1
|
Yang B, Guo X, Shi C, Liu G, Qin X, Chen S, Gan L, Liang D, Shao K, Xu R, Zhong J, Mo Y, Li H, Luo D. Alterations in purine and pyrimidine metabolism associated with latent tuberculosis infection: insights from gut microbiome and metabolomics analyses. mSystems 2024; 9:e0081224. [PMID: 39436103 PMCID: PMC11575419 DOI: 10.1128/msystems.00812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Individuals with latent tuberculosis infection (LTBI) account for almost 30% of the population worldwide and have the potential to develop active tuberculosis (ATB). Despite this, the current understanding of the pathogenesis of LTBI is limited. The gut microbiome can be altered in tuberculosis patients, and an understanding of the changes associated with the progression from good health to LTBI to ATB can provide novel perspectives for understanding the pathogenesis of LTBI by identifying microbial and molecular biomarkers associated therewith. In this study, fecal samples from healthy controls (HC), individuals with LTBI and ATB patients were collected for gut microbiome and metabolomics analyses. Compared to HC and LTBI subjects, participants with ATB showed a significant decrease in gut bacterial α-diversity. Additionally, there were significant differences in gut microbial communities and metabolism among the HC, LTBI, and ATB groups. PICRUSt2 analysis revealed that microbiota metabolic pathways involving the degradation of purine and pyrimidine metabolites were upregulated in LTBI and ATB individuals relative to HCs. Metabolomic profiling similarly revealed that purine and pyrimidine metabolite levels were decreased in LTBI and ATB samples relative to those from HCs. Further correlation analyses revealed that the levels of purine and pyrimidine metabolites were negatively correlated with those of gut microbial genera represented by Ruminococcus_gnavus_group (R. gnavus), and the levels of R. gnavus were also positively correlated with adenosine nucleotide degradation II, which is a purine degradation pathway. Moreover, a combined signature including hypoxanthine and xanthine was found to effectively distinguish between LTBI and HC samples (area under the curve [AUC] of training set = 0.796; AUC of testing set = 0.924). Therefore, through gut microbiome and metabolomic analyses, these findings provide valuable clues regarding how alterations in gut purine and pyrimidine metabolism are linked to the pathogenesis of LTBI.IMPORTANCEThis study provides valuable insight into alterations in the gut microbiome and metabolomic profiles in a cohort of adults with LTBI and ATB. Perturbed gut purine and pyrimidine metabolism in LTBI was associated with the compositional alterations of gut microbiota, which may be an impetus for developing novel diagnostic strategies and interventions targeting LTBI.
Collapse
Affiliation(s)
- Boyi Yang
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- The First Clinical College, Guangxi Medical University, Nanning, China
| | - Xiaojing Guo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Chongyu Shi
- Molecular Biology Laboratory of Respiratory Disease, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoling Qin
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiyi Chen
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Gan
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongxu Liang
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Kai Shao
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruolan Xu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Jieqing Zhong
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Yujie Mo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Hai Li
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Dan Luo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| |
Collapse
|
2
|
Konstanti P, Gómez-Martínez C, Muralidharan J, Vioque J, Corella D, Fitó M, Vidal J, Tinahones FJ, Torres-Collado L, Coltell O, Castañer O, Moreno-Indias I, Atzeni A, Ruiz-Canela M, Salas-Salvadó J, Belzer C. Faecal microbiota composition and impulsivity in a cohort of older adults with metabolic syndrome. Sci Rep 2024; 14:28075. [PMID: 39543142 PMCID: PMC11564772 DOI: 10.1038/s41598-024-78527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Impulsivity is an important determinant of human behaviour, affecting self-control, reasonable thinking and food choices. Recent evidence suggests a role for gut microbiota in human behaviour, but the relationship between gut microbiota and impulsive behaviours remains largely unexplored. To address this knowledge gap, the present study aims to explore the associations between faecal microbiota composition with trait and behavioural impulsivity, in a subcohort of the PREDIMED-Plus trial, including older adults presenting overweight/obesity. Fecal samples (n = 231) were profiled for their microbiota composition using 16 S rRNA amplicon sequencing and impulsivity was determined through four different assessments. Adherence to different dietary patterns was estimated through questionnaires. Beta diversity analyses showed a significant association with the Conner's Performance Test (CPT) in multivariate-adjusted models, and, in total, 13 bacterial genera associated with CPT. Erysipelotrichaceae UCG 003 showed the highest association with CPT and known butyrate producers such as Butyricicoccus spp., Roseburia spp., and Eubacterium hallii were among the identified bacteria. The bacteria Lachnospiraceae UCG 001, Anaerostipes and Blautia were associated with CPT and also the adherence to healthy and unhealthy plant-based diets. In addition, functional analysis showed a significant negative association between the CPT and the glucuronate and galacturonate metabolic pathways. From the other impulsivity assessments, two more associations were identified, for the genus Phascolarctobacterium with the Stroop test, and the genus Lachnospiraceae GAG 54 with the positive urgency subscore of UPPS-P Impulsive Behaviour Scale. Overall, our findings suggest potential links between the faecal microbiota composition and function with behavioural impulsive inattention as determined by the CPT.
Collapse
Affiliation(s)
- Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Carlos Gómez-Martínez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Jananee Muralidharan
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d`Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francisco J Tinahones
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de La Victoria Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, University of Málaga, Málaga, Spain
| | - Laura Torres-Collado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Oscar Coltell
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Computer Languages and Systems, University Jaume I, Castellón, Spain
| | - Olga Castañer
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Isabel Moreno-Indias
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de La Victoria Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, University of Málaga, Málaga, Spain
| | - Alessandro Atzeni
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ruiz-Canela
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Axelrod CL, Hari A, Dantas WS, Kashyap SR, Schauer PR, Kirwan JP. Metabolomic Fingerprints of Medical Therapy Versus Bariatric Surgery in Patients With Obesity and Type 2 Diabetes: The STAMPEDE Trial. Diabetes Care 2024; 47:2024-2032. [PMID: 39311919 PMCID: PMC11502526 DOI: 10.2337/dc24-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are effective procedures to treat and manage type 2 diabetes (T2D). However, the underlying metabolic adaptations that mediate improvements in glucose homeostasis remain largely elusive. The purpose of this study was to identify metabolic signatures associated with biochemical resolution of T2D after medical therapy (MT) or bariatric surgery. RESEARCH DESIGN AND METHODS Plasma samples from 90 patients (age 49.9 ± 7.6 years; 57.7% female) randomly assigned to MT (n = 30), RYGB (n = 30), or SG (n = 30) were retrospectively subjected to untargeted metabolomic analysis using ultra performance liquid chromatography with tandem mass spectrometry at baseline and 24 months of treatment. Phenotypic importance was determined by supervised machine learning. Associations between change in glucose homeostasis and circulating metabolites were assessed using a linear mixed effects model. RESULTS The circulating metabolome was dramatically remodeled after SG and RYGB, with largely overlapping signatures after MT. Compared with MT, SG and RYGB profoundly enhanced the concentration of metabolites associated with lipid and amino acid signaling, while limiting xenobiotic metabolites, a function of decreased medication use. Random forest analysis revealed 2-hydroxydecanoate as having selective importance to RYGB and as the most distinguishing feature between MT, SG, and RYGB. To this end, change in 2-hydroxydecanoate correlated with reductions in fasting glucose after RYGB but not SG or MT. CONCLUSIONS We identified a novel metabolomic fingerprint characterizing the longer-term adaptations to MT, RYGB, and SG. Notably, the metabolomic profiles of RYGB and SG procedures were distinct, indicating equivalent weight loss may be achieved by divergent effects on metabolism.
Collapse
Affiliation(s)
- Christopher L. Axelrod
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Adithya Hari
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Wagner S. Dantas
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | | | - Philip R. Schauer
- Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH
- Clinical Metabolic Surgery Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - John P. Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
4
|
Kooij KL, Andreani NA, van der Gun LL, Keller L, Trinh S, van der Vijgh B, Luijendijk M, Dempfle A, Herpertz-Dahlmann B, Seitz J, van Elburg A, Danner UN, Baines J, Adan RAH. Fecal microbiota transplantation of patients with anorexia nervosa did not alter flexible behavior in rats. Int J Eat Disord 2024; 57:1868-1881. [PMID: 38934721 DOI: 10.1002/eat.24231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Patients with anorexia nervosa (AN) are often anxious, display inflexible behavior and disrupted reward processing. Emerging evidence suggests that gut dysbiosis in patients contributes to the disease phenotype and progression. METHODS In a preclinical study, we explored whether AN-derived microbiota impacts cognitive flexibility, anxiety, and dopamine signaling using fecal microbiota transplantation (FMT) in tyrosine hydroxylase-cre rats. We performed probabilistic reversal learning task (PRLT) at the baseline, after antibiotic treatment, and following FMT from patients with AN and controls. We assessed flexible behavior, task engagement, and ventral tegmental area (VTA) dopamine signaling during and in the absence of reward. Furthermore, anxiety-like behavior was evaluated with open field (OF) and elevated plus maze (EPM) tests. RESULTS Neither antibiotic-induced dysbiosis nor AN FMT led to significant alterations in the number of reversals or lever press strategies after reinforced or nonreinforced lever presses (win and lose-stay) in the PRLT. However, the number of initiated trials decreased after antibiotic treatment while remaining unchanged after FMT. No significant differences were observed in VTA dopamine activity, anxiety measures in the OF and EPM tests. Microbiome analysis revealed limited overlap between the microbiota of the donors and recipients. DISCUSSION No evidence was found that the microbiota of patients compared to controls, nor a depleted microbiome impacts cognitive flexibility. Nonetheless, antibiotic-induced dysbiosis resulted in reduced task engagement during the PRLT. The relatively low efficiency of the FMT is a limitation of our study and highlights the need for improved protocols to draw robust conclusions in future studies. PUBLIC SIGNIFICANCE While our study did not reveal direct impacts of AN-associated gut microbiota on cognitive flexibility or anxiety behaviors in our preclinical model, we observed a decrease in task engagement after antibiotic-induced dysbiosis, underscoring that the presence of a gut microbiome matters. Our findings underscore the need for further refinement in FMT protocols to better elucidate the complex interplay between gut microbiota and behaviors characteristic of anorexia nervosa.
Collapse
Affiliation(s)
- Karlijn L Kooij
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - Nadia Andrea Andreani
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section Evolutionary Medicine, Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Luna L van der Gun
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | | - Mieneke Luijendijk
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | | | - Jochen Seitz
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR University Hospital Essen, Essen, Germany
| | - Annemarie van Elburg
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
- Faculty of Social Sciences, Utrecht University, Utrecht, The Netherlands
| | - Unna N Danner
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - John Baines
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section Evolutionary Medicine, Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Roger A H Adan
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
- Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Castells-Nobau A, Mayneris-Perxachs J, Fernández-Real JM. Unlocking the mind-gut connection: Impact of human microbiome on cognition. Cell Host Microbe 2024; 32:1248-1263. [PMID: 39146797 DOI: 10.1016/j.chom.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
This perspective explores the current understanding of the gut microbiota's impact on cognitive function in apparently healthy humans and in individuals with metabolic disease. We discuss how alterations in gut microbiota can influence cognitive processes, focusing not only on bacterial composition but also on often overlooked components of the gut microbiota, such as bacteriophages and eukaryotes, as well as microbial functionality. We examine the mechanisms through which gut microbes might communicate with the central nervous system, highlighting the complexity of these interactions. We provide a comprehensive overview of the emerging field of microbiota-gut-brain interactions and its significance for cognitive health. Additionally, we summarize novel therapeutic strategies designed to promote cognitive resilience and reduce the risk of cognitive disorders, focusing on interventions that target the gut microbiota. An in-depth understanding of the microbiome-brain axis is imperative for developing innovative treatments aimed at improving cognitive health.
Collapse
Affiliation(s)
- Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
6
|
Contreras‐Rodriguez O, Blasco G, Biarnés C, Puig J, Arnoriaga‐Rodríguez M, Coll‐Martinez C, Gich J, Ramió‐Torrentà L, Motger‐Albertí A, Pérez‐Brocal V, Moya A, Radua J, Manuel Fernández‐Real J. Unraveling the gut-brain connection: The association of microbiota-linked structural brain biomarkers with behavior and mental health. Psychiatry Clin Neurosci 2024; 78:339-346. [PMID: 38421082 PMCID: PMC11488601 DOI: 10.1111/pcn.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
AIM The gut microbiota can influence human behavior. However, due to the massive multiple-testing problem, research into the relationship between microbiome ecosystems and the human brain faces drawbacks. This problem arises when attempting to correlate thousands of gut bacteria with thousands of brain voxels. METHODS We performed brain magnetic resonance imaging (MRI) scans on 133 participants and applied machine-learning algorithms (Ridge regressions) combined with permutation tests. Using this approach, we were able to correlate specific gut bacterial families with brain MRI signals, circumventing the difficulties of massive multiple testing while considering sex, age, and body mass index as confounding factors. RESULTS The relative abundance (RA) of the Selenomonadaceae, Clostridiaceae, and Veillonellaceae families in the gut was associated with altered cerebellar, visual, and frontal T2-mapping and diffusion tensor imaging measures. Conversely, decreased relative abundance of the Eubacteriaceae family was also linked to T2-mapping values in the cerebellum. Significantly, the brain regions associated with the gut microbiome were also correlated with depressive symptoms and attentional deficits. CONCLUSIONS Our analytical strategy offers a promising approach for identifying potential brain biomarkers influenced by gut microbiota. By gathering a deeper understanding of the microbiota-brain connection, we can gain insights into the underlying mechanisms and potentially develop targeted interventions to mitigate the detrimental effects of dysbiosis on brain function and mental health.
Collapse
Affiliation(s)
- Oren Contreras‐Rodriguez
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- Department of Psychiatry and Legal Medicine, Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain
- Health Institute Carlos III (ISCIII)MadridSpain
- CIBERSAMMadridSpain
| | - Gerard Blasco
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
| | - Carles Biarnés
- Department of Radiology‐Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
| | - Josep Puig
- Radiology Department CDIHospital Clinic of BarcelonaBarcelonaSpain
| | - Maria Arnoriaga‐Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
| | - Clàudia Coll‐Martinez
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Jordi Gich
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Lluís Ramió‐Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of NeurologyDr. Josep Trueta University HospitalGironaSpain
| | - Anna Motger‐Albertí
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
- Department of Medical Sciences, School of MedicineUniversity of GironaGironaSpain
| | - Vicente Pérez‐Brocal
- Department of Genomics and HealthFoundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO‐Public Health)ValènciaSpain
- CIBERespMadridSpain
| | - Andrés Moya
- Department of Genomics and HealthFoundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO‐Public Health)ValènciaSpain
- CIBERespMadridSpain
- Institute for Integrative Systems Biology (I2SysBio)The Spanish National Research Council (CSIC‐UVEG), The University of ValenciaValènciaSpain
| | - Joaquim Radua
- Health Institute Carlos III (ISCIII)MadridSpain
- CIBERSAMMadridSpain
- Imaging of Mood‐ and Anxiety‐Related Disorders (IMARD) GroupInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Department of Medicine, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - José Manuel Fernández‐Real
- Health Institute Carlos III (ISCIII)MadridSpain
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University HospitalGironaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/0010)GironaSpain
- Department of Medical Sciences, School of MedicineUniversity of GironaGironaSpain
| |
Collapse
|
7
|
Rosell-Díaz M, Fernández-Real JM. Metformin, Cognitive Function, and Changes in the Gut Microbiome. Endocr Rev 2024; 45:210-226. [PMID: 37603460 PMCID: PMC10911951 DOI: 10.1210/endrev/bnad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
The decline in cognitive function and the prevalence of neurodegenerative disorders are among the most serious threats to health in old age. The prevalence of dementia has reached 50 million people worldwide and has become a major public health problem. The causes of age-related cognitive impairment are multiple, complex, and difficult to determine. However, type 2 diabetes (T2D) is linked to an enhanced risk of cognitive impairment and dementia. Human studies have shown that patients with T2D exhibit dysbiosis of the gut microbiota. This dysbiosis may contribute to the development of insulin resistance and increased plasma lipopolysaccharide concentrations. Metformin medication mimics some of the benefits of calorie restriction and physical activity, such as greater insulin sensitivity and decreased cholesterol levels, and hence may also have a positive impact on aging in humans. According to recent human investigations, metformin might partially restore gut dysbiosis related to T2D. Likewise, some studies showed that metformin reduced the risk of dementia and improved cognition, although not all studies are concordant. Therefore, this review focused on those human studies describing the effects of metformin on the gut microbiome (specifically the changes in taxonomy, function, and circulating metabolomics), the changes in cognitive function, and their possible bidirectional implications.
Collapse
Affiliation(s)
- Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
8
|
Jin Z, Cao Y, Wen Q, Zhang H, Fang Z, Zhao Q, Xi Y, Luo Z, Jiang H, Zhang Z, Hang J. Dapagliflozin ameliorates diabetes-induced spermatogenic dysfunction by modulating the adenosine metabolism along the gut microbiota-testis axis. Sci Rep 2024; 14:641. [PMID: 38182877 PMCID: PMC10770392 DOI: 10.1038/s41598-024-51224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Male infertility is one of the most common complications of diabetes mellitus (DM). Dapagliflozin is widely used to manage the type II DM. This study aimed to assess the dapagliflozin's effects on the spermatogenesis by administering either dapagliflozin (Dapa) or vehicle (db) to male db/db mice, and using littermate male db/m mice as the control (Con). We further performed the integrative analyses of the cecal shotgun metagenomics, cecal/plasmatic/testicular metabolomics, and testicular proteomics. We found that dapagliflozin treatment significantly alleviated the diabetes-induced spermatogenic dysfunction by improving sperm quality, including the sperm concentration and sperm motility. The overall microbial composition was reshaped in Dapa mice and 13 species (such as Lachnospiraceae bacterium 3-1) were regarded as potential beneficial bacteria. Metabolites exhibited modified profiles, in which adenosine, cAMP, and 2'-deoxyinosine being notably altered in the cecum, plasma, and testis, respectively. Testicular protein expression patterns were similar between the Dapa and Con mice. In vivo results indicated that when compared with db group, dapagliflozin treatment alleviated apoptosis and oxidative stress in testis tissues by down-regulating 2'-deoxyinosine. This was further validated by in vitro experiments using GC-2 cells. Our findings support the potential use of dapagliflozin to prevent the diabetes-induced impaired sperm quality and to treat diabetic male infertility.
Collapse
Affiliation(s)
- Zirun Jin
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Urology, Department of Andrology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yalei Cao
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Qi Wen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Haitao Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhuofan Fang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Qiancheng Zhao
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yu Xi
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhichao Luo
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hui Jiang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Department of Urology, Department of Andrology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Jing Hang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China.
| |
Collapse
|
9
|
Qian H, Zuo Y, Wen S, Wang X, Liu Y, Li T. Impact of exercise training on gut microbiome imbalance in obese individuals: a study based on Mendelian randomization analysis. Front Physiol 2024; 14:1264931. [PMID: 38235382 PMCID: PMC10792044 DOI: 10.3389/fphys.2023.1264931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Objective: The aim of this study was to investigate the relationship between exercise and gut Microbiome and to assess its possible causality. Methods: Using Mendelian randomization (MR) research methods, we collected genetic data from different populations, including genetic variants associated with relative abundance or presence of microbial taxa as instrumental variables. At the same time, we extracted results related to obesity and gut Microbiome from existing relevant studies and used inverse variance weighting (IVW), weighted median, and MR-Egger regression to assess the causal relationship between obesity and gut Microbiome. We plotted forest plots and scatter plots of the association between obesity and gut Microbiome. Results: Gut Microbiome was positively associated with obesity, and four bacterial genera (Akkermansia, RuminococcaceaeUCG011, Holdemania, and Intestinimonas) were associated with obesity according to inverse variance-weighted estimation in at least one MR method. Inverse variance weighted estimation showed that obesity was associated with obesity in Akkermansia (OR = 0.810, 95% CI 0.608-1.079, p = 0.04), RuminococcaceaeUCG011 (OR = 1.238, 95% CI 0. 511-2.999, p = 0.04), Holdemania Intestinimonas (OR = 1.214, 95% CI 1.002-1.470, p = 0.03), and Intestinimonas (OR = 0.747, 95% CI 0.514-1.086, p = 0.01) had a relevant effect. Obesity decreased the abundance of Akkermansia, Intestinimonas microbiome and increased the abundance of RuminococcaceaeUCG011, Holdemania microbiome. Conclusion: The results of this study, conducted using a two-sample Mendelian randomization method, suggest a causal relationship between obesity and intestinal microbiome. Obesity decreased the abundance of Akkermansia, Intestinimonas microbiome and increased the abundance of RuminococcaceaeUCG011, Holdemania microbiome. More randomized controlled trials are necessary to elucidate the protective effects of exercise on gut Microbiome and its unique protective mechanisms.
Collapse
Affiliation(s)
- Haonan Qian
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Yuxin Zuo
- Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Shixiong Wen
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Xilong Wang
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Yaowen Liu
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Tianwei Li
- The University of Edinburgh, Physical Activity for Health Research Center, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
11
|
Rosell-Díaz M, Santos-González E, Motger-Albertí A, Ramió-Torrentà L, Garre-Olmo J, Pérez-Brocal V, Moya A, Jové M, Pamplona R, Puig J, Ramos R, Fernández-Real JM, Mayneris-Perxachs J. Gut microbiota links to serum ferritin and cognition. Gut Microbes 2023; 15:2290318. [PMID: 38059755 PMCID: PMC10730210 DOI: 10.1080/19490976.2023.2290318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Iron is required for the replication and growth of almost all bacterial species and in the production of myelin and neurotransmitters. Increasing clinical studies evidence that the gut microbiota plays a critical role in iron metabolism and cognition. However, the understanding of the complex iron-microbiome-cognition crosstalk remains elusive. In a recent study in the Aging Imageomics cohort (n = 1,030), we identified a positive association of serum ferritin (SF) with executive function (EF) as inferred from the semantic verbal fluency (SVF,) the total digit span (TDS) and the phonemic verbal fluency tests (PVF). Here, we explored the potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. Different bacterial species belonging to the Proteobacteria phylum (Klebsiella pneumoniae, Klebsiella michiganensis, Unclassified Escherichia) were negatively associated both with SF and executive function. At the functional level, an enrichment of microbial pathways involved in phenylalanine, arginine, and proline metabolism was identified. Consistently, phenylacetylglutamine, a metabolite derived from microbial catabolism of phenylalanine, was negatively associated with SF, EF, and semantic memory. Other metabolites such as ureidobutyric acid and 19,20-DiHDPA, a DHA-derived oxylipin, were also consistently and negatively associated with SF, EF, and semantic memory, while plasma eicosapentaenoic acid was positively associated. The associations of SF with cognition could be mediated by the gut microbiome through microbial-derived metabolites.
Collapse
Affiliation(s)
- Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Anna Motger-Albertí
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Neurodegeneration and Neuroinflammation research group, IDIBGI. Department of Medical Sciences, Dr. Josep Trueta University Hospital, University of Girona, Girona-Salt, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Health, Gender, and Aging, Girona Biomedical Research Institute (IDIBGI) and University of Girona, Girona, Spain
- Department of Nursing, University of Girona, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud -RICAPPS- ISCIII, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
12
|
Guo M, Wang X, Li Y, Luo A, Zhao Y, Luo X, Li S. Intermittent Fasting on Neurologic Diseases: Potential Role of Gut Microbiota. Nutrients 2023; 15:4915. [PMID: 38068773 PMCID: PMC10707790 DOI: 10.3390/nu15234915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
As the global population ages, the prevalence of neurodegenerative diseases is surging. These disorders have a multifaceted pathogenesis, entwined with genetic and environmental factors. Emerging research underscores the profound influence of diet on the development and progression of health conditions. Intermittent fasting (IF), a dietary pattern that is increasingly embraced and recommended, has demonstrated potential in improving neurophysiological functions and mitigating pathological injuries with few adverse effects. Although the precise mechanisms of IF's beneficial impact are not yet completely understood, gut microbiota and their metabolites are believed to be pivotal in mediating these effects. This review endeavors to thoroughly examine current studies on the shifts in gut microbiota and metabolite profiles prompted by IF, and their possible consequences for neural health. It also highlights the significance of dietary strategies as a clinical consideration for those with neurological conditions.
Collapse
Affiliation(s)
- Mingke Guo
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Ailin Luo
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Yilin Zhao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyong Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| |
Collapse
|
13
|
Lane JM, Wright RO, Eggers S. The interconnection between obesity and executive function in adolescence: The role of the gut microbiome. Neurosci Biobehav Rev 2023; 153:105337. [PMID: 37524139 PMCID: PMC10592180 DOI: 10.1016/j.neubiorev.2023.105337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
In the United States, adolescent obesity is a growing epidemic associated with maladaptive executive functioning. Likewise, data link the microbiome to obesity. Emerging microbiome research has demonstrated an interconnection between the gut microbiome and the brain, indicating a bidirectional communication system within the gut-microbiome-brain axis in the pathophysiology of obesity. This narrative review identifies and summarizes relevant research connecting adolescent obesity as it relates to three core domains of executive functioning and the contribution of the gut microbiome in the relationship between obesity and executive functions in adolescence. The review suggests that (1) the interconnection between obesity, executive function, and the gut microbiome is a bidirectional connection, and (2) the gut microbiome may mediate the neurobiological pathways between obesity and executive function deficits. The findings of this review provide valuable insights into obesity-associated executive function deficits and elucidate the possible mediation role of the gut microbiome.
Collapse
Affiliation(s)
- Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
14
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
15
|
Oliveras-Cañellas N, Castells-Nobau A, de la Vega-Correa L, Latorre-Luque J, Motger-Albertí A, Arnoriaga-Rodriguez M, Garre-Olmo J, Zapata-Tona C, Coll-Martínez C, Ramió-Torrentà L, Moreno-Navarrete JM, Puig J, Villarroya F, Ramos R, Casadó-Anguera V, Martín-García E, Maldonado R, Mayneris-Perxachs J, Fernández-Real JM. Adipose tissue coregulates cognitive function. SCIENCE ADVANCES 2023; 9:eadg4017. [PMID: 37566655 PMCID: PMC10421051 DOI: 10.1126/sciadv.adg4017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Obesity is associated with cognitive decline. Recent observations in mice propose an adipose tissue (AT)-brain axis. We identified 188 genes from RNA sequencing of AT in three cohorts that were associated with performance in different cognitive domains. These genes were mostly involved in synaptic function, phosphatidylinositol metabolism, the complement cascade, anti-inflammatory signaling, and vitamin metabolism. These findings were translated into the plasma metabolome. The circulating blood expression levels of most of these genes were also associated with several cognitive domains in a cohort of 816 participants. Targeted misexpression of candidate gene ortholog in the Drosophila fat body significantly altered flies memory and learning. Among them, down-regulation of the neurotransmitter release cycle-associated gene SLC18A2 improved cognitive abilities in Drosophila and in mice. Up-regulation of RIMS1 in Drosophila fat body enhanced cognitive abilities. Current results show previously unidentified connections between AT transcriptome and brain function in humans, providing unprecedented diagnostic/therapeutic targets in AT.
Collapse
Affiliation(s)
- Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Lisset de la Vega-Correa
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jessica Latorre-Luque
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Anna Motger-Albertí
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Arnoriaga-Rodriguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Garre-Olmo
- Department of Nursing (Serra-Hunter Professor), University of Girona, Girona, Spain
| | - Cristina Zapata-Tona
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Clàudia Coll-Martínez
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
- Girona Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Puig
- Department of Radiology (IDI), Girona Biomedical Research Institute (IdIBGi), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Francesc Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biology, University of Barcelona, Barcelona. Spain
| | - Rafel Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Girona, Spain
| | - Verònica Casadó-Anguera
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
16
|
Mingaila J, Atzeni A, Burokas A. A Comparison of Methods of Gut Microbiota Transplantation for Preclinical Studies. Int J Mol Sci 2023; 24:12005. [PMID: 37569381 PMCID: PMC10418867 DOI: 10.3390/ijms241512005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The experimental details reported in preclinical fecal microbiota transplantation (FMT) protocols are highly inconsistent, variable, and/or incomplete. We therefore evaluated FMT from a human donor to antibiotic-induced microbial-depleted mice by exploring the effects of six techniques based on antibiotic (AB) or antibiotic + antimycotic (AB + T) gut decontamination, different administration routes, and different dosing intervals on the gut microbial population, assessed using 16S and 18S sequencing. In addition, we explored the effectiveness of FMT in terms of inflammation, physiological, and behavioral outcomes. Our results showed that intrarectal FMT at low dosing intervals better preserved the donor's gut bacterial community at genus level. Furthermore, we showed a lower abundance of several genera of fungi in animals treated with AB + T. In addition, we observed that AB + T gut decontamination followed by per os FMT, once every 3 days, affected behavioral parameters when compared to other FMT techniques. Accordingly, the same FMT groups that showed an association with some of the behavioral tests were also related to specific gut fungal genera, suggesting a possible mediation. Our findings may be useful for optimizing the practice of FMT and also in terms of donor microbiota preservation. This information may help to improve the reproducibility and reliability of FMT studies.
Collapse
Affiliation(s)
| | | | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
17
|
Guzzardi MA, La Rosa F, Iozzo P. Trust the gut: outcomes of gut microbiota transplant in metabolic and cognitive disorders. Neurosci Biobehav Rev 2023; 149:105143. [PMID: 36990372 DOI: 10.1016/j.neubiorev.2023.105143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a main public health concern, with increasing prevalence and growingly premature onset in children, in spite of emerging and successful therapeutic options. T2DM promotes brain aging, and younger age at onset is associated with a higher risk of subsequent dementia. Preventive strategies should address predisposing conditions, like obesity and metabolic syndrome, and be started from very early and even prenatal life. Gut microbiota is an emerging target in obesity, diabetes and neurocognitive diseases, which could be safely modulated since pregnancy and infancy. Many correlative studies have supported its involvement in disease pathophysiology. Faecal material transplantation (FMT) studies have been conducted in clinical and preclinical settings to deliver cause-effect proof and mechanistic insights. This review provides a comprehensive overview of studies in which FMT was used to cure or cause obesity, metabolic syndrome, T2DM, cognitive decline and Alzheimer's disease, including the evidence available in early life. Findings were analysed to dissect consolidated from controversial results, highlighting gaps and possible future directions.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| | - Federica La Rosa
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
18
|
Exploring the links between gut microbiota and excitatory and inhibitory brain processes in alcohol use disorder: A TMS study. Neuropharmacology 2023; 225:109384. [PMID: 36567005 DOI: 10.1016/j.neuropharm.2022.109384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
While the impact of the gut microbiota on brain and behavior is increasingly recognized, human studies examining this question are still scarce. The primary objective of the current study was to explore the potential relationships between the gut microbiota composition, motor cortical excitability at rest and during inhibitory control, as well as behavioral inhibition, in healthy volunteers and in patients suffering from alcohol use disorder. Motor cortical excitability was examined using a range of transcranial magnetic stimulation (TMS) measures probed at rest, including the recruitment curve, short and long intracortical inhibition, and intracortical facilitation within the primary motor cortex. Moreover, TMS was applied during a choice reaction time task to assess changes in motor excitability associated with inhibitory control. Finally, behavioral inhibition was investigated using a neuropsychological task (anti-saccade). Overall, our results highlight several interesting correlations between microbial composition and brain measures. Hence, higher bacterial diversity, as well as higher relative abundances of UGC-002 and Christensenellaceae R-7 group were correlated with stronger changes in motor excitability associated with inhibitory control. Also, higher abundance of Anaerostipes was associated with higher level of corticospinal excitability. Finally, relative abundances of Bifidobacterium and Faecalibacterium were positively related to performance in the neuropsychological task, suggesting that they might have a positive impact on behavioral inhibition. Although correlation is not causation, the present study suggests that excitatory and inhibitory brain processes might be related to gut microbiota composition. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
|
19
|
Bacterial origins of thymidylate metabolism in Asgard archaea and Eukarya. Nat Commun 2023; 14:838. [PMID: 36792581 PMCID: PMC9931769 DOI: 10.1038/s41467-023-36487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Asgard archaea include the closest known archaeal relatives of eukaryotes. Here, we investigate the evolution and function of Asgard thymidylate synthases and other folate-dependent enzymes required for the biosynthesis of DNA, RNA, amino acids and vitamins, as well as syntrophic amino acid utilization. Phylogenies of Asgard folate-dependent enzymes are consistent with their horizontal transmission from various bacterial groups. We experimentally validate the functionality of thymidylate synthase ThyX of the cultured 'Candidatus Prometheoarchaeum syntrophicum'. The enzyme efficiently uses bacterial-like folates and is inhibited by mycobacterial ThyX inhibitors, even though the majority of experimentally tested archaea are known to use carbon carriers distinct from bacterial folates. Our phylogenetic analyses suggest that the eukaryotic thymidylate synthase, required for de novo DNA synthesis, is not closely related to archaeal enzymes and might have been transferred from bacteria to protoeukaryotes during eukaryogenesis. Altogether, our study suggests that the capacity of eukaryotic cells to duplicate their genetic material is a sum of archaeal (replisome) and bacterial (thymidylate synthase) characteristics. We also propose that recent prevalent lateral gene transfer from bacteria has markedly shaped the metabolism of Asgard archaea.
Collapse
|
20
|
Frankot MA, O’Hearn CM, Blancke AM, Rodriguez B, Pechacek KM, Gandhi J, Hu G, Martens KM, Haar CV. Acute gut microbiome changes after traumatic brain injury are associated with chronic deficits in decision-making and impulsivity in male rats. Behav Neurosci 2023; 137:15-28. [PMID: 35901372 PMCID: PMC9996537 DOI: 10.1037/bne0000532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanisms underlying chronic psychiatric-like impairments after traumatic brain injury (TBI) are currently unknown. The goal of the present study was to assess the role of diet and the gut microbiome in psychiatric symptoms after TBI. Rats were randomly assigned to receive a high-fat diet (HFD) or calorie-matched low-fat diet (LFD). After 2 weeks of free access, rats began training on the rodent gambling task (RGT), a measure of risky decision-making and motor impulsivity. After training, rats received a bilateral frontal TBI or a sham procedure and continued postinjury testing for 10 weeks. Fecal samples were collected before injury and 3-, 30-, and 60 days postinjury to evaluate the gut microbiome. HFD altered the microbiome, but ultimately had low-magnitude effects on behavior and did not modify functional outcomes after TBI. Injury-induced functional deficits were far more robust; TBI substantially decreased optimal choice and increased suboptimal choice and motor impulsivity on the RGT. TBI also affected the microbiome, and a model comparison approach revealed that bacterial diversity measured 3 days postinjury was predictive of chronic psychiatric-like deficits on the RGT. A functional metagenomic analysis identified changes to dopamine and serotonin synthesis pathways as a potential candidate mechanism. Thus, the gut may be a potential acute treatment target for psychiatric symptoms after TBI, as well as a biomarker for injury and deficit severity. However, further research will be needed to confirm and extend these findings. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Alyssa M. Blancke
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Bryan Rodriguez
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | | | - Jasleen Gandhi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Kris M. Martens
- Department of Psychology, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA
- Cancer Institute, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Cole Vonder Haar
- Department of Psychology, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA
- Cancer Institute, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
21
|
Ramírez V, González-Palacios P, Baca MA, González-Domenech PJ, Fernández-Cabezas M, Álvarez-Cubero MJ, Rodrigo L, Rivas A. Effect of exposure to endocrine disrupting chemicals in obesity and neurodevelopment: The genetic and microbiota link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158219. [PMID: 36007653 DOI: 10.1016/j.scitotenv.2022.158219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Current evidence highlights the importance of the genetic component in obesity and neurodevelopmental disorders (attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID)), given that these diseases have reported an elevated heritability. Additionally, environmental stressors, such as endocrine disrupting chemicals (EDCs) have been classified as obesogens, neuroendocrine disruptors, and microbiota disrupting chemicals (MDCs). For this reason, the importance of this work lies in examining two possible biological mechanistic pathways linking obesity and neurodevelopmental/behavioural disorders: EDCs - gene and EDCs - microbiota interactions. First, we summarise the shared mechanisms of action of EDCs and the common genetic profile in the bidirectional link between obesity and neurodevelopment. In relation to interaction models, evidence from the reviewed studies reveals significant interactions between pesticides/heavy metals and gene polymorphisms of detoxifying and neurotransmission systems and metal homeostasis on cognitive development, ASD and ADHD symptomatology. Nonetheless, available literature about obesity is quite limited. Importantly, EDCs have been found to induce gut microbiota changes through gut-brain-microbiota axis conferring susceptibility to obesity and neurodevelopmental disorders. In view of the lack of studies assessing the impact of EDCs - gene interactions and EDCs - mediated dysbiosis jointly in obesity and neurodevelopment, we support considering genetics, EDCs exposure, and microbiota as interactive factors rather than individual contributors to the risk for developing obesity and neurodevelopmental disabilities at the same time.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | | | | | - María Fernández-Cabezas
- Department of Developmental and Educational Psychology, Faculty of Educational Sciences, University of Granada, 18011 Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| |
Collapse
|
22
|
Mayneris-Perxachs J, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, Trelis M, Burokas A, Coll C, Zapata-Tona C, Pedraza S, Pérez-Brocal V, Ramió L, Ricart W, Moya A, Jové M, Sol J, Portero-Otin M, Pamplona R, Maldonado R, Fernández-Real JM. Presence of Blastocystis in gut microbiota is associated with cognitive traits and decreased executive function. THE ISME JOURNAL 2022; 16:2181-2197. [PMID: 35729225 PMCID: PMC9381544 DOI: 10.1038/s41396-022-01262-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 05/28/2023]
Abstract
Growing evidence implicates the gut microbiome in cognition. Blastocystis is a common gut single-cell eukaryote parasite frequently detected in humans but its potential involvement in human pathophysiology has been poorly characterized. Here we describe how the presence of Blastocystis in the gut microbiome was associated with deficits in executive function and altered gut bacterial composition in a discovery (n = 114) and replication cohorts (n = 942). We also found that Blastocystis was linked to bacterial functions related to aromatic amino acids metabolism and folate-mediated pyrimidine and one-carbon metabolism. Blastocystis-associated shifts in bacterial functionality translated into the circulating metabolome. Finally, we evaluated the effects of microbiota transplantation. Donor's Blastocystis subtypes led to altered recipient's mice cognitive function and prefrontal cortex gene expression. In summary, Blastocystis warrant further consideration as a novel actor in the gut microbiome-brain axis.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain.
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain
- Research Group on Aging, Disability and Health, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Josep Puig
- Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain
- Institut Investigació Germans Trias i Pujol (IGTP), Comparative Medicine and Bioimage of Catalonia, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain
- Vascular Health Research Group of Girona (ISV-Girona). Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gurina -IDIAPJGol), Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain
- Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | - Maria Trelis
- Parasite & Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, Valencia, Spain
| | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Cristina Zapata-Tona
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain
| | - Salvador Pedraza
- Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lluís Ramió
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), E-25198, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), E-25198, Lleida, Spain
- Institut Català de la Salut, Atenció Primària, Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), E-25198, Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), E-25198, Lleida, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain.
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain.
| |
Collapse
|
23
|
Lin K, Zhu L, Yang L. Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm (Beijing) 2022; 3:e171. [PMID: 36092861 PMCID: PMC9437302 DOI: 10.1002/mco2.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity is often associated with the risk of chronic inflammation and other metabolic diseases, such as diabetes, cardiovascular disease, and cancer. The composition and activity of the gut microbiota play an important role in this process, affecting a range of physiological processes, such as nutrient absorption and energy metabolism. The active gut microbiota can produce a large number of physiologically active substances during the process of intestinal metabolism and reproduction, including short-chain/long-chain fatty acids, secondary bile acids, and tryptophan metabolites with beneficial effects on metabolism, as well as negative metabolites, including trimethylamine N-oxide, delta-valerobetaine, and imidazole propionate. How gut microbiota specifically affect and participate in metabolic and immune activities, especially the metabolites directly produced by gut microbiota, has attracted extensive attention. So far, some animal and human studies have shown that gut microbiota metabolites are correlated with host obesity, energy metabolism, and inflammation. Some pathways and mechanisms are slowly being discovered. Here, we will focus on the important metabolites of gut microbiota (beneficial and negative), and review their roles and mechanisms in obesity and related metabolic diseases, hoping to provide a new perspective for the treatment and remission of obesity and other metabolic diseases from the perspective of metabolites.
Collapse
Affiliation(s)
- Ke Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lixin Zhu
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseSixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Colorectal SurgerySixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
24
|
Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. Int J Mol Sci 2022; 23:ijms23116097. [PMID: 35682774 PMCID: PMC9181475 DOI: 10.3390/ijms23116097] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes and obesity are metabolic diseases that have become alarming conditions in recent decades. Their rate of increase is becoming a growing concern worldwide. Recent studies have established that the composition and dysfunction of the gut microbiota are associated with the development of diabetes. For this reason, strategies such as the use of prebiotics to improve intestinal microbial structure and function have become popular. Consumption of prebiotics for modulating the gut microbiota results in the production of microbial metabolites such as short-chain fatty acids that play essential roles in reducing blood glucose levels, mitigating insulin resistance, reducing inflammation, and promoting the secretion of glucagon-like peptide 1 in the host, and this accounts for the observed remission of metabolic diseases. Prebiotics can be either naturally extracted from non-digestible carbohydrate materials or synthetically produced. In this review, we discussed current findings on how the gut microbiota and microbial metabolites may influence host metabolism to promote health. We provided evidence from various studies that show the ability of prebiotic consumption to alter gut microbial profile, improve gut microbial metabolism and functions, and improve host physiology to alleviate diabetes and obesity. We conclude among other things that the application of systems biology coupled with bioinformatics could be essential in ascertaining the exact mechanisms behind the prebiotic–gut microbe–host interactions required for diabetes and obesity improvement.
Collapse
|
25
|
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Martin M, de la Vega-Correa L, Zapata C, Burokas A, Blasco G, Coll C, Escrichs A, Biarnés C, Moreno-Navarrete JM, Puig J, Garre-Olmo J, Ramos R, Pedraza S, Brugada R, Vilanova JC, Serena J, Gich J, Ramió-Torrentà L, Pérez-Brocal V, Moya A, Pamplona R, Sol J, Jové M, Ricart W, Portero-Otin M, Deco G, Maldonado R, Fernández-Real JM. Microbiota alterations in proline metabolism impact depression. Cell Metab 2022; 34:681-701.e10. [PMID: 35508109 DOI: 10.1016/j.cmet.2022.04.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
The microbiota-gut-brain axis has emerged as a novel target in depression, a disorder with low treatment efficacy. However, the field is dominated by underpowered studies focusing on major depression not addressing microbiome functionality, compositional nature, or confounding factors. We applied a multi-omics approach combining pre-clinical models with three human cohorts including patients with mild depression. Microbial functions and metabolites converging onto glutamate/GABA metabolism, particularly proline, were linked to depression. High proline consumption was the dietary factor with the strongest impact on depression. Whole-brain dynamics revealed rich club network disruptions associated with depression and circulating proline. Proline supplementation in mice exacerbated depression along with microbial translocation. Human microbiota transplantation induced an emotionally impaired phenotype in mice and alterations in GABA-, proline-, and extracellular matrix-related prefrontal cortex genes. RNAi-mediated knockdown of proline and GABA transporters in Drosophila and mono-association with L. plantarum, a high GABA producer, conferred protection against depression-like states. Targeting the microbiome and dietary proline may open new windows for efficient depression treatment.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain.
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain; Department of Medical Sciences, School of Medicine, Girona, Spain
| | - Miquel Martin
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lisset de la Vega-Correa
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Cristina Zapata
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gerard Blasco
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, IDIBGI, Girona, Spain
| | - Clàudia Coll
- Girona Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta Hospital, Girona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carles Biarnés
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, IDIBGI, Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta Hospital, Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain; Department of Medical Sciences, School of Medicine, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, IDIBGI, Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta Hospital, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Aging, Disability, and Health, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain; Institut d'Assistència Sanitària, Girona, Spain
| | - Rafel Ramos
- Department of Medical Sciences, School of Medicine, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari Recerca Atenció Primària Jordi Gol i Gorina-IDIAPJGol), Girona, Spain; IDIBGI, Dr. Josep Trueta Hospital, Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, School of Medicine, Girona, Spain; Medical Imaging, IDIBGI, Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta Hospital, Girona, Spain
| | - Ramón Brugada
- IDIBGI, Dr. Josep Trueta Hospital, Girona, Spain; Biomedical Research Networking Center for Cardiovascular Diseases (CIBER), Madrid, Spain
| | - Joan Carles Vilanova
- Department of Radiology (IDI), Dr. Josep Trueta Hospital, Girona, Spain; IDIBGI, Dr. Josep Trueta Hospital, Girona, Spain
| | - Joaquín Serena
- IDIBGI, Dr. Josep Trueta Hospital, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, IDIBGI, Girona, Spain
| | - Jordi Gich
- Department of Medical Sciences, School of Medicine, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, IDIBGI, Girona, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, Girona, Spain; Girona Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta Hospital, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, IDIBGI, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of València Region (FISABIO-Public Health), València, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of València Region (FISABIO-Public Health), València, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBEResp), Madrid, Spain; Institute for Integrative Systems Biology (I2Sysbio), University of València and Spanish Research Council (CSIC), València, Spain
| | - Reinald Pamplona
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain; Institut Català de la Salut, Atenció Primària, Lleida, Spain; Research Support Unit, Fundació Institut Universitari recerca l'Atenció Primària Salut Jordi Gol i Gorina (IDIAPJGol), Lleida, Spain
| | - Mariona Jové
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain; Department of Medical Sciences, School of Medicine, Girona, Spain
| | - Manuel Portero-Otin
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institucio Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain; Department of Medical Sciences, School of Medicine, Girona, Spain.
| |
Collapse
|
26
|
Bombin A, Yan S, Bombin S, Mosley JD, Ferguson JF. Obesity influences composition of salivary and fecal microbiota and impacts the interactions between bacterial taxa. Physiol Rep 2022; 10:e15254. [PMID: 35384379 PMCID: PMC8980904 DOI: 10.14814/phy2.15254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 04/23/2023] Open
Abstract
Obesity is an increasing global health concern and is associated with a broad range of morbidities. The gut microbiota are increasingly recognized as important contributors to obesity and cardiometabolic health. This study aimed to characterize oral and gut microbial communities, and evaluate host: microbiota interactions between clinical obesity classifications. We performed 16S rRNA sequencing on fecal and salivary samples, global metabolomics profiling on plasma and stool samples, and dietary profiling in 135 healthy individuals. We grouped individuals by obesity status, based on body mass index (BMI), including lean (BMI 18-124.9), overweight (BMI 25-29.9), or obese (BMI ≥30). We analyzed differences in microbiome composition, community inter-relationships, and predicted microbial function by obesity status. We found that salivary bacterial communities of lean and obese individuals were compositionally and phylogenetically distinct. An increase in obesity status was positively associated with strong correlations between bacterial taxa, particularly with bacterial groups implicated in metabolic disorders including Fretibacterium, and Tannerella. Consumption of sweeteners, especially xylitol, significantly influenced compositional and phylogenetic diversities of salivary and fecal bacterial communities. In addition, obesity groups exhibited differences in predicted bacterial metabolic activity, which was correlated with host's metabolite concentrations. Overall, obesity was associated with distinct changes in bacterial community dynamics, particularly in saliva. Consideration of microbiome community structure and inclusion of salivary samples may improve our ability to understand pathways linking microbiota to obesity and cardiometabolic disease.
Collapse
Affiliation(s)
- Andrei Bombin
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shun Yan
- Department of GeneticsThe University of AlabamaBirminghamAlabamaUSA
| | - Sergei Bombin
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| | - Jonathan D. Mosley
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jane F. Ferguson
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Microbiome Innovation Center (VMIC)NashvilleTennesseeUSA
| |
Collapse
|
27
|
Zhao Q, Shi J, Chen S, Hao D, Wan S, Niu H, Zhang Y. Salidroside Affects Gut Microbiota Structure in db/db Mice by Affecting Insulin, Blood Glucose and Body Weight. Diabetes Metab Syndr Obes 2022; 15:2619-2631. [PMID: 36060789 PMCID: PMC9438798 DOI: 10.2147/dmso.s372192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the regulatory effect of salidroside on the intestinal flora of mice with type 2 diabetes (T2DM) and its protective effect in the body. PATIENTS AND METHODS We acclimated 8-week-old mice for 7 days, divided them into 4 groups, and continued dosing for 8 weeks. We recorded weekly blood glucose levels and body weight for each mouse. After the completion of the feeding cycle, the 16S rRNA of the intestinal flora in the mice was sequenced, and the insulin and C-peptide levels in each group of mice were measured. Four samples were taken from each group for liver and kidney section staining. RESULTS Our results showed that gut microbiota diversity and function were significantly different between the diabetic mice and healthy mice and that insulin levels, body weight, and blood glucose levels could significantly influence gut microbiota changes at the genus level. The gut microbiota diversity and function of db/db mice were also altered after salidroside administration. Salidroside could attenuate inflammatory damage, lipid accumulation and inflammatory changes in the diabetic liver, as well as diabetic kidney damage. Candidatus arthromitus and Odoribacter are important species of the microbiota during diabetes and may serve as potential therapeutic targets. CONCLUSION Our investigation of the associated pathological conditions and fecal microbiota in db/db mice provides new insights into the pathogenesis of T2DM and provides implications for the diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- Qin Zhao
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Jing Shi
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Siyuan Chen
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Doudou Hao
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Sha Wan
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Haomeng Niu
- Medical School, Tibet University, Lhasa, Tibet Autonomous Region, People’s Republic of China
| | - Yongqun Zhang
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
- Correspondence: Yongqun Zhang, Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), No. 20 Ximianqiao Road, Chengdu, Sichuan Povince, 610041, People’s Republic of China, Tel +86-28-85593218, Fax +86 28-85558071, Email
| |
Collapse
|
28
|
Lee AH, Manly A, Dong TS. Leveraging the Microbiome for Obesity: Moving From Form to Function. Front Endocrinol (Lausanne) 2022; 13:918923. [PMID: 35873002 PMCID: PMC9300920 DOI: 10.3389/fendo.2022.918923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment of obesity, an ongoing global epidemic, is challenging, as weight-loss efforts require a multidisciplinary approach addressing both behavioral and biologic needs that are not completely understood. Recent studies of the gut microbiome may provide better insight into the condition, and ultimately serve to advance more effective therapies. Research in this field has shifted from analyzing microbiome compositional differences to investigating functional changes that affect disease pathophysiology and outcome. Bacteria-derived metabolites are a way to bridge compositional changes to functional consequences. Through the production of metabolites, such as short chain fatty acids, tryptophan derivatives and bile acids, and interactions with peripheral and central signaling pathways, the gut microbiome may alter the body's metabolic and behavioral responses to food. Here, we summarize these mechanisms driven by gut-derived metabolites, through which the microbiome is thought to contribute to obesity, as well as review recent investigations of interventions related to these metabolites. Limitations of existing research, primarily due to paucity of causal studies in humans, are also discussed in this review.
Collapse
Affiliation(s)
- Anna H. Lee
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Anna H. Lee,
| | - Amanda Manly
- Department of Medicine, Garden City Hospital, Garden City, MI, United States
| | - Tien S. Dong
- Department of Gastroenterology, Greater Los Angeles Veterans Affairs, Los Angeles, CA, United States
- Vatche & Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, United States
| |
Collapse
|
29
|
Leyrolle Q, Cserjesi R, Demeure R, Neyrinck AM, Amadieu C, Rodriguez J, Kärkkäinen O, Hanhineva K, Paquot N, Cnop M, Cani PD, Thissen JP, Bindels LB, Klein O, Luminet O, Delzenne NM. Microbiota and Metabolite Profiling as Markers of Mood Disorders: A Cross-Sectional Study in Obese Patients. Nutrients 2021; 14:nu14010147. [PMID: 35011021 PMCID: PMC8746987 DOI: 10.3390/nu14010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
Obesity is associated with an increased risk of several neurological and psychiatric diseases, but few studies report the contribution of biological features in the occurrence of mood disorders in obese patients. The aim of the study is to evaluate the potential links between serum metabolomics and gut microbiome, and mood disturbances in a cohort of obese patients. Psychological, biological characteristics and nutritional habits were evaluated in 94 obese subjects from the Food4Gut study stratified according to their mood score assessed by the Positive and Negative Affect Schedule (PANAS). The fecal gut microbiota and plasma non-targeted metabolomics were analysed. Obese subjects with increased negative mood display elevated levels of Coprococcus as well as decreased levels of Sutterella and Lactobacillus. Serum metabolite profile analysis reveals in these subjects altered levels of several amino acid-derived metabolites, such as an increased level of L-histidine and a decreased in phenylacetylglutamine, linked to altered gut microbiota composition and function rather than to differences in dietary amino acid intake. Regarding clinical profile, we did not observe any differences between both groups. Our results reveal new microbiota-derived metabolites that characterize the alterations of mood in obese subjects, thereby allowing to propose new targets to tackle mood disturbances in this context. Food4gut, clinicaltrial.gov: NCT03852069.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (Q.L.); (R.D.); (A.M.N.); (C.A.); (J.R.); (P.D.C.); (L.B.B.)
| | - Renata Cserjesi
- Center for Social and Cultural Psychology, Université Libre de Bruxelles, 1000 Brussels, Belgium; (R.C.); (O.K.)
- Institute of Psychology, Eötvös Loránd University, 1053 Budapest, Hungary
| | - Romane Demeure
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (Q.L.); (R.D.); (A.M.N.); (C.A.); (J.R.); (P.D.C.); (L.B.B.)
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (Q.L.); (R.D.); (A.M.N.); (C.A.); (J.R.); (P.D.C.); (L.B.B.)
| | - Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (Q.L.); (R.D.); (A.M.N.); (C.A.); (J.R.); (P.D.C.); (L.B.B.)
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (Q.L.); (R.D.); (A.M.N.); (C.A.); (J.R.); (P.D.C.); (L.B.B.)
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Kati Hanhineva
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland;
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-Inflammation, Infection & Immunity, University of Liège, 4000 Liège, Belgium;
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (Q.L.); (R.D.); (A.M.N.); (C.A.); (J.R.); (P.D.C.); (L.B.B.)
- WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, 1200 Brussels, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institut de Recherche Expérimentale et Clinique IREC, UCLouvain, 1200 Brussels, Belgium;
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (Q.L.); (R.D.); (A.M.N.); (C.A.); (J.R.); (P.D.C.); (L.B.B.)
| | - Olivier Klein
- Center for Social and Cultural Psychology, Université Libre de Bruxelles, 1000 Brussels, Belgium; (R.C.); (O.K.)
| | - Olivier Luminet
- Research Institute for Psychological Sciences, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (Q.L.); (R.D.); (A.M.N.); (C.A.); (J.R.); (P.D.C.); (L.B.B.)
- Correspondence: ; Tel.: +32-2-764-73-69
| |
Collapse
|
30
|
Olsthoorn L, Vreeken D, Kiliaan AJ. Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition. Front Neurosci 2021; 15:761456. [PMID: 34938153 PMCID: PMC8685335 DOI: 10.3389/fnins.2021.761456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity affects 13% of the adult population worldwide and this number is only expected to increase. Obesity is known to have a negative impact on cardiovascular and metabolic health, but it also impacts brain structure and function; it is associated with both gray and white matter integrity loss, as well as decreased cognitive function, including the domains of executive function, memory, inhibition, and language. Especially midlife obesity is associated with both cognitive impairment and an increased risk of developing dementia at later age. However, underlying mechanisms are not yet fully revealed. Here, we review recent literature (published between 2010 and March 2021) and discuss the effects of obesity on brain structure and cognition, with a main focus on the contributions of the gut microbiome, white adipose tissue (WAT), inflammation, and cerebrovascular function. Obesity-associated changes in gut microbiota composition may cause increased gut permeability and inflammation, therewith affecting cognitive function. Moreover, excess of WAT in obesity produces pro-inflammatory adipokines, leading to a low grade systemic peripheral inflammation, which is associated with decreased cognition. The blood-brain barrier also shows increased permeability, allowing among others, peripheral pro-inflammatory markers to access the brain, leading to neuroinflammation, especially in the hypothalamus, hippocampus and amygdala. Altogether, the interaction between the gut microbiota, WAT inflammation, and cerebrovascular integrity plays a significant role in the link between obesity and cognition. Future research should focus more on the interplay between gut microbiota, WAT, inflammation and cerebrovascular function to obtain a better understanding about the complex link between obesity and cognitive function in order to develop preventatives and personalized treatments.
Collapse
Affiliation(s)
- Lisette Olsthoorn
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands.,Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| |
Collapse
|
31
|
Abstract
The gut microbiota has the capacity to affect host appetite via intestinal satiety pathways, as well as complex feeding behaviors. In this Review, we highlight recent evidence that the gut microbiota can modulate food preference across model organisms. We discuss effects of the gut microbiota on the vagus nerve and brain regions including the hypothalamus, mesolimbic system, and prefrontal cortex, which play key roles in regulating feeding behavior. Crosstalk between commensal bacteria and the central and peripheral nervous systems is associated with alterations in signaling of neurotransmitters and neuropeptides such as dopamine, brain-derived neurotrophic factor (BDNF), and glucagon-like peptide-1 (GLP-1). We further consider areas for future research on mechanisms by which gut microbes may influence feeding behavior involving these neural pathways. Understanding roles for the gut microbiota in feeding regulation will be important for informing therapeutic strategies to treat metabolic and eating disorders.
Collapse
|