1
|
Kermansaravi M, Chiappetta S, Kassir R, Bosco A, Giudicelli X, Lainas P, Safieddine M. Efficacy of One Anastomosis Gastric Bypass Versus Sleeve Gastrectomy and Roux-en-Y Gastric Bypass for the Treatment of Type 2 Diabetes Mellitus: a Systematic Review and Meta-Analysis of Randomized Clinical Trials. Obes Surg 2024; 34:4555-4562. [PMID: 39496986 DOI: 10.1007/s11695-024-07564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/06/2024]
Abstract
The worldwide prevalence of type 2 diabetes mellitus (T2DM) is increasing in parallel with obesity. One anastomosis gastric bypass (OAGB) is considered effective to treat both T2DM and obesity. The aim of this study was to evaluate the efficacy of OAGB versus sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) for treatment of T2DM, analyzing data exclusively from randomized control trials (RCTs). Α systematic review of published RCTs comparing OAGB versus RYGB or SG (control groups) in T2DM patients regarding diabetes remission and weight loss was performed. Primary endpoints were T2DM remission rate and 1-year and 5-year % weight loss postoperatively. Initial search identified 39 references, of which 8 RCTs were considered eligible for meta-analysis inclusion, comprising 636 patients (311 OAGB, 122 RYGB, 203 SG patients). Main meta-analysis findings were: i) higher 1-year %EWL for OAGB than control group (p = 0.04); ii) higher 5-year %EWL for OAGB than control group (p < 0.01); iii) no difference in 1-year remission rate of T2DM between OAGB and control group (p = 0.14); iv) 28% higher 5-year remission rate of T2DM for OAGB than control group (p < 0.01). OAGB had statistically significant better outcomes compared to RYGB and SG regarding T2DM remission and %EWL at 5 years. Further pathophysiologic studies are needed to indicate the most potent bariatric procedure in patients with T2DM and obesity.
Collapse
Affiliation(s)
- Mohammad Kermansaravi
- Department of Surgery, Division of Minimally Invasive and Bariatric Surgery, Minimally Invasive Surgery Research Center, Hazrat-E Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sonja Chiappetta
- Department of General Surgery, Center of Excellence for Bariatric and Metabolic Surgery, Ospedale Evangelico Betania, Naples, Italy.
| | - Radwan Kassir
- Department of General Surgery, The View Hospital, University of Qatar, Doha, Qatar
| | - Alfonso Bosco
- Department of General Surgery, Center of Excellence for Bariatric and Metabolic Surgery, Ospedale Evangelico Betania, Naples, Italy
| | - Xavier Giudicelli
- Department of Hepatobiliary & Digestive Surgery, Rennes University Hospital, Rennes, France
| | - Panagiotis Lainas
- Department of Minimally Invasive Digestive & Bariatric Surgery, Metropolitan Hospital, Athens, Greece.
| | - Maissa Safieddine
- Clinical Research Center, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
2
|
Dai H, Huang Z, Shi F, Li S, Zhang Y, Wu H, Lv Z. Effects of maternal hawthorn-leaf flavonoid supplementation on the intestinal development of offspring chicks. Poult Sci 2024; 103:103969. [PMID: 39047316 PMCID: PMC11318554 DOI: 10.1016/j.psj.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders in maternal generation during the late egg-laying period have adverse effects on neonatal development. The study was conducted to clarify the effects of maternal feeding of hawthorn-leaf flavonoid (HF) on the microbial community and intestinal development of chicks. Breeder hens were fed a basic corn-soybean diet, while the treatment groups were supplemented with 30 or 60 mg/kg HF. The offspring chicks were divided into CON, LHF, and HHF groups according to the maternal treatments. Maternal HF supplementation at 60 mg/kg increased the average daily gain and decreased the feed conversion rate of chicks (P < 0.05), but did not affect the average daily feed intake. HF treatments increased the villus height to crypt depth ratio and up-regulated the protein expressions of PCNA, IGF-1R, PI3K and p-mTOR in the jejunum (P < 0.05) of 1-day-old and 14-day-old chicks. Additionally, maternal HF treatment up-regulated the mRNA expression of tight junction transmembrane proteins (occludin) and scaffolding proteins (ZO-1 and ZO-2) in the jejunum of 1-day-old chicks (P < 0.05). Moreover, the maternal effects of HF on ZO-1 expression could last for 14 d (P < 0.05). Interestingly, dietary HF supplementation altered the vertically transmitted microbial community from breeder hens to chicks, especially increased the relative abundance of probiotics (i.e., Clostridium_sensu_stricto_1) in the meconium of chicks (P < 0.05), which may help with early gut microbiota colonization and intestinal development. In summary, dietary HF supplementation for breeder hens altered the bacterial community of neonates and might promote intestinal development of chicks through the IGF-1R/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hongjian Dai
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwu Huang
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simeng Li
- College of Biotechnology, Aksu Vocational and Technical College, Aksu 843000, China
| | - Yi Zhang
- School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Haoze Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Pérez-Arana GM, Díaz-Gómez A, Bancalero-de los Reyes J, Gracia-Romero M, Ribelles-García A, Visiedo F, González-Domínguez Á, Almorza-Gomar D, Prada-Oliveira JA. The role of glucagon after bariatric/metabolic surgery: much more than an "anti-insulin" hormone. Front Endocrinol (Lausanne) 2023; 14:1236103. [PMID: 37635984 PMCID: PMC10451081 DOI: 10.3389/fendo.2023.1236103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
The biological activity of glucagon has recently been proposed to both stimulate hepatic glucose production and also include a paradoxical insulinotropic effect, which could suggest a new role of glucagon in the pathophysiology type 2 diabetes mellitus (T2DM). An insulinotropic role of glucagon has been observed after bariatric/metabolic surgery that is mediated through the GLP-1 receptor on pancreatic beta cells. This effect appears to be modulated by other members of the proglucagon family, playing a key role in the beneficial effects and complications of bariatric/metabolic surgery. Glucagon serves a dual role after sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). In addition to maintaining blood glucose levels, glucagon exhibits an insulinotropic effect, suggesting that glucagon has a more complex function than simply an "anti-insulin hormone".
Collapse
Affiliation(s)
- Gonzalo-Martín Pérez-Arana
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | | | | | | | | | - Francisco Visiedo
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - Álvaro González-Domínguez
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - David Almorza-Gomar
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
- Operative Statistic and Research Department, University of Cádiz, Cádiz, Spain
| | - José-Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| |
Collapse
|
4
|
Billmann F, El Shishtawi S, Bruckner T, ElSheikh M, Müller-Stich BP, Billeter A. Combined non-alcoholic fatty liver disease and type 2 diabetes in severely obese patients-medium term effects of sleeve gastrectomy versus Roux-en-Y-gastric bypass on disease markers. Hepatobiliary Surg Nutr 2022; 11:795-807. [PMID: 36523925 PMCID: PMC9745618 DOI: 10.21037/hbsn-21-71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 07/25/2024]
Abstract
Background We aimed to evaluate the medium-term efficacy of sleeve gastrectomy (SG) vs. Roux-en-Y gastric bypass (RYGB) on remission of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM). Methods We identified severely obese patients [body mass index (BMI) >35 kg/m2] with NAFLD (as defined by the Longitudinal Assessment of Bariatric Surgery Study) and T2DM (as defined by the American Association of Clinical Endocrinologists and the American College of Endocrinology) who underwent SG or RYGB in a single university surgical centre. The cohorts were match-paired and data were analysed after at least 3 years of follow up. The key outcomes measured were: (I) the improvement of liver function tests and NAFLD markers; (II) glycemic control and insulin resistance. Results Ninety-six patients were investigated; 44 (45.8%) were women. The mean pre-operative BMI was 45.2 kg/m2 in the SG and 42.0 kg/m2 in the RYGB group. SG and RYGB both significantly reduced serum liver enzyme concentrations. NAFLD markers resolved 2 years after SG in all patients. In contrast, only 78% and 80% of patients achieved remission of NAFLD 2 and 3 years after RYBG respectively. Both procedures resulted in comparable rates of remission of T2DM. Conclusions Bariatric surgery with SG may be preferable to RYGB for obese patients with NAFLD and T2DM based on the rates of remission of markers of these co-morbidities. However, our results need to be confirmed in prospective trials. Understanding the metabolic effects of specific bariatric surgical procedures may facilitate the development of a personalised approach to weight-loss surgery.
Collapse
Affiliation(s)
- Franck Billmann
- Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | | | - Tom Bruckner
- Institut für Medizinische Biometrie und Informatik, Universität Heidelberg, Heidelberg, Germany
| | - Mostafa ElSheikh
- Department of General Surgery, El-Gharbia Govenorate, Tanta, El gash St. Medical Campus, The Faculty of Medicine, Tanta, Egypt
| | | | - Adrian Billeter
- Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Jiang B, Wang H, Li N, Yan Q, Wang W, Wang Y, Xue H, Ma S, Li X, Diao W, Pan R, Gao Z, Qu MH. Role of Proximal Intestinal Glucose Sensing and Metabolism in the Blood Glucose Control in Type 2 Diabetic Rats After Duodenal Jejunal Bypass Surgery. Obes Surg 2022; 32:1119-1129. [PMID: 35080701 DOI: 10.1007/s11695-021-05871-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although gastric surgery can significantly improve blood glucose homeostasis in type 2 diabetes mellitus (T2DM), its mechanism remains unclear. This study evaluated the role of intestinal glucose sensing, glucose transport, and metabolism in the alimentary limb (A limb) of T2DM rats after duodenal jejunal bypass (DJB) surgery. METHODS A T2DM rat model was induced via a high-glucose high-fat diet and low-dose streptozotocin injection. The diabetic rats were divided into two groups: the DJB surgery (T2DM-DJB) group and the sham surgery (T2DM-Sham) group. Wistar rats were used as wild-type control (Control). Small animal PET was used to assess the change in glucose metabolic status in the intestine. The intestinal villi height and the number of EECs after DJB were evaluated. The expressions of sweet taste receptors (T1R2/T1R3), glucose transporters (SGLT1/GLUT2), and key enzymes involved in glucose metabolism (HK2, PFK2, PKM2, G6Pase, and PCK1) in the A limb after DJB was detected by Western blot and qRT-PCR. RESULTS Small animal PET analysis showed the intestinal glucose metabolism increased significantly 6 weeks after DJB surgery. The intestinal villi height and the number of EECs in the A limb 6 weeks after surgery increased significantly in T2DM-DJB rats comparing to T2DM-Sham rats. The mRNA and protein expression of T1R1/T1R3 and SGLT1/GLUT2 were downregulated in DJB-T2DM rats, while enzymes involved in glucose metabolism was upregulated in the A limb in T2DM-DJB rats. CONCLUSION Proximal intestinal glucose sensing and metabolism play an important role in blood glucose homeostasis by DJB.
Collapse
Affiliation(s)
- Bin Jiang
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Huaijie Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
| | - Na Li
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
| | - Qingtao Yan
- Department of Pediatric Surgery, Weifang People's Hospital, The First Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
| | - Weiyu Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Hantao Xue
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Shengyao Ma
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Xiaocheng Li
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Wenbin Diao
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Zhiqin Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Mei-Hua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China.
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
6
|
Albaugh VL. Comment on: The effect of sleeve ablation of gastric mucosa on body weight and glucose homeostasis in the rat. Surg Obes Relat Dis 2021; 17:1994-1995. [PMID: 34561170 DOI: 10.1016/j.soard.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Vance L Albaugh
- Assistant Professor of Metabolic Surgery, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
7
|
Jin ZL, Liu W. Progress in treatment of type 2 diabetes by bariatric surgery. World J Diabetes 2021; 12:1187-1199. [PMID: 34512886 PMCID: PMC8394224 DOI: 10.4239/wjd.v12.i8.1187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of type 2 diabetes (T2D) is increasing at an alarming rate worldwide. Bariatric surgical procedures, such as the vertical sleeve gastrectomy and Roux-en-Y gastric bypass, are the most efficient approaches to obtain substantial and durable remission of T2D. The benefits of bariatric surgery are realized through the consequent increased satiety and alterations in gastrointestinal hormones, bile acids, and the intestinal microbiota. A comprehensive understanding of the mechanisms by which various bariatric surgical procedures exert their benefits on T2D could contribute to the design of better non-surgical treatments for T2D. In this review, we describe the classification and evolution of bariatric surgery and explore the multiple mechanisms underlying the effect of bariatric surgery on insulin resistance. Based upon our summarization of the current knowledge on the underlying mechanisms, we speculate that the gut might act as a new target for improving T2D. Our ultimate goal with this review is to provide a better understanding of T2D pathophysiology in order to support development of T2D treatments that are less invasive and more scalable.
Collapse
Affiliation(s)
- Zhang-Liu Jin
- Department of General Surgery & Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei Liu
- Department of General Surgery & Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
8
|
Zhao T, Zhan L, Zhou W, Chen W, Luo J, Zhang L, Weng Z, Zhao C, Liu S. The Effects of Erchen Decoction on Gut Microbiota and Lipid Metabolism Disorders in Zucker Diabetic Fatty Rats. Front Pharmacol 2021; 12:647529. [PMID: 34366839 PMCID: PMC8339961 DOI: 10.3389/fphar.2021.647529] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.
Collapse
Affiliation(s)
- Tian Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanxin Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jintong Luo
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zebin Weng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Steenackers N, Vanuytsel T, Augustijns P, Tack J, Mertens A, Lannoo M, Van der Schueren B, Matthys C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol Hepatol 2021; 6:225-237. [PMID: 33581761 DOI: 10.1016/s2468-1253(20)30302-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
Linked to the growing obesity epidemic, demand for bariatric and metabolic surgery has increased, the most common procedures being sleeve gastrectomy and Roux-en-Y gastric bypass. Originally, bariatric procedures were described as purely restrictive, malabsorptive, or combined restrictive-malabsorptive procedures limiting food intake, nutrient absorption, or both. Nowadays, anatomical alterations are known to affect gastrointestinal physiology, which in turn affects the digestion and absorption of nutrients and drugs. Therefore, understanding gastrointestinal physiology is crucial to prevent postoperative nutritional deficiencies and to optimise postoperative drug therapy. Preclinical and clinical research indicates that sleeve gastrectomy accelerates liquid and solid gastric emptying and small intestinal transit, and increases bile acid serum levels, whereas its effects on gastrointestinal acidity, gastric and pancreatic secretions, surface area, and colonic transit remain largely unknown. Roux-en-Y gastric bypass diminishes gastric acid secretion, accelerates liquid gastric emptying, and increases bile acid serum levels, but its effects on intestinal pH, solid gastric emptying, intestinal transit time, gastric enzyme secretions, and surface area remain largely unknown. In this Review, we summarise current knowledge of the effects of these two procedures on gastrointestinal physiology and assess the knowledge gaps.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Chronic Diseases and Metabolism, and Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
10
|
Alterations in Small Intestine and Liver Morphology, Immunolocalization of Leptin, Ghrelin and Nesfatin-1 as Well as Immunoexpression of Tight Junction Proteins in Intestinal Mucosa after Gastrectomy in Rat Model. J Clin Med 2021; 10:jcm10020272. [PMID: 33450994 PMCID: PMC7828391 DOI: 10.3390/jcm10020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The stomach is responsible for the processing of nutrients as well as for the secretion of various hormones which are involved in many activities throughout the gastrointestinal tract. Experimental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6) were sham-operated. After six weeks, changes in small intestine (including histomorphometrical parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found, showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The results suggest that more complicated regulatory mechanisms than that of compensatory mucosal hypertrophy alone are involved.
Collapse
|
11
|
Boškoski I, Orlandini B, Gallo C, Bove V, Pontecorvi V, Perri V, Costamagna G. Metabolic endoscopy by duodenal mucosal resurfacing: expert review with critical appraisal of the current technique and results. Expert Rev Gastroenterol Hepatol 2020; 14:375-381. [PMID: 32299266 DOI: 10.1080/17474124.2020.1757429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Duodenal mucosal resurfacing (DMR) is an endoscopic procedure for type 2 diabetes (T2D) consisting of circumferential hydrothermal ablation of the duodenal mucosa. AREAS COVERED A review was conducted on the reports available up to March-2020. On a total of 79 patients, DMR induced a significant mean HbA1c, FPG and HOMA-IR reduction at 6 months (0.9 ± 0.2%, 1.7 ± 0.5 mmol/L and 2.9 ± 1.1 mUI/L respectively - P < 0.001). DMR metabolic efficacy directly correlates with the length of the ablated mucosa (mean 3 months HbA1c reduction 1.2% vs 2.5% after short and long ablation respectively - P < 0.05), while it is independent of weight-loss. Severe AEs were registered in 3.7% of the cases. EXPERT OPINION DMR plays a promising role in metabolic impairment improvement inducing a morpho-functional duodenal alteration not necessarily depending on weight-loss. Technical-functional improvements of the device and appropriate training aimed at its correct use are needed to lower the rate of severe AEs and technical failure. The current role of DMR needs to be clarified, but it might be proposed for poorly controlled T2D in accurately selected patients. Evidence on DMR is still scanty and further research is mandatory to standardize the endoscopic technique and its indications.
Collapse
Affiliation(s)
- Ivo Boškoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome, Italy.,Centre for Endoscopic Research Therapeutics and Training (CERTT), Università Cattolica del Sacro Cuore di Roma Largo A. Gemelli , Rome, Italy
| | - Beatrice Orlandini
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome, Italy.,Centre for Endoscopic Research Therapeutics and Training (CERTT), Università Cattolica del Sacro Cuore di Roma Largo A. Gemelli , Rome, Italy
| | - Camilla Gallo
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome, Italy.,Centre for Endoscopic Research Therapeutics and Training (CERTT), Università Cattolica del Sacro Cuore di Roma Largo A. Gemelli , Rome, Italy
| | - Vincenzo Bove
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome, Italy.,Centre for Endoscopic Research Therapeutics and Training (CERTT), Università Cattolica del Sacro Cuore di Roma Largo A. Gemelli , Rome, Italy
| | - Valerio Pontecorvi
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome, Italy.,Centre for Endoscopic Research Therapeutics and Training (CERTT), Università Cattolica del Sacro Cuore di Roma Largo A. Gemelli , Rome, Italy
| | - Vincenzo Perri
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome, Italy.,Centre for Endoscopic Research Therapeutics and Training (CERTT), Università Cattolica del Sacro Cuore di Roma Largo A. Gemelli , Rome, Italy
| | - Guido Costamagna
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome, Italy.,Centre for Endoscopic Research Therapeutics and Training (CERTT), Università Cattolica del Sacro Cuore di Roma Largo A. Gemelli , Rome, Italy
| |
Collapse
|
12
|
van Baar ACG, Holleman F, Crenier L, Haidry R, Magee C, Hopkins D, Rodriguez Grunert L, Galvao Neto M, Vignolo P, Hayee B, Mertens A, Bisschops R, Tijssen J, Nieuwdorp M, Guidone C, Costamagna G, Devière J, Bergman JJGHM. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes mellitus: one year results from the first international, open-label, prospective, multicentre study. Gut 2020; 69:295-303. [PMID: 31331994 PMCID: PMC6984054 DOI: 10.1136/gutjnl-2019-318349] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/19/2019] [Accepted: 06/30/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The duodenum has become a metabolic treatment target through bariatric surgery learnings and the specific observation that bypassing, excluding or altering duodenal nutrient exposure elicits favourable metabolic changes. Duodenal mucosal resurfacing (DMR) is a novel endoscopic procedure that has been shown to improve glycaemic control in people with type 2 diabetes mellitus (T2D) irrespective of body mass index (BMI) changes. DMR involves catheter-based circumferential mucosal lifting followed by hydrothermal ablation of duodenal mucosa. This multicentre study evaluates safety and feasibility of DMR and its effect on glycaemia at 24 weeks and 12 months. METHODS International multicentre, open-label study. Patients (BMI 24-40) with T2D (HbA1c 59-86 mmol/mol (7.5%-10.0%)) on stable oral glucose-lowering medication underwent DMR. Glucose-lowering medication was kept stable for at least 24 weeks post DMR. During follow-up, HbA1c, fasting plasma glucose (FPG), weight, hepatic transaminases, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), adverse events (AEs) and treatment satisfaction were determined and analysed using repeated measures analysis of variance with Bonferroni correction. RESULTS Forty-six patients were included of whom 37 (80%) underwent complete DMR and 36 were finally analysed; in remaining patients, mainly technical issues were observed. Twenty-four patients had at least one AE (52%) related to DMR. Of these, 81% were mild. One SAE and no unanticipated AEs were reported. Twenty-four weeks post DMR (n=36), HbA1c (-10±2 mmol/mol (-0.9%±0.2%), p<0.001), FPG (-1.7±0.5 mmol/L, p<0.001) and HOMA-IR improved (-2.9±1.1, p<0.001), weight was modestly reduced (-2.5±0.6 kg, p<0.001) and hepatic transaminase levels decreased. Effects were sustained at 12 months. Change in HbA1c did not correlate with modest weight loss. Diabetes treatment satisfaction scores improved significantly. CONCLUSIONS In this multicentre study, DMR was found to be a feasible and safe endoscopic procedure that elicited durable glycaemic improvement in suboptimally controlled T2D patients using oral glucose-lowering medication irrespective of weight loss. Effects on the liver are examined further. TRIAL REGISTRATION NUMBER NCT02413567.
Collapse
Affiliation(s)
- Annieke C G van Baar
- Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Frits Holleman
- Internal Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Laurent Crenier
- Endocrinology, Erasme University Hospital, Brussels, Belgium
| | - Rehan Haidry
- Gastroenterology, University College Hospital, London, UK
| | - Cormac Magee
- Centre for Obesity Research, Department of Medicine, University College Hospital, London, UK
| | - David Hopkins
- Institute of Diabetes, Endocrinology and Obesity, King’s Health Partners, London, UK
| | | | - Manoel Galvao Neto
- Bariatric Endoscopy Service, Gastro Obeso Center, Sao Paulo, Brazil,College of Medicine, Florida International University, Miami, Florida, USA
| | - Paulina Vignolo
- CCO Clinical Center for Diabetes, Obesity and Reflux, Santiago, Chile
| | | | - Ann Mertens
- Clinical and Experimental Endocrinology, Catholic University of Leuven, Leuven, Belgium
| | - Raf Bisschops
- Gastroenterology and Hepatology, Catholic University of Leuven, Leuven, Belgium
| | - Jan Tijssen
- Cardiology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Caterina Guidone
- Internal Medicine, Fondazione Policlinico A. Gemelli IRCSS, Rome, Italy
| | - Guido Costamagna
- Digestive Endoscopy Unit, Catholic University, Gemelli University Hospital, Roma, Italy
| | - Jacques Devière
- Gastroenterology, Erasme University Hospital, Brussels, Belgium
| | - Jacques J G H M Bergman
- Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y, Ping J, Alikhan M, Clements BA, Abumrad NN, Flynn CR. Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery. Gastroenterology 2019; 156:1041-1051.e4. [PMID: 30445014 PMCID: PMC6409186 DOI: 10.1053/j.gastro.2018.11.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Bile diversion to the ileum (GB-IL) has strikingly similar metabolic and satiating effects to Roux-en-Y gastric bypass (RYGB) in rodent obesity models. The metabolic benefits of these procedures are thought to be mediated by increased bile acids, although parallel changes in body weight and other confounding variables limit this interpretation. METHODS Global G protein-coupled bile acid receptor-1 null (Tgr5-/-) and intestinal-specific farnesoid X receptor null (FxrΔ/E) mice on high-fat diet as well as wild-type C57BL/6 and glucagon-like polypeptide 1 receptor deficient (Glp-1r-/-) mice on chow diet were characterized following GB-IL. RESULTS GB-IL induced weight loss and improved oral glucose tolerance in Tgr5-/-, but not FxrΔ/E mice fed a high-fat diet, suggesting a role for intestinal Fxr. GB-IL in wild-type, chow-fed mice prompted weight-independent improvements in glycemia and glucose tolerance secondary to augmented insulin responsiveness. Improvements were concomitant with increased levels of lymphatic GLP-1 in the fasted state and increased levels of intestinal Akkermansia muciniphila. Improvements in fasting glycemia after GB-IL were mitigated with exendin-9, a GLP-1 receptor antagonist, or cholestyramine, a bile acid sequestrant. The glucoregulatory effects of GB-IL were lost in whole-body Glp-1r-/- mice. CONCLUSIONS Bile diversion to the ileum improves glucose homeostasis via an intestinal Fxr-Glp-1 axis. Altered intestinal bile acid availability, independent of weight loss, and intestinal Akkermansia muciniphila appear to mediate the metabolic changes observed after bariatric surgery and might be manipulated for treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Vance L. Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph Antoun
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Yanhua Xiong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
| | - Jie Ping
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
| | - Muhammed Alikhan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | | | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
14
|
Importance of the gastrointestinal tract in type 2 diabetes. Metabolic surgery is more than just incretin effect. Cir Esp 2018; 96:537-545. [PMID: 30337047 DOI: 10.1016/j.ciresp.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022]
Abstract
Bariatric and metabolic surgery is creating new concepts about how the intestine assimilates food. Recent studies highlight the role of the gastrointestinal tract in the genesis and evolution of type 2 diabetes. This article has been written to answer frequent questions about metabolic surgery results and the mechanisms of action. For this purpose, a non-systematic search of different databases was carried out, identifying articles published in the last decade referring to the mechanisms of action of metabolic techniques. Understanding these mechanisms will help grasp why some surgeries are more effective than others and why the results can be so disparate among patients undergoing the same surgical approach.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Herein, we review the role of FXR and TGR5 in the regulation of hepatic bile acid metabolism, with a focus on how our understanding of bile acid metabolic regulation by these receptors has evolved in recent years and how this improved understanding may facilitate targeting bile acids for type 2 diabetes treatment. RECENT FINDINGS Bile acid profile is a key regulator of metabolic homeostasis. Inhibition of expression of the enzyme that is required for cholic acid synthesis and thus determines bile acid profile, Cyp8b1, may be an effective target for type 2 diabetes treatment. FXR and, more recently, TGR5 have been shown to regulate bile acid metabolism and Cyp8b1 expression and, therefore, may provide a mechanism with which to target bile acid profile for type 2 diabetes treatment. Inhibition of Cyp8b1 expression is a promising therapeutic modality for type 2 diabetes; however, further work is needed to fully understand the pathways regulating Cyp8b1 expression.
Collapse
Affiliation(s)
- Karolina E Zaborska
- Department of Biomedical Sciences, Cornell University, T3 014A Veterinary Research Tower, Ithaca, NY, 14853, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, Cornell University, T3 014A Veterinary Research Tower, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Lee WJ, Almalki O. Recent advancements in bariatric/metabolic surgery. Ann Gastroenterol Surg 2017; 1:171-179. [PMID: 29863165 PMCID: PMC5881368 DOI: 10.1002/ags3.12030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are currently two pan‐endemic health problems worldwide and are associated with considerable increase in morbidity and mortality. Both diseases are closely related and very difficult to control by current medical treatment, including diet, drug therapy and behavioral modification. Bariatric surgery has proven successful in treating not just obesity but also in significantly decreasing overall obesity‐associated morbidities as well as improving quality of life in severely obese patients (body mass index [BMI] >35 kg/m2). A rapid increase in bariatric surgery started in the 2000s when the laparoscopic surgical technique was introduced into this field. Many new procedures had been developed and changed the face of modern bariatric surgery. Recently, bariatric surgery played as gastrointestinal metabolic surgery has been proposed as a new treatment modality for obesity‐related T2DM for patients with BMI >35 kg/m2. Strong evidence has demonstrated that bariatric/metabolic surgery is an effective and durable treatment for obese T2DM patients. Bariatric/metabolic surgery is now becoming an important surgical division. The present article examines and discusses recent advancements in bariatric/metabolic surgery and covers four major fields: (i) the rapid increase in numbers and better safety; (ii) new procedures with better outcomes; (iii) from bariatric to metabolic surgery; and (iv) understanding the mechanisms and personalized treatment.
Collapse
Affiliation(s)
- Wei-Jei Lee
- Department of Surgery Min-Sheng General Hospital National Taiwan University Taoyuan Taiwan
| | - Owaid Almalki
- Department of Surgery Min-Sheng General Hospital National Taiwan University Taoyuan Taiwan.,Department of Surgery College of Medicine Taif University Taif Saudi Arabia
| |
Collapse
|
17
|
Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med 2017; 56:75-89. [PMID: 28390813 PMCID: PMC5603298 DOI: 10.1016/j.mam.2017.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
Bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective and durable treatments for morbid obesity and potentially a viable treatment for type 2 diabetes (T2D). The resolution rate of T2D following these procedures is between 40 and 80% and far surpasses that achieved by medical management alone. The molecular basis for this improvement is not entirely understood, but has been attributed in part to the altered enterohepatic circulation of bile acids. In this review we highlight how bile acids potentially contribute to improved lipid and glucose homeostasis, insulin sensitivity and energy expenditure after these procedures. The impact of altered bile acid levels in enterohepatic circulation is also associated with changes in gut microflora, which may further contribute to some of these beneficial effects. We highlight the beneficial effects of experimental surgical procedures in rodents that alter bile secretory flow without gastric restriction or altering nutrient flow. This information suggests a role for bile acids beyond dietary fat emulsification in altering whole body glucose and lipid metabolism strongly, and also suggests emerging roles for the activation of the bile acid receptors farnesoid x receptor (FXR) and G-protein coupled bile acid receptor (TGR5) in these improvements. The limitations of rodent studies and the current state of our understanding is reviewed and the potential effects of bile acids mediating the short- and long-term metabolic improvements after bariatric surgery is critically examined.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Enterohepatic Circulation
- Gastrectomy
- Gastric Bypass
- Gastrointestinal Microbiome/physiology
- Gene Expression Regulation
- Glucose/metabolism
- Homeostasis/physiology
- Humans
- Insulin Resistance
- Obesity, Morbid/metabolism
- Obesity, Morbid/microbiology
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rodentia
- Signal Transduction
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hana Ajouz
- American University of Beirut, Beirut, Lebanon
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Abstract
UNLABELLED Obesity and its related complications remain a major threat to public health. Efforts to reduce the prevalence of obesity are of paramount importance in improving population health. Through these efforts, our appreciation of the role of gut-derived hormones in the management of body weight has evolved and manipulation of this system serves as the basis for our most effective obesity interventions. PURPOSE OF THE REVIEW We review current understanding of the enteroendocrine regulation of food intake and body weight, focusing on therapies that have successfully embraced the physiology of this system to enable weight loss. RECENT FINDINGS In addition to the role of gut hormones in the regulation of energy homeostasis, our understanding of the potential influence of enteroendocrine peptides in food reward pathways is evolving. So too is the role of gut derived hormones on energy expenditure. Gut-derived hormones have the ability to alter feeding behavior. Certain obesity therapies already manipulate this system; however, our evolving understanding of the effects of enteroendocrine signals on hedonic aspects of feeding and energy expenditure may be crucial in identifying future obesity therapies.
Collapse
|
19
|
Miras AD, Herring R, Vusirikala A, Shojaee-Moradi F, Jackson NC, Chandaria S, Jackson SN, Goldstone AP, Hakim N, Patel AG, Umpleby AM, Le Roux CW. Measurement of hepatic insulin sensitivity early after the bypass of the proximal small bowel in humans. Obes Sci Pract 2016; 3:95-98. [PMID: 28392935 PMCID: PMC5358071 DOI: 10.1002/osp4.76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Unlike gastric banding or sleeve gastrectomy procedures, intestinal bypass procedures, Roux-en-Y gastric bypass in particular, lead to rapid improvements in glycaemia early after surgery. The bypass of the proximal small bowel may have weight loss and even caloric restriction-independent glucose-lowering properties on hepatic insulin sensitivity. In this first human mechanistic study, we examined this hypothesis by investigating the early effects of the duodeno-jejunal bypass liner (DJBL; GI Dynamics, USA) on the hepatic insulin sensitivity by using the gold standard euglycaemic hyperinsulinaemic clamp methodology. METHOD Seven patients with obesity underwent measurement of hepatic insulin sensitivity at baseline, 1 week after a low-calorie liquid diet and after a further 1 week following insertion of the DJBL whilst on the same diet. RESULTS Duodeno-jejunal bypass liner did not improve the insulin sensitivity of hepatic glucose production beyond the improvements achieved with caloric restriction. CONCLUSIONS Caloric restriction may be the predominant driver of early increases in hepatic insulin sensitivity after the endoscopic bypass of the proximal small bowel. The same mechanism may be at play after Roux-en-Y gastric bypass and explain, at least in part, the rapid improvements in glycaemia.
Collapse
Affiliation(s)
- A D Miras
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism Imperial College London London UK
| | - R Herring
- CEDAR Centre Royal Surrey County Hospital Guildford Surrey UK
| | | | - F Shojaee-Moradi
- Diabetes and Metabolic Medicine, Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - N C Jackson
- Diabetes and Metabolic Medicine, Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | | | - S N Jackson
- Diabetes Complications Research Centre, UCD Conway Institute University College Dublin Dublin Ireland
| | - A P Goldstone
- Centre for Neuropsychopharmacology, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences Imperial College London London UK
| | - N Hakim
- Faculty of Medicine, Department of Surgery and Cancer Imperial College London London UK
| | - A G Patel
- Hepatobiliary and minimal access surgery King's College Hospital NHS Foundation Trust London UK
| | - A M Umpleby
- Diabetes and Metabolic Medicine, Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - C W Le Roux
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism Imperial College London London UK; Diabetes Complications Research Centre, UCD Conway Institute University College Dublin Dublin Ireland
| |
Collapse
|
20
|
Duodenal endoluminal barrier sleeve alters gut microbiota of ZDF rats. Int J Obes (Lond) 2016; 41:381-389. [PMID: 27924082 PMCID: PMC5340580 DOI: 10.1038/ijo.2016.224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/13/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES The combination of energy dense diets and reduced energy expenditure in modern society has escalated the prevalence of obesity and obesity-related comorbidities. Among these disease states, type-2 diabetics (T2D) are disproportionately associated with obesity, suggesting a shared etiology. In conjunction with defects in hormonal and inflammatory states, obesity and T2D are also characterized by dysbiosis. METHODS We have recently described the beneficial effects of duodenal nutrient exclusion, as induced by the duodenal endoluminal sleeve (DES); including body weight loss, prevented fat mass accumulation, and improved glucose tolerance in the ZDF rat, a rodent model of obesity and type-2 diabetes (T2D). To assess the relative role of DES on hindgut microbiota in the context of these metabolic changes, we analyzed cecal samples from rats implanted with a duodenal endoluminal sleeve (DES), or a sham control of this procedure. A group of pair-fed (pf) sham controls was also included to account for changes induced by reduced body weight and food intake. RESULTS Analysis of hindgut microbiota following DES in the ZDF rat elucidated discrete changes in several microbial populations including a reduction in Paraprevotella family members of the Clostridiales order along with an increase in Akkermansia muciniphila and species of the Allobaculum and Bifidobacterium genera. CONCLUSIONS Altogether, these observations suggest that like Roux-en Y gastric bypass (RYGB) and Metformin, regulation of gut microbiota may be a contributing factor to the therapeutic effects of DES.
Collapse
|
21
|
Kim T, Holleman CL, Ptacek T, Morrow CD, Habegger KM. Duodenal endoluminal barrier sleeve alters gut microbiota of ZDF rats. Parasite Immunol 2016; 39. [PMID: 27924082 DOI: 10.1111/pim.12404] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES The combination of energy dense diets and reduced energy expenditure in modern society has escalated the prevalence of obesity and obesity-related comorbidities. Among these disease states, type-2 diabetics (T2D) are disproportionately associated with obesity, suggesting a shared etiology. In conjunction with defects in hormonal and inflammatory states, obesity and T2D are also characterized by dysbiosis. METHODS We have recently described the beneficial effects of duodenal nutrient exclusion, as induced by the duodenal endoluminal sleeve (DES); including body weight loss, prevented fat mass accumulation, and improved glucose tolerance in the ZDF rat, a rodent model of obesity and type-2 diabetes (T2D). To assess the relative role of DES on hindgut microbiota in the context of these metabolic changes, we analyzed cecal samples from rats implanted with a duodenal endoluminal sleeve (DES), or a sham control of this procedure. A group of pair-fed (pf) sham controls was also included to account for changes induced by reduced body weight and food intake. RESULTS Analysis of hindgut microbiota following DES in the ZDF rat elucidated discrete changes in several microbial populations including a reduction in Paraprevotella family members of the Clostridiales order along with an increase in Akkermansia muciniphila and species of the Allobaculum and Bifidobacterium genera. CONCLUSIONS Altogether, these observations suggest that like Roux-en Y gastric bypass (RYGB) and Metformin, regulation of gut microbiota may be a contributing factor to the therapeutic effects of DES.
Collapse
Affiliation(s)
- T Kim
- Comprehensive Diabetes Center and Department of Medicine-Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C L Holleman
- Comprehensive Diabetes Center and Department of Medicine-Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T Ptacek
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C D Morrow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K M Habegger
- Comprehensive Diabetes Center and Department of Medicine-Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Rajagopalan H, Cherrington AD, Thompson CC, Kaplan LM, Rubino F, Mingrone G, Becerra P, Rodriguez P, Vignolo P, Caplan J, Rodriguez L, Galvao Neto MP. Endoscopic Duodenal Mucosal Resurfacing for the Treatment of Type 2 Diabetes: 6-Month Interim Analysis From the First-in-Human Proof-of-Concept Study. Diabetes Care 2016; 39:2254-2261. [PMID: 27519448 DOI: 10.2337/dc16-0383] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess procedural safety and glycemic indices at 6 months in a first-in-human study of duodenal mucosal resurfacing (DMR), a novel, minimally invasive, upper endoscopic procedure involving hydrothermal ablation of the duodenal mucosa, in patients with type 2 diabetes and HbA1c ≥7.5% (58 mmol/mol) on one or more oral antidiabetic agents. RESEARCH DESIGN AND METHODS Using novel balloon catheters, DMR was conducted on varying lengths of duodenum in anesthetized patients at a single medical center. RESULTS A total of 39 patients with type 2 diabetes (screening HbA1c 9.5% [80 mmol/mol]; BMI 31 kg/m2) were treated and included in the interim efficacy analysis: 28 had a long duodenal segment ablated (LS; ∼9.3 cm treated) and 11 had a short segment ablated (SS; ∼3.4 cm treated). Overall, DMR was well tolerated with minimal gastrointestinal symptoms postprocedure. Three patients experienced duodenal stenosis treated successfully by balloon dilation. HbA1c was reduced by 1.2% at 6 months in the full cohort (P < 0.001). More potent glycemic effects were observed among the LS cohort, who experienced a 2.5% reduction in mean HbA1c at 3 months postprocedure vs. 1.2% in the SS group (P < 0.05) and a 1.4% reduction at 6 months vs. 0.7% in the SS group (P = 0.3). This occurred despite net medication reductions in the LS cohort between 0 and 6 months. Among LS patients with a screening HbA1c of 7.5-10% (58-86 mmol/mol) and on stable antidiabetic medications postprocedure, HbA1c was reduced by 1.8% at 6 months (P < 0.01). CONCLUSIONS Single-procedure DMR elicits a clinically significant improvement in hyperglycemia in patients with type 2 diabetes in the short-term, with acceptable safety and tolerability. Long-term safety, efficacy, and durability and possible mechanisms of action require further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pablo Becerra
- CCO Clinical Center for Diabetes, Obesity and Reflux, Santiago, Chile
| | | | - Paulina Vignolo
- CCO Clinical Center for Diabetes, Obesity and Reflux, Santiago, Chile
| | | | | | - Manoel P Galvao Neto
- Gastro Obeso Center, São Paulo, Brazil.,Florida International University, Miami, FL
| |
Collapse
|
23
|
Abstract
Insufficient hepatic O2 in animal and human studies has been shown to elicit a hepatorenal reflex in response to increased hepatic adenosine, resulting in the stimulation of renal as well as muscle sympathetic nerve activity and activating the renin angiotensin system. Low hepatic ATP, hyperuricemia, and hepatic lipid accumulation reported in metabolic syndrome (MetS) patients may reflect insufficient hepatic O2 delivery, potentially accounting for the sympathetic overdrive associated with MetS. This theoretical concept is supported by experimental results in animals fed a high fructose diet to induce MetS. Hepatic fructose metabolism rapidly consumes ATP resulting in increased adenosine production and hyperuricemia as well as elevated renin release and sympathetic activity. This review makes the case for the hepatorenal reflex causing sympathetic overdrive and metabolic syndrome in response to exaggerated splanchnic oxygen consumption from excessive eating. This is strongly reinforced by the fact that MetS is cured in a matter of days in a significant percentage of patients by diet, bariatric surgery, or endoluminal sleeve, all of which would decrease splanchnic oxygen demand by limiting nutrient contact with the mucosa and reducing the nutrient load due to loss of appetite or dietary restriction.
Collapse
Affiliation(s)
- Michael D Wider
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
24
|
Hutch CR, Sandoval DA. Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution? Ann N Y Acad Sci 2016; 1391:5-19. [DOI: 10.1111/nyas.13194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/30/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Chelsea R. Hutch
- Department of Surgery; University of Michigan; Ann Arbor Michigan
| | | |
Collapse
|
25
|
Abstract
Insufficient hepatic O2 in animal and human studies has been shown to elicit a hepatorenal reflex in response to increased hepatic adenosine, resulting in stimulation of renal as well as muscle sympathetic nerve activity and activating the renin angiotensin system. Low hepatic ATP, hyperuricemia, and hepatic lipid accumulation reported in metabolic syndrome (MetS) patients may reflect insufficient hepatic O2 delivery, potentially accounting for the sympathetic overdrive associated with MetS. This theoretical concept is supported by experimental results in animals fed a high fructose diet to induce MetS. Hepatic fructose metabolism rapidly consumes ATP resulting in increased adenosine production and hyperuricemia as well as elevated renin release and sympathetic activity. This review makes the case for the hepatorenal reflex causing sympathetic overdrive and metabolic syndrome in response to exaggerated splanchnic oxygen consumption from excessive eating. This is strongly reinforced by the fact that MetS is cured in a matter of days in a significant percentage of patients by diet, bariatric surgery, or endoluminal sleeve, all of which would decrease splanchnic oxygen demand by limiting nutrient contact with the mucosa and reducing the nutrient load due to the loss of appetite or dietary restriction.
Collapse
Affiliation(s)
- Michael D Wider
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
26
|
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 2016; 230:R95-R113. [PMID: 27496374 DOI: 10.1530/joe-16-0056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.
Collapse
Affiliation(s)
- Paige V Bauer
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada Department of PhysiologyUniversity of Toronto, Toronto, ON, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada
| |
Collapse
|
27
|
Abstract
Obesity and its associated medical conditions continue to increase and add significant burden to patients, as well as health-care systems, worldwide. Bariatric surgery is the most effective treatment for severe obesity and its comorbidities, and resolution of diabetes is weight loss-independent in the case of some operations. Although these weight-independent effects are frequently described clinically, the mechanisms behind them are not well understood and remain an intense area of focus in the growing field of metabolic and bariatric surgery. Perceptions of the mechanisms responsible for the beneficial metabolic effects of metabolic/bariatric operations have shifted from being mostly restrictive and malabsorption over the last 10 to 15 years to being more neuro-hormonal in origin. In this review, we describe recent basic and clinical findings of the major clinical procedures (adjustable gastric banding, vertical sleeve gastrectomy, Roux-en-Y gastric bypass, and biliopancreatic diversion) as well as other experimental procedures (ileal interposition and bile diversion) that recapitulate many of the metabolic effects of these complex operations in a simpler fashion. As the role of bile acids and the gut microbiome on metabolism is becoming increasingly well described, their potential roles in these improvements following metabolic surgery are becoming better appreciated. Bile acid and gut microbiome changes, in light of recent developments, are discussed in the context of these surgical procedures, as well as their implications for future study.
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - C Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - Robyn A Tamboli
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| |
Collapse
|
28
|
Sadler M, Ashwell M, Buttriss J, Govindji A, Harland J, Stirling-Reed C, Tonks K, Wilcock F. Developments in nutrition: 20 years back, 20 years forward. NUTR BULL 2016. [DOI: 10.1111/nbu.12208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - J. Harland
- HarlandHall Associates; Gloucestershire UK
| | | | - K. Tonks
- Karen Tonks Consultancy Ltd; Northamptonshire UK
| | | |
Collapse
|
29
|
Abstract
Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA.
Collapse
Affiliation(s)
- Libor Vítek
- Fourth Department of Internal MedicineFirst Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12000, Czech RepublicInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University, Prague, Czech RepublicInstitute of EndocrinologyCharles University, Prague, Czech Republic Fourth Department of Internal MedicineFirst Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12000, Czech RepublicInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University, Prague, Czech RepublicInstitute of EndocrinologyCharles University, Prague, Czech Republic
| | - Martin Haluzík
- Fourth Department of Internal MedicineFirst Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12000, Czech RepublicInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University, Prague, Czech RepublicInstitute of EndocrinologyCharles University, Prague, Czech Republic Fourth Department of Internal MedicineFirst Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12000, Czech RepublicInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University, Prague, Czech RepublicInstitute of EndocrinologyCharles University, Prague, Czech Republic
| |
Collapse
|
30
|
Sandoval D. Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy: Divergent Pathways to Improved Glucose Homeostasis. Gastroenterology 2016; 150:309-12. [PMID: 26710990 DOI: 10.1053/j.gastro.2015.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Darleen Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
31
|
Circulating Irisin Levels Are Not Regulated by Nutritional Status, Obesity, or Leptin Levels in Rodents. Mediators Inflamm 2015; 2015:620919. [PMID: 26568663 PMCID: PMC4629051 DOI: 10.1155/2015/620919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/19/2015] [Accepted: 09/06/2015] [Indexed: 12/17/2022] Open
Abstract
Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5) that is mainly released by skeletal muscle and was proposed to mediate the beneficial effects of exercise on metabolism. In the present study we aim to investigate the regulation of the circulating levels of irisin in obese animal models (diet-induced obese (DIO) rats and leptin-deficient (ob/ob) mice), as well as the influence of nutritional status and leptin. Irisin levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA) and Radioimmunoassay (RIA). Serum irisin levels remained unaltered in DIO rats and ob/ob mice. Moreover, its circulating levels were also unaffected by fasting, leptin deficiency, and exogenous leptin administration in rodents. In spite of these negative results we find a negative correlation between irisin and insulin in DIO animals and a positive correlation between irisin and glucose under short-term changes in nutritional status. Our findings indicate that serum irisin levels are not modulated by different physiological settings associated to alterations in energy homeostasis. These results suggest that in rodents circulating levels of irisin are not involved in the pathophysiology of obesity and could be unrelated to metabolic status; however, further studies should clarify its precise role in states of glucose homeostasis imbalance.
Collapse
|
32
|
Duca FA, Bauer PV, Hamr SC, Lam TKT. Glucoregulatory Relevance of Small Intestinal Nutrient Sensing in Physiology, Bariatric Surgery, and Pharmacology. Cell Metab 2015. [PMID: 26212718 DOI: 10.1016/j.cmet.2015.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Emerging evidence suggests the gastrointestinal tract plays an important glucoregulatory role. In this perspective, we first review how the intestine senses ingested nutrients, initiating crucial negative feedback mechanisms through a gut-brain neuronal axis to regulate glycemia, mainly via reduction in hepatic glucose production. We then highlight how intestinal energy sensory mechanisms are responsible for the glucose-lowering effects of bariatric surgery, specifically duodenal-jejunal bypass, and the antidiabetic agents metformin and resveratrol. A better understanding of these pathways lays the groundwork for intestinally targeted drug therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada
| | - Paige V Bauer
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sophie C Hamr
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tony K T Lam
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
33
|
Abstract
The obesity epidemic, combined with the lack of available and effective treatments for morbid obesity, is a scientific and public health priority. Worldwide, bariatric and metabolic surgeries are increasingly being performed to effectively aid weight loss in patients with severe obesity, as well as because of the favourable metabolic effects of the procedures. The positive effects of bariatric surgery, especially with respect to improvements in type 2 diabetes mellitus, have expanded the eligibility criteria for metabolic surgery to patients with diabetes mellitus and a BMI of 30-35 kg/m(2). However, the limitations of BMI, both in the diagnosis and follow-up of patients, need to be considered, particularly for determining the actual adiposity and fat distribution of the patients following weight loss. Understanding the characteristics shared by bariatric and metabolic surgeries, as well as their differential aspects and outcomes, is required to enhance patient benefits and operative achievements. For a holistic approach that focuses on the multifactorial effects of bariatric and metabolic surgery to be possible, a paradigm shift that goes beyond the pure semantics is needed. Such a shift could lead to profound clinical implications for eligibility criteria and the definition of success of the surgical approach.
Collapse
Affiliation(s)
- Gema Frühbeck
- Department of Endocrinology &Nutrition, CIBEROBN, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Avda. Pío XII 36, 31008 Pamplona, Spain
| |
Collapse
|
34
|
Spreckley E, Murphy KG. The L-Cell in Nutritional Sensing and the Regulation of Appetite. Front Nutr 2015; 2:23. [PMID: 26258126 PMCID: PMC4507148 DOI: 10.3389/fnut.2015.00023] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal (GI) tract senses the ingestion of food and responds by signaling to the brain to promote satiation and satiety. Representing an important part of the gut-brain axis, enteroendocrine L-cells secrete the anorectic peptide hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) in response to the ingestion of food. The release of GLP-1 has multiple effects, including the secretion of insulin from pancreatic β-cells, decreased gastric emptying, and increased satiation. PYY also slows GI motility and reduces food intake. At least part of the gut-brain response seems to be due to direct sensing of macronutrients by L-cells, by mechanisms including specific nutrient-sensing receptors. Such receptors may represent possible pathways to target to decrease appetite and increase energy expenditure. Designing drugs or functional foods to exploit the machinery of these nutrient-sensing mechanisms may offer a potential approach for agents to treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Eleanor Spreckley
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital , London , UK
| | - Kevin Graeme Murphy
- Section of Investigative Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital , London , UK
| |
Collapse
|
35
|
Penney NC, Kinross J, Newton RC, Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes (Lond) 2015; 39:1565-74. [PMID: 26081915 DOI: 10.1038/ijo.2015.115] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/05/2015] [Accepted: 05/31/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bariatric surgery is currently the most efficacious treatment for obesity and its associated metabolic co-morbidities, such as diabetes. The metabolic improvements occur through both weight-dependent and weight-independent mechanisms. Bile acids (BAs) have emerged as key signalling molecules that have a central role in modulating many of the physiological effects seen after bariatric surgery. This systematic review assesses the evidence from both human and animal studies for the role of BAs in reducing the metabolic complications of obesity following bariatric surgery. METHODS We conducted a systematic search of Medline and Embase databases to identify all articles investigating the role of BAs in mediating the metabolic changes observed following bariatric surgery in both animal and human studies. Boolean logic was used with relevant search terms, including the following MeSH terms: 'bile acids and salts', 'bariatric surgery', 'metabolic surgery', 'gastrointestinal tract/surgery' and 'obesity/surgery'. RESULTS Following database searches (n=1197), inclusion from bibliography searches (n=2) and de-duplication (n=197), 1002 search results were returned. Of these, 132 articles were selected for full-text review, of which 38 articles were deemed relevant and included in the review. The findings support the effects of BAs on satiety, lipid and cholesterol metabolism, incretins and glucose homoeostasis, energy metabolism, gut microbiota and endoplasmic reticulum stress following bariatric surgery. Many of these metabolic effects are modulated through the BA receptors FXR and TGR5. We also explore a possible link between BAs and carcinogenesis following bariatric surgery. CONCLUSIONS Overall there is good evidence to support the role of BAs in the metabolic effects of bariatric surgery through the above mechanisms. BAs could serve as a novel therapeutic pharmacological target for the treatment of obesity and its associated co-morbidities.
Collapse
Affiliation(s)
- N C Penney
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - J Kinross
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - R C Newton
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - S Purkayastha
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| |
Collapse
|
36
|
Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab 2015; 21:369-78. [PMID: 25662404 PMCID: PMC4351155 DOI: 10.1016/j.cmet.2015.01.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bariatric surgical procedures such as vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) are the most potent treatments available to produce sustained reductions in body weight and improvements in glucose regulation. While traditionally these effects are attributed to mechanical aspects of these procedures, such as restriction and malabsorption, a growing body of evidence from mouse models of these procedures points to physiological changes that mediate the potent effects of these surgeries. In particular, there are similar changes in gut hormone secretion, bile acid levels, and composition after both of these procedures. Moreover, loss of function of the nuclear bile acid receptor (FXR) greatly diminishes the effects of VSG. Both VSG and RYGB are linked to profound changes in the gut microbiome that also mediate at least some of these surgical effects. We hypothesize that surgical rearrangement of the gastrointestinal tract results in enteroplasticity caused by the high rate of nutrient presentation and altered pH in the small intestine that contribute to these physiological effects. Identifying the molecular underpinnings of these procedures provides new opportunities to understand the relationship of the gastrointestinal tract to obesity and diabetes as well as new therapeutic strategies to harness the effectiveness of surgery with less-invasive approaches.
Collapse
Affiliation(s)
- Randy J Seeley
- Departments of Surgery and Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Adam P Chambers
- Department of Diabetes Pharmacology, Novo Nordisk, Copenhagen 2760 MÅLØV, Denmark
| | - Darleen A Sandoval
- Departments of Surgery and Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Kohli R, Myronovych A, Tan BK, Salazar-Gonzalez RM, Miles L, Zhang W, Oehrle M, Sandoval DA, Ryan KK, Seeley RJ, Setchell KD. Bile Acid Signaling: Mechanism for Bariatric Surgery, Cure for NASH? Dig Dis 2015; 33:440-6. [PMID: 26045281 PMCID: PMC6062006 DOI: 10.1159/000371699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bariatric surgery is the most effective and durable treatment option for obesity today. More importantly, beyond weight loss, bariatric procedures have many advantageous metabolic effects including reversal of obesity-related liver disease--nonalcoholic steatohepatitis (NASH). NASH is an important comorbidity of obesity given that it is a precursor to the development of liver cirrhosis that may necessitate liver transplantation in the long run. Simultaneously, we and others have observed increased serum bile acids in humans and animals that undergo bariatric surgery. Specifically, our preclinical studies have included experimental procedures such as 'ileal transposition' or bile diversion and established procedures such as Roux-en-Y gastric bypass and the adjustable gastric band. Importantly, these effects are not simply the result of weight loss since our data show that the resolution of NASH and increase in serum bile acids are not seen in rodents that lose an equivalent amount of weight via food restriction. In particular, we have studied the role of altered bile acid signaling, in the potent impact of a bariatric procedure termed 'vertical sleeve gastrectomy' (VSG). In this review we focus on the mechanisms of NASH resolution and weight loss after VSG surgery. We highlight the fact that bariatric surgeries can be used as 'laboratories' to dissect the mechanisms by which these procedures work to improve obesity and fatty liver disease. We describe key bile acid signaling elements that may provide potential therapeutic targets for 'bariatric-mimetic technologies' that could produce benefits similar to bariatric surgery--but without the surgery!
Collapse
Affiliation(s)
- Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andriy Myronovych
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Department of Surgery, University of Michigan, Ann Arbor, Mich., USA
| | - Brandon K. Tan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rosa-Maria Salazar-Gonzalez
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lili Miles
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Melissa Oehrle
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Karen K. Ryan
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, Calif., USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Mich., USA
| | - Kenneth D.R. Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
38
|
Myronovych A, Salazar-Gonzales RM, Ryan KK, Miles L, Zhang W, Jha P, Wang L, Setchell KDR, Seeley RJ, Kohli R. The role of small heterodimer partner in nonalcoholic fatty liver disease improvement after sleeve gastrectomy in mice. Obesity (Silver Spring) 2014; 22:2301-11. [PMID: 25376397 PMCID: PMC4286402 DOI: 10.1002/oby.20890] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Bile acids (BA) are elevated after vertical sleeve gastrectomy (VSG) and farnesoid-X-receptor (FXR) is critical to the success of murine VSG. BA downregulate hepatic lipogenesis by activating the FXR-small heterodimer partner (SHP) pathway. The role of SHP in fatty liver disease improvement after VSG was tested. METHODS Wild type (WT), SHP liver transgenic (SHP-Tg), and SHP knockout (SHP-KO) high-fat diet (HFD) fed mice underwent either VSG or Sham surgery. Body weight, BA level and composition, steatosis, and BA metabolism gene expression were evaluated. RESULTS Obese WT mice post-VSG lost weight, reduced steatosis, decreased plasma alanine aminotransferase (ALT), had more BA absorptive ileal area, and elevated serum BA. Obese SHP-Tg mice post-VSG also lost weight and had decreased steatosis. SHP-KO mice were however resistant to steatosis despite weight gain on a HFD. Further SHP-KO mice that underwent VSG lost weight, but developed hepatic inflammation and had increased ALT. CONCLUSIONS VSG produces weight loss independent of SHP status. SHP ablation creates a proinflammatory phenotype which is exacerbated after VSG despite weight loss. These inflammatory alterations are possibly related to factors extrinsic to a direct manifestation of NASH.
Collapse
Affiliation(s)
- Andriy Myronovych
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| | - Rosa-Maria Salazar-Gonzales
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| | - Karen K. Ryan
- Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati College of Medicine, 2170 E. Galbraith Road, Cincinnati, Ohio, USA
| | - Lili Miles
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| | - Pinky Jha
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| | - Li Wang
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, 30 North 1900 East SOM 4R118, Salt Lake City, Utah, USA
| | - Kenneth DR Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| | - Randy J Seeley
- Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati College of Medicine, 2170 E. Galbraith Road, Cincinnati, Ohio, USA
| | - Rohit Kohli
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
- Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati College of Medicine, 2170 E. Galbraith Road, Cincinnati, Ohio, USA
| |
Collapse
|
39
|
|
40
|
Acosta A, Abu Dayyeh BK, Port JD, Camilleri M. Recent advances in clinical practice challenges and opportunities in the management of obesity. Gut 2014; 63:687-95. [PMID: 24402654 PMCID: PMC4170188 DOI: 10.1136/gutjnl-2013-306235] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite advances in understanding the roles of adiposity, food intake, GI and adipocyte-related hormones, inflammatory mediators, the gut-brain axis and the hypothalamic nervous system in the pathophysiology of obesity, the effects of different therapeutic interventions on those pathophysiological mechanisms are controversial. There are still no low-cost, safe, effective treatments for obesity and its complications. Currently, bariatric surgical approaches targeting the GI tract are more effective than non-surgical approaches in inducing weight reduction and resolving obesity-related comorbidities. However, current guidelines emphasise non-surgical approaches through lifestyle modification and medications to achieve slow weight loss, which is not usually sustained and may be associated with medication-related side effects. This review analyses current central, peripheral or hormonal targets to treat obesity and addresses challenges and opportunities to develop novel approaches for obesity.
Collapse
Affiliation(s)
- Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Barham K. Abu Dayyeh
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - John D. Port
- Division of Neuroradiology, Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|