Fischman AJ, Yarmush ML, Stylopoulos N. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 2013; 341:406-10. [PMID: 23888041 PMCID: PMC4068965 DOI: 10.1126/science.1235103] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The resolution of type 2 diabetes after Roux-en-Y gastric bypass (RYGB) attests to the important role of the gastrointestinal tract in glucose homeostasis. Previous studies in RYGB-treated rats have shown that the Roux limb displays hyperplasia and hypertrophy. Here, we report that the Roux limb of RYGB-treated rats exhibits reprogramming of intestinal glucose metabolism to meet its increased bioenergetic demands; glucose transporter-1 is up-regulated, basolateral glucose uptake is enhanced, aerobic glycolysis is augmented, and glucose is directed toward metabolic pathways that support tissue growth. We show that reprogramming of intestinal glucose metabolism is triggered by the exposure of the Roux limb to undigested nutrients. We demonstrate by positron emission tomography-computed tomography scanning and biodistribution analysis using 2-deoxy-2-[18F]fluoro-D-glucose that reprogramming of intestinal glucose metabolism renders the intestine a major tissue for glucose disposal, contributing to the improvement in glycemic control after RYGB.
Collapse
Affiliation(s)
- Nima Saeidi
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Luca Meoli
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eirini Nestoridi
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin K. Gupta
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie Kvas
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Kucharczyk
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ali A. Bonab
- Shriners Hospital for Children, Boston, MA 02114, USA
| | | | - Martin L. Yarmush
- Shriners Hospital for Children, Boston, MA 02114, USA
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Kwon KC, Verma D, Singh ND, Herzog R, Daniell H. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 2013; 65:782-99. [PMID: 23099275 PMCID: PMC3582797 DOI: 10.1016/j.addr.2012.10.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/26/2012] [Accepted: 10/17/2012] [Indexed: 12/19/2022]
Abstract
Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Dheeraj Verma
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Nameirakpam D. Singh
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Roland Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Cancer and Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| |
Collapse
|
25
|
Kwon KC, Nityanandam R, New JS, Daniell H. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:77-86. [PMID: 23078126 PMCID: PMC3535676 DOI: 10.1111/pbi.12008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 05/19/2023]
Abstract
Glucagon-like peptide (GLP-1) increases insulin secretion but is rapidly degraded (half-life: 2 min in circulation). GLP-1 analogue, exenatide (Byetta) has a longer half-life (3.3-4 h) with potent insulinotropic effects but requires cold storage, daily abdominal injections with short shelf life. Because patients with diabetes take >60 000 injections in their life time, alternative delivery methods are highly desired. Exenatide is ideal for oral delivery because insulinotropism is glucose dependent, with reduced risk of hypoglycaemia even at higher doses. Therefore, exendin-4 (EX4) was expressed as a cholera toxin B subunit (CTB)-fusion protein in tobacco chloroplasts to facilitate bioencapsulation within plant cells and transmucosal delivery in the gut via GM1 receptors present in the intestinal epithelium. The transgene integration was confirmed by PCR and Southern blot analysis. Expression level of CTB-EX4 reached up to 14.3% of total leaf protein (TLP). Lyophilization of leaf material increased therapeutic protein concentration by 12- to 24-fold, extended their shelf life up to 15 months when stored at room temperature and eliminated microbes present in fresh leaves. The pentameric structure, disulphide bonds and functionality of CTB-EX4 were well preserved in lyophilized materials. Chloroplast-derived CTB-EX4 showed increased insulin secretion similar to the commercial EX4 in beta-TC6, a mouse pancreatic cell line. Even when 5000-fold excess dose of CTB-EX4 was orally delivered, it stimulated insulin secretion similar to the intraperitoneal injection of commercial EX4 but did not cause hypoglycaemia in mice. Oral delivery of the bioencapsulated EX4 should eliminate injections, increase patient compliance/convenience and significantly lower their cost.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Ramya Nityanandam
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - James Stewart New
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| |
Collapse
|
26
|
Makky K, Mayer AN. Zebrafish Offers New Perspective on Developmental Role of TOR Signaling. Organogenesis 2012; 3:67-9. [PMID: 19279702 DOI: 10.4161/org.3.2.5378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/09/2007] [Indexed: 12/20/2022] Open
Abstract
Genetic studies on the molecular basis of growth control have converged on the target of rapamycin (TOR) pathway as a key regulator.1 When stimulated by nutrients (i.e. amino acids) or growth factors (i.e. insulin), TOR activates protein synthesis and other anabolic pathways to promote cell growth.1 Our knowledge of TOR's function in vivo is still rudimentary, particularly in the setting of vertebrate development. An important question is whether TOR functions as a constitutive regulator of growth in all cell types, or as a stage and organ specific regulator. Recently we employed the zebrafish as a vertebrate model system to study the developmental role of TOR signaling. We found that TOR signaling was required for a discrete step prior to epithelial differentiation. The results support the view that different organs may be reliant on TOR activity to differing degrees. In the case of the zebrafish, the digestive tract exhibits the greatest sensitivity to rapamycin, which may reflect its reliance on TOR signaling for normal growth. We suggest the hypothesis that TOR signaling may regulate the size of the intestine's absorptive surface area in response to systemic nutrient demand.
Collapse
Affiliation(s)
- Khadijah Makky
- Department of Pediatrics; Medical College of Wisconsin; Milwaukee, Wisconsin USA
| | | |
Collapse
|
27
|
Wagner C, Jantratid E, Kesisoglou F, Vertzoni M, Reppas C, B Dressman J. Predicting the oral absorption of a poorly soluble, poorly permeable weak base using biorelevant dissolution and transfer model tests coupled with a physiologically based pharmacokinetic model. Eur J Pharm Biopharm 2012; 82:127-38. [PMID: 22652546 DOI: 10.1016/j.ejpb.2012.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 01/10/2023]
Abstract
For predicting food effects and simulating plasma profiles of poorly soluble drugs, physiologically based pharmacokinetic models have become a widely accepted tool in academia and the pharmaceutical industry. Up till now, however, simulations appearing in the open literature have mainly focused on BCS class II compounds, and many of these simulations tend to have more of a "retrospective" than a prognostic, predictive character. In this work, investigations on the absorption of a weakly basic BCS class IV drug, "Compound A", were performed. The objective was to predict the plasma profiles of an immediate release (IR) formulation of Compound A in the fasted and fed state. For this purpose, in vitro biorelevant dissolution tests and transfer model experiments were conducted. Dissolution and precipitation kinetics were then combined with in vivo post-absorptive disposition parameters using STELLA® software. As Compound A not only exhibits poor solubility but also poor permeability, a previously developed STELLA® model was revised to accommodate the less than optimal permeability characteristics as well as precipitation of the drug in the fasted state small intestine. Permeability restrictions were introduced into the model using an absorption rate constant calculated from the Caco-2 permeability value of Compound A, the effective intestinal surface area and appropriate intestinal fluid volumes. The results show that biorelevant dissolution tests are a helpful tool to predict food effects of Compound A qualitatively. However, the plasma profiles of Compound A could only be predicted quantitatively when the results of biorelevant dissolution test were coupled with the newly developed PBPK model.
Collapse
Affiliation(s)
- Christian Wagner
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Absorption takes place when a compound enters an organism, which occurs as soon as the molecules enter the first cellular bilayer(s) in the tissue(s) to which is it exposed. At that point, the compound is no longer part of the environment (which includes the alimentary canal for oral exposure), but has become part of the organism. If absorption is prevented or limited, then toxicological effects are also prevented or limited. Thus, modeling absorption is the first step in simulating/predicting potential toxicological effects. Simulation software used to model absorption of compounds of various types has advanced considerably over the past 15 years. There can be strong interactions between absorption and pharmacokinetics (PK), requiring state-of-the-art simulation computer programs that combine absorption with either compartmental pharmacokinetics (PK) or physiologically based pharmacokinetics (PBPK). Pharmacodynamic (PD) models for therapeutic and adverse effects are also often linked to the absorption and PK simulations, providing PK/PD or PBPK/PD capabilities in a single package. These programs simulate the interactions among a variety of factors including the physicochemical properties of the molecule of interest, the physiologies of the organisms, and in some cases, environmental factors, to produce estimates of the time course of absorption and disposition of both toxic and nontoxic substances, as well as their pharmacodynamic effects.
Collapse
|
29
|
Oral infection with signature-tagged Listeria monocytogenes reveals organ-specific growth and dissemination routes in guinea pigs. Infect Immun 2011; 80:720-32. [PMID: 22083714 DOI: 10.1128/iai.05958-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Listeria monocytogenes causes a serious food-borne disease due to its ability to spread from the intestine to other organs, a process that is poorly understood. In this study we used 20 signature-tagged wild-type clones of L. monocytogenes in guinea pigs in combination with extensive quantitative data analysis to gain insight into extraintestinal dissemination. We show that L. monocytogenes colonized the liver in all asymptomatic animals. Spread to the liver occurred as early as 4 h after ingestion via a direct pathway from the intestine to the liver. This direct pathway contributed significantly to the bacterial load in the liver and was followed by a second wave of dissemination via the mesenteric lymph nodes (indirect pathway). Furthermore, bacteria were eliminated in the liver, whereas small intestinal villi provided a niche for bacterial replication, indicating organ-specific differences in net bacterial growth. Bacteria were shed back from intestinal villi into the small intestinal lumen and reinfected the Peyer's patches. Together, these results support a novel dissemination model where L. monocytogenes replicates in intestinal villi, is shed into the lumen, and reinfects intestinal immune cells that traffic to liver and mesenteric lymph nodes, a process that occurs even during asymptomatic colonization.
Collapse
|
30
|
Avdeef A, Tam KY. How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability? J Med Chem 2010; 53:3566-84. [PMID: 20373811 DOI: 10.1021/jm901846t] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The study aimed to predict effective human jejunal permeability (P(eff)) using a biophysical model based on parametrized paracellular, aqueous boundary layer, and transcellular permeabilities, and the villus-fold surface area expansion factor (k(VF)). Published human jejunal data (119 P(eff), 53 compounds) were analyzed by a regression procedure incorporating a dual-pore size paracellular model. Transcellular permeability, scaled by k(VF), was equated to that of Caco-2 at pH 6.5. The biophysical model predicted human jejunal permeability data within the experimental uncertainty. This investigation revealed several surprising predictions: (i) many molecules permeate predominantly (but not exclusively) by the paracellular route, (ii) the aqueous boundary layer thickness in the intestinal perfusion experiments is larger than expected, (iii) the mucosal surface area in awake humans is apparently nearly entirely accessible to drug absorption, and (iv) the relative "leakiness" of the human jejunum is not so different from that observed in a number of published Caco-2 studies.
Collapse
Affiliation(s)
- Alex Avdeef
- pION Inc., 5 Constitution Way, Woburn, Massachusetts 01801, USA.
| | | |
Collapse
|
31
|
Avdeef A. Leakiness and size exclusion of paracellular channels in cultured epithelial cell monolayers-interlaboratory comparison. Pharm Res 2010; 27:480-9. [PMID: 20069445 DOI: 10.1007/s11095-009-0036-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/10/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine and compare the paracellular characteristics of permeability (Papp) of Caco (-2), MDCK, and 2/4/A1 cell lines. METHODS The Papp data from 14 studies were analyzed by weighted nonlinear regression in terms of the paracellular parameters: porosity-pathlength (epsilon/delta), pore radius (R), and electrostatic potential drop (deltaphi). Aqueous diffusivities, Daq, for the analysis, were empirically determined. The required hydrodynamic radii, rHYD, were estimated without knowledge of compound density. Mannitol iso-paracellular profiles allowed comparisons of "leakiness" across labs. RESULTS Daq (37 degreeC) was predicted as 9.9x10(-5) MW(-0.453); rHYD=(0.92+21.8 MW(-1))xrSE, where rSE is the Stokes-Einstein radius. Values of pore radius ranged from 4.0(+/-0.1) to 18(+/-3) A, with the 2/4/A1 indicating the largest pores. The epsilon/delta capacity factor ranged from 0.2 (+/-0.1) to 69 (+/-5) cm(-1), with most values <1.5 cm(-1). The average potential drop for Caco-2 models was deltaphi(wt avg) Caco(-2)=(-43)+/-20 mV. The paracellular model predicted measured log Papp values with pooled r2=0.93 and s=0.17 (n=108). CONCLUSION R and epsilon/delta are negatively correlated to a large extent. Papp can be rate-limited by either factor, with a wide range of possible combinations still indicating nearly constant leakiness for a given marker.
Collapse
Affiliation(s)
- Alex Avdeef
- pION INC, 5 Constitution Way, Woburn, Massachusetts 01801,USA.
| |
Collapse
|
32
|
Willmann S, Edginton AN, Kleine-Besten M, Jantratid E, Thelen K, Dressman JB. Whole-body physiologically based pharmacokinetic population modelling of oral drug administration: inter-individual variability of cimetidine absorption. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.07.0008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Objectives
Inter-individual variability of gastrointestinal physiology and transit properties can greatly influence the pharmacokinetics of an orally administered drug in vivo. To predict the expected range of pharmacokinetic plasma concentrations after oral drug administration, a physiologically based pharmacokinetic population model for gastrointestinal transit and absorption was developed and evaluated.
Methods
Mean values and variability measures of model parameters affecting the rate and extent of cimetidine absorption, such as gastric emptying, intestinal transit times and effective surface area of the small intestine, were obtained from the literature. Various scenarios incorporating different extents of inter-individual physiological variability were simulated and the simulation results were compared with experimental human study data obtained after oral cimetidine administration of four different tablets with varying release kinetics.
Key findings
The inter-individual variability in effective surface area was the largest contributor to absorption variability. Based on in-vitro dissolution profiles, the mean plasma cimetidine concentration–time profiles as well as the inter-individual variability could be well described for three cimetidine formulations. In the case of the formulation with the slowest dissolution kinetic, model predictions on the basis of the in-vitro dissolution profile underestimated the plasma exposure.
Conclusions
The model facilitates predictions of the inter-individual pharmacokinetic variability after oral drug administration for immediate and extended-release formulations of cimetidine, given reasonable in-vitro dissolution kinetics.
Collapse
Affiliation(s)
| | | | - Marcus Kleine-Besten
- Institute of Pharmaceutical Technology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Ekarat Jantratid
- Institute of Pharmaceutical Technology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Kirstin Thelen
- Institute of Pharmaceutical Technology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Jennifer B Dressman
- Institute of Pharmaceutical Technology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Lloret Linares C, Declèves X, Oppert JM, Basdevant A, Clement K, Bardin C, Scherrmann JM, Lepine JP, Bergmann JF, Mouly S. Pharmacology of morphine in obese patients: clinical implications. Clin Pharmacokinet 2009; 48:635-51. [PMID: 19743886 DOI: 10.2165/11317150-000000000-00000] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Morphine is an analgesic drug used to treat acute and chronic pain. Obesity is frequently associated with pain of various origins (e.g. arthritis, fibromyalgia, cancer), which increases the need for analgesic drugs. Obesity changes drug pharmacokinetics, and for certain drugs, specific modalities of prescription have been proposed for obese patients. However, scant data are available regarding the pharmacokinetics and pharmacodynamics of morphine in obesity. Prescription of morphine depends on pain relief but the occurrence of respiratory adverse effects correlates with obesity, and is not currently taken into account. Variations in the volume of distribution, elimination half-life and oral clearance of morphine, as well as recent advances in the respective roles of drug-metabolizing enzymes, catechol-O-methyltransferase and the mu opioid receptor in morphine pharmacokinetics and pharmacodynamics, may contribute to differences between obese and non-obese patients. In addition, drug-drug interactions may alter the disposition of morphine and its glucuronide metabolites, which may either increase the risk of adverse effects or reduce drug efficacy.
Collapse
Affiliation(s)
- Célia Lloret Linares
- Unit of Therapeutic Research, Department of Internal Medicine, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ganusov VV, De Boer RJ. Do most lymphocytes in humans really reside in the gut? Trends Immunol 2007; 28:514-8. [PMID: 17964854 DOI: 10.1016/j.it.2007.08.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
It is widely believed that the gut, and particularly the lamina propria (LP) of the gut, contains most of the lymphocytes in humans. The strong depletion of CD4(+) T cells from the gut LP of HIV-infected patients was, therefore, suggested to be such a large, irreversible insult that it could explain HIV disease progression. However, reviewing data from different mammalian species, we found that only 5%-20% of all lymphocytes reside in the gut, and that only 1%-9% of the total lymphocyte number is located in the gut LP. Our findings suggest that spleen and lymph nodes, rather than the gut, are the largest immune compartments in mammals.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
35
|
Cummins AG, Thompson FM. Effect of breast milk and weaning on epithelial growth of the small intestine in humans. Gut 2002; 51:748-54. [PMID: 12377819 PMCID: PMC1773445 DOI: 10.1136/gut.51.5.748] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2002] [Indexed: 12/13/2022]
Abstract
Breast feeding and weaning are important physiologically significant luminal events that influence the growth of the small intestine in humans. A variety of factors including genetic preprogramming, systemic and local hormones, and permissive factors contribute and modulate intestinal growth. Here, we offer a view that integrates some of these factors, especially those relating to breast feeding and weaning.
Collapse
Affiliation(s)
- A G Cummins
- Bazil Hetzel Research Institute and the Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia.
| | | |
Collapse
|
36
|
Thompson FM, Catto-Smith AG, Moore D, Davidson G, Cummins AG. Epithelial growth of the small intestine in human infants. J Pediatr Gastroenterol Nutr 1998; 26:506-12. [PMID: 9586760 DOI: 10.1097/00005176-199805000-00004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Findings in studies in rodents have suggested that epithelial growth of the small intestine is dependent on activation of the immune system. The purpose of this study was to compare changes of postnatal epithelial growth with immunologic activity in humans. METHODS Duodenal biopsies were obtained by endoscopy from 74 infants. Villus area, crypt length, and mitotic count were measured, using a microdissection technique. Enterocyte height, intraepithelial lymphocytes and mucosal mast cells were recorded in histologic sections, and soluble interleukin-2 receptor levels were measured in sera. These data were compared with those from 77 adult control subjects. RESULTS Mean +/- SD villus area was similar in infants compared with that in adults (0.364 +/- 0.108 mm2 vs. 0.339 +/- 0.1 mm2); but mean crypt length was 31% longer (270 +/- 56 microm vs. 206 +/- 29 microm; p < 0.0001), and mitotic count was 68% higher (4.2 +/- 2.8 vs. 2.5 +/- 1 per crypt; p < 0.0001) in infants. Enterocyte height was lower during infancy (27.0 +/- 3.4 microm vs. 30.9 +/- 4.6 microm; p < 0.0001). There was no evidence of a trophic effect on the small intestine of breast feeding compared with the effect of bottle feeding. Counts of intraepithelial lymphocytes but not mucosal mast cells were significantly less in infants. Mean soluble interleukin-2 receptor levels peaked during early infancy, compared with levels in adults (1,820 +/- 596 U/ml vs. 695 +/- 359 U/ml). CONCLUSION These results indicate that epithelial proliferation is increased during infancy at an age when immunologic activity is high.
Collapse
Affiliation(s)
- F M Thompson
- Gastroenterology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | | | | | | | | |
Collapse
|
37
|
Ungell AL, Nylander S, Bergstrand S, Sjöberg A, Lennernäs H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci 1998; 87:360-6. [PMID: 9523990 DOI: 10.1021/js970218s] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regional permeability coefficients of 19 drugs with different physicochemical properties were determined using excised segments from three regions of rat intestine: jejunum, ileum, and colon. The results are discussed in relation to the characteristics of the drug, i.e., MW (range 113-1071 Da), pKa, log D (octanol/water at pH 7.4) (range -3.1 to +2.4), and the regional change in the properties of the epithelial membrane. There was a significant decrease in permeability to hydrophilic drugs and a significant increase in permeability for hydrophobic drugs aborally to the small intestine (P < 0.0001). A good correlation could be obtained between MW and permeability coefficients of hydrophilic drugs. The correlation established between the apparent permeability coefficients and the partition coefficients of the drugs was sigmoidal in shape in all three regions and a log D between 0 and 2.5 predicts high permeability values. These permeability data are unique since they result from a diversity of chemical structures with different physicochemical characteristics and a variety of transport mechanisms and they are not influenced by interlaboratory differences. The large regional permeability database in the present study shows the utility of the Ussing chamber technique as a valuable predictive tool for human in vivo data. In addition, the regional permeability profiles obtained suggest a coupling between drug structure and the functional changes of the membrane, which might be useful for selecting a compound for an extended release formulation.
Collapse
Affiliation(s)
- A L Ungell
- Drug Delivery Research, Astra Hässle Ab, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Charman WN, Rogge MC, Boddy AW, Barr WH, Berger BM. Absorption of danazol after administration to different sites of the gastrointestinal tract and the relationship to single- and double-peak phenomena in the plasma profiles. J Clin Pharmacol 1993; 33:1207-13. [PMID: 8126256 DOI: 10.1002/j.1552-4604.1993.tb03921.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The absorption of danazol (100 mg) after oral or intraintestinal administration to the proximal jejunum or proximal ileum has been studied in healthy female subjects. The extent of danazol absorption after administration as a solubilized glycerol mono-oleate emulsion formulation was approximately twofold and fourfold greater after oral dosing when compared with jejunal or ileal administration, respectively. Although not statistically significant in this study, the extent of absorption after jejunal administration was generally greater than after ileal administration. After oral dosing, qualitative assessment identified the presence of double peaks or major shouldering characteristics in 14 of the 16 individual danazol plasma concentration-time profiles, whereas only single peaks were present after intraintestinal administration. These data are consistent with the double peaking phenomena after oral administration of the emulsion formulation being stomach-related. The double peaking effect may be explained in terms of a probable combination of gastric emptying regulated absorption (due to the presence of the lipid in the emulsion formulation) and the dependence of danazol solubility on bile salt solubilization within the upper small intestine.
Collapse
Affiliation(s)
- W N Charman
- Department of Pharmaceutical Sciences, Sterling Winthrop Pharmaceuticals Research Division, Malvern, Pennsylvania
| | | | | | | | | |
Collapse
|
40
|
Narawane M, Podder SK, Bundgaard H, Lee VH. Segmental differences in drug permeability, esterase activity and ketone reductase activity in the albino rabbit intestine. J Drug Target 1993; 1:29-39. [PMID: 7915178 DOI: 10.3109/10611869308998762] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Possible segmental differences in drug permeability as well as esterase and ketone reductase activities in the albino rabbit intestine were investigated. Beta adrenergic antagonists and timolol prodrugs spanning four orders of magnitude in distribution coefficient were used as model drugs. Drug penetration was evaluated in Ussing chambers using isolated segments of the duodenum, jejunum, ileum, ascending colon, descending colon, and rectum. Esterase and ketone reductase activities were determined in homogenates of the above segments using timolol ester prodrugs and levobunolol as substrates, respectively. The results indicate that the hydrophilic beta adrenergic antagonists atenolol and sotalol and moderately lipophilic metoprolol penetrated all intestinal segments equally well, whereas moderately lipophilic timolol and lipophilic propranolol, levobunolol and betaxolol were better absorbed from the large than from the small intestinal segments. Changes in lipophilicity exerted a more pronounced effect on the penetration of beta adrenergic antagonists in the large than the small intestinal segments. A similar pattern existed for timolol prodrugs. In addition to segmental differences in drug permeability, segmental differences in esterase and ketone reductase activities also existed. The level of esterase and ketone reductase activities in the small intestinal segments was, on average, 12 times and 5 times higher, respectively, than in the large intestinal segments. The implication of the above findings is that segmental differences in drug permeability and metabolism must be considered in the design of oral drug delivery systems.
Collapse
Affiliation(s)
- M Narawane
- University of Southern California, School of Pharmacy, Department of Pharmaceutical Sciences, Los Angeles 90033
| | | | | | | |
Collapse
|
41
|
Gruber P, Longer MA, Robinson JR. Some biological issues in oral, controlled drug delivery. Adv Drug Deliv Rev 1987. [DOI: 10.1016/0169-409x(87)90066-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Abstract
A full term girl survived nonresected, subtotal small-bowel gangrene. The length of the small-bowel remnant (only jejunum) measured 11 cm. Anastomosis was performed with insertion of a 3-cm-long antiperistaltic segment. The ileocecal valve remained intact. The jejunal remnant showed an increase in length of at least 1 m. The resorptive functions of the bowel residue recovered incompletely, particularly the ileal functions. Disturbances of calcium and phosphorus metabolism are now in the foreground; nevertheless, the child now manages to live without parenteral feeding.
Collapse
|
43
|
Stewart JJ. Effects of emetic and cathartic agents on the gastrointestinal tract and the treatment of toxic ingestion. JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 1983; 20:199-253. [PMID: 6137573 DOI: 10.3109/15563658308990068] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Emetic drugs and saline cathartics produce direct or reflex changes in gastrointestinal motility. The changes in gastrointestinal smooth muscle function may be important in the rapid oral or rectal expulsion of gastrointestinal contents, effects which serve as a basis for emetic and cathartic drug use in the treatment of toxic ingestion. Because of difficulties in recording gastrointestinal smooth muscle contractile activity from the intact, unanesthetized animal or man, relatively few studies have attempted to characterize the changes in gastrointestinal motility preceding vomiting. Limited results from past studies and the results of more recent studies employing improved technology suggest that pharmacological activation of the emetic reflex is accompanied by characteristic movements of the stomach and small intestine. The gastric response consists of initial muscle relaxation and an expansion of gastric volume. The intestine responds with a contraction, which begins in the distal ileum and migrates orad over the entire small intestine immediately before active retching. The changes in gastric and intestinal motility may be initiated by structures in the central nervous system and may be an important component of the emetic reflex. This article urges more active research to characterize the gastrointestinal emetic response and to investigate more generally the therapeutic value of emesis in the treatment of toxic ingestion. Emphasis should be placed on the clinically important emetic drugs apomorphine and syrup of ipecac. Studies comparing the efficiency of removal of gastrointestinal contents, resultant blood levels of orally administered drugs with and without emesis, differences in the gastrointestinal emetic response between agents and the pharmacology of the gastrointestinal emetic response should be performed. Studies should also be conducted to determine the pharmacology of the emetic sensory receptors in the gastrointestinal tract and the intraluminal physical-chemical or gastrointestinal physiological factors influencing gastrointestinal emetic sensory receptor activation. The results would demonstrate the value of emesis in various poison cases and help establish criteria for use and selection of emetic drugs. No less experimental attention should be devoted to the cathartic drugs.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
44
|
|
45
|
Levine RR. Factors affecting gastrointestinal absorption of drugs. THE AMERICAN JOURNAL OF DIGESTIVE DISEASES 1970; 15:171-88. [PMID: 4905589 DOI: 10.1007/bf02235648] [Citation(s) in RCA: 117] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Altmann GG, Leblond CP. Factors influencing villus size in the small intestine of adult rats as revealed by transposition of intestinal segments. THE AMERICAN JOURNAL OF ANATOMY 1970; 127:15-36. [PMID: 5412637 DOI: 10.1002/aja.1001270104] [Citation(s) in RCA: 150] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
|
48
|
|
49
|
|