1
|
Zhang D, Xie D, Qu Y, Mu D, Wang S. Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives. Gut Microbes 2025; 17:2451071. [PMID: 39826099 DOI: 10.1080/19490976.2025.2451071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential. We further critically examine dysbiotic alterations within the gut microbiota, with a particular focus on imbalances in bacterial and viral communities, which may contribute to the onset of NEC. The intricate interactions among toll-like receptor 4 (TLR4), microvascular integrity, immune activation, and the inflammatory milieu are meticulously summarized, offering a sophisticated understanding of NEC pathophysiology. This academic review aims to enhance the etiological comprehension of NEC, promote the development of targeted therapeutic interventions, and impart the significant impact of perinatal factors on the formulation of preventive and curative strategies for the disease.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongke Xie
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shaopu Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wroot E, Chapman JA, Young GR, Berrington JE, Stewart CJ. Opportunities for microbiome-based therapeutics in preterm infants. Nat Microbiol 2025:10.1038/s41564-025-02010-x. [PMID: 40379933 DOI: 10.1038/s41564-025-02010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Affiliation(s)
- Emily Wroot
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gregory R Young
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Sodhi CP, Scheese DJ, Tragesser C, Fulton WB, Duess JW, Tsuboi K, Sampah MES, Buck RH, Hill DR, Sabag-Daigle A, Prindle T, Wang S, Wang M, Hackam DJ. Necrotizing enterocolitis: specific human milk oligosaccharides prevent enteric glia loss and hypomotility. Pediatr Res 2025:10.1038/s41390-025-04077-y. [PMID: 40348872 DOI: 10.1038/s41390-025-04077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is mediated by toll-like receptor 4 (TLR4)-induced inflammation and is preceded by reduced intestinal motility. Human milk oligosaccharides (HMOs) are non-digestible components of breast milk that prevent NEC in preclinical models. We now hypothesize that HMOs can reduce the risk of NEC through restoration of intestinal motility and reduced TLR4-mediated inflammation. METHODS NEC was induced in C57-BL/6 mice through the combination of formula gavage, hypoxia, and oral administration of NEC stool. Mice were administered either 2'-FL (5 g/L), 6'-SL (5 g/L), or a blend of 5 specific HMOs (5 g/L) containing 2'-FL (2.606 g/L), 3'-FL (0.652 g/L), LNT (1.304 g/L), 3'-SL (0.174 g/L), and 6'-SL (0.260 g/L). Gastrointestinal motility was assessed by 70 Kd FITC-dextran transit time. Enteric glia were quantified by immunohistochemistry and qRT-PCR expression. RESULTS Administration of either 2'-FL, 6'-SL, or HMO blend significantly attenuated NEC severity and reversed intestinal hypomotility. HMOs prevented enteric glia loss and regulated key genes critical for enteric glia maintenance, attenuated pro-apoptotic genes, and increased anti-apoptotic genes in vitro, resulting in a reduction in apoptosis. Strikingly, HMOs reduced LPS-TLR4-induced NFκB signaling and ROS generation in enteric glia. CONCLUSIONS HMOs protect against NEC at least in part through protective effects on inflammation and the enteric nervous system. IMPACT This study sheds light on the role of certain human milk oligosaccharides in a clinically relevant mouse model of NEC and adds additional insights into their underlying mechanism of action by revealing a protective effect on the enteric nervous system. These results reveal that HMOs prevent the loss of enteric glia in NEC and influence the expression of genes that regulate enteric glia maintenance. HMOs also limit TLR4-NFkB signaling, providing an additional mechanism of enteric glia maintenance.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA.
| | - Daniel J Scheese
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Cody Tragesser
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | - William B Fulton
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Johannes W Duess
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Koichi Tsuboi
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Maame Efua S Sampah
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | | | | | | | - Thomas Prindle
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Sanxia Wang
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Menghan Wang
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA
| | - David J Hackam
- Division of General Pediatric Surgery and Department of Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Baltimore, MD, USA.
| |
Collapse
|
4
|
Hao Y, Wang C, Wang L, Hu L, Duan T, Zhang R, Yang X, Li T. Nondigestible stachyose alleviates cyclophosphamide-induced small intestinal mucosal injury in mice by regulating intestinal exosomal miRNAs, independently of the gut microbiota. Food Res Int 2025; 209:116258. [PMID: 40253186 DOI: 10.1016/j.foodres.2025.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Stachyose has traditionally been considered to exert prebiotic effects primarily through its interaction with gut microbiota. However, this study reveals a novel mechanism by which stachyose alleviates cyclophosphamide (CY)-induced small intestinal mucosa disruption by regulating the intestinal exosomal miRNAs, without relying on the gut microbiota. Specifically, stachyose significantly mitigates CY-caused damage to the intestinal permeability, oxidative stress, and the structure of intestinal villi and crypts in pseudo-germ-free (PGF) mice. The immunofluorescence staining and qPCR analyses show that stachyose treatment restores CY-caused abnormal changes on the levels of tight junction proteins including MUC2, Occludin, Claudin-1, and ZO-1, and pro-inflammatory cytokines including TNF-α, IL-1β, and IL-2. Furthermore, by conducting fecal miRNA transplantation experiment, we further demonstrated that, similar to stachyose, stachyose-shaped intestinal miRNAs protect against CY-induced intestinal mucosal damage in PGF mice. In summary, this study provides new scientific evidence for the direct interaction between nondigestible stachyose and the proximal small intestine. It also opens new avenues for further investigation into the systemic nutritional functions of stachyose, particularly the health benefits of stachyose in the upper gastrointestinal tract.
Collapse
Affiliation(s)
- Yuhang Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chennan Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lili Hu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tianchi Duan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China..
| |
Collapse
|
5
|
Price L, Orgel KA, Good M. Donor human milk pasteurization methods and the effect on milk components as they relate to Necrotizing enterocolitis. Semin Fetal Neonatal Med 2025:101638. [PMID: 40280799 DOI: 10.1016/j.siny.2025.101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Necrotizing enterocolitis (NEC) is an intestinal disease that predominantly occurs in preterm infants. While there are no definitive treatment options for NEC, the administration of human milk is protective against the development of NEC in preterm infants. However, human milk composition is highly dynamic, containing numerous bioactive components that can be affected by both maternal and perinatal factors. Furthermore, when maternal milk is unavailable, donor human milk, which goes through a rigorous preparation process including pooling and pasteurization, is used. The different pasteurization methods can have implications for the bioactive components of human milk. In this review, we explore the current literature surrounding the benefits of human milk in the prevention of NEC. We further review the bioactive components and the microbiome of human milk and the many factors that affect the diversity of milk content between human milk samples. Finally, we review the different methods of pasteurization and their effects on the components of human milk.
Collapse
Affiliation(s)
- Laiken Price
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Kelly A Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Afsharnia A, Cai Y, Nauta A, Groeneveld A, Folkerts G, Wösten MMSM, Braber S. In Vivo Evidence on the Emerging Potential of Non-Digestible Oligosaccharides as Therapeutic Agents in Bacterial and Viral Infections. Nutrients 2025; 17:1068. [PMID: 40292455 PMCID: PMC11945282 DOI: 10.3390/nu17061068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The issue of antibiotic-resistant bacterial infections, coupled with the rise in viral pandemics and the slow development of new antibacterial and antiviral treatments, underscores the critical need for novel strategies to mitigate the spread of drug-resistant pathogens, enhance the efficacy of existing therapies, and accelerate the discovery and deployment of innovative antimicrobial and antiviral solutions. One promising approach to address these challenges is the dietary supplementation of non-digestible oligosaccharides (NDOs). NDOs, including human milk oligosaccharides (HMOs), play a vital role in shaping and sustaining a healthy gut microbiota. Beyond stimulating the growth and activity of beneficial gut bacteria, NDOs can also interact directly with pathogenic bacteria and viruses. Their antiviral and antibacterial properties arise from their unique interactions with pathogens and their ability to modulate the host's immune system. NDOs can function as decoy receptors, inhibit pathogen growth, bind to bacterial toxins, stimulate the host immune response, exhibit anti-biofilm properties, and enhance barrier protection. However, a notable gap exists in the comprehensive assessment of in vivo and clinical data on this topic. This review aims to provide an in-depth overview of the in vivo evidence related to the antiviral and antibacterial effects of various NDOs and HMOs, with a focus on discussing their possible mechanisms of action.
Collapse
Affiliation(s)
- Amirmohammad Afsharnia
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| | - Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Arjen Nauta
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Andre Groeneveld
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| | - Marc M. S. M. Wösten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CB Utrecht, The Netherlands; (A.A.); (G.F.)
| |
Collapse
|
7
|
Shelley WC, Pecoraro AR, Good M, Mesfin FM, Manohar K, Brokaw JP, Hansen AM, Pepin RH, Karty JA, Hawkins TB, Lee J, Joseph S, Hunter C, Liu J, Markel TA. The Impact of Storage Conditions on Stool Smellprints as Assessed by an Electronic Nose. ACS Sens 2025; 10:689-698. [PMID: 39817811 DOI: 10.1021/acssensors.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease of the neonatal gastrointestinal tract. Volatile organic compounds (VOCs), odoriferous compounds released as a byproduct of bacterial metabolism, can be used as a proxy for gut health. We hypothesized that patients with NEC would have different microbial profiles and elicit different VOC signatures as assessed by gas chromatography/mass spectrometry (GC/MS) or an electronic nose compared to controls. Furthermore, we hypothesized that the temperature of sample storage and the length of time in storage would impact the VOC signatures. Forty-five human stool samples were obtained from Neonatal Intensive Care Units. They were stored at -80 °C as part of the Necrotizing Enterocolitis Biorepository. The microbiome composition was determined by 16S-rRNA gene sequencing and VOC profiles were obtained with GC-MS and by analysis with the Cyranose 320 electronic nose. In separate experiments, fresh stool samples were collected from three different strains of mice. Samples were stored for different times and different temperatures, and VOC signals were compared. A p-value less than 0.05 was considered significant. 16S-rRNA sequencing found a difference in the microbiome composition (p = 0.025) between human NEC and control samples. There was also a difference observed between NEC and control samples identified by GC-MS (p = 0.001). However, there were no differences in VOC smellprints between NEC and controls when analyzed with an electronic nose. When mouse specimens were analyzed, principal component values changed significantly over time and with different storage temperatures. NEC is associated with a different gut microbiome and the VOC profile compared to age-matched controls. However, this difference was not appreciated when biobanked stool samples were compared via an electronic nose. Older samples may experience VOC decay, or the electronic nose may not be sensitive enough to detect NEC in stool samples. Further studies on fresh human stool samples are needed, but the findings herein may limit the use of electronic noses as diagnostic tools for NEC.
Collapse
Affiliation(s)
- W Christopher Shelley
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Anthony R Pecoraro
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Misty Good
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fikir M Mesfin
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Krishna Manohar
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - John P Brokaw
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Angela M Hansen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Robert H Pepin
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Troy B Hawkins
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jasmine Lee
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sharon Joseph
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Chelsea Hunter
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jianyun Liu
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Troy A Markel
- Department of Surgery, Division of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47906, United States
| |
Collapse
|
8
|
Valentine CJ. Research on Human milk feeding to drive impactful immune health and outcomes in vulnerable preterm infants should evaluate maternal confounders. Pediatr Res 2025:10.1038/s41390-025-03932-2. [PMID: 39972152 DOI: 10.1038/s41390-025-03932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
|
9
|
Strobel KM, Wood TR, Valentine GC, Brandon OC, Hendrixson DT, Mayock DE, Perez KM, Puia-Dumitrescu M, Heagerty PJ, Juul SE. Effect of early antibiotic exposure on necrotizing enterocolitis and growth in extremely preterm infants. Pediatr Res 2025:10.1038/s41390-025-03928-y. [PMID: 39955429 DOI: 10.1038/s41390-025-03928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND The relationship between early antibiotic exposure, necrotizing enterocolitis (NEC), and growth faltering (GF) in extremely preterm infants is unknown. METHODS We evaluated the association between peripartum and postnatal antibiotic exposure in the first week after birth with NEC and GF in this secondary analysis of Preterm Erythropoietin Neuroprotection Trial subjects. NEC was defined as Bell's stage ≥ IIA; GF was defined as decreased weight, length, or head circumference (HC) z-score from birth to discharge of < -0.8. Multivariable analyses were adjusted with maternal and infant factors. RESULTS A total of 891 infants survived the first week and were included in the NEC analyses, while 828 infants survived to discharge and were included in the growth analyses. For every 1-day increase in infant antibiotic exposure during the first week after birth, there was a significantly increased adjusted hazard of NEC (aHR/day 1.14 [1.01-1.28], p = 0.034). Antibiotics for 3-4 days and 5-7 days total in the first week were associated with increased odds of weight GF (aOR 1.90 [1.21-2.99], aOR 2.32 [1.44-3.74]), length GF (aOR 1.76 [1.22-2.59], aOR 1.88 [1.26-2.80]), and HC GF (aOR 1.75 [1.08-2.84], aOR 1.87 [1.14-3.08]). CONCLUSION Increased antibiotic exposure in the first week after birth was associated with NEC and GF risk. IMPACT In this post-hoc analysis of a large multi-site trial, we found infant antibiotic exposure in the first week after birth was associated with an increased hazard of necrotizing enterocolitis in the extremely preterm infant after adjusting for maternal and infant factors. First week antibiotic exposure in the extremely preterm infant was associated with an increased odds of weight, linear, and head circumference growth faltering after adjusting for maternal and infant factors. These findings encourage the judicious use of early antibiotics in extremely preterm infants.
Collapse
Affiliation(s)
- Katie M Strobel
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Thomas R Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Gregory C Valentine
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Olivia C Brandon
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - D Taylor Hendrixson
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Division of Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dennis E Mayock
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Krystle M Perez
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mihai Puia-Dumitrescu
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Institute on Human Development and Disability, Seattle, WA, USA
| |
Collapse
|
10
|
Mustapha M, Blair H, Leake N, Johnson V, van den Akker CHP, Embleton ND. The evolution of nutritional care in preterm infants with a focus on the extreme preterm infant. J Hum Nutr Diet 2025; 38:e13353. [PMID: 39054762 DOI: 10.1111/jhn.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The evolution of nutritional care in preterm infants, particularly those classified as extremely preterm, has undergone significant advancements in recent years. These infants, born at less than 28 weeks of gestation, face unique challenges related to their elevated nutrient requirements, underdeveloped organ systems and minimal reserves, posing a need for timely and specialised nutritional strategies. Historically, the nutritional management of preterm infants focussed on short-term goals to promote survival. In recent years, the focus has shifted to the quality of nutrient provision to optimise neurodevelopment and longer-term health outcomes. This review highlights the shift from a generalised nutritional approach to a robust, evidence-based approach for preterm infants, acknowledging the intricate interplay between nutrition, holistic care and developmental outcomes. As neonatal care continues to evolve, ongoing research will refine nutritional interventions, optimise growth and enhance the long-term health outcomes of these vulnerable infants.
Collapse
Affiliation(s)
| | | | - Nadia Leake
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Chris H P van den Akker
- Department of Pediatrics-Neonatology, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas D Embleton
- Ward 35, Royal Victoria Infirmary, Newcastle Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Urashima T, Ajisaka K, Ujihara T, Nakazaki E. Recent advances in the science of human milk oligosaccharides. BBA ADVANCES 2025; 7:100136. [PMID: 39991261 PMCID: PMC11847054 DOI: 10.1016/j.bbadva.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 02/25/2025] Open
Abstract
Human colostrum and mature milk contain oligosaccharides (Os), designated as human milk oligosaccharides (HMOs). Approximately 200 varieties of HMOs have been characterized. Although HMOs are not utilized as an energy source by infants, they have important protective functions, including pathogenic bacteria and viral infection inhibitors and immune modulators, among other functions, and HMOs stimulate brain-nerve development. The Os concentration is average 11 g/L in human milk but >100 mg/L in mature bovine milk, which is used to manufacture infant formula, suggesting that human-identical milk oligosaccharides (HiMOs) should be incorporated into milk substitutes. Some infant formulas incorporating 2'-fucosyllactose and lacto-N-neotetraose are now commercially available, and intervention trials have been concluded. We review basic HMO information, including their chemical structures and concentrations, attempts to synthesize HMOs at small and plant scale, studies that clarified HMO biological functions, and interventions with milk substitutes incorporating HiMOs in formula-fed infants.
Collapse
Affiliation(s)
- Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi2sen 11banchi, Inada cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Katsumi Ajisaka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-Ku, Niigata City, Niigata, 956-8603, Japan
| | - Tetsuro Ujihara
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| | - Eri Nakazaki
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| |
Collapse
|
12
|
Slater AS, Hickey RM, Davey GP. Interactions of human milk oligosaccharides with the immune system. Front Immunol 2025; 15:1523829. [PMID: 39877362 PMCID: PMC11772441 DOI: 10.3389/fimmu.2024.1523829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are abundant, diverse and complex sugars present in human breast milk. HMOs are well-characterized barriers to microbial infection and by modulating the human microbiome they are also thought to be nutritionally beneficial to the infant. The structural variety of over 200 HMOs, including neutral, fucosylated and sialylated forms, allows them to interact with the immune system in various ways. Clinically, HMOs impact allergic diseases, reducing autoimmune and inflammatory responses, and offer beneficial support to the preterm infant immune health. This review examines the HMO composition and associated immunomodulatory effects, including interactions with immune cell receptors and gut-associated immune responses. These immunomodulatory properties highlight the potential for HMO use in early stage immune development and for use as novel immunotherapeutics. HMO research is rapidly evolving and promises innovative treatments for immune-related conditions and improved health outcomes.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Peng Z, Siziba LP, Mank M, Stahl B, Gonsalves J, Wernecke D, Rothenbacher D, Genuneit J. Profiles of 71 Human Milk Oligosaccharides and Novel Sub-Clusters of Type I Milk: Results from the Ulm SPATZ Health Study. Nutrients 2025; 17:280. [PMID: 39861410 PMCID: PMC11767774 DOI: 10.3390/nu17020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Although approximately 160 human milk oligosaccharides (HMOs) have been identified, current studies on HMO quantitation are limited to the 10-19 most abundant HMOs. We assessed the variations in the relative concentrations of 71 HMO structures over lactation in human milk samples by an advanced liquid chromatography-mass spectrometry approach. METHODS Samples were collected from 64 mothers at 6 weeks, 6 months, and 12 months of lactation in the Ulm SPATZ Health Study, a German birth cohort. In this longitudinal study, we fitted linear mixed-effect models to analyze changes in the log2-transformed and standardized HMO concentration over time. Based on the profile of 71 HMOs, we also fitted a group-based multi-trajectory (GBMT) model to cluster mothers secreting cluster type I milk, who account for the majority of lactating mothers. RESULTS We found that 52 HMOs had a decreasing trend (regression coefficients ranging from -1.41 to -0.17) and 9 had an increasing trend (regression coefficients ranging from 0.25 to 0.64) during lactation, and the findings were statistically significant after multiple testing corrections. Using human milk samples of 49 mothers with type I milk, we further identified two novel sub-clusters with distinct longitudinal trajectories of concentrations of 71 HMOs during lactation: Type I-a (N = 20) and I-b (N = 29). These sub-clusters were not associated with maternal non-genetic characteristics. CONCLUSIONS Our findings extend existing knowledge about the structural diversity of HMOs and their variations over lactation. These may pave the way to investigate the potential nutritional benefits of various HMOs on infant health and early life development in the future.
Collapse
Affiliation(s)
- Zhuoxin Peng
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
| | - Linda P. Siziba
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
| | - Marko Mank
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
| | - Bernd Stahl
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
- Department of Chemical Biology & Drug Discovery, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - John Gonsalves
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
| | - Deborah Wernecke
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 89075 Ulm, Germany
| | - Dietrich Rothenbacher
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 89075 Ulm, Germany
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 04103 Leipzig, Germany
| |
Collapse
|
14
|
Zeng S, Zhou M, Mu D, Wang S. Clinical implications of maternal multikingdom transmissions and early-life microbiota. THE LANCET. MICROBE 2025:101042. [PMID: 39818230 DOI: 10.1016/j.lanmic.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Mother-to-infant transmission of the bacteriome, virome, mycobiome, archaeome, and their mobile genetic elements has been recognised in nature as an important step for the infant to acquire and maintain a healthy early-life (from birth till age 3 years) microbiota. A comprehensive overview of other maternal multikingdom transmissions remains unavailable, except for that of the bacteriome. Associations between microorganisms and diseases throughout the human life span have been gradually discovered; however, whether these microorganisms are maternally derived and how they concomitantly interact with other microbial counterparts remain poorly understood. This Review first discusses the current understanding of maternal multikingdom transmissions, their contributions to the development of early-life microbiota, and the primary factors that influence the transmission processes. The clinical implications of the inherited microbiota on human health in early life have been emphasised upon next, along with highlighting of knowledge gaps that should be addressed in future research. Finally, interventions to restore typical vertical transmission or disturbed early-life microbiota have been discussed as potential therapeutic approaches.
Collapse
Affiliation(s)
- Shuqin Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meicen Zhou
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Shaopu Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Chen F, Tan K, Lv Z, Chen F, Xu W, Gong X, Lu L, Sun H, Fu Q, Zhuang W. Data-independent acquisition-based blood proteomics unveils predictive biomarkers for neonatal necrotizing enterocolitis. Anal Bioanal Chem 2025; 417:199-218. [PMID: 39562369 PMCID: PMC11695561 DOI: 10.1007/s00216-024-05637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening condition affecting preterm infants, sometimes necessitating surgical treatment. This study aimed to analyze differentially expressed proteins (DEPs) and access their biological and clinical significance in the plasma of neonates with NEC. Peripheral blood samples were collected from NEC infants at various time points, and plasma was separated. Data-independent acquisition (DIA) technology was utilized to identify DEPs among NEC patients at different stages. Bioinformatic analyses, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, and protein-to-protein interaction analyses were performed on the DEPs. External datasets, along with receiver operating characteristic curves and gene set enrichment analysis, were used to clinically and biologically validate the findings. DEPs between the NEC and pre-NEC groups indicated reduced protein, heme, nitrogen, and purine nucleotide biosynthesis during NEC formation. In addition, enriched DEPs among the NEC groups at different time points suggested reconstructed extracellular matrix, aberrant B-lymphocyte immune responses, and decreased glycosaminoglycan levels during NEC progression. These findings were both clinically and biologically validated using external datasets. Our study highlights the clinical and biological relevance of proteomics in NEC patients. This study demonstrates key pathways involved in NEC pathogenesis and establishes DIA mass spectrometry as a powerful and noninvasive tool for evaluating and predicting NEC formation and progression.
Collapse
Affiliation(s)
- Feng Chen
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Faling Chen
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijue Xu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailiang Sun
- Department of General Surgery, Affiliated Changzhou Children's Hospital of Nantong University, Jiangsu, China
| | - Qinqin Fu
- Department of Neonatology, Huzhou Maternity & Child Health Care Hospital, Zhejiang, China.
| | - Wenjun Zhuang
- Department of General Surgery, Affiliated Changzhou Children's Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
16
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
17
|
Chapman JA, Wroot E, Brown T, Beck LC, Embleton ND, Berrington JE, Stewart CJ. Characterising the metabolic functionality of the preterm neonatal gut microbiome prior to the onset of necrotising enterocolitis: a pilot study. BMC Microbiol 2024; 24:533. [PMID: 39716092 DOI: 10.1186/s12866-024-03701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Necrotising enterocolitis (NEC) is a devastating bowel disease that primarily occurs in infants born prematurely and is associated with abnormal gut microbiome development. While gut microbiome compositions associated with NEC have been well studied, there is a lack of experimental work investigating microbiota functions and their associations with disease onset. The aim of this pilot study was to characterise the metabolic functionality of the preterm gut microbiome prior to the onset of NEC compared with healthy controls. RESULTS Eight NEC infants were selected of median gestation 26.5 weeks and median day of life (DOL) of NEC onset 20, with one sample used per infant, collected within one to eight days (median four) before NEC onset. Each NEC case was matched to a control infant based on gestation and sample DOL, the main driver of microbiome composition in this population, giving a total cohort of 16 infants for this study. Dietary exposures were well matched. The microbiota of NEC and control infants showed similar wide-ranging metabolic functionalities. All 94 carbon sources were utilised to varying extents but NEC and control samples clustered separately by supervised ordination based on carbon source utilisation profiles. For a subset of eight samples (four NEC, four control) for which pre-existing metagenome data was available, microbiome composition was found to correlate significantly with metabolic activity measured on Biolog plates (p = 0.035). Comparisons across all 16 samples showed the NEC microbiota to have greater utilisation of carbon sources that are the products of proteolytic fermentation, specifically amino acids. In pairwise comparisons, L-methionine was highly utilised in NEC samples, but poorly utilised in controls (p = 0.043). Carbon sources identified as discriminatory for NEC also showed a greater enrichment for established markers of inflammatory disease, such as inflammatory bowel disease, irritable bowel syndrome and diverticular disease. CONCLUSIONS Before NEC onset, the preterm gut microbiota showed greater metabolic utilisation of amino acids, potentially indicating a shift from predominantly saccharolytic to proteolytic fermentation. Products of amino acid breakdown could therefore act as biomarkers for NEC development. A larger study is warranted, ideally with infants from multiple sites.
Collapse
Affiliation(s)
- Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK.
| | - Emily Wroot
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK
| | - Toby Brown
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK.
| |
Collapse
|
18
|
Biagioli V, Sortino V, Falsaperla R, Striano P. Role of Human Milk Microbiota in Infant Neurodevelopment: Mechanisms and Clinical Implications. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1476. [PMID: 39767905 PMCID: PMC11674883 DOI: 10.3390/children11121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Human milk (HM) is recognized as an ideal source of nutrition for newborns; as a result, its multiple bioactive molecules can support the growth of healthy newborns and reduce the risk of mortality and diseases such as asthma, respiratory infections, diabetes (type 1 and 2), and gastrointestinal disorders such as ulcerative colitis and Crohn's disease. Furthermore, it can reduce the severity of necrotizing enterocolitis (NEC) in preterm infants. Moreover, human milk oligosaccharides (HMOs) present in breast milk show an immunomodulatory, prebiotic, and neurodevelopmental effect that supports the microbiota-gut-brain axis. MATERIAL AND METHODS This study examined the state-of-the-art research, using keywords such as "breastfeeding", "human milk oligosaccharides", "microbiota-gut-brain axis", "infants", and "malnutrition". The literature review was conducted by selecting articles between 2013 and 2024, as the most recent ones. The databases used were Web Science, PubMed, and Scopus. RESULTS We found multiple studies examining the composition of HM and infant formula (IF). However, further longitudinal studies and randomized control trials (RCTs) are needed to better understand the clinical outcomes that bioactive components exert on healthy and hospitalized children and how, in conditions of malnutrition, it is necessary to support the growth of the newborn. CONCLUSIONS In this review, we affirm the importance of human milk and, through it, the modulation of the microbiota and the neuroprotective role in newborns, determining the health of the following years of life.
Collapse
Affiliation(s)
- Valentina Biagioli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy;
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy;
| | - Raffaele Falsaperla
- Department of Medical Science-Pediatrics, University of Ferrara, 44124 Ferrara, Italy;
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy;
- Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Giannina Gaslini Full Member of EPICARE, 16121-16167 Genoa, Italy
| |
Collapse
|
19
|
Wichmann A. Biological effects of combinations of structurally diverse human milk oligosaccharides. Front Pediatr 2024; 12:1439612. [PMID: 39564380 PMCID: PMC11573541 DOI: 10.3389/fped.2024.1439612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of structures and an abundant bioactive component of breastmilk that contribute to infant health and development. Preclinical studies indicate roles for HMOs in shaping the infant gut microbiota, inhibiting pathogens, modulating the immune system, and influencing cognitive development. In the past decade, several industrially produced HMOs have become available to fortify infant formula. Clinical intervention trials with manufactured HMOs have begun to corroborate some of the physiological effects reported in preclinical studies, especially modulation of the gut microbiota in the direction of breastfed infants. As more HMOs become commercially available and as HMOs have some shared mechanisms of action, there is a need to better understand the unique and differential effects of individual HMOs and the benefits of combining multiple HMOs. This review focuses on the differential effects of different HMO structural classes and individual structures and presents a scientific rationale for why combining multiple structurally diverse HMOs is expected to exert greater biological effects.
Collapse
Affiliation(s)
- Anita Wichmann
- Global Regulatory Affairs HMOs, Early Life & Medical Nutrition, DSM-Firmenich, Hørsholm, Denmark
| |
Collapse
|
20
|
Riedy H, Bertrand K, Chambers C, Bandoli G. The Association Between Maternal Psychological Health and Human Milk Oligosaccharide Composition. Breastfeed Med 2024; 19:837-847. [PMID: 39286878 PMCID: PMC11807868 DOI: 10.1089/bfm.2024.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Background and Objective: Human milk oligosaccharides (HMOs) are carbohydrates abundant in human breast milk. Their composition varies widely among women, and prior research has identified numerous factors contributing to this variation. However, the relationship between maternal psychological health and HMO levels is currently unknown. Thus, our objective was to identify whether maternal stress, anxiety, or depressive symptoms are associated with HMOs. Methods: Data originated from 926 lactating individuals from the UC San Diego Human Milk Biorepository. Nineteen prevalent HMOs were assayed using high-performance liquid chromatography. Participants self-reported measures of the Edinburgh Postnatal Depression Scale (n = 495), State-Trait Anxiety Inventory S-Scale (n = 486), and/or Perceived Stress Scale (n = 493) within 60 days of their milk collection; their results were categorized using standard screening cutoffs. HMOs were assessed individually and grouped by principal component analysis (PCA), and associations with maternal psychological symptoms were analyzed using multivariable linear regression adjusted for covariates. Results: After Bonferroni correction (p < 0.002), the following HMOs significantly varied with maternal psychological distress in multivariate analysis: lacto-N-fucopentaose III (LNFP III) and lacto-N-hexaose (LNH) among Secretors with depressive symptoms and difucosyllactose (DFLac), LNFP III, and disialyl-LNH (DSLNH) among Secretors with stress. In PCA, depressive symptoms and stress were associated with one principal component among Secretors. No HMOs varied with anxiety symptoms. Conclusions: Several HMOs varied with maternal depressive symptoms and stress, suggesting a relationship between maternal psychological health and breast milk composition. Additional studies are needed to determine the impact of this variation on infant health.
Collapse
Affiliation(s)
- Hannah Riedy
- Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, USA
- UC San Diego Mommy’s Milk Human Milk Research Biorepository, University of California San Diego, La Jolla, California, USA
| | - Kerri Bertrand
- UC San Diego Mommy’s Milk Human Milk Research Biorepository, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Christina Chambers
- UC San Diego Mommy’s Milk Human Milk Research Biorepository, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gretchen Bandoli
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Cui C, Qiu L, Li L, Chen FL, Liu X, Sun H, Liu XC, Bao L, Li LQ. A time series algorithm to predict surgery in neonatal necrotizing enterocolitis. BMC Med Inform Decis Mak 2024; 24:304. [PMID: 39425161 PMCID: PMC11487704 DOI: 10.1186/s12911-024-02695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Determining the optimal timing of surgical intervention for Neonatal necrotizing enterocolitis (NEC) poses significant challenges. This study develops a predictive model using the long short-term memory network (LSTM) with a focal loss (FL) to identify infants at risk of developing Bell IIB + NEC early and issue timely surgical warnings. METHODS Data from 791 neonates diagnosed with NEC are gathered from the Neonatal Intensive Care Unit (NICU), encompassing 35 selected features. Infants are categorized into those requiring surgical intervention (n = 257) and those managed medically (n = 534) based on the Mod-Bell criteria. A fivefold cross-validation approach is employed for training and testing. The LSTM algorithm is utilized to capture and utilize temporal relationships in the dataset, with FL employed as a loss function to address class imbalance. Model performance metrics include precision, recall, F1 score, and average precision (AP). RESULTS The model tested on a real dataset demonstrated high performance. Predicting surgical risk 1 day in advance achieved precision (0.913 ± 0.034), recall (0.841 ± 0.053), F1 score (0.874 ± 0.029), and AP (0.917 ± 0.025). The 2-days-in-advance predictions yielded (0.905 ± 0.036), recall (0.815 ± 0.057), F1 score (0.857 ± 0.035), and AP (0.905 ± 0.029). CONCLUSION The LSTM model with FL exhibits high precision and recall in forecasting the need for surgical intervention 1 or 2 days ahead. This predictive capability holds promise for enhancing infants' outcomes by facilitating timely clinical decisions.
Collapse
Affiliation(s)
- Cheng Cui
- Neonatal Diagnosis and Treatment Center of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400014, China
| | - Ling Qiu
- The First People's Hospital Of Longquanyi District, Chengdu, 610100, China
| | - Ling Li
- Guang'an District Maternal and Child Health Care and Family Planning Service Center, Chengdu, 638000, China
| | - Fei-Long Chen
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Xiao Liu
- College of Safety Engineering, China University of Mining and Technology, Beijing, 221116, China
| | - Huan Sun
- Neonatal Diagnosis and Treatment Center of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400014, China
| | - Xiao-Chen Liu
- Neonatal Diagnosis and Treatment Center of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400014, China
| | - Lei Bao
- Neonatal Diagnosis and Treatment Center of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400014, China.
| | - Lu-Quan Li
- Neonatal Diagnosis and Treatment Center of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400014, China.
| |
Collapse
|
22
|
Malamitsi-Puchner A, Briana DD, Di Renzo GC. The microbiome in pregnancy and early life-Highlights from the 11th Maria Delivoria-Papadopoulos Perinatal Symposium. Acta Paediatr 2024; 113:2189-2196. [PMID: 38895845 DOI: 10.1111/apa.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
This review was based on a symposium that examined novel aspects of the microbiome during pregnancy and early life and explored papers published by the lecturers. For example, it showed that bacterial extracellular vesicles derived from the microbiome harboured in various maternal niches, carried bacterial deoxyribonucleic acid, were isolated from the placenta and may have confounded placental microbiome studies. Maternal diet was responsible for the composition and diversity of breast milk microbiota, and may have shaped the offspring's microbiome and influenced their immune components. Probiotics and antibiotics administered perinatally may have had beneficial but also long-lasting adverse effects on offspring.
Collapse
Affiliation(s)
- Ariadne Malamitsi-Puchner
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina D Briana
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Gian Carlo Di Renzo
- PREIS School, International and European School of Perinatal, Neonatal and Reproductive Medicine, Florence, Italy
- Department of Obstetrics, Gynecology and Perinatology, I.M. Sechenov First State University of Moscow, Moscow, Russia
| |
Collapse
|
23
|
Malamitsi-Puchner A, Briana DD, Neu J. The conundrum of intestinal injury in preterm infants receiving mother's own milk. J Perinatol 2024:10.1038/s41372-024-02125-9. [PMID: 39300239 DOI: 10.1038/s41372-024-02125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
"Necrotizing enterocolitis" ("NEC") is a heterogeneous group of intestinal injuries experienced primarily in preterm infants. Risk factors include among others preterm gut microbiome alterations. Maternal milk (MM), or otherwise parent milk, is protective for the developing intestine due to its constituents, which include bioactive antimicrobials, immunomodulatory molecules, human milk oligosaccharides (HMOs), secretory immunoglobulin A (sIgA), and microorganisms. However, some preterm infants receiving exclusively mother's own milk (MOM) develop intestinal injuries. Studies showed predisposition to increased risk for "NEC", when a decreased MM HMO, disialyllacto-N-tetraose, is combined with an altered infant's gut microbiome. The intestine may also become more prone to injury with a greater amount of bacteria not bound to IgA. Variations in MM composition may alter the offspring gut microbiome, depriving protection. The different "NEC" entities should be considered to play a role as to why, in many studies, MOM does not provide absolute protection against preterm intestinal injury.
Collapse
Affiliation(s)
- Ariadne Malamitsi-Puchner
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece.
| | - Despina D Briana
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Josef Neu
- Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL, USA
| |
Collapse
|
24
|
Masi AC, Beck LC, Perry JD, Granger CL, Hiorns A, Young GR, Bode L, Embleton ND, Berrington JE, Stewart CJ. Human milk microbiota, oligosaccharide profiles, and infant gut microbiome in preterm infants diagnosed with necrotizing enterocolitis. Cell Rep Med 2024; 5:101708. [PMID: 39216480 PMCID: PMC11524953 DOI: 10.1016/j.xcrm.2024.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Necrotizing enterocolitis (NEC) is a severe intestinal disease of very preterm infants with mother's own milk (MOM) providing protection, but the contribution of the MOM microbiota to NEC risk has not been explored. Here, we analyze MOM of 110 preterm infants (48 NEC, 62 control) in a cross-sectional study. Breast milk contains viable bacteria, but there is no significant difference in MOM microbiota between NEC and controls. Integrative analysis between MOM microbiota, human milk oligosaccharides (HMOs), and the infant gut microbiota shows positive correlations only between Acinetobacter in the infant gut and Acinetobacter and Staphylococcus in MOM. This study suggests that NEC protection from MOM is not modulated through the MOM microbiota. Thus, "'restoring" the MOM microbiota in donor human milk is unlikely to reduce NEC, and emphasis should instead focus on increasing fresh maternal human milk intake and researching different therapies for NEC prevention.
Collapse
Affiliation(s)
- Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John D Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
| | - Claire L Granger
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Alice Hiorns
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gregory R Young
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA 92093, USA; The Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK; Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
25
|
Ambalavanan A, Chang L, Choi J, Zhang Y, Stickley SA, Fang ZY, Miliku K, Robertson B, Yonemitsu C, Turvey SE, Mandhane PJ, Simons E, Moraes TJ, Anand SS, Paré G, Williams JE, Murdoch BM, Otoo GE, Mbugua S, Kamau-Mbuthia EW, Kamundia EW, Gindola DK, Rodriguez JM, Pareja RG, Sellen DW, Moore SE, Prentice AM, Foster JA, Kvist LJ, Neibergs HL, McGuire MA, McGuire MK, Meehan CL, Sears MR, Subbarao P, Azad MB, Bode L, Duan Q. Human milk oligosaccharides are associated with maternal genetics and respiratory health of human milk-fed children. Nat Commun 2024; 15:7735. [PMID: 39232002 PMCID: PMC11375010 DOI: 10.1038/s41467-024-51743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
Breastfeeding provides many health benefits, but its impact on respiratory health remains unclear. This study addresses the complex and dynamic nature of the mother-milk-infant triad by investigating maternal genomic factors regulating human milk oligosaccharides (HMOs), and their associations with respiratory health among human milk-fed infants. Nineteen HMOs are quantified from 980 mothers of the CHILD Cohort Study. Genome-wide association studies identify HMO-associated loci on chromosome 19p13.3 and 19q13.33 (lowest P = 2.4e-118), spanning several fucosyltransferase (FUT) genes. We identify novel associations on chromosome 3q27.3 for 6'-sialyllactose (P = 2.2e-9) in the sialyltransferase (ST6GAL1) gene. These, plus additional associations on chromosomes 7q21.32, 7q31.32 and 13q33.3, are replicated in the independent INSPIRE Cohort. Moreover, gene-environment interaction analyses suggest that fucosylated HMOs may modulate overall risk of recurrent wheeze among preschoolers with variable genetic risk scores (P < 0.01). Thus, we report novel genetic factors associated with HMOs, some of which may protect the respiratory health of children.
Collapse
Affiliation(s)
| | - Le Chang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Jihoon Choi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Yang Zhang
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Sara A Stickley
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Zhi Y Fang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Kozeta Miliku
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Bianca Robertson
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, USA
| | - Chloe Yonemitsu
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, USA
| | - Stuart E Turvey
- Department of Pediatrics, Division of Allergy and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sonia S Anand
- Chanchlani Research Centre, Dept. of Medicine, McMaster University, Hamilton, ON, Canada
| | - Guillaume Paré
- Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Gloria E Otoo
- Department of Nutrition & Food Science, University of Ghana, Accra, Ghana
| | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | | | | | - Debela K Gindola
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Juan M Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | | | - Daniel W Sellen
- Department of Anthropology, University of Toronto, Toronto, ON, Canada
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, UK
- The Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Gambia
| | - Andrew M Prentice
- The Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Gambia
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | | | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Mark A McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, WA, USA
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Padmaja Subbarao
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada.
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, USA.
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- School of Computing, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
26
|
Lata M, Ramya T. A comparative study of the substrate preference of the sialidases, CpNanI, HpNanH, and BbSia2 towards 2-Aminobenzamide-labeled 3'-Sialyllactose, 6'-Sialyllactose, and Sialyllacto-N-tetraose-b. Biochem Biophys Rep 2024; 39:101791. [PMID: 39156723 PMCID: PMC11326918 DOI: 10.1016/j.bbrep.2024.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Sialidases catalyze the removal of terminal sialic acids from sialylated biomolecules, and their substrate preference is frequently indicated in terms of the glycosidic linkages cleaved (α2-3, α2-6, and α2-8) without mention of the remaining sub-terminal reducing-end saccharide moieties. Many human gut commensal and pathogenic bacteria secrete sialidases to forage for sialic acids, which are then utilized as an energy source or assimilated into membrane/capsular structural components. Infant gut commensals similarly utilize sialylated human milk oligosaccharides containing different glycosidic linkages. Here, we have studied the preference of the bacterial sialidases, BbSia2 from Bifidobacterium bifidum, CpNanI from Clostridium perfringens, and HpNanH from Glaesserella parasuis, for the glycosidic linkages, Siaα2-3Gal, Siaα2-6Gal, and Siaα2-6GlcNAc, by employing 2-Aminobenzamide-labeled human milk oligosaccharides, 3'-Sialyllactose (3'-SL), 6'-Sialyllactose (6'-SL), and Sialyllacto-N-tetraose-b (LSTb), respectively, as proxies for these glycosidic linkages. BbSia2, CpNanI, and HpNanH hydrolyzed these three oligosaccharides with the glycosidic linkage preferences, 3'-SL (Siaα2-3Gal) ≥ LSTb (Siaα2-6GlcNAc) ≥ 6'-SL (Siaα2-6Gal), 3'-SL (Siaα2-3Gal) ≥ 6'-SL (Siaα2-6Gal) > LSTb (Siaα2-6GlcNAc), and 3'-SL (Siaα2-3Gal) ≥ 6'-SL (Siaα2-6Gal) > LSTb (Siaα2-6GlcNAc), respectively. Our finding suggests that sub-terminal reducing-end saccharide moieties can profoundly influence the substrate preference of sialidases, and advocates for the characterization and indication of the substrate preference of sialidases in terms of both the glycosidic linkage and the sub-terminal reducing-end saccharide moiety.
Collapse
Affiliation(s)
- Madhu Lata
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T.N.C. Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
27
|
Welp A, Laser E, Seeger K, Haiß A, Hanke K, Faust K, Stichtenoth G, Fortmann-Grote C, Pagel J, Rupp J, Göpel W, Gembicki M, Scharf JL, Rody A, Herting E, Härtel C, Fortmann I. Effects of multistrain Bifidobacteria and Lactobacillus probiotics on HMO compositions after supplementation to pregnant women at threatening preterm delivery: design of the randomized clinical PROMO trial. Mol Cell Pediatr 2024; 11:6. [PMID: 39085734 PMCID: PMC11291828 DOI: 10.1186/s40348-024-00179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As an indigestible component of human breast milk, Human Milk Oligosaccharides (HMOs) play an important role as a substrate for the establishing microbiome of the newborn. They have further been shown to have beneficial effects on the immune system, lung and brain development. For preterm infants HMO composition of human breast milk may be of particular relevance since the establishment of a healthy microbiome is challenged by multiple disruptive factors associated with preterm birth, such as cesarean section, hospital environment and perinatal antibiotic exposure. In a previous study it has been proposed that maternal probiotic supplementation during late stages of pregnancy may change the HMO composition in human milk. However, there is currently no study on pregnancies which are threatened to preterm birth. Furthermore, HMO composition has not been investigated in association with clinically relevant outcomes of vulnerable infants including inflammation-mediated diseases such as sepsis, necrotizing enterocolitis (NEC) or chronic lung disease. MAIN BODY A randomized controlled intervention study (PROMO = probiotics for human milk oligosaccharides) has been designed to analyze changes in HMO composition of human breast milk after supplementation of probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium infantis) in pregnancies at risk for preterm birth. The primary endpoint is HMO composition of 3-fucosyllactose and 3'-sialyllactose in expressed breast milk. We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. As secondary outcomes we will measure preterm infants' clinical outcomes (preterm birth, sepsis, weight gain growth, gastrointestinal complications) and effects on microbiome composition in the rectovaginal tract of mothers at delivery and in the gut of term and preterm infants by sequencing at high genomic resolution. Therefore, we will longitudinally collect bio samples in the first 4 weeks after birth as well as in follow-up investigations at 3 months, one year, and five years of age. CONCLUSIONS We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. The PROMO study will gain insight into the microbiome-HMO interaction at the fetomaternal interface and its consequences for duration of pregnancy and outcome of infants.
Collapse
Affiliation(s)
- A Welp
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany.
| | - E Laser
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Seeger
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - A Haiß
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Hanke
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Faust
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - G Stichtenoth
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Fortmann-Grote
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - J Pagel
- Department of Pediatrics, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Lübeck, Germany
| | - J Rupp
- German Center for Infection Research, Lübeck, Germany
- Institute for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - W Göpel
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - M Gembicki
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - J L Scharf
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - A Rody
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - E Herting
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Härtel
- Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - I Fortmann
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
- German Center for Infection Research, Lübeck, Germany
| |
Collapse
|
28
|
Fürst A, Ford B, Hentschel H, Bode L. Human Milk Oligosaccharides in Antenatal Colostrum: A Case Study. Breastfeed Med 2024; 19:652-658. [PMID: 38699872 DOI: 10.1089/bfm.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Introduction/Background: Some women produce antenatal colostrum during pregnancy and feed it to their baby after birth. However, the composition of antenatal colostrum and how it compares to postnatal colostrum and mature milk are not well described. In fact, there are currently no data on the composition of antenatal colostrum when it comes to human milk oligosaccharides (HMOs), the third most abundant solid human milk component after lactose and lipids. Case Presentation: We report a case of a single healthy donor who collected antenatal colostrum and urine from 19 weeks of gestation all the way to mature milk at 3 months postpartum. We analyzed all samples for HMO composition using high-performance liquid chromatography and for lactose concentrations using an enzymatic assay. Results: The entire spectrum of HMOs typical of a nonsecretor was already present in antenatal colostrum at 19 weeks gestation with a total concentration of 7.5 mg/mL. The HMO concentration further increased to over 12.5 mg/mL at 30 weeks gestation and then declined throughout the remainder of pregnancy and continued to decline in the postpartum period with concentrations of less than 5 mg/mL at 12 weeks postpartum. Concentrations of some of the individual HMOs as well as lactose changed significantly at the time of birth. HMO composition in antenatal colostrum was different in time-matched urine samples. Conclusion: Measuring HMOs in maternal urine does not fully capture the composition of HMOs in antenatal colostrum. Feeding antenatal colostrum to the newborn baby provides the entire set of different HMOs at high concentrations.
Collapse
Affiliation(s)
- Annalee Fürst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, California, USA
| | - Breanna Ford
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, California, USA
| | - Hailey Hentschel
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, California, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, California, USA
| |
Collapse
|
29
|
Greenwood M, Murciano-Martínez P, Berrington J, Flitsch SL, Austin S, Stewart C. Characterising glycosaminoglycans in human breastmilk and their potential role in infant health. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:221-234. [PMID: 38975022 PMCID: PMC11224681 DOI: 10.15698/mic2024.07.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Human breastmilk is composed of many well researched bioactive components crucial for infant nutrition and priming of the neonatal microbiome and immune system. Understanding these components gives us crucial insight to the health and wellbeing of infants. Research surrounding glycosaminoglycans (GAGs) previously focused on those produced endogenously; however, recent efforts have shifted to understanding GAGs in human breastmilk. The structural complexity of GAGs makes detection and analysis complicated therefore, research is time consuming and limited to highly specialised teams experienced in carbohydrate analysis. In breastmilk, GAGs are present in varying quantities in four forms; chondroitin sulphate, heparin/heparan sulphate, dermatan sulphate and hyaluronic acid, and are hypothesised to behave similar to other bioactive components with suspected roles in pathogen defense and proliferation of beneficial gut bacteria. Chondroitin sulphate and heparin, being the most abundant, are expected to have the most impact on infant health. Their decreasing concentration over lactation further indicates their role and potential importance during early life.
Collapse
Affiliation(s)
- Melissa Greenwood
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastle Upon Tyne, NE2 4HHUnited Kingdom
- Analytical Sciences Department, Société des Produits Nestlé, Nestlé Research, Vers-Chez-Les-BlancLausanneSwitzerland
| | - Patricia Murciano-Martínez
- Department of Nutrient Technology, Société des Produits Nestlé, Nestlé Research, Vers-Chez-Les-BlancLausanneSwitzerland
| | - Janet Berrington
- Newcastle Neonatal Service, Royal Victoria Infirmary, Newcastle Upon TyneNE1 4LPUnited Kingdom
| | - Sabine L Flitsch
- School of Chemistry, Faculty of Medical Sciences, The University of Manchester, Manchester Institute of BiotechnologyM1 7DNUnited Kingdom
| | - Sean Austin
- Analytical Sciences Department, Société des Produits Nestlé, Nestlé Research, Vers-Chez-Les-BlancLausanneSwitzerland
| | - Christopher Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastle Upon Tyne, NE2 4HHUnited Kingdom
| |
Collapse
|
30
|
Chen W, Guo K, Huang X, Zhang X, Li X, Chen Z, Wang Y, Wang Z, Liu R, Qiu H, Wang M, Zeng S. The Association of Neonatal Gut Microbiota Community State Types with Birth Weight. CHILDREN (BASEL, SWITZERLAND) 2024; 11:770. [PMID: 39062221 PMCID: PMC11276374 DOI: 10.3390/children11070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND while most gut microbiota research has focused on term infants, the health outcomes of preterm infants are equally important. Very-low-birth-weight (VLBW) or extremely-low-birth-weight (ELBW) preterm infants have a unique gut microbiota structure, and probiotics have been reported to somewhat accelerate the maturation of the gut microbiota and reduce intestinal inflammation in very-low preterm infants, thereby improving their long-term outcomes. The aim of this study was to investigate the structure of gut microbiota in ELBW neonates to facilitate the early identification of different types of low-birth-weight (LBW) preterm infants. METHODS a total of 98 fecal samples from 39 low-birth-weight preterm infants were included in this study. Three groups were categorized according to different birth weights: ELBW (n = 39), VLBW (n = 39), and LBW (n = 20). The gut microbiota structure of neonates was obtained by 16S rRNA gene sequencing, and microbiome analysis was conducted. The community state type (CST) of the microbiota was predicted, and correlation analysis was conducted with clinical indicators. Differences in the gut microbiota composition among ELBW, VLBW, and LBW were compared. The value of gut microbiota composition in the diagnosis of extremely low birth weight was assessed via a random forest-machine learning approach. RESULTS we briefly analyzed the structure of the gut microbiota of preterm infants with low birth weight and found that the ELBW, VLBW, and LBW groups exhibited gut microbiota with heterogeneous compositions. Low-birth-weight preterm infants showed five CSTs dominated by Enterococcus, Staphylococcus, Klebsiella, Streptococcus, Pseudescherichia, and Acinetobacter. The birth weight and clinical indicators related to prematurity were associated with the CST. We found the composition of the gut microbiota was specific to the different types of low-birth-weight premature infants, namely, ELBW, VLBW, and LBW. The ELBW group exhibited significantly more of the potentially harmful intestinal bacteria Acinetobacter relative to the VLBW and LBW groups, as well as a significantly lower abundance of the intestinal probiotic Bifidobacterium. Based on the gut microbiota's composition and its correlation with low weight, we constructed random forest model classifiers to distinguish ELBW and VLBW/LBW infants. The area under the curve of the classifiers constructed with Enterococcus, Klebsiella, and Acinetobacter was found to reach 0.836 by machine learning evaluation, suggesting that gut microbiota composition may be a potential biomarker for ELBW preterm infants. CONCLUSIONS the gut bacteria of preterm infants showed a CST with Enterococcus, Klebsiella, and Acinetobacter as the dominant genera. ELBW preterm infants exhibit an increase in the abundance of potentially harmful bacteria in the gut and a decrease in beneficial bacteria. These potentially harmful bacteria may be potential biomarkers for ELBW preterm infants.
Collapse
Affiliation(s)
- Wanling Chen
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen 518116, China
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
| | - Kaiping Guo
- Division of Pediatrics, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xunbin Huang
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xueli Zhang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Xiaoxia Li
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Zimiao Chen
- Department of Burn Plastic Surgery, South China Hospital, Shenzhen University, Shenzhen 518111, China
| | - Yanli Wang
- Department of Pediatrics, South China Hospital, Shenzhen University, Shenzhen 518111, China
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Rongtian Liu
- Department of Pediatrics, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Huixian Qiu
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
- Department of Neonatology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Shujuan Zeng
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| |
Collapse
|
31
|
Zhu B, Edwards DJ, Spaine KM, Edupuganti L, Matveyev A, Serrano MG, Buck GA. The association of maternal factors with the neonatal microbiota and health. Nat Commun 2024; 15:5260. [PMID: 38898021 PMCID: PMC11187136 DOI: 10.1038/s41467-024-49160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The human microbiome plays a crucial role in human health. However, the influence of maternal factors on the neonatal microbiota remains obscure. Herein, our observations suggest that the neonatal microbiotas, particularly the buccal microbiota, change rapidly within 24-48 h of birth but begin to stabilize by 48-72 h after parturition. Network analysis clustered over 200 maternal factors into thirteen distinct groups, and most associated factors were in the same group. Multiple maternal factor groups were associated with the neonatal buccal, rectal, and stool microbiotas. Particularly, a higher maternal inflammatory state and a lower maternal socioeconomic position were associated with a higher alpha diversity of the neonatal buccal microbiota and beta diversity of the neonatal stool microbiota was influenced by maternal diet and cesarean section by 24-72 h postpartum. The risk of admission of a neonate to the newborn intensive care unit was associated with preterm birth as well as higher cytokine levels and probably higher alpha diversity of the maternal buccal microbiota.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - David J Edwards
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Statistical Sciences and Operations Research, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Katherine M Spaine
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Laahirie Edupuganti
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Andrey Matveyev
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Myrna G Serrano
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Gregory A Buck
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Statistical Sciences and Operations Research, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, 23284, USA.
- Computer Science Department, College of Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Genomics Core, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
32
|
Wu X, Guo R, Fan Y, Chen S, Zheng W, Shu X, Chen B, Li X, Xu T, Shi L, Chen L, Shan L, Zhu Z, Tao E, Jiang M. Dynamic impact of delivery modes on gut microbiota in preterm infants hospitalized during the initial 4 weeks of life. Int J Med Microbiol 2024; 315:151621. [PMID: 38759506 DOI: 10.1016/j.ijmm.2024.151621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/05/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
Preterm infants face a high risk of various complications, and their gut microbiota plays a pivotal role in health. Delivery modes have been reported to affect the development of gut microbiota in term infants, but its impact on preterm infants remains unclear. Here, we collected fecal samples from 30 preterm infants at five-time points within the first four weeks of life. Employing 16 S rRNA sequencing, principal coordinates analysis, the analysis of similarities, and the Wilcoxon rank-sum test, we examined the top dominant phyla and genera, the temporal changes in specific taxa abundance, and their relationship with delivery modes, such as Escherichia-Shigella and Enterococcus based on vaginal delivery and Pluralibacter related to cesarean section. Moreover, we identified particular bacteria, such as Taonella, Patulibacter, and others, whose proportions fluctuated among preterm infants born via different delivery modes at varying time points, as well as the microbiota types and functions. These results indicated the influence of delivery mode on the composition and function of the preterm infant gut microbiota. Importantly, these effects are time-dependent during the early stages of life. These insights shed light on the pivotal role of delivery mode in shaping the gut microbiota of preterm infants and have significant clinical implications for their care and management.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Rui Guo
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Yijia Fan
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Shuang Chen
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Wei Zheng
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Xiaoli Shu
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Bo Chen
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Xing Li
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Tingting Xu
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingbing Shi
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Li Chen
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lichun Shan
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Zhenya Zhu
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Enfu Tao
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang Province, China
| | - Mizu Jiang
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China; Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Wang Y, Cui M, Li L, Gao C, Feng Z, Cai Y, Yang Z, Shen L. Unexpected decrease in necrotizing enterocolitis morbidity during the COVID-19 pandemic-A single-centre retrospective study. Front Pediatr 2024; 12:1346478. [PMID: 38863524 PMCID: PMC11165084 DOI: 10.3389/fped.2024.1346478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Background The impact of the coronavirus disease 2019 (COVID-19) pandemic on neonatal necrotizing enterocolitis (NEC) is not well characterised. This cross-sectional study evaluated the potential effects of pandemic-related measures on NEC morbidity in premature infants in a neonatal ward during the COVID-19 pandemic. Methods This was a retrospective study conducted in a tertiary neonatal ward in eastern and central China over 6 consecutive years (2017, 2018, 2019, 2020, 2021 and 2022). The medical records of 189 premature infants with stage II or III NEC were reviewed for clinical manifestations and aetiologies. The data were analysed and compared between the prepandemic period (2017, 2018, and 2019) and the pandemic period (2020, 2021 and 2022). Results A total of 9,903 infants with gestational age (GA) < 37 weeks were enrolled, including 5,382 in the prepandemic period and 4,521 in the pandemic period. A reduction in stage II or III NEC morbidity was observed in infants with GA < 37 weeks, with an average annual morbidity of 2.29% (123/5,382) (95% CI, 1.89%-2.68%) in the prepandemic period and 1.46% (66/4,521) (95% CI, 1.11%-1.81%) in the pandemic period. NEC morbidity showed resurgent characteristics in 2021. When prepandemic coinfections were excluded, most cases of NEC with bloodstream infections in the prepandemic period were attributable to Gram-negative bacteria (27/32, 84.38%), mainly Klebsiella pneumoniae, while in the pandemic period they were attributable to Gram-positive bacteria (10/18, 55.56%), mainly Staphylococcus aureus. Antimicrobial susceptibility testing revealed that Klebsiella pneumoniae was 100% sensitive to meropenem, imipenem, ciprofloxacin and levofloxacin and 100% resistant to ampicillin. Staphylococcus capitis was 100% sensitive to vancomycin, linezolid, tetracycline, cotrimoxazole and cefoxitin and 100% resistant to penicillin and benzathine. Conclusions COVID-19 pandemic-related interventions can reduce the morbidity of NEC and change the pathogen spectrum in patients with bloodstream infections. We need to understand the exact factors leading to these changes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lirong Shen
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
34
|
Younge N. Influence of infant microbiome on health and development. Clin Exp Pediatr 2024; 67:224-231. [PMID: 37605538 PMCID: PMC11065641 DOI: 10.3345/cep.2023.00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
The microbiome is a complex ecosystem comprising microbes, their genomes, and the surrounding environment. The microbiome plays a critical role in early human development, including maturation of the host immune system and gastrointestinal tract. Multiple factors, including diet, anti-biotic use, and other environmental exposures, influence the establishment of the microbiome during infancy. Numerous studies have identified associations between the microbiome and neonatal diseases, including necrotizing enterocolitis, sepsis, and malnutrition. Furthermore, there is compelling evidence that perturbation of the microbiome in early life can have lasting developmental effects that increase an individual's risk for immune and metabolic diseases in later life. Supplementation of the microbiome with probiotics reduces the risk of necrotizing enterocolitis and sepsis in at-risk infants. This review focuses on the structure and function of the infant microbiome, the environmental and clinical factors that influence its assembly, and its impact on infant health and development.
Collapse
|
35
|
Ong ML, Cherkerzian S, Bell KA, Berger PK, Furst A, Sejane K, Bode L, Belfort MB. Human Milk Oligosaccharides, Growth, and Body Composition in Very Preterm Infants. Nutrients 2024; 16:1200. [PMID: 38674890 PMCID: PMC11054505 DOI: 10.3390/nu16081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are bioactive factors that benefit neonatal health, but little is known about effects on growth in very preterm infants (<32 weeks' gestation). We aimed to quantify HMO concentrations in human milk fed to very preterm infants during the neonatal hospitalization and investigate associations of HMOs with infant size and body composition at term-equivalent age. In 82 human-milk-fed very preterm infants, we measured HMO concentrations at two time points. We measured anthropometrics and body composition with air displacement plethysmography at term-equivalent age. We calculated means of individual and total HMOs, constructed tertiles of mean HMO concentrations, and assessed differences in outcomes comparing infants in the highest and intermediate tertiles with the lowest tertile using linear mixed effects models, adjusted for potential confounders. The mean (SD) infant gestational age was 28.2 (2.2) weeks, and birthweight was 1063 (386) grams. Exposure to the highest (vs. lowest) tertile of HMO concentrations was not associated with anthropometric or body composition z-scores at term-corrected age. Exposure to the intermediate (vs. lowest) tertile of 3FL was associated with a greater head circumference z-score (0.61, 95% CI 0.15, 1.07). Overall, the results do not support that higher HMO intakes influence growth outcomes in this very preterm cohort.
Collapse
Affiliation(s)
- Margaret L. Ong
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Sara Cherkerzian
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Katherine A. Bell
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Paige K. Berger
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Kristija Sejane
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Mandy B. Belfort
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
36
|
Chen Y, Chen Z, Zhu Y, Wen Y, Zhao C, Mu W. Recent Progress in Human Milk Oligosaccharides and Its Antiviral Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7607-7617. [PMID: 38563422 DOI: 10.1021/acs.jafc.3c09460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastrointestinal (GI)-associated viruses, including rotavirus (RV), norovirus (NV), and enterovirus, usually invade host cells, transmit, and mutate their genetic information, resulting in influenza-like symptoms, acute gastroenteritis, encephalitis, or even death. The unique structures of human milk oligosaccharides (HMOs) enable them to shape the gut microbial diversity and endogenous immune system of human infants. Growing evidence suggests that HMOs can enhance host resistance to GI-associated viruses but without a systematic summary to review the mechanism. The present review examines the lactose- and neutral-core HMOs and their antiviral effects in the host. The potential negative impacts of enterovirus 71 (EV-A71) and other GI viruses on children are extensive and include neurological sequelae, neurodevelopmental retardation, and cognitive decline. However, the differences in the binding affinity of HMOs for GI viruses are vast. Hence, elucidating the mechanisms and positive effects of HMOs against different viruses may facilitate the development of novel HMO derived oligosaccharides.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Naik NC, Holzhausen EA, Chalifour BN, Coffman MM, Lurmann F, Goran MI, Bode L, Alderete TL. Air pollution exposure may impact the composition of human milk oligosaccharides. Sci Rep 2024; 14:6730. [PMID: 38509153 PMCID: PMC10954706 DOI: 10.1038/s41598-024-57158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Human milk oligosaccharides (HMOs) impact neonate immunity and health outcomes. However, the environmental factors influencing HMO composition remain understudied. This study examined the associations between ambient air pollutant (AAP) exposure and HMOs at 1-month postpartum. Human milk samples were collected at 1-month postpartum (n = 185). AAP (PM2.5, PM10, NO2) exposure included the 9-month pregnancy period through 1-month postpartum. Associations between AAP with (1) HMO diversity, (2) the sum of sialylated and fucosylated HMOs, (3) 6 a priori HMOs linked with infant health, and (4) all HMOs were examined using multivariable linear regression and principal component analysis (PCA). Exposure to AAP was associated with lower HMO diversity. PM2.5 and PM10 exposure was positively associated with the HMO 3-fucosyllactose (3FL); PM2.5 exposure was positively associated with the sum of total HMOs, sum of fucosylated HMOs, and the HMO 2'-fucosyllactose (2'FL). PCA indicated the PM2.5, PM10, and NO2 exposures were associated with HMO profiles. Individual models indicated that AAP exposure was associated with five additional HMOs (LNFP I, LNFP II, DFLNT, LNH). This is the first study to demonstrate associations between AAP and breast milk HMOs. Future longitudinal studies will help determine the long-term impact of AAP on human milk composition.
Collapse
Affiliation(s)
- Noopur C Naik
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University College of Medicine, Cleveland, OH, USA
| | | | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Maria M Coffman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | - Michael I Goran
- Department of Pediatrics, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Lars Bode
- Department of Pediatrics, Larson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
39
|
Wang X, Li L, Liu T, Shi Y. More than nutrition: Therapeutic potential and mechanism of human milk oligosaccharides against necrotizing enterocolitis. Life Sci 2024; 339:122420. [PMID: 38218534 DOI: 10.1016/j.lfs.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
40
|
Guo Z, Xie Q, Ren Q, Liu Y, Li K, Li B, Li J. Enhancing immune regulation in vitro: the synergistic impact of 3'-sialyllactose and osteopontin in a nutrient blend following influenza virus infection. Front Immunol 2024; 15:1271926. [PMID: 38426086 PMCID: PMC10902112 DOI: 10.3389/fimmu.2024.1271926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Natural components of breast milk, human milk oligosaccharides (HMOs) and osteopontin (OPN) have been shown to have a variety of functional activities and are widely used in infant formulas. However, the preventive and therapeutic effects of both on influenza viruses are not known. In this study, antiviral assays using a human laryngeal carcinoma cell line (HEP-2) showed that 3'-sialyllactose (3'-SL) and OPN had the best antiviral ability with IC50 values of 33.46 μM and 1.65 μM, respectively. 3'-SL (10 μM) and OPN (4 μM) were used in combination to achieve 75% inhibition. Further studies found that the combination of 200 μg/mL of 3'-SL with 500 μg/mL of OPN exerted the best antiviral ability. The reason for this was related to reduced levels of the cytokines TNF-α, IL-6, and iNOS in relation to mRNA expression. Plaque assay and TCID50 assay found the same results and verified synergistic effects. Our research indicates that a combination of 3'-SL and OPN can effectively reduce inflammatory storms and exhibit anti-influenza virus effects through synergistic action.
Collapse
Affiliation(s)
- Zhengtao Guo
- School of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qinggang Xie
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| | - Qiqi Ren
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| | - Yang Liu
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| | - Kaifeng Li
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| | - Bailiang Li
- School of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jufang Li
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| |
Collapse
|
41
|
Buzun E, Hsu CY, Sejane K, Oles RE, Vasquez Ayala A, Loomis LR, Zhao J, Rossitto LA, McGrosso DM, Gonzalez DJ, Bode L, Chu H. A bacterial sialidase mediates early-life colonization by a pioneering gut commensal. Cell Host Microbe 2024; 32:181-190.e9. [PMID: 38228143 PMCID: PMC10922750 DOI: 10.1016/j.chom.2023.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/14/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The early microbial colonization of the gastrointestinal tract can have long-term impacts on development and health. Keystone species, including Bacteroides spp., are prominent in early life and play crucial roles in maintaining the structure of the intestinal ecosystem. However, the process by which a resilient community is curated during early life remains inadequately understood. Here, we show that a single sialidase, NanH, in Bacteroides fragilis mediates stable occupancy of the intestinal mucosa in early life and regulates a commensal colonization program. This program is triggered by sialylated glycans, including those found in human milk oligosaccharides and intestinal mucus. NanH is required for vertical transmission from dams to pups and promotes B. fragilis dominance during early life. Furthermore, NanH facilitates commensal resilience and recovery after antibiotic treatment in a defined microbial community. Collectively, our study reveals a co-evolutionary mechanism between the host and microbiota mediated through host-derived glycans to promote stable colonization.
Collapse
Affiliation(s)
- Ekaterina Buzun
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristija Sejane
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renee E Oles
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriana Vasquez Ayala
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Luke R Loomis
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaqi Zhao
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dominic M McGrosso
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA 92093, USA; Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92093, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA; Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92093, USA; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, La Jolla, CA 92093, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
42
|
Huang H, Jiang J, Wang X, Jiang K, Cao H. Exposure to prescribed medication in early life and impacts on gut microbiota and disease development. EClinicalMedicine 2024; 68:102428. [PMID: 38312240 PMCID: PMC10835216 DOI: 10.1016/j.eclinm.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The gut microbiota during early life plays a crucial role in infant development. This microbial-host interaction is also essential for metabolism, immunity, and overall human health in later life. Early-life pharmaceutical exposure, mainly referring to exposure during pregnancy, childbirth, and infancy, may change the structure and function of gut microbiota and affect later human health. In this Review, we describe how healthy gut microbiota is established in early life. We summarise the commonly prescribed medications during early life, including antibiotics, acid suppressant medications and other medications such as antidepressants, analgesics and steroid hormones, and discuss how these medication-induced changes in gut microbiota are involved in the pathological process of diseases, including infections, inflammatory bowel disease, metabolic diseases, allergic diseases and neurodevelopmental disorders. Finally, we review some critical methods such as dietary therapy, probiotics, prebiotics, faecal microbiota transplantation, genetically engineered phages, and vagus nerve stimulation in early life, aiming to provide a new strategy for the prevention of adverse health outcomes caused by prescribed medications exposure in early life.
Collapse
Affiliation(s)
- Huan Huang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology, the Affiliated Jinyang Hospital of Guizhou Medical University, the Second People's Hospital of Guiyang, Guiyang, China
| | - Jiayin Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xinyu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
43
|
Bakshani CR, Crouch LI. Human milk oligosaccharides and Bifidobacterium species. Trends Microbiol 2024; 32:118-119. [PMID: 38087708 DOI: 10.1016/j.tim.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024]
Abstract
Several bacterial species initially colonise the infant gut, but are outcompeted. Human milk oligosaccharides (HMOs) in breast milk create an environment for Bifidobacterium to flourish. Laursen and Roager recently showed a clear link between breast milk and the dominance of Bifidobacterium longum subsp. infantis in the infant gut.
Collapse
Affiliation(s)
- Cassie R Bakshani
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucy I Crouch
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
44
|
Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The Role of Diet and Nutritional Interventions for the Infant Gut Microbiome. Nutrients 2024; 16:400. [PMID: 38337684 PMCID: PMC10857663 DOI: 10.3390/nu16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infant gut microbiome plays a key role in the healthy development of the human organism and appears to be influenced by dietary practices through multiple pathways. First, maternal diet during pregnancy and infant nutrition significantly influence the infant gut microbiota. Moreover, breastfeeding fosters the proliferation of beneficial bacteria, while formula feeding increases microbial diversity. The timing of introducing solid foods also influences gut microbiota composition. In preterm infants the gut microbiota development is influenced by multiple factors, including the time since birth and the intake of breast milk, and interventions such as probiotics and prebiotics supplementation show promising results in reducing morbidity and mortality in this population. These findings underscore the need for future research to understand the long-term health impacts of these interventions and for further strategies to enrich the gut microbiome of formula-fed and preterm infants.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
45
|
Cifuentes MP, Chapman JA, Stewart CJ. Gut microbiome derived short chain fatty acids: Promising strategies in necrotising enterocolitis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100219. [PMID: 38303965 PMCID: PMC10831176 DOI: 10.1016/j.crmicr.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Necrotising enterocolitis (NEC) is a devastating condition that poses a significant risk of morbidity and mortality, particularly among preterm babies. Extensive research efforts have been directed at identifying optimal treatment and diagnostic strategies but results from such studies remain unclear and controversial. Among the most promising candidates are prebiotics, probiotics and their metabolites, including short chain fatty acids (SCFAs). Such metabolites have been widely explored as possible biomarkers of gut health for different clinical conditions, with overall positive effects on the host observed. This review aims to describe the role of gut microbiome derived SCFAs in necrotising enterocolitis. Until now, information has been conflicting, with the primary focus on the main three SCFAs (acetic acid, propionic acid, and butyric acid). While numerous studies have indicated the relationship between SCFAs and NEC, the current evidence is insufficient to draw definitive conclusions about the use of these metabolites as NEC biomarkers or their potential in treatment strategies. Ongoing research in this area will help enhance both our understanding of SCFAs as valuable indicators of NEC and their practical application in clinical settings.
Collapse
Affiliation(s)
- María P Cifuentes
- Translational and Clinical Research Institute, Newcastle University, Newcastle. UK
| | - Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle. UK
| | | |
Collapse
|
46
|
Wang Y, Rui B, Ze X, Liu Y, Yu D, Liu Y, Li Z, Xi Y, Ning X, Lei Z, Yuan J, Li L, Zhang X, Li W, Deng Y, Yan J, Li M. Sialic acid-based probiotic intervention in lactating mothers improves the neonatal gut microbiota and immune responses by regulating sialylated milk oligosaccharide synthesis via the gut-breast axis. Gut Microbes 2024; 16:2334967. [PMID: 38630006 PMCID: PMC11028031 DOI: 10.1080/19490976.2024.2334967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are vital milk carbohydrates that help promote the microbiota-dependent growth and immunity of infants. Sialic acid (SA) is a crucial component of sialylated milk oligosaccharides (S-MOs); however, the effects of SA supplementation in lactating mothers on S-MO biosynthesis and their breastfed infants are unknown. Probiotic intervention during pregnancy or lactation demonstrates promise for modulating the milk glycobiome. Here, we evaluated whether SA and a probiotic (Pro) mixture could increase S-MO synthesis in lactating mothers and promote the microbiota development of their breastfed neonates. The results showed that SA+Pro intervention modulated the gut microbiota and 6'-SL contents in milk of maternal rats more than the SA intervention, which promoted Lactobacillus reuteri colonization in neonates and immune development. Deficient 6'-SL in the maternal rat milk of St6gal1 knockouts (St6gal1-/-) disturbed intestinal microbial structures in their offspring, thereby impeding immune tolerance development. SA+Pro intervention in lactating St6gal1± rats compromised the allergic responses of neonates by promoting 6'-SL synthesis and the neonatal gut microbiota. Our findings from human mammary epithelial cells (MCF-10A) indicated that the GPR41-PI3K-Akt-PPAR pathway helped regulate 6'-SL synthesis in mammary glands after SA+Pro intervention through the gut - breast axis. We further validated our findings using a human-cohort study, confirming that providing SA+Pro to lactating Chinese mothers increased S-MO contents in their breast milk and promoted gut Bifidobacterium spp. and Lactobacillus spp. colonization in infants, which may help enhance immune responses. Collectively, our findings may help alter the routine supplementation practices of lactating mothers to modulate milk HMOs and promote the development of early-life gut microbiota and immunity.
Collapse
Affiliation(s)
- Yushuang Wang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
- Department of Clinical Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Binqi Rui
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaolei Ze
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Yujia Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Da Yu
- The Third Ward of Obstetrics and Gynecology at Chunliu District, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Yinhui Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhi Li
- Department of Clinical Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yu Xi
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xixi Ning
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zengjie Lei
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Liang Li
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xuguang Zhang
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yanjie Deng
- The Third Ward of Obstetrics and Gynecology at Chunliu District, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
47
|
Yang J, Chen X, Liu T, Shi Y. Potential role of bile acids in the pathogenesis of necrotizing enterocolitis. Life Sci 2024; 336:122279. [PMID: 37995935 DOI: 10.1016/j.lfs.2023.122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Necrotizing enterocolitis (NEC) is one of the most common acute gastrointestinal diseases in preterm infants. Recent studies have found that NEC is not only caused by changes in the intestinal environment but also by the failure of multiple systems and organs, including the liver. The accumulation of bile acids (BAs) in the ileum and the disorder of ileal BA transporters are related to the ileum injury of NEC. Inflammatory factors such as tumor necrosis factor (TNF)-α and interleukin (IL)-18 secreted by NEC also play an important role in regulating intrahepatic BA transporters. As an important link connecting the liver and intestinal circulation, the bile acid metabolic pathway plays an important role in the regulation of intestinal microbiota, cell proliferation, and barrier protection. In this review, we focus on how bile acids explore the dynamic changes of bile acid metabolism in necrotizing enterocolitis and the potential therapeutic value of targeting the bile acid signaling pathways.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
48
|
Yang S, Cai J, Su Q, Li Q, Meng X. Human milk oligosaccharides combine with Bifidobacterium longum to form the "golden shield" of the infant intestine: metabolic strategies, health effects, and mechanisms of action. Gut Microbes 2024; 16:2430418. [PMID: 39572856 PMCID: PMC11587862 DOI: 10.1080/19490976.2024.2430418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most important nutrient in human milk and are the gold standard for infant nutrition. Due to the lack of an enzyme system capable of utilizing HMOs in the infant intestine, HMOs cannot be directly utilized. Instead, they function as natural prebiotics, participating in the establishment of the intestinal microbiota as a "bifidus factor." A crucial colonizer of the early intestine is Bifidobacterium longum (B. longum), particularly its subspecies B. longum subsp. infantis, which is the most active consumer of HMOs. However, due to the structural diversity of HMOs and the specificity of B. longum strains, studies on their synergy are limited. An in-depth investigation into the mechanisms of HMO utilization by B. longum is essential for applying both as synbiotics to promote early intestinal development in infants. This review describes the colonization advantages of B. longum in the infant intestinal tract and its metabolic strategies for HMOs. It also summarizes recent studies on the effect and mechanism of B. longum and HMOs in infant intestinal development directly or indirectly through the action of metabolites. In conclusion, further structural analysis of HMOs and a deeper understanding of the interactions between B. longum and HMOs, as well as clinical trials, are necessary to lay the foundation for future practical applications as synbiotics.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junwu Cai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qiaohui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
49
|
Li D, Lin Q, Luo F, Wang H. Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review. Foods 2023; 13:145. [PMID: 38201173 PMCID: PMC10779236 DOI: 10.3390/foods13010145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Sialic acid (SA) is a kind of functional monosaccharide which exists widely in edible bird's nest (EBN), milk, meat, mucous membrane surface, etc. SA is an important functional component in promoting brain development, anti-oxidation, anti-inflammation, anti-virus, anti-tumor and immune regulation. The intestinal mucosa covers the microbial community that has a significant impact on health. In the gut, SA can also regulate gut microbiota and metabolites, participating in different biological functions. The structure, source and physiological functions of SA were reviewed in this paper. The biological functions of SA through regulating key signaling pathways and target genes were discussed. In summary, SA can modulate gut microbiota and metabolites, which affect gene expressions and exert its biological activities. It is helpful to provide scientific reference for the further investigation of SA in the functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Hanqing Wang
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
50
|
Jiang T, Bai R, Xie C, Guo H, Li Z, Ma J. Risk factors for brain injury in premature infants with twin-to-twin transfusion syndrome: a retrospective cohort study. Transl Pediatr 2023; 12:2121-2130. [PMID: 38197096 PMCID: PMC10772831 DOI: 10.21037/tp-23-387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/26/2023] [Indexed: 01/11/2024] Open
Abstract
Background Brain injury (BI) is prevalent in premature infants with twin-to-twin transfusion syndrome (TTTS), while risk factors of BI in these patients remains unknown. Our study aims to discern potential risk factors that contribute to BI in premature infants with TTTS. Methods We conducted a retrospective cohort and analyzed clinical data of premature infants diagnosed with TTTS at the Northwest Women's and Children's Hospital between January 1, 2015 and January 1, 2020. Data included the infants' perinatal information, key postnatal examinations, laboratory tests, and treatments. Results Of the 84 patients enrolled in the study, 22 (26.2%) were categorized in the BI group and 62 (73.8%) in the non-BI group, based on cranial imaging. No significant differences were found at baseline between the groups in relation to the proportion of males (40.9% vs. 35.5%, P=0.845), median gestational age (weeks) [31.9 (31.5, 33.4) vs. 34.2 (31.6, 35.4), P=0.061], average weight (g) (1,676.4±567.5 vs. 1,845.2±511.7, P=0.200), maternal age (years) [29.5 (26.0, 31.0) vs. 28.5 (27.8, 31.0), P=0.656], the proportion of in-vitro fertilization (9.1% vs. 16.1%, P=0.648), cesarean sections (86.4% vs. 93.5%, P=0.549) or TTTS donor infants (50.0% vs. 51.6%, P=0.897). Multivariate logistic regression analysis indicated that invasive mechanical ventilation [invasive mechanical ventilation (IMV); odds ratio (OR) =4.365; 95% confidence interval (CI): 1.066-17.870; P=0.040], [necrotizing enterocolitis (NEC); OR =8.632; 95% CI: 1.542-48.318; P=0.014], [single intrauterine fetal demise (sIUFD); OR =14.067; 95% CI: 1.298-224.421; P=0.031], and a 5-minute Apgar score <9 (OR =4.663; 95% CI: 1.015-21.419; P=0.048) were strongly associated with BI in TTTS premature infants. Conclusions Our study identifies IMV, NEC, sIUFD, and a 5-minute Apgar score <9 as independent risk factors for BI in premature infants with TTTS.
Collapse
Affiliation(s)
- Te Jiang
- Neonatology Department, the Northwest Women's and Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ruimiao Bai
- Neonatology Department, the Northwest Women's and Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chengmiao Xie
- Neonatology Department, the Northwest Women's and Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Henhen Guo
- Neonatology Department, the Northwest Women's and Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhankui Li
- Neonatology Department, the Northwest Women's and Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jinqi Ma
- Neonatology Department, the Northwest Women's and Children's Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|