1
|
Gupta A, Marzook H, Ahmad F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: an overview. Clin Exp Med 2023; 23:313-331. [PMID: 35362771 PMCID: PMC8972750 DOI: 10.1007/s10238-022-00821-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/12/2022] [Indexed: 01/08/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes major challenges to the healthcare system. SARS-CoV-2 infection leads to millions of deaths worldwide and the mortality rate is found to be greatly associated with pre-existing clinical conditions. The existing dataset strongly suggests that cardiometabolic diseases including hypertension, coronary artery disease, diabetes and obesity serve as strong comorbidities in coronavirus disease (COVID-19). Studies have also shown the poor outcome of COVID-19 in patients associated with angiotensin-converting enzyme-2 polymorphism, cancer chemotherapy, chronic kidney disease, thyroid disorder, or coagulation dysfunction. A severe complication of COVID-19 is mostly seen in people with compromised medical history. SARS-CoV-2 appears to attack the respiratory system causing pneumonia, acute respiratory distress syndrome, which lead to induction of severe systemic inflammation, multi-organ dysfunction, and death mostly in the patients who are associated with pre-existing comorbidity factors. In this article, we highlighted the key comorbidities and a variety of clinical complications associated with COVID-19 for a better understanding of the etiopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Anamika Gupta
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Hezlin Marzook
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE.
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
2
|
Meo C, Palma G, Bruzzese F, Budillon A, Napoli C, de Nigris F. Spontaneous cancer remission after COVID-19: insights from the pandemic and their relevance for cancer treatment. J Transl Med 2023; 21:273. [PMID: 37085802 PMCID: PMC10119533 DOI: 10.1186/s12967-023-04110-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Early in the COVID-19 pandemic, it emerged that the risk of severe outcomes was greater in patients with co-morbidities, including cancer. The huge effort undertaken to fight the pandemic, affects the management of cancer care, influencing their outcome. Despite the high fatality rate of COVID-19 disease in cancer patients, rare cases of temporary or prolonged clinical remission from cancers after SARS-CoV-2 infection have been reported. We have reviewed sixteen case reports of COVID-19 disease with spontaneous cancer reduction of progression. Fourteen cases of remission following viral infections and two after anti-SARS-CoV-2 vaccination. The immune response to COVID-19, may be implicated in both tumor regression, and progression. Specifically, we discuss potential mechanisms which include oncolytic and priming hypotheses, that may have contributed to the cancer regression in these cases and could be useful for future options in cancer treatment.
Collapse
Affiliation(s)
- Concetta Meo
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate - National Institute of Cancer - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138, Naples, Italy
- Advanced Medical and Surgical Science (DAMSS), School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
3
|
Johnson DB, Atkins MB, Hennessy C, Wise-Draper T, Heilman H, Awosika J, Bakouny Z, Labaki C, Saliby RM, Hwang C, Singh SRK, Balanchivadze N, Friese CR, Fecher LA, Yoon JJ, Hayes-Lattin B, Bilen MA, Castellano CA, Lyman GH, Tachiki L, Shah SA, Glover MJ, Flora DB, Wulff-Burchfield E, Kasi A, Abbasi SH, Farmakiotis D, Viera K, Klein EJ, Weissman LB, Jani C, Puc M, Fahey CC, Reuben DY, Mishra S, Beeghly-Fadiel A, French B, Warner JL. Impact of COVID-19 in patients on active melanoma therapy and with history of melanoma. BMC Cancer 2023; 23:265. [PMID: 36949413 PMCID: PMC10033295 DOI: 10.1186/s12885-023-10708-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
INTRODUCTION COVID-19 particularly impacted patients with co-morbid conditions, including cancer. Patients with melanoma have not been specifically studied in large numbers. Here, we sought to identify factors that associated with COVID-19 severity among patients with melanoma, particularly assessing outcomes of patients on active targeted or immune therapy. METHODS Using the COVID-19 and Cancer Consortium (CCC19) registry, we identified 307 patients with melanoma diagnosed with COVID-19. We used multivariable models to assess demographic, cancer-related, and treatment-related factors associated with COVID-19 severity on a 6-level ordinal severity scale. We assessed whether treatment was associated with increased cardiac or pulmonary dysfunction among hospitalized patients and assessed mortality among patients with a history of melanoma compared with other cancer survivors. RESULTS Of 307 patients, 52 received immunotherapy (17%), and 32 targeted therapy (10%) in the previous 3 months. Using multivariable analyses, these treatments were not associated with COVID-19 severity (immunotherapy OR 0.51, 95% CI 0.19 - 1.39; targeted therapy OR 1.89, 95% CI 0.64 - 5.55). Among hospitalized patients, no signals of increased cardiac or pulmonary organ dysfunction, as measured by troponin, brain natriuretic peptide, and oxygenation were noted. Patients with a history of melanoma had similar 90-day mortality compared with other cancer survivors (OR 1.21, 95% CI 0.62 - 2.35). CONCLUSIONS Melanoma therapies did not appear to be associated with increased severity of COVID-19 or worsening organ dysfunction. Patients with history of melanoma had similar 90-day survival following COVID-19 compared with other cancer survivors.
Collapse
Affiliation(s)
| | - Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | - Joy Awosika
- University of Cincinnati Cancer Center, Cincinnati, USA
| | | | | | | | - Clara Hwang
- Henry Ford Cancer Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Sunny R K Singh
- Henry Ford Cancer Institute, Henry Ford Hospital, Detroit, MI, USA
| | | | | | - Leslie A Fecher
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - James J Yoon
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Brandon Hayes-Lattin
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Mehmet A Bilen
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | | | | | - Sumit A Shah
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Michael J Glover
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | | | - Anup Kasi
- The University of Kansas Cancer Center, Lawrence, KS, USA
| | - Saqib H Abbasi
- The University of Kansas Cancer Center, Lawrence, KS, USA
| | | | - Kendra Viera
- Brown University and Lifespan Cancer Institute, Providence, Rhode Island, USA
| | - Elizabeth J Klein
- Brown University and Lifespan Cancer Institute, Providence, Rhode Island, USA
| | | | | | | | | | - Daniel Y Reuben
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Sanjay Mishra
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Benjamin French
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeremy L Warner
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Brown University and Lifespan Cancer Institute, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Wu Y, Yin Y, Yan X, Fang L, Sun J. Late‑onset immune checkpoint inhibitor‑related pneumonitis after cessation of sintilimab: A case report and literature review. Exp Ther Med 2023; 25:83. [PMID: 36741913 PMCID: PMC9852418 DOI: 10.3892/etm.2023.11782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/11/2022] [Indexed: 01/04/2023] Open
Abstract
Immune-related adverse events following treatment with immune checkpoint inhibitors (ICIs) can occur at any time during therapy, with onset occurring most frequently during the first 3 months of treatment. However, they rarely occur after treatment cessation. An awareness of delayed immune-related events following the termination of immunotherapy is paramount for optimal tumour management. The present study reports a case of a 69-year-old male patient with right lung adenocarcinoma. He suffered from psoriasis for ~40 years and was suspected of developing immune checkpoint inhibitor-related pneumonitis (CIP) 6 months after the cessation of treatment with the anti-programmed cell death-1 receptor antibody sintilimab. The present case study is, to the best of our knowledge, the first case of late-onset CIP after the cessation of sintilimab. Subsequently, the report also reviews previously reported cases of late-onset CIP after the cessation of ICI treatment. The present report highlights the finding that CIP can develop, although rarely reported, months or even years after the termination of immunotherapy. Therefore, CIP should always be considered as one of the possibilities and addressed accordingly once the pulmonary infection is ruled out. Careful monitoring, timely diagnosis and administration of corticosteroids are essential in controlling this condition, particularly for patients with pre-existing autoimmune diseases.
Collapse
Affiliation(s)
- Yupei Wu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China,Correspondence to: Dr Yupei Wu, Department of Pharmacy, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, Hebei 050051, P.R. China
| | - Yuesong Yin
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaolu Yan
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Lingzhi Fang
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Jiewei Sun
- Department of Pharmacy, Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
5
|
Picasso R, Cozzi A, Picasso V, Zaottini F, Pistoia F, Perissi S, Martinoli C. Immune checkpoint inhibitor-related pneumonitis and COVID-19: a case-matched comparison of CT findings. LA RADIOLOGIA MEDICA 2023; 128:212-221. [PMID: 36680711 PMCID: PMC9862244 DOI: 10.1007/s11547-023-01598-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To compare the radiological findings of immune checkpoint inhibitor-related pneumonitis (IRP) and COVID-19 pneumonia, evaluating the potential of the CO-RADS score to differentiate between them. METHODS Two readers blindly reviewed chest CTs from age- and sex-matched groups of 33 patients with IRP and 33 patients with COVID-19 pneumonia. Each examiner evaluated the presence of 13 CT features, semiquantitatively scored lung involvement, and assigned a CO-RADS score. Inter-reader reliability in the assessment of CT features and CO-RADS categories was evaluated with Cohen's κ. Distribution differences between groups were evaluated with the χ2, Fisher's, and Mann-Whitney U tests. RESULTS Substantial or higher inter-reader reliability was found in CO-RADS assignments (κ = 0.664) and in the evaluation of CT features (κ ≥ 0.638), among which the sole feature found to significantly differentiate IRP from COVID-19 pneumonia was unilateral presentation (p < 0.001). Lung involvement semiquantitative scores and CO-RADS scores were significantly higher (p < 0.001) in COVID patients (median involvement score 4, IQR 4-6; median CO-RADS score 5, IQR 4-5) than in IRP patients (median involvement score 2.5, IQR 2-4; median CO-RADS score 3, IQR 3-4) but exploratory analysis of CO-RADS specificity revealed comparatively low values, ranging between 51.5% (Reader 1) and 54.6% (Reader 2). CONCLUSIONS CT features of IRP and COVID-19 pneumonia frequently overlap, save for the extent of lung involvement and bilaterality. In the current SARS-CoV-2 pandemic, the low specificity of the CO-RADS score for the differential diagnosis of COVID-19 pneumonia and IRP may prompt to reconsider the role of imaging in IRP work-up.
Collapse
Affiliation(s)
- Riccardo Picasso
- Unit of Radiology, IRCCS Ospedale Policlinico San Martino, Via Largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | - Andrea Cozzi
- Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900 Lugano, Switzerland
| | - Virginia Picasso
- Unit of Radiology, Ospedale Lavagna, Via Don Giovanni Battista Bobbio 25, 16033 Lavagna, Italy
| | - Federico Zaottini
- Unit of Radiology, IRCCS Ospedale Policlinico San Martino, Via Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Federico Pistoia
- Unit of Radiology, IRCCS Ospedale Policlinico San Martino, Via Largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | - Sara Perissi
- Dipartimento Di Scienze Della Salute (DISSAL), Università Degli Studi Di Genova, Via Alberti L.B 2, 16132 Genoa, Italy
| | - Carlo Martinoli
- Unit of Radiology, IRCCS Ospedale Policlinico San Martino, Via Largo Rosanna Benzi, 10, 16132 Genoa, Italy ,Dipartimento Di Scienze Della Salute (DISSAL), Università Degli Studi Di Genova, Via Alberti L.B 2, 16132 Genoa, Italy
| |
Collapse
|
6
|
Trivanović D, Peršurić Ž, Agaj A, Jakopović M, Samaržija M, Bitar L, Pavelić K. The Interplay of Lung Cancer, COVID-19, and Vaccines. Int J Mol Sci 2022; 23:15067. [PMID: 36499394 PMCID: PMC9738445 DOI: 10.3390/ijms232315067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Patients with cancer are more susceptible to a higher risk of coronavirus infection and its severe complications than the general population. In addition, these patients were not included in the pivotal clinical trials for COVID-19 vaccines. Therefore, considerable uncertainty remains regarding the management of cancer patients during the COVID-19 pandemic and the safety of COVID-19 vaccinations in cancer patients. In this review, we summarize the current knowledge generated from the beginning of the COVID-19 pandemic on the vulnerability of cancer patients to the coronavirus disease, as well as the effectiveness of COVID-19 vaccines in this population. We also discuss the available data on the effects of anticancer treatment with immune checkpoint inhibitors on the immune responses to SARS-CoV-2 in cancer patients. Special attention in this review will be given to patients with lung cancer, as such patients are at an increased risk for severe effects from COVID-19.
Collapse
Affiliation(s)
- Dragan Trivanović
- Department of Oncology and Hematology, General Hospital Pula, Santorijeva 24a, 52100 Pula, Croatia
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Marko Jakopović
- Department for Respiratory Diseases Jordanovac, KBC Zagreb-Jordanovac Clinic for Lung Diseases, 10000 Zagreb, Croatia
| | - Miroslav Samaržija
- Department for Respiratory Diseases Jordanovac, KBC Zagreb-Jordanovac Clinic for Lung Diseases, 10000 Zagreb, Croatia
| | - Lela Bitar
- Department for Respiratory Diseases Jordanovac, KBC Zagreb-Jordanovac Clinic for Lung Diseases, 10000 Zagreb, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| |
Collapse
|
7
|
Tsiakos K, Gavrielatou N, Vathiotis IA, Chatzis L, Chatzis S, Poulakou G, Kotteas E, Syrigos NK. Programmed Cell Death Protein 1 Axis Inhibition in Viral Infections: Clinical Data and Therapeutic Opportunities. Vaccines (Basel) 2022; 10:vaccines10101673. [PMID: 36298538 PMCID: PMC9611078 DOI: 10.3390/vaccines10101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
A vital function of the immune system is the modulation of an evolving immune response. It is responsible for guarding against a wide variety of pathogens as well as the establishment of memory responses to some future hostile encounters. Simultaneously, it maintains self-tolerance and minimizes collateral tissue damage at sites of inflammation. In recent years, the regulation of T-cell responses to foreign or self-protein antigens and maintenance of balance between T-cell subsets have been linked to a distinct class of cell surface and extracellular components, the immune checkpoint molecules. The fact that both cancer and viral infections exploit similar, if not the same, immune checkpoint molecules to escape the host immune response highlights the need to study the impact of immune checkpoint blockade on viral infections. More importantly, the process through which immune checkpoint blockade completely changed the way we approach cancer could be the key to decipher the potential role of immunotherapy in the therapeutic algorithm of viral infections. This review focuses on the effect of programmed cell death protein 1/programmed death-ligand 1 blockade on the outcome of viral infections in cancer patients as well as the potential benefit from the incorporation of immune checkpoint inhibitors (ICIs) in treatment of viral infections.
Collapse
Affiliation(s)
- Konstantinos Tsiakos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Correspondence:
| | - Niki Gavrielatou
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ioannis A. Vathiotis
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Loukas Chatzis
- Pathophysiology Department, Athens School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Stamatios Chatzis
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Hippokration” Hospital, 115 27 Athens, Greece
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Elias Kotteas
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nikolaos K. Syrigos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Minkove SJ, Sun J, Li Y, Cui X, Cooper D, Eichacker PQ, Torabi‐Parizi P. Comprehensive adjusted outcome data are needed to assess the impact of immune checkpoint inhibitors in cancer patients with COVID-19: Results of a systematic review and meta-analysis. Rev Med Virol 2022; 32:e2352. [PMID: 35416370 PMCID: PMC9111045 DOI: 10.1002/rmv.2352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Determining how prior immune checkpoint inhibitor (ICI) therapy influences outcomes in cancer patients presenting with COVID-19 is essential for patient management but must account for confounding variables. METHODS We performed a systematic review and meta-analysis of studies reporting adjusted effects of ICIs on survival, severe events, or hospitalisation in cancer patients with COVID-19 based on variables including age, gender, diabetes mellitus, hypertension (HTN), chronic obstructive pulmonary disease, and other comorbidities. When adjusted effects were unavailable, unadjusted data were analysed. RESULTS Of 42 observational studies (38 retrospective), 7 reported adjusted outcomes for ICIs and 2 provided sufficient individual patient data to calculate adjusted outcomes. In eight studies, adjusted outcomes were based on ≤7 variables. Over all studies, only one included >100 ICI patients while 26 included <10. ICIs did not alter the odds ratio (95%CI) (OR) of death significantly (random effects model), across adjusted (n = 8) [1.31 (0.58-2.95) p = 0.46; I2 = 42%, p = 0.10], unadjusted (n = 30) [1.06 (0.85-1.32) p = 0.58; I2 = 0%, p = 0.76] or combined [1.09 (0.88;1.36) p = 0.41; I2 = 0%, p = 0.5)] studies. Similarly, ICIs did not alter severe events significantly across adjusted (n = 5) [1.20 (0.30-4.74) p = 0.73; I2 = 52%, p = 0.08], unadjusted (n = 19) [(1.23 (0.87-1.75) p = 0.23; I2 = 16%, p = 0.26] or combined [1.26 (0.90-1.77) p = 0.16; I2 = 25%, p = 0.14] studies. Two studies provided adjusted hospitalisation data and when combined with 13 unadjusted studies, ICIs did not alter hospitalisation significantly [1.19 (0.85-1.68) p = 029; I2 = 5%, p = 0.40]. Results of sensitivity analyses examining ICI effects based on 5 variables were inconclusive. Certainty of evidence was very low. CONCLUSIONS Across studies with adjusted and unadjusted results, ICIs did not alter outcomes significantly. But studies with comprehensive adjusted outcome data controlling for confounding variables are necessary to determine whether ICIs impact COVID-19 outcomes in cancer patients.
Collapse
Affiliation(s)
- Samuel J. Minkove
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Sun
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Yan Li
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Xizhong Cui
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Diane Cooper
- NIH Library, Clinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Peter Q. Eichacker
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Parizad Torabi‐Parizi
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
9
|
Jiang M, Hu Y, Lin G, Chen C. Dosing Regimens of Immune Checkpoint Inhibitors: Attempts at Lower Dose, Less Frequency, Shorter Course. Front Oncol 2022; 12:906251. [PMID: 35795044 PMCID: PMC9251517 DOI: 10.3389/fonc.2022.906251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a revolutionary breakthrough in the field of cancer by modulating patient's own immune system to exert anti-tumor effects. The clinical application of ICIs is still in its infancy, and their dosing regimens need to be continuously adjusted. Pharmacokinetic/pharmacodynamic studies showed a significant plateau in the exposure-response curve, with high receptor occupancy and plasma concentrations achieved at low dose levels. Coupled with concerns about drug toxicity and heavy economic costs, there has been an ongoing quest to reevaluate the current ICI dosing regimens while preserving maximum clinical efficacy. Many clinical data showed remarkable anticancer effects with ICIs at the doses far below the approved regimens, indicating the possibility of dose reduction. Our review attempts to summarize the clinical evidence for ICIs regimens with lower-dose, less-frequency, shorter-course, and provide clues for further ICIs regimen optimization.
Collapse
Affiliation(s)
| | | | | | - Chao Chen
- Department of Radiotherapy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
10
|
Zavvar M, Yahyapoor A, Baghdadi H, Zargaran S, Assadiasl S, Abdolmohammadi K, Hossein Abooei A, Reza Sattarian M, JalaliFarahani M, Zarei N, Farahvash A, Fatahi Y, Deniz G, Zarebavani M, Nicknam MH. COVID-19 immunotherapy: Treatment based on the immune cell-mediated approaches. Int Immunopharmacol 2022; 107:108655. [PMID: 35248946 PMCID: PMC8872837 DOI: 10.1016/j.intimp.2022.108655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Multiple efforts are currently underway to control and treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19) worldwide. Despite all efforts, the virus that emerged in Wuhan city has rapidly spread globally and led to a public health emergency of international concern (PHEIC) due to the lack of approved antiviral therapy. Nevertheless, SARS-CoV-2 has had a significant influence on the evolution of cellular therapeutic approaches. Adoptive immune cell therapy is innovative and offers either promising prophylactic or therapy for patients with moderate-to-severe COVID-19. This approach is aimed at developing safety and providing secure and effective therapy in combination with standard therapy for all COVID-19 infected individuals. Based on the effective results of previous studies on both inflammatory and autoimmune diseases, various immune cell therapies against COVID-19 have been reviewed and discussed. It must be considered that the application of cell therapy for treatment and to eliminate infected respiratory cells could result in excessive inflammation, so this treatment must be used in combination with other treatments, despite its many beneficial efforts.
Collapse
|
11
|
Li H, Sahu KK, Maughan BL. Mechanism and Management of Checkpoint Inhibitor-Related Toxicities in Genitourinary Cancers. Cancers (Basel) 2022; 14:2460. [PMID: 35626064 PMCID: PMC9139183 DOI: 10.3390/cancers14102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) is rapidly increasing as more combinations and clinical indications are approved in the field of genitourinary malignancies. Most immunotherapeutic agents being approved are for the treatment of renal cell carcinoma and bladder cancer, which mainly involve PD-1/PD-L1 and CTLA-4 pathways. There is an ongoing need for recognizing and treating immunotherapy-related autoimmune adverse effects (irAEs). This review aims to critically appraise the recent literature on the mechanism, common patterns, and treatment recommendations of irAEs in genitourinary malignancies. We review the epidemiology of these adverse effects as well as general treatment strategies. The underlying mechanisms will also be discussed. Diagnostic considerations including differential diagnosis are also included in this review.
Collapse
Affiliation(s)
| | | | - Benjamin L. Maughan
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84108, USA; (H.L.); (K.K.S.)
| |
Collapse
|
12
|
Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol 2022; 19:254-267. [PMID: 35082367 PMCID: PMC8790946 DOI: 10.1038/s41571-022-00600-w] [Citation(s) in RCA: 505] [Impact Index Per Article: 168.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The development of immune-checkpoint inhibitors (ICIs) has heralded a new era in cancer treatment, enabling the possibility of long-term survival in patients with metastatic disease, and providing new therapeutic indications in earlier-stage settings. As such, characterizing the long-term implications of receiving ICIs has grown in importance. An abundance of evidence exists describing the acute clinical toxicities of these agents, although chronic effects have not been as well catalogued. Nonetheless, emerging evidence indicates that persistent toxicities might be more common than initially suggested. While generally low-grade, these chronic sequelae can affect the endocrine, rheumatological, pulmonary, neurological and other organ systems. Fatal toxicities also comprise a diverse set of clinical manifestations and can occur in 0.4-1.2% of patients. This risk is a particularly relevant consideration in light of the possibility of long-term survival. Finally, the effects of immune-checkpoint blockade on a diverse range of immune processes, including atherosclerosis, heart failure, neuroinflammation, obesity and hypertension, have not been characterized but remain an important area of research with potential relevance to cancer survivors. In this Review, we describe the current evidence for chronic immune toxicities and the long-term implications of these effects for patients receiving ICIs.
Collapse
Affiliation(s)
- Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA.
| | - Caroline A Nebhan
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Javid J Moslehi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
13
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
14
|
Mellinghoff SC, Vanshylla K, Dahlke C, Addo MM, Cornely OA, Klein F, Persigehl T, Rybniker J, Gruell H, Bröckelmann PJ. Case Report: Clinical Management of a Patient With Metastatic Non-Small Cell Lung Cancer Newly Receiving Immune Checkpoint Inhibition During Symptomatic COVID-19. Front Immunol 2021; 12:798276. [PMID: 34987520 PMCID: PMC8721042 DOI: 10.3389/fimmu.2021.798276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
Effects of initiation of programmed-death-protein 1 (PD1) blockade during active SARS-CoV-2 infection on antiviral immunity, COVID-19 course, and underlying malignancy are unclear. We report on the management of a male in his early 40s presenting with highly symptomatic metastatic lung cancer and active COVID-19 pneumonia. After treatment initiation with pembrolizumab, carboplatin, and pemetrexed, the respiratory situation initially worsened and high-dose corticosteroids were initiated due to suspected pneumonitis. After improvement and SARS-CoV-2 clearance, anti-cancer treatment was resumed without pembrolizumab. Immunological analyses with comparison to otherwise healthy SARS-CoV-2-infected ambulatory patients revealed a strong humoral immune response with higher levels of SARS-CoV-2-reactive IgG and neutralizing serum activity. Additionally, sustained increase of Tfh as well as activated CD4+ and CD8+ T cells was observed. Sequential CT scans showed regression of tumor lesions and marked improvement of the pulmonary situation, with no signs of pneumonitis after pembrolizumab re-challenge as maintenance. At the latest follow-up, the patient is ambulatory and in ongoing partial remission on pembrolizumab. In conclusion, anti-PD1 initiation during active COVID-19 pneumonia was feasible and cellular and humoral immune responses to SARS-CoV-2 appeared enhanced in our hospitalized patient. However, distinguishing COVID-19-associated changes from anti-PD1-associated immune-related pneumonitis posed a considerable clinical, radiographic, and immunologic challenge.
Collapse
Affiliation(s)
- Sibylle C. Mellinghoff
- Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kanika Vanshylla
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christine Dahlke
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M. Addo
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Oliver A. Cornely
- Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Florian Klein
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan Rybniker
- Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul J. Bröckelmann
- Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
- Max-Planck Institute for the Biology of Ageing, Cologne, Germany
- Mildred-Scheel School of Oncology (MSSO) Aachen Bonn Cologne Düsseldorf, Cologne, Germany
- *Correspondence: Paul J. Bröckelmann,
| |
Collapse
|
15
|
Barnova M, Bobcakova A, Urdova V, Kosturiak R, Kapustova L, Dobrota D, Jesenak M. Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19. Physiol Res 2021; 70:S227-S247. [PMID: 34913354 DOI: 10.33549/physiolres.934757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 (Coronavirus Disease) is an infectious disease caused by the coronavirus SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus 2), which belongs to the genus Betacoronavirus. It was first identified in patients with severe respiratory disease in December 2019 in Wuhan, China. It mainly affects the respiratory system, and in severe cases causes serious lung infection or pneumonia, which can lead to the death of the patient. Clinical studies show that SARS-CoV-2 infection in critical cases causes acute tissue damage due to a pathological immune response. The immune response to a new coronavirus is complex and involves many processes of specific and non-specific immunity. Analysis of available studies has shown various changes, especially in the area of specific cellular immunity, including lymphopenia, decreased T cells (CD3+, CD4+ and CD8+), changes in the T cell compartment associated with symptom progression, deterioration of the condition and development of lung damage. We provide a detailed review of the analyses of immune checkpoint molecules PD-1, TIM-3, LAG-3 CTLA-4, TIGIT, BTLA, CD223, IDO-1 and VISTA on exhausted T cells in patients with asymptomatic to symptomatic stages of COVID-19 infection. Furthermore, this review may help to better understand the pathological T cell immune response and improve the design of therapeutic strategies for patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- M Barnova
- Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic. and Clinic of Pneumology and Phthisiology, Clinic of Paediatrics, Department of Clinical Immunology and Allergology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
16
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:jcm10245815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Correspondence: ; Tel.: +381-11-2665-125
| |
Collapse
|
17
|
Bondeson L, Thulin A, Ny L, Levin M, Svensson J, Lindh M, Zhao Z. Clinical outcomes in cancer patients with COVID-19 in Sweden. Acta Oncol 2021; 60:1572-1579. [PMID: 34530692 DOI: 10.1080/0284186x.2021.1973679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The results of studies on the relationship between cancer and COVID-19 have been conflicting and therefore further studies are needed. We aimed to examine the incidence of COVID-19 among patients at one of the largest oncology departments in Sweden, and to evaluate and identify risk factors for poor outcomes, hospital care and death, associated with COVID-19 among cancer patients. MATERIAL AND METHODS This retrospective study included cancer patients at a single center who tested positive for SARS-CoV-2 by PCR either in hospital, primary health care center or commercial laboratory between 1 March and 14 August 2020. Clinical and demographic data were collected from the medical records. Logistic regression analysis was used to identify variables that associated the primary outcomes of need for hospital care and death within 30 days of positive test. RESULTS Of 10,774 patients from the Department of Oncology at Sahlgrenska University Hospital, 135 tested positive for SARS-CoV-2 (1.3%). Twenty-eight patients were excluded from further the data collection since they did not meet the inclusion criteria. Altogether, 107 cancer patients were included and the case fatality rate (CFR) was 12% (13) within 30 days of confirmed SARS-CoV-2 infection by PCR. Increasing years of age (OR 1.10; CI 95% 1.03-1.18), palliative treatment intent (OR 15.7; CI 95% 1.8-135.8), and transition to end-of-life care (OR 52.0; CI 95% 3.7-735.6) were associated with increased odds of death within 30 days. Male sex was associated with needing hospital care (OR 3.7; CI 95% 1.50-9.1). CONCLUSION As in the general population, male sex was found to be at greater risk of needing hospital care for COVID-19, with terminal cancer disease, and older age increasing the odds of fatality. Compared to the general population, slightly more cancer patients had COVID-19. The CFR was within the lower range of others reported in cancer patients.
Collapse
Affiliation(s)
- Lisa Bondeson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Thulin
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Ny
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Max Levin
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zhiyuan Zhao
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Li AR, Valdebran M, Reuben DY. Emerging Developments in Management of Melanoma During the COVID-19 Era. Front Med (Lausanne) 2021; 8:769368. [PMID: 34820401 PMCID: PMC8606631 DOI: 10.3389/fmed.2021.769368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 12/04/2022] Open
Abstract
In March 2020, the designation of the COVID-19 outbreak as a worldwide pandemic marked the beginning of an unprecedented era in modern medicine. Facing the possibility of resource precincts and healthcare rationing, leading dermatological and cancer societies acted expeditiously to adapt their guidelines to these contingencies. Melanoma is a lethal and aggressive skin cancer necessitating a multidisciplinary approach to management and is associated with significant healthcare and economic cost in later stages of disease. In revisiting how the pandemic transformed guidelines from diagnosis and surveillance to surgical and systemic management of melanoma, we appraise the evidence behind these decisions and their enduring implications.
Collapse
Affiliation(s)
- Andraia R Li
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Manuel Valdebran
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States.,Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Daniel Y Reuben
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
19
|
Schneider BJ, Naidoo J, Santomasso BD, Lacchetti C, Adkins S, Anadkat M, Atkins MB, Brassil KJ, Caterino JM, Chau I, Davies MJ, Ernstoff MS, Fecher L, Ghosh M, Jaiyesimi I, Mammen JS, Naing A, Nastoupil LJ, Phillips T, Porter LD, Reichner CA, Seigel C, Song JM, Spira A, Suarez-Almazor M, Swami U, Thompson JA, Vikas P, Wang Y, Weber JS, Funchain P, Bollin K. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J Clin Oncol 2021; 39:4073-4126. [PMID: 34724392 DOI: 10.1200/jco.21.01440] [Citation(s) in RCA: 809] [Impact Index Per Article: 202.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To increase awareness, outline strategies, and offer guidance on the recommended management of immune-related adverse events (irAEs) in patients treated with immune checkpoint inhibitor (ICPi) therapy. METHODS A multidisciplinary panel of medical oncology, dermatology, gastroenterology, rheumatology, pulmonology, endocrinology, neurology, hematology, emergency medicine, nursing, trialists, and advocacy experts was convened to update the guideline. Guideline development involved a systematic literature review and an informal consensus process. The systematic review focused on evidence published from 2017 through 2021. RESULTS A total of 175 studies met the eligibility criteria of the systematic review and were pertinent to the development of the recommendations. Because of the paucity of high-quality evidence, recommendations are based on expert consensus. RECOMMENDATIONS Recommendations for specific organ system-based toxicity diagnosis and management are presented. While management varies according to the organ system affected, in general, ICPi therapy should be continued with close monitoring for grade 1 toxicities, except for some neurologic, hematologic, and cardiac toxicities. ICPi therapy may be suspended for most grade 2 toxicities, with consideration of resuming when symptoms revert ≤ grade 1. Corticosteroids may be administered. Grade 3 toxicities generally warrant suspension of ICPis and the initiation of high-dose corticosteroids. Corticosteroids should be tapered over the course of at least 4-6 weeks. Some refractory cases may require other immunosuppressive therapy. In general, permanent discontinuation of ICPis is recommended with grade 4 toxicities, except for endocrinopathies that have been controlled by hormone replacement. Additional information is available at www.asco.org/supportive-care-guidelines.
Collapse
Affiliation(s)
| | - Jarushka Naidoo
- Beaumont Hospital, Dublin, Ireland.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | | | | | | | | | | | | | | - Ian Chau
- Royal Marsden Hospital and Institute of Cancer Research, London & Surrey, Sutton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Umang Swami
- Huntsman Cancer Institute-University of Utah, Salt Lake City, UT
| | - John A Thompson
- Seattle Cancer Care Alliance, University of Washington/Fred Hutchinson, Seattle, WA
| | | | | | | | | | | |
Collapse
|
20
|
Liu Y, Liu S, Qin Y, Zhao L, Li Y, Zhou C, Chen W. Does prior exposure to immune checkpoint inhibitors treatment affect incidence and mortality of COVID-19 among the cancer patients: The systematic review and meta-analysis. Int Immunopharmacol 2021; 101:108242. [PMID: 34688136 PMCID: PMC8502698 DOI: 10.1016/j.intimp.2021.108242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) treatment among cancer patients has been shown to have antiviral effects by reactivating exhausted T cells. However, they could also trigger inflammatory storm. Therefore, prior exposure to ICIs may influence the risk of SARS-CoV2 infection and subsequent mortality. Recent results from studies of ICIs treatment on incidence and mortality of COVID-19 are controversial. MATERIALS AND METHODS We searched databases PubMed, Embase, ISI of Knowledge, Cochrane Central Register of Controlled Trials (CENTRAL), as well as pre-print databases (MedRxiv and BioRxiv) for retrospective and prospective studies comparing ICIs versus other antitumor treatments in cancer patients in the area of COVID-19 pandemic. The primary outcome was the incidence of COVID-19. The secondary outcomes were mortality of COVID-19. RESULTS Twenty-three studies with a total of 117,735 patients were selected. Compared with other antitumor treatments, prior exposure to ICIs had not an increased risk of incidence [Odds ratio (OR), 0.84; 95% confidence interval (CI), 0.60-1.18; P = 0.32] and mortality (OR, 1.22; 95% CI, 0.91-1.62; P = 0.18) of COVID-19 infectioin. Our subgroup and meta-regression analyses indicated that prior exposure to ICIs may reduce the incidence of COVID-19 in metastatic cancer patients. CONCLUSIONS There was no significant difference on incidence and mortality of COVID-19 between prior exposure to ICIs with other anti-tumor treatments. ICIs may reduce infection susceptibility of COVID-19 in metastatic cancer patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Surgical intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuo Liu
- Department of Pharmacy, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yujun Qin
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yiliang Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Kalinka E, Chmielewska I, Wojas-Krawczyk K. Viral Infection and Lung Cancer Immunotherapy. Front Oncol 2021; 11:577514. [PMID: 34434887 PMCID: PMC8381362 DOI: 10.3389/fonc.2021.577514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/16/2021] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (mainly anti-PD1 and anti-PDL1 monoclonal antibodies) became a standard of care in non-small cell lung cancer (NSCLC) patients. Most of the clinical trials excluded patients with hepatitis B (HBV), hepatis C (HCV), and human immunodeficiency virus (HIV) active infection (1-10). Despite the progress in treatment of these infections, they remain an unresolved clinical problem when lung cancer immunotherapy should be initiated in an NSCLC patient. This manuscript summarizes the data from the literature concerning this subgroup of patients including the rationale for immunotherapy initiation depending on the HBV, HCV, or HIV infection status; the risk of adverse events; and the efficacy compared to non-infected patients. One of the crucial questions is how the candidates to immunotherapy should be screened for HBV, HCV, and HIV infections. The year 2020 brought the world a new but dynamic viral problem-severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). The incorporation of known data in oncology guidelines became a burning need, and then, which group of the infected patients can be treated with immunotherapy despite the infection. Oncologists should also know if these patients should receive antiviral therapy and what are the safe combinations in these settings. We also indicate which of the adverse events should be monitored carefully during checkpoint inhibitor treatment.
Collapse
Affiliation(s)
- Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Kamila Wojas-Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
22
|
Awadasseid A, Yin Q, Wu Y, Zhang W. Potential protective role of the anti-PD-1 blockade against SARS-CoV-2 infection. Biomed Pharmacother 2021; 142:111957. [PMID: 34339917 PMCID: PMC8315943 DOI: 10.1016/j.biopha.2021.111957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
The outbreak of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, in December 2019, and its global dissemination became the coronavirus disease 2019 (COVID-19) pandemic declared by the World Health Organization (WHO) on 11 March 2020. In patients undergoing immunotherapy, the effect and path of viral infection remain uncertain. In addition, viral-infected mice and humans show T-cell exhaustion, which is identified after infection with SARS-CoV-2. Notably, they regain their T-cell competence and effectively prevent viral infection when treated with anti-PD-1 antibodies. Four clinical trials are officially open to evaluate anti-PD-1 antibody administration's effectiveness for cancer and non-cancer individuals influenced by COVID-19 based on these findings. The findings may demonstrate the hypothesis that a winning strategy to combat SARS-CoV-2 infection could be the restoration of exhausted T-cells. In this review, we outline the potential protective function of the anti-PD-1 blockade against SARS-CoV-2 infection with the aim to develop SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Qiang Yin
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
23
|
Thorat N, Pricl S, Parchur AK, Somvanshi SB, Li Q, Umrao S, Townley H. Safeguarding COVID-19 and cancer management: drug design and therapeutic approach. OPEN RESEARCH EUROPE 2021; 1:77. [PMID: 37645153 PMCID: PMC10445946 DOI: 10.12688/openreseurope.13841.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 08/31/2023]
Abstract
Recent clinical cohort studies have highlighted that there is a three-fold greater SARS-Cov-2 infection risk in cancer patients, and overall mortality in individuals with tumours is increased by 41% with respect to general COVID-19 patients. Thus, access to therapeutics and intensive care is compromised for people with both diseases (comorbidity) and there is risk of delayed access to diagnosis. This comorbidity has resulted in extensive burden on the treatment of patients and health care system across the globe; moreover, mortality of hospitalized patients with comorbidity is reported to be 30% higher than for individuals affected by either disease. In this data-driven review, we aim specifically to address drug discoveries and clinical data of cancer management during the COVID-19 pandemic. The review will extensively address the treatment of COVID-19/cancer comorbidity; treatment protocols and new drug discoveries, including the description of drugs currently available in clinical settings; demographic features; and COVID-19 outcomes in cancer patients worldwide.
Collapse
Affiliation(s)
- Nanasaheb Thorat
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Sabrina Pricl
- MolBNL@UniTS-DEA, University of Trieste, Piazzale Europa 1, Trieste, 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-136, Poland
| | - Abdul K. Parchur
- Radiation Oncology, Froedtert Hospital & Medical College of Wisconsin, Medical College of Wisconsin, Wisconsin, USA
| | - Sandeep B. Somvanshi
- School of Materials Engineering, Purdue University, West Stadium Avenue, West Lafayette, USA
| | - Qifei Li
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sachin Umrao
- Department of Therapeutic Radiology, Yale School of Medicine, Yale University, New Haven, USA
| | - Helen Townley
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Can the host immune response against SARS-CoV2 also cause an anticancer effect? Med Oncol 2021; 38:90. [PMID: 34191146 PMCID: PMC8243040 DOI: 10.1007/s12032-021-01533-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
During the COVID-19 pandemic, it is important to assure the safety and management of cancer patients. Despite preliminary studies revealed that patients with cancer are more susceptible to infection and have poorer prognosis than other infected patients without cancer, mortality from COVID-19 in cancer patients appears to be principally driven by age, gender, and comorbidities. So, we have some comments about the pathogenesis attributed to the COVID-19 disease and cancer relationship and determination of subgroups in this and oncoming studies. Variable effects of anticancer treatments on the patient's immune system are yet to be elucidated. On the other hand, the effect of SARS-CoV-2 virus on tumor microenvironment or immune responses in cancer is not yet fully proven. Very recently, Challenor and her colleague reported a case with classical Hodgkin lymphoma with stage IIIs disease, which went into remission without corticosteroid or immunochemotherapy. They assumed that the putative mechanisms of action include cross-reactivity of pathogen-specific T cells with tumor antigens and natural killer cell activation by inflammatory cytokines produced in response to infection. During the course of COVID-19 disease, immune checkpoint blockade effect might be induced naturally.
Collapse
|
25
|
Lazarus G, Budiman RA, Rinaldi I. Does immune checkpoint inhibitor increase the risks of poor outcomes in COVID-19-infected cancer patients? A systematic review and meta-analysis. Cancer Immunol Immunother 2021; 71:373-386. [PMID: 34173850 PMCID: PMC8233621 DOI: 10.1007/s00262-021-02990-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
Background The association between immune checkpoint inhibitor (ICI) and outcomes of cancer patients with coronavirus disease 2019 (COVID-19) infection has yet to be systematically evaluated. This meta-analysis aims to investigate the effects of ICI treatment on COVID-19 prognosis, including mortality, severity, and any other prognosis-related outcomes. Methods Eligible studies published up to 27 February 2021 were included and assessed for risk of bias using the Quality in Prognosis Studies tool. A random-effects meta-analysis was conducted to estimate the pooled effect size along with its 95% confidence intervals. The quality of body evidence was evaluated using the modified Grading of Recommendations Assessment, Development, and Evaluation framework. Results Eleven studies involving a total of 2826 COVID-19-infected cancer patients were included in the systematic review. We discovered a moderate-to-high quality of evidence that ICI was not associated with a higher mortality risk, while the other outcomes yielded a very low-to-low-evidence quality. Although our findings indicated that ICI did not result in a higher risk of severity and hospitalization, further evidence is required to confirm our findings. In addition, we discovered that prior exposure to chemoimmunotherapy may be linked with a higher risk of COVID-19 severity (OR 8.19 [95% CI: 2.67–25.08]; I2 = 0%), albeit with small sample size. Conclusion Our findings indicated that ICI treatment should not be adjourned nor terminated during the current pandemic. Rather, COVID-19 vigilance should be increased in such patients. Further studies with larger cohorts and higher quality of evidence are required to substantiate our findings. Trial registration number This project has been prospectively registered at PROSPERO (registration ID: CRD42020202142) on 4 August 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-02990-9.
Collapse
Affiliation(s)
- Gilbert Lazarus
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, RW 5, Kenari, Kec. Senen, Kota Jakarta Pusat, Jakarta, 10430, Indonesia.
| | - Refael Alfa Budiman
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, RW 5, Kenari, Kec. Senen, Kota Jakarta Pusat, Jakarta, 10430, Indonesia
| | - Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
26
|
Reddy R. Imaging diagnosis of bronchogenic carcinoma (the forgotten disease) during times of COVID-19 pandemic: Current and future perspectives. World J Clin Oncol 2021; 12:437-457. [PMID: 34189068 PMCID: PMC8223714 DOI: 10.5306/wjco.v12.i6.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with bronchogenic carcinoma comprise a high-risk group for coronavirus disease 2019 (COVID-19), pneumonia and related complications. Symptoms of COVID-19 related pulmonary syndrome may be similar to deteriorating symptoms encountered during bronchogenic carcinoma progression. These resemblances add further complexity for imaging assessment of bronchogenic carcinoma. Similarities between clinical and imaging findings can pose a major challenge to clinicians in distinguishing COVID-19 super-infection from evolving bronchogenic carcinoma, as the above-mentioned entities require very different therapeutic approaches. However, the goal of bronchogenic carcinoma management during the pandemic is to minimize the risk of exposing patients to COVID-19, whilst still managing all life-threatening events related to bronchogenic carcinoma. The current pandemic has forced all healthcare stakeholders to prioritize per value resources and reorganize therapeutic strategies for timely management of patients with COVID-19 related pulmonary syndrome. Processing of radiographic and computed tomography images by means of artificial intelligence techniques can facilitate triage of patients. Modified and newer therapeutic strategies for patients with bronchogenic carcinoma have been adopted by oncologists around the world for providing uncompromised care within the accepted standards and new guidelines.
Collapse
Affiliation(s)
- Ravikanth Reddy
- Department of Radiology, St. John's Hospital, Bengaluru 560034, Karnataka, India
| |
Collapse
|
27
|
Nebhan CA, Johnson DB. Pembrolizumab in the adjuvant treatment of melanoma: efficacy and safety. Expert Rev Anticancer Ther 2021; 21:583-590. [PMID: 33504219 PMCID: PMC8238788 DOI: 10.1080/14737140.2021.1882856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Introduction: Regional or distant metastases from melanoma may be surgically resected but remain at high-risk of recurrence. Over the last few years, several treatments have been approved to mitigate this risk. These include anti-PD-1 agents, specifically pembrolizumab and nivolumab.Areas covered: Herein, we will discuss the landscape of pembrolizumab safety and efficacy used in the adjuvant setting for high-risk, resected melanoma. We place this in context with other available adjuvant therapies, and discuss subgroup analyses.Expert opinion: Anti-PD-1 therapy with either pembrolizumab or nivolumab has become a standard of care for patients with resected stage III or IV melanoma. In our practice, we generally offer these agents (which have comparable safety and efficacy profiles) to patients with resected stage IIIb-IV melanoma regardless of BRAF mutation status.
Collapse
Affiliation(s)
- Caroline A. Nebhan
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center
| |
Collapse
|
28
|
Dettorre GM, Patel M, Gennari A, Pentheroudakis G, Romano E, Cortellini A, Pinato DJ. The systemic pro-inflammatory response: targeting the dangerous liaison between COVID-19 and cancer. ESMO Open 2021; 6:100123. [PMID: 33932622 PMCID: PMC8026271 DOI: 10.1016/j.esmoop.2021.100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an established driver of severe SARS-CoV-2 infection and a mechanism linked to the increased susceptibility to fatal COVID-19 demonstrated by patients with cancer. As patients with cancer exhibit a higher level of inflammation compared with the general patient population, patients with cancer and COVID-19 may uniquely benefit from strategies targeted at overcoming the unrestrained pro-inflammatory response. Targeted and non-targeted anti-inflammatory therapies may prevent end-organ damage in SARS-CoV-2-infected patients with cancer and decrease mortality. Here, we review the clinical role of selective inhibition of pro-inflammatory interleukins, tyrosine kinase modulation, anti-tumor necrosis factor agents, and other non-targeted approaches including corticosteroids in their roles as disease-modulating agents in patients with COVID-19 and cancer. Investigation of these therapeutics in this highly vulnerable patient group is posited to facilitate the development of tailored therapeutics for this patient population, aiding the transition of systemic inflammation from a prognostic domain to a source of therapeutic targets.
Collapse
Affiliation(s)
- G M Dettorre
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - M Patel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - A Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece; Chief Medical Officer, European Society for Medical Oncology, Lugano, Switzerland
| | - E Romano
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - A Cortellini
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - D J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy.
| |
Collapse
|
29
|
Costa B, Vale N. A Review of Repurposed Cancer Drugs in Clinical Trials for Potential Treatment of COVID-19. Pharmaceutics 2021; 13:pharmaceutics13060815. [PMID: 34070725 PMCID: PMC8229933 DOI: 10.3390/pharmaceutics13060815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) represents an unprecedented challenge to identify effective drugs for prevention and treatment. While the world’s attention is focused on news of COVID-19 vaccine updates, clinical management still requires improvement. Due to the similarity of cancer-induced inflammation, immune dysfunction, and coagulopathy to COVID-19, anticancer drugs, such as Interferon, Pembrolizumab or Bicalutamide, are already being tested in clinical trials for repurposing, alone or in combination. Given the rapid pace of scientific discovery and clinical data generated by the large number of people rapidly infected, clinicians need effective medical treatments for this infection.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-225-513-622
| |
Collapse
|
30
|
Lozahic C, Maddock H, Sandhu H. Anti-cancer Therapy Leads to Increased Cardiovascular Susceptibility to COVID-19. Front Cardiovasc Med 2021; 8:634291. [PMID: 33969006 PMCID: PMC8102732 DOI: 10.3389/fcvm.2021.634291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Anti-cancer treatment regimens can lead to both acute- and long-term myocardial injury due to off-target effects. Besides, cancer patients and survivors are severely immunocompromised due to the harsh effect of anti-cancer therapy targeting the bone marrow cells. Cancer patients and survivors can therefore be potentially extremely clinically vulnerable and at risk from infectious diseases. The recent global outbreak of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its infection called coronavirus disease 2019 (COVID-19) has rapidly become a worldwide health emergency, and on March 11, 2020, COVID-19 was declared a global pandemic by the World Health Organization (WHO). A high fatality rate has been reported in COVID-19 patients suffering from underlying cardiovascular diseases. This highlights the critical and crucial aspect of monitoring cancer patients and survivors for potential cardiovascular complications during this unprecedented health crisis involving the progressive worldwide spread of COVID-19. COVID-19 is primarily a respiratory disease; however, COVID-19 has shown cardiac injury symptoms similar to the cardiotoxicity associated with anti-cancer therapy, including arrhythmia, myocardial injury and infarction, and heart failure. Due to the significant prevalence of micro- and macro-emboli and damaged vessels, clinicians worldwide have begun to consider whether COVID-19 may in fact be as much a vascular disease as a respiratory disease. However, the underlying mechanisms and pathways facilitating the COVID-19-induced cardiac injury in cancer and non-cancer patients remain unclear. Investigations into whether COVID-19 cardiac injury and anti-cancer drug-induced cardiac injury in cancer patients and survivors might synergistically increase the cardiovascular complications and comorbidity risk through a “two-hit” model are needed. Identification of cardiac injury mechanisms and pathways associated with COVID-19 development overlapping with anti-cancer therapy could help clinicians to allow a more optimized prognosis and treatment of cancer survivors suffering from COVID-19. The following review will focus on summarizing the harmful cardiovascular risk of COVID-19 in cancer patients and survivors treated with an anti-cancer drug. This review will improve the knowledge of COVID-19 impact in the field of cardio-oncology and potentially improve the outcome of patients.
Collapse
Affiliation(s)
- Caroline Lozahic
- Faculty Research Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Helen Maddock
- Faculty Research Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Hardip Sandhu
- Faculty Research Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
31
|
Hattersley R, Nana M, Lansdown AJ. Endocrine complications of immunotherapies: a review. Clin Med (Lond) 2021; 21:e212-e222. [PMID: 33762389 DOI: 10.7861/clinmed.2020-0827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Use of immune checkpoint inhibitors in cancer treatment has increased vastly over the past decade, as both single and combination agent therapies. While having a positive impact on survival rates, adverse effects have been noted, with endocrine effects in around 10% of patients. Thyroid disease and hypophysitis are the most commonly encountered, with diabetes mellitus and primary adrenal insufficiency also reported, as well as more rare endocrinopathies. Patient and clinician education to raise awareness of these effects, as well as regular monitoring to enable early recognition, diagnosis and prompt treatment of the immune side effects, are key. In this review, we discuss the aetiology, presentation and management of the endocrine complications of immunotherapies that are relevant to the general physician, as well as highlighting important areas where further research is still needed.
Collapse
|
32
|
Ferraro E, Germanò M, Mollace R, Mollace V, Malara N. HIF-1, the Warburg Effect, and Macrophage/Microglia Polarization Potential Role in COVID-19 Pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8841911. [PMID: 33815663 PMCID: PMC7987467 DOI: 10.1155/2021/8841911] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/07/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Despite the international scientific community's commitment to improve clinical knowledge about coronavirus disease 2019 (COVID-19), knowledge regarding molecular details remains limited. In this review, we discuss hypoxia's potential role in the pathogenesis of the maladaptive immune reaction against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The state of infection, with serious respiratory dysfunction, causes tissues to become hypoxic due to a discrepancy between cellular O2 uptake and consumption similar to that seen within tumor tissue during the progression of numerous solid cancers. In this context, the heterogeneous clinical behavior and the multiorgan deterioration of COVID-19 are discussed as a function of the upregulated expression of the hypoxia-inducible factor-1 (HIF-1) and of the metabolic reprogramming associated with HIF-1 and with a proinflammatory innate immune response activation, independent of the increase in the viral load of SARS-CoV-2. Possible pharmacological strategies targeting O2 aimed to improve prognosis are suggested.
Collapse
|
33
|
Efird JT, Podder T, Biswas T. A Modeling Approach to Radiation Therapy in the Era of COVID-19. JAMA Netw Open 2021; 4:e213850. [PMID: 33779738 DOI: 10.1001/jamanetworkopen.2021.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jimmy T Efird
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
| | - Tarun Podder
- Cancer Imaging Program, Seidman Cancer Center, Department of Radiation Oncology, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Tithi Biswas
- Developmental Therapeutics Program, Seidman Cancer Center, Department of Radiation Oncology, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, Ohio
| |
Collapse
|
34
|
Trojaniello C, Vitale MG, Ascierto PA. Checkpoint inhibitor therapy for skin cancer may be safe in patients with asymptomatic COVID-19. Ann Oncol 2021; 32:674-676. [PMID: 33600920 PMCID: PMC7884251 DOI: 10.1016/j.annonc.2021.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- C Trojaniello
- Department Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - M G Vitale
- Department Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - P A Ascierto
- Department Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy.
| |
Collapse
|
35
|
Ahmed MS, Brehme H, Friedrich S, Reinhardt L, Blum S, Beissert S, Meier F. COVID-19 and immune checkpoint inhibitors. J Eur Acad Dermatol Venereol 2021; 35:e312-e314. [PMID: 33587787 PMCID: PMC8014793 DOI: 10.1111/jdv.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Affiliation(s)
- M S Ahmed
- Skin Cancer Center, University Cancer Centre and National Center for Tumor Diseases, Dresden, Germany.,Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - H Brehme
- Department of Anesthesiology and Intensive Care, Emergency Medicine and Pain Therapy, Hospital Dresden-Friedrichstadt, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| | - S Friedrich
- Department of Anesthesiology and Intensive Care, Emergency Medicine and Pain Therapy, Hospital Dresden-Friedrichstadt, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| | - L Reinhardt
- Skin Cancer Center, University Cancer Centre and National Center for Tumor Diseases, Dresden, Germany.,Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - S Blum
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - S Beissert
- Skin Cancer Center, University Cancer Centre and National Center for Tumor Diseases, Dresden, Germany.,Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - F Meier
- Skin Cancer Center, University Cancer Centre and National Center for Tumor Diseases, Dresden, Germany.,Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
36
|
Xue M, Zeng Y, Qu HQ, Zhang T, Li N, Huang H, Zheng P, Hu H, Zhou L, Duan Z, Zhang Y, Bao W, Tian LF, Hakonarson H, Zhong N, Zhang XD, Sun B. Heparin-binding protein levels correlate with aggravation and multiorgan damage in severe COVID-19. ERJ Open Res 2021; 7:00741-2020. [PMID: 33564671 PMCID: PMC7667727 DOI: 10.1183/23120541.00741-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background Critically ill coronavirus disease 2019 (COVID-19) patients may suffer persistent systemic inflammation and multiple organ failure, leading to a poor prognosis. Research question To examine the relevance of the novel inflammatory factor heparin-binding protein (HBP) in critically ill COVID-19 patients, and evaluate the correlation of the biomarker with disease progression. Study design and methods 18 critically ill COVID-19 patients who suffered from respiratory failure and sepsis, including 12 cases who experienced a rapidly deteriorating clinical condition and six cases without deterioration, were investigated. They were compared with 15 age- and sex- matched COVID-19-negative patients with respiratory failure. Clinical data were collected and HBP levels were investigated. Results HBP was significantly increased in critically ill COVID-19 patients following disease aggravation and tracked with disease progression. HBP elevation preceded the clinical manifestations for up to 5 days and was closely correlated with patients’ pulmonary ventilation and perfusion status. Interpretation HBP levels are associated with COVID-19 disease progression in critically ill patients. As a potential mediator of disease aggravation and multiple organ injuries that are triggered by continuing inflammation and oxygen deficits, HBP warrants further study as a disease biomarker and potential therapeutic target. For the first time, this study observed that heparin-binding protein (HBP) was significantly increased in critically ill COVID-19 patients during disease aggravation, which highlights HBP as a disease mediator and a potential therapeutic targethttps://bit.ly/35dz88C
Collapse
Affiliation(s)
- Mingshan Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,These authors contributed equally
| | - Yifeng Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,These authors contributed equally
| | - Hui-Qi Qu
- Arctic Therapeutics at University of Akureyri, Borgir, Akureyri, Iceland.,These authors contributed equally
| | - Teng Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ning Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huimin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haisheng Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhifeng Duan
- Arctic Therapeutics at University of Akureyri, Borgir, Akureyri, Iceland
| | - Yong Zhang
- Arctic Therapeutics at University of Akureyri, Borgir, Akureyri, Iceland
| | - Wei Bao
- Arctic Therapeutics at University of Akureyri, Borgir, Akureyri, Iceland
| | - Li-Feng Tian
- Arctic Therapeutics at University of Akureyri, Borgir, Akureyri, Iceland
| | - Hakon Hakonarson
- Arctic Therapeutics at University of Akureyri, Borgir, Akureyri, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
McBride MA, Patil TK, Bohannon JK, Hernandez A, Sherwood ER, Patil NK. Immune Checkpoints: Novel Therapeutic Targets to Attenuate Sepsis-Induced Immunosuppression. Front Immunol 2021; 11:624272. [PMID: 33613563 PMCID: PMC7886986 DOI: 10.3389/fimmu.2020.624272] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a leading cause of death in intensive care units and survivors develop prolonged immunosuppression and a high incidence of recurrent infections. No definitive therapy exists to treat sepsis and physicians rely on supportive care including antibiotics, intravenous fluids, and vasopressors. With the rising incidence of antibiotic resistant microbes, it is becoming increasingly critical to discover novel therapeutics. Sepsis-induced leukocyte dysfunction and immunosuppression is recognized as an important contributor towards increased morbidity and mortality. Pre-clinical and clinical studies show that specific cell surface inhibitory immune checkpoint receptors and ligands including PD-1, PD-L1, CTLA4, BTLA, TIM3, OX40, and 2B4 play important roles in the pathophysiology of sepsis by mediating a fine balance between host immune competency and immunosuppression. Pre-clinical studies targeting the inhibitory effects of these immune checkpoints have demonstrated reversal of leukocyte dysfunction and improved host resistance of infection. Measurement of immune checkpoint expression on peripheral blood leukocytes may serve as a means of stratifying patients to direct individualized therapy. This review focuses on advances in our understanding of the role of immune checkpoints in the host response to infections, and the potential clinical application of therapeutics targeting the inhibitory immune checkpoint pathways for the management of septic patients.
Collapse
Affiliation(s)
- Margaret A. McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
38
|
Wong HSC, Guo CL, Lin GH, Lee KY, Okada Y, Chang WC. Transcriptome network analyses in human coronavirus infections suggest a rational use of immunomodulatory drugs for COVID-19 therapy. Genomics 2021; 113:564-575. [PMID: 33482326 PMCID: PMC7817445 DOI: 10.1016/j.ygeno.2020.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) by SARS-CoV-2 has led to uptodate 24.3 M cases and 0.8 M deaths. It is thus in urgent need to rationalize potential therapeutic targets against the progression of diseases. An effective, feasible way is to use the pre-existing ΔORF6 mutant of SARS-CoV as a surrogate for SARS-CoV-2, since both lack the moiety responsible for interferon antagonistic effects. By analyzing temporal profiles of upregulated genes in ΔORF6-infected Calu-3 cells, we prioritized 55 genes and 238 ligands to reposition currently available medications for COVID-19 therapy. Eight of them are already in clinical trials, including dexamethasone, ritonavir, baricitinib, tofacitinib, naproxen, budesonide, ciclesonide and formoterol. We also pinpointed 16 drug groups from the Anatomical Therapeutic Chemical classification system, with the potential to mitigate symptoms of SARS-CoV-2 infection and thus to be repositioned for COVID-19 therapy.
Collapse
Affiliation(s)
- Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Gan-Hong Lin
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
39
|
Aapro M, Lyman GH, Bokemeyer C, Rapoport BL, Mathieson N, Koptelova N, Cornes P, Anderson R, Gascón P, Kuderer NM. Supportive care in patients with cancer during the COVID-19 pandemic. ESMO Open 2020; 6:100038. [PMID: 33421735 PMCID: PMC7808078 DOI: 10.1016/j.esmoop.2020.100038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer care has been profoundly impacted by the global pandemic of severe acute respiratory syndrome coronavirus 2 disease (coronavirus disease 2019, COVID-19), resulting in unprecedented challenges. Supportive care is an essential component of cancer treatment, seeking to prevent and manage chemotherapy complications such as febrile neutropenia, anaemia, thrombocytopenia/bleeding, thromboembolic events and nausea/vomiting, all of which are common causes of hospitalisation. These adverse events are an essential consideration under routine patient management, but particularly so during a pandemic, a setting in which clinicians aim to minimise patients' risk of infection and need for hospital visits. Professional medical oncology societies have been providing updated guidelines to support health care professionals with the management, treatment and supportive care needs of their patients with cancer under the threat of COVID-19. This paper aims to review the recommendations made by the most prominent medical oncology societies for devising and modifying supportive care strategies during the pandemic. Cancer care has been profoundly impacted by the global pandemic of COVID-19, resulting in unprecedented challenges. Oncology societies have updated guidelines for the supportive care needs of patients with cancer under the threat of COVID-19. This paper reviews recommendations from prominent oncology societies for providing supportive care during the pandemic.
Collapse
Affiliation(s)
- M Aapro
- Genolier Cancer Centre, Clinique de Genolier, Genolier, Switzerland
| | - G H Lyman
- Hutchinson Institute for Cancer Outcomes Research, Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center and the University of Washington Schools of Medicine, Public Health and Pharmacy, Seattle, USA.
| | - C Bokemeyer
- Department of Oncology, Hematology & BMT with Section of Pneumology, Universitaetsklinikum Hamburg Eppendorf, Hamburg, Germany
| | - B L Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; The Medical Oncology Centre of Rosebank, Johannesburg, South Africa; Neutropenia, Infection and Myelosuppression Study Group (Chair), The Multinational Association for Supportive Care in Cancer, Aurora, Canada
| | | | | | - P Cornes
- Comparative Outcomes Group, Bristol, UK
| | - R Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - P Gascón
- Department of Hematology-Oncology, Laboratory of Molecular & Translational Oncology-CELLEX University of Barcelona, Barcelona, Spain
| | - N M Kuderer
- Advanced Cancer Research Group, Seattle, USA
| |
Collapse
|
40
|
Cancer and Immune Checkpoint Inhibitor Treatment in the Era of SARS-CoV-2 Infection. Cancers (Basel) 2020; 12:cancers12113383. [PMID: 33207589 PMCID: PMC7698088 DOI: 10.3390/cancers12113383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The introduction of immune checkpoint inhibitors (ICI) in 2011 revolutionized the management of many solid cancers and hematological malignancies. However, there are concerns regarding the use of ICI in the era of COVID-19. We present currently available information on the pros and cons of using ICI in cancer patients with respect to the risk of acquiring an infection by SARS-CoV2 and mortality from COVID-19. By means of the present paper, clinicians and researchers may update their knowledge on a highly topical clinical question—is the use of ICI in cancer patients with SARS-CoV2 infection harmful with respect to COVID-19 outcome? Abstract Whether cancer patients receiving immune checkpoint inhibitors (ICI) are at an increased risk of severe infection and mortality during the corona pandemic is a hotly debated topic that will continue to evolve. Here, we summarize and discuss current studies regarding COVID-19 and anti-cancer treatment with an emphasis on ICI. Importantly, several lines of evidence suggest that patients currently treated with ICI do not display an increased vulnerability to infection with SARS-CoV-2. Data regarding morbidity and mortality associated with COVID-19 in cancer patients receiving ICI are less clear and often conflicting. Although mostly based on experimental data, it is possible that ICI can promote the exacerbated immune response associated with adverse outcome in COVID-19 patients. On the other hand, mounting evidence suggests that ICI might even be useful in the treatment of viral infections by preventing or ameliorating T cell exhaustion. In this context, the right timing of treatment might be essential. Nevertheless, some cancer patients treated with ICI experience autoimmune-related side effects that require the use of immunosuppressive therapies, which in turn may promote a severe course of infection with SARS-CoV-2. Although there is clear evidence that withholding ICI will have more serious consequences, further studies are urgently needed in to better evaluate the effects of ICI in patients with COVID-19 and the use of ICI during the corona pandemic in general.
Collapse
|
41
|
Quagliariello V, Bonelli A, Caronna A, Conforti G, Iovine M, Carbone A, Berretta M, Botti G, Maurea N. SARS-CoV-2 Infection and Cardioncology: From Cardiometabolic Risk Factors to Outcomes in Cancer Patients. Cancers (Basel) 2020; 12:E3316. [PMID: 33182653 PMCID: PMC7697868 DOI: 10.3390/cancers12113316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) is a highly transmissible viral illness caused by SARS-CoV-2, which has been defined by the World Health Organization as a pandemic, considering its remarkable transmission speed worldwide. SARS-CoV-2 interacts with angiotensin-converting enzyme 2 and TMPRSS2, which is a serine protease both expressed in lungs, the gastro-intestinal tract, and cardiac myocytes. Patients with COVID-19 experienced adverse cardiac events (hypertension, venous thromboembolism, arrhythmia, myocardial injury, fulminant myocarditis), and patients with previous cardiovascular disease have a higher risk of death. Cancer patients are extremely vulnerable with a high risk of viral infection and more negative prognosis than healthy people, and the magnitude of effects depends on the type of cancer, recent chemotherapy, radiotherapy, or surgery and other concomitant comorbidities (diabetes, cardiovascular diseases, metabolic syndrome). Patients with active cancer or those treated with cardiotoxic therapies may have heart damages exacerbated by SARS-CoV-2 infection than non-cancer patients. We highlight the cardiovascular side effects of COVID-19 focusing on the main outcomes in cancer patients in updated perspective and retrospective studies. We focus on the main cardio-metabolic risk factors in non-cancer and cancer patients and provide recommendations aimed to reduce cardiovascular events, morbidity, and mortality.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Annamaria Bonelli
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Antonietta Caronna
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Gabriele Conforti
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Andreina Carbone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| | - Massimiliano Berretta
- Department of Medical Oncology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (A.B.); (A.C.); (G.C.); (M.I.); (A.C.)
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread with rising new cases and deaths. Patients with cancer represent a uniquely vulnerable population not only with higher susceptibility to COVID-19 but also at increased risk for its complications. This review focuses on the implications of COVID-19 in the cardiovascular health of patients with cancer. RECENT FINDINGS Patients more susceptible to COVID-19 with increased severity of disease include those with cancer and cardiovascular comorbidities. In addition, the cardiovascular complications of COVID-19 including acute myocardial injury, thromboembolism, cardiomyopathy, myocarditis, and pericardial disease overlap with many of those encountered during cancer treatment. Despite the absence of large studies of patients with both cancer and cardiovascular disease, the incidence of cardiovascular complications in cancer patients with COVID-19 is expected to be high. This has implications for cardiac monitoring, chemotherapy administration, and the diagnosis and treatment of cardiovascular disease during COVID-19.
Collapse
Affiliation(s)
- Nicolas L. Palaskas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1451, Houston, TX 77025 USA
| | | | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1451, Houston, TX 77025 USA
| |
Collapse
|
43
|
Johnson DB, Jakubovic BD, Sibaud V, Sise ME. Balancing Cancer Immunotherapy Efficacy and Toxicity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:2898-2906. [PMID: 32599218 PMCID: PMC7318967 DOI: 10.1016/j.jaip.2020.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Anti-programmed cell death-1 receptor/programmed cell death-1 receptor ligand-directed therapies are transforming cancer care, with durable antitumor responses observed in multiple cancer types. Toxicities arising from therapy are autoimmune in nature and may affect essentially any organ system. The immunologic basis of such toxities is complex, with contributions from T-cell activation and autoantibody generation. Although less recognized, hypersensitivity reactions are also possible. Although most toxicities resolve with systemic corticosteroids, some require second-line immunosuppression. Furthermore, the safety of drug rechallenge is not well characterized, with variable rates of toxicity flares arising with re-exposure. Herein, we review toxicities of immune checkpoint inhibitor therapies, particularly focusing on issues that allergists/immunologists may clinically encounter, including interstitial nephritis, skin toxicity, and risks associated with immunotherapy rechallenge.
Collapse
Affiliation(s)
- Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| | - Baruch D Jakubovic
- Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Vincent Sibaud
- Department of Oncodermatology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Meghan E Sise
- Renal Division, Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
44
|
Patrinely JR, Johnson DB. Pandemic medicine: the management of advanced melanoma during COVID-19. Melanoma Manag 2020; 7:MMT45. [PMID: 32922727 PMCID: PMC7475796 DOI: 10.2217/mmt-2020-0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- James R Patrinely
- Vanderbilt University Department, School of Medicine, Nashville, TN 37232, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|