1
|
Wuni R, Amerah H, Ammache S, Cruvinel NT, da Silva NR, Kuhnle GGC, Horst MA, Vimaleswaran KS. Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults. Br J Nutr 2024; 132:575-589. [PMID: 39308196 DOI: 10.1017/s0007114524001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed to multiple factors including genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta = 0·10 mg/dl, 95 % CI 0·05-0·16; P < 0·001), LDL-cholesterol (beta = 0·07 mg/dl, 95 % CI 0·04, 0·11; P < 0·0001), total cholesterol (beta = 0·05 mg/dl, 95 % CI: 0·03, 0·07; P < 0·0001) and the ratio of TAG to HDL-cholesterol (beta = 0·09 mg/dl, 95 % CI: 0·03, 0·15; P = 0·002). Significant interactions were found between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03) and between the high GRS and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher TAG:HDL-cholesterol ratio in individuals with the high GRS (beta = 0·14, 95 % CI: 0·06, 0·23; P < 0·001 for total fat intake; beta = 0·13, 95 % CI: 0·05, 0·22; P = 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratio might be modulated by dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Heyam Amerah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Serena Ammache
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Nathália T Cruvinel
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Nara R da Silva
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Gunter G C Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Maria A Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Karani S Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, ReadingRG6 6EU, UK
| |
Collapse
|
2
|
Romero-Hidalgo S, Sagaceta-Mejía J, Villalobos-Comparán M, Tejero ME, Domínguez-Pérez M, Jacobo-Albavera L, Posadas-Sánchez R, Vargas-Alarcón G, Posadas-Romero C, Macías-Kauffer L, Vadillo-Ortega F, Contreras-Sieck MA, Acuña-Alonzo V, Barquera R, Macín G, Binia A, Guevara-Chávez JG, Sebastián-Medina L, Menjívar M, Canizales-Quinteros S, Carnevale A, Villarreal-Molina T. Selection scan in Native Americans of Mexico identifies FADS2 rs174616: Evidence of gene-diet interactions affecting lipid levels and Delta-6-desaturase activity. Heliyon 2024; 10:e35477. [PMID: 39166092 PMCID: PMC11334880 DOI: 10.1016/j.heliyon.2024.e35477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Searching for positive selection signals across genomes has identified functional genetic variants responding to environmental change. In Native Americans of Mexico, we used the fixation index (Fst) and population branch statistic (PBS) to identify SNPs suggesting positive selection. The 103 most differentiated SNPs were tested for associations with metabolic traits, the most significant association was FADS2/rs174616 with body mass index (BMI). This variant lies within a linkage disequilibrium (LD) block independent of previously reported FADS selection signals and has not been clearly associated with metabolic phenotypes. We tested this variant in two independent cohorts with cardiometabolic data. In the Genetics of Atherosclerotic Disease (GEA) cohort, the derived allele (T) was associated with increased BMI, lower LDL-C levels and a decreased risk of subclinical atherosclerosis in women. Significant gene-diet interactions affected lipid, apolipoprotein and adiponectin levels with differences according to sex, involving mainly total and complex dietary carbohydrate%. In the Genotype-related Effects of PUFA trial, the derived allele was associated with lower Δ-6 desaturase activity and erythrocyte membrane dihomo-gamma-linolenic acid (DGLA) levels, and with increased Δ-5 desaturase activity and eicosapentaenoic acid levels. This variant interacted with dietary carbohydrate% affecting Δ-6 desaturase activity. Notably, the relationship of DGLA and other erythrocyte membrane LC-PUFA indices with HOMA-IR differed according to rs174616 genotype, which has implications regarding how these indices should be interpreted. In conclusion, this observational study identified rs174616 as a signal suggesting selection in an independent linkage disequilibrium block, was associated with cardiometabolic and erythrocyte measurements of LC-PUFA in two independent Mexican cohorts and showed significant gene-diet interactions.
Collapse
Affiliation(s)
- Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Janine Sagaceta-Mejía
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - María Elizabeth Tejero
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departmento de Biología Molecular y Dirección de Investigación, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Luis Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina UNAM en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Víctor Acuña-Alonzo
- Laboratorio de Genética Molecular, Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
- Anthropology (MPI-EVA), Leipzig, Germany
| | - Gastón Macín
- Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Aristea Binia
- Nestlé Institute of Health Sciences, Innovation Park, EPFL, Lausanne, Switzerland
| | - Jose Guadalupe Guevara-Chávez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leticia Sebastián-Medina
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Martha Menjívar
- Departamento de Biología, Facultad de Química UNAM, Mexico City and Unidad Académica de Ciencias y Tecnología, UNAM-Yucatán, Mérida, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alessandra Carnevale
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
3
|
Abu-Farha M, Joseph S, Mohammad A, Channanath A, Taher I, Al-Mulla F, Mujammami M, Thanaraj TA, Abubaker J, Abdel Rahman AM. Targeted Metabolomics Analysis of Individuals Carrying the ANGPTL8 R59W Variant. Metabolites 2023; 13:972. [PMID: 37755252 PMCID: PMC10536441 DOI: 10.3390/metabo13090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
ANGPTL8 is recognized as a regulator of lipid metabolism through its role in inhibiting lipoprotein lipase activity. ANGPTL8 gene variants, particularly rs2278426 leading to the R59W variant in the protein, have been associated with lipid traits in various ethnicities. We aimed to use metabolomics to understand the impact of the ANGPTL8 R59W variant on metabolites in humans. We used the Biocrates-p400 kit to quantify 408 plasma metabolites in 60 adult male Arab individuals from Kuwait and identify differences in metabolite levels between individuals carrying reference genotypes and those with carrier genotypes at ANGPTL8 rs2278426. Individuals with carrier genotypes (CT+TT) compared to those carrying the reference genotype (CC) showed statistically significant differences in the following metabolites: acylcarnitine (perturbs metabolic pathways), phosphatidylcholine (supports liver function and cholesterol levels), cholesteryl ester (brings chronic inflammatory response to lipoprotein depositions in arteries), α-aminoadipic acid (modulates glucose homeostasis), histamine (regulates glucose/lipid metabolism), sarcosine (links amino acid and lipid metabolism), diacylglycerol 42:1 (regulates homeostasis of cellular lipid stores), and lysophosphatidylcholine (regulates oxidative stress and inflammatory response). Functional aspects attributed to these metabolites indicate that the ANGPTL8 R59W variant influences the concentrations of lipid- and inflammation-related metabolites. This observation further highlights the role of ANGPTL8 in lipid metabolism.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Shibu Joseph
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Ibrahim Taher
- Microbiology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Muhammad Mujammami
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11421, Saudi Arabia;
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11421, Saudi Arabia
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Centre for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, College of Science, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
4
|
Texis T, Rivera-Mancía S, Colín-Ramírez E, Cartas-Rosado R, Koepsell D, Rubio-Carrasco K, Rodríguez-Dorantes M, Gonzalez-Covarrubias V. Genetic Determinants of Atherogenic Indexes. Genes (Basel) 2023; 14:1214. [PMID: 37372394 DOI: 10.3390/genes14061214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Atherogenesis and dyslipidemia increase the risk of cardiovascular disease, which is the leading cause of death in developed countries. While blood lipid levels have been studied as disease predictors, their accuracy in predicting cardiovascular risk is limited due to their high interindividual and interpopulation variability. The lipid ratios, atherogenic index of plasma (AIP = log TG/HDL-C) and the Castelli risk index 2 (CI2 = LDL-C/HDL-C), have been proposed as better predictors of cardiovascular risk, but the genetic variability associated with these ratios has not been investigated. This study aimed to identify genetic associations with these indexes. The study population (n = 426) included males (40%) and females (60%) aged 18-52 years (mean 39 years); the Infinium GSA array was used for genotyping. Regression models were developed using R and PLINK. AIP was associated with variation on APOC3, KCND3, CYBA, CCDC141/TTN, and ARRB1 (p-value < 2.1 × 10-6). The three former were previously associated with blood lipids, while CI2 was associated with variants on DIPK2B, LIPC, and 10q21.3 rs11251177 (p-value 1.1 × 10-7). The latter was previously linked to coronary atherosclerosis and hypertension. KCND3 rs6703437 was associated with both indexes. This study is the first to characterize the potential link between genetic variation and atherogenic indexes, AIP, and CI2, highlighting the relationship between genetic variation and dyslipidemia predictors. These results also contribute to consolidating the genetics of blood lipid and lipid indexes.
Collapse
Affiliation(s)
- Tomas Texis
- National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | | | - Eloisa Colín-Ramírez
- School of Sports Sciences, Anahuac University of North Mexico, Huixquilucan 52786, Mexico
| | - Raul Cartas-Rosado
- National Institute of Cardiology Ignacio Chavez, Mexico City 14080, Mexico
| | - David Koepsell
- Conduct Research Committee, Texas A&M University, College Station, TX 77843, USA
| | - Kenneth Rubio-Carrasco
- National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
- School of Sports Sciences, Anahuac University of North Mexico, Huixquilucan 52786, Mexico
- Faculty of Chemistry UNAM, Mexico City 04510, Mexico
| | | | | |
Collapse
|
5
|
Rougemont Q, Xuereb A, Dallaire X, Moore JS, Normandeau E, Perreault-Payette A, Bougas B, Rondeau EB, Withler RE, Van Doornik DM, Crane PA, Naish KA, Garza JC, Beacham TD, Koop BF, Bernatchez L. Long-distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Mol Ecol 2023; 32:542-559. [PMID: 35000273 DOI: 10.1111/mec.16339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 01/25/2023]
Abstract
Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species' homing behaviour may promote the establishment of local adaptation. We genotyped 7829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. The results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidate single nucleotide polymorphisms associated with long-distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,CEFE, Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier, Montpellier, France
| | - Amanda Xuereb
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Xavier Dallaire
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Jean-Sébastien Moore
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Alysse Perreault-Payette
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Bérénice Bougas
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eric B Rondeau
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Ruth E Withler
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Donald M Van Doornik
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Manchester Research Station, Port Orchard, Washington, USA
| | - Penelope A Crane
- Conservation Genetics Laboratory, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - John Carlos Garza
- Department of Ocean Sciences and Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - Terry D Beacham
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
6
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
7
|
Alcala-Diaz JF, Arenas-de Larriva AP, Torres-Peña JD, Rodriguez-Cantalejo F, Rangel-Zuñiga OA, Yubero-Serrano EM, Gutierrez-Mariscal FM, Cardelo MP, Luque RM, Ordovas JM, Perez-Martinez P, Delgado-Lista J, Lopez-Miranda J. A Gene Variation at the ZPR1 Locus (rs964184) Interacts With the Type of Diet to Modulate Postprandial Triglycerides in Patients With Coronary Artery Disease: From the Coronary Diet Intervention With Olive Oil and Cardiovascular Prevention Study. Front Nutr 2022; 9:885256. [PMID: 35782928 PMCID: PMC9247506 DOI: 10.3389/fnut.2022.885256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Aims rs964184 variant in the ZPR1 gene has been associated with blood lipids levels both in fasting and postprandial state and with the risk of myocardial infarction in high-risk cardiovascular patients. However, whether this association is modulated by diet has not been studied. Objective To investigate whether the type of diet (low-fat or Mediterranean diets) interacts with genetic variability at this loci to modulate fasting and postprandial lipids in coronary patients. Materials and Methods The genotype of the rs964184 polymorphism was determined in the Cordioprev Study population (NCT00924937). Fasting and Postprandial triglycerides were assessed before and after 3 years of dietary intervention with either a Mediterranean or a low-fat diet. Postprandial lipid assessment was done by a 4-h oral fat tolerance test (OFTT). Differences in triglycerides levels were identified using repeated-measures ANCOVA. Results From 523 patients (85% males, mean age 59 years) that completed the OFTT at baseline and after 3 years of intervention and had complete genotype information, 125 of them were carriers of the risk allele G. At the start of the study, these patients showed a higher fasting and postprandial triglycerides (TG) plasma levels. After 3 years of dietary intervention, G-carriers following a Mediterranean Diet maintained higher fasting and postprandial triglycerides, while those on the low-fat diet reduced their postprandial triglycerides to similar values to the population without the G-allele. Conclusion After 3 years of dietary intervention, the altered postprandial triglyceride response induced by genetic variability in the rs964184 polymorphism of the ZPR1 gene can be modulated by a low-fat diet, better than by a Mediterranean diet, in patients with coronary artery disease.
Collapse
Affiliation(s)
- Juan F. Alcala-Diaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio P. Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Oriol A. Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco M. Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena P. Cardelo
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul M. Luque
- Department of Cell Biology, Physiology, and Immunology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - Jose M. Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
- Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA-Food), Madrid, Spain
- International Advisory Board, University Camilo José Cela, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Jose Lopez-Miranda,
| |
Collapse
|
8
|
Wuni R, Kuhnle GGC, Wynn-Jones AA, Vimaleswaran KS. A Nutrigenetic Update on CETP Gene–Diet Interactions on Lipid-Related Outcomes. Curr Atheroscler Rep 2022; 24:119-132. [PMID: 35098451 PMCID: PMC8924099 DOI: 10.1007/s11883-022-00987-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review An abnormal lipid profile is considered a main risk factor for cardiovascular diseases and evidence suggests that single nucleotide polymorphisms (SNPs) in the cholesteryl ester transfer protein (CETP) gene contribute to variations in lipid levels in response to dietary intake. The objective of this review was to identify and discuss nutrigenetic studies assessing the interactions between CETP SNPs and dietary factors on blood lipids. Recent Findings Relevant articles were obtained through a literature search of PubMed and Google Scholar through to July 2021. An article was included if it examined an interaction between CETP SNPs and dietary factors on blood lipids. From 49 eligible nutrigenetic studies, 27 studies reported significant interactions between 8 CETP SNPs and 17 dietary factors on blood lipids in 18 ethnicities. The discrepancies in the study findings could be attributed to genetic heterogeneity, and differences in sample size, study design, lifestyle and measurement of dietary intake. The most extensively studied ethnicities were those of Caucasian populations and majority of the studies reported an interaction with dietary fat intake. The rs708272 (TaqIB) was the most widely studied CETP SNP, where ‘B1’ allele was associated with higher CETP activity, resulting in lower high-density lipoprotein cholesterol and higher serum triglycerides under the influence of high dietary fat intake. Summary Overall, the findings suggest that CETP SNPs might alter blood lipid profiles by modifying responses to diet, but further large studies in multiple ethnic groups are warranted to identify individuals at risk of adverse lipid response to diet. Supplementary Information The online version contains supplementary material available at 10.1007/s11883-022-00987-y.
Collapse
|
9
|
Association between the ABCA1 (R219K) polymorphism and lipid profiles: a meta-analysis. Sci Rep 2021; 11:21718. [PMID: 34741058 PMCID: PMC8571387 DOI: 10.1038/s41598-021-00961-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
Conflicting evidence was found about the relationship between lipid profiles and R219K polymorphism in adenosine triphosphate-binding cassette exporter A1 (ABCA1) gene. In this study, four meta-analyses were conducted to assess the effect of R219K on lipid levels, including high-density lipoprotein cholesterol (HDLC), low-density lipoprotein cholesterol, total cholesterol, and triglycerides (TG). A total of 125 samples of 87 studies (about 60,262 subjects) were included. The effect of each study was expressed using the standard mean difference (SMD) and 95% confidence interval (95% CI) and pooled by meta-analysis in the random-effects model. Subgroup and meta-regression analyses were conducted to explore potential heterogeneity sources. The overall pooled effect showed the following results. (1) The R219K was significantly associated with HDLC level (SMD = - 0.25 mmol/L, 95%CI - 0.32 to - 0.18, z = - 6.96, P < 0.01, recessive genetic model). People with different genotypes had significantly different HDLC levels under the recessive, codominant and dominant genetic models (all Ps < 0.01). (2) A weak and indeterminate relationship between R219K and TG level was observed (SMD = 0.18 mmol/L, 95%CI 0.06-0.30, z = 3.01, P < 0.01, recessive genetic model). These findings suggested that R219K was associated with HDLC and TG levels, which might implicate a promising clinical application for lipid-related disorders, though the influences of race, health status, BMI, and other heterogeneity sources should be considered when interpreting current findings. The protocol was registered at PROSPERO (registration number: CRD42021231178).
Collapse
|
10
|
Ojeda-Granados C, Abondio P, Setti A, Sarno S, Gnecchi-Ruscone GA, González-Orozco E, De Fanti S, Jiménez-Kaufmann A, Rangel-Villalobos H, Moreno-Estrada A, Sazzini M. Dietary, Cultural and Pathogens-Related Selective Pressures Shaped Differential Adaptive Evolution Among Native Mexican Populations. Mol Biol Evol 2021; 39:6379730. [PMID: 34597392 PMCID: PMC8763094 DOI: 10.1093/molbev/msab290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Native American genetic ancestry has been remarkably implicated with increased risk of diverse health issues in several Mexican populations, especially in relation to the dramatic changes in environmental, dietary, and cultural settings they have recently undergone. In particular, the effects of these ecological transitions and Westernization of lifestyles have been investigated so far predominantly on Mestizo individuals. Nevertheless, indigenous groups, rather than admixed Mexicans, have plausibly retained the highest proportions of genetic components shaped by natural selection in response to the ancient milieu experienced by Mexican ancestors during their pre-Columbian evolutionary history. These formerly adaptive variants have the potential to represent the genetic determinants of some biological traits that are peculiar to Mexican people, as well as a reservoir of loci with possible biomedical relevance. To test such a hypothesis, we used genome-wide genotype data to infer the unique adaptive evolution of Native Mexican groups selected as reasonable descendants of the main pre-Columbian Mexican civilizations. A combination of haplotype-based and gene-network analyses enabled us to detect genomic signatures ascribable to polygenic adaptive traits plausibly evolved by the main genetic clusters of Mexican indigenous populations to cope with local environmental and/or cultural conditions. Some of these adaptations were found to play a role in modulating the susceptibility/resistance of these groups to certain pathological conditions, thus providing new evidence that diverse selective pressures have contributed to shape the current biological and disease-risk patterns of present-day Native and Mestizo Mexican populations.
Collapse
Affiliation(s)
- Claudia Ojeda-Granados
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara "Fray Antonio Alcalde" & Health Sciences Center, University of Guadalajara, Jalisco, Mexico
| | - Paolo Abondio
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Alice Setti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo-Trento, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Guido Alberto Gnecchi-Ruscone
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eduardo González-Orozco
- National Laboratory of Genomics for Biodiversity (LANGEBIO), UGA, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Sara De Fanti
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Italy
| | - Andres Jiménez-Kaufmann
- National Laboratory of Genomics for Biodiversity (LANGEBIO), UGA, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Héctor Rangel-Villalobos
- Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), UGA, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Marco Sazzini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.,Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Italy
| |
Collapse
|
11
|
Harshfield EL, Fauman EB, Stacey D, Paul DS, Ziemek D, Ong RMY, Danesh J, Butterworth AS, Rasheed A, Sattar T, Zameer-Ul-Asar, Saleem I, Hina Z, Ishtiaq U, Qamar N, Mallick NH, Yaqub Z, Saghir T, Rizvi SNH, Memon A, Ishaq M, Rasheed SZ, Memon FUR, Jalal A, Abbas S, Frossard P, Saleheen D, Wood AM, Griffin JL, Koulman A. Genome-wide analysis of blood lipid metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci. BMC Med 2021; 19:232. [PMID: 34503513 PMCID: PMC8431908 DOI: 10.1186/s12916-021-02087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Genetic, lifestyle, and environmental factors can lead to perturbations in circulating lipid levels and increase the risk of cardiovascular and metabolic diseases. However, how changes in individual lipid species contribute to disease risk is often unclear. Moreover, little is known about the role of lipids on cardiovascular disease in Pakistan, a population historically underrepresented in cardiovascular studies. METHODS We characterised the genetic architecture of the human blood lipidome in 5662 hospital controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) and 13,814 healthy British blood donors from the INTERVAL study. We applied a candidate causal gene prioritisation tool to link the genetic variants associated with each lipid to the most likely causal genes, and Gaussian Graphical Modelling network analysis to identify and illustrate relationships between lipids and genetic loci. RESULTS We identified 253 genetic associations with 181 lipids measured using direct infusion high-resolution mass spectrometry in PROMIS, and 502 genetic associations with 244 lipids in INTERVAL. Our analyses revealed new biological insights at genetic loci associated with cardiometabolic diseases, including novel lipid associations at the LPL, MBOAT7, LIPC, APOE-C1-C2-C4, SGPP1, and SPTLC3 loci. CONCLUSIONS Our findings, generated using a distinctive lipidomics platform in an understudied South Asian population, strengthen and expand the knowledge base of the genetic determinants of lipids and their association with cardiometabolic disease-related loci.
Collapse
Affiliation(s)
- Eric L Harshfield
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK. .,Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, Massachusetts, 02139, USA
| | - David Stacey
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, CB2 0QQ, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK.,National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, CB2 0QQ, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, CB10 1SA, UK.,Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Daniel Ziemek
- Inflammation and Immunology, Pfizer Worldwide Research, Development and Medical, 10785, Berlin, Germany
| | - Rachel M Y Ong
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, CB2 0QQ, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK.,National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, CB2 0QQ, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, CB10 1SA, UK.,Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, CB2 0QQ, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK.,National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, CB2 0QQ, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, CB10 1SA, UK.,Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, 75300, Pakistan
| | - Taniya Sattar
- Center for Non-Communicable Diseases, Karachi, 75300, Pakistan
| | - Zameer-Ul-Asar
- Center for Non-Communicable Diseases, Karachi, 75300, Pakistan
| | - Imran Saleem
- Center for Non-Communicable Diseases, Karachi, 75300, Pakistan
| | - Zoubia Hina
- Center for Non-Communicable Diseases, Karachi, 75300, Pakistan
| | - Unzila Ishtiaq
- Center for Non-Communicable Diseases, Karachi, 75300, Pakistan
| | - Nadeem Qamar
- National Institute of Cardiovascular Diseases, Karachi, 75510, Pakistan
| | | | - Zia Yaqub
- National Institute of Cardiovascular Diseases, Karachi, 75510, Pakistan
| | - Tahir Saghir
- National Institute of Cardiovascular Diseases, Karachi, 75510, Pakistan
| | | | - Anis Memon
- National Institute of Cardiovascular Diseases, Karachi, 75510, Pakistan
| | - Mohammad Ishaq
- Karachi Institute of Heart Diseases, Karachi, 75950, Pakistan
| | | | | | - Anjum Jalal
- Faisalabad Institute of Cardiology, Faisalabad, 38000, Pakistan
| | - Shahid Abbas
- Faisalabad Institute of Cardiology, Faisalabad, 38000, Pakistan
| | | | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, 75300, Pakistan.,Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Angela M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, CB2 0QQ, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK.,National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, CB2 0QQ, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, CB10 1SA, UK.,Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK. .,Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, SW7 2AZ, UK.
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
12
|
León-Mimila P, Villamil-Ramírez H, Macías-Kauffer LR, Jacobo-Albavera L, López-Contreras BE, Posadas-Sánchez R, Posadas-Romero C, Romero-Hidalgo S, Morán-Ramos S, Domínguez-Pérez M, Olivares-Arevalo M, López-Montoya P, Nieto-Guerra R, Acuña-Alonzo V, Macín-Pérez G, Barquera-Lozano R, Del-Río-Navarro BE, González-González I, Campos-Pérez F, Gómez-Pérez F, Valdés VJ, Sampieri A, Reyes-García JG, Carrasco-Portugal MDC, Flores-Murrieta FJ, Aguilar-Salinas CA, Vargas-Alarcón G, Shih D, Meikle PJ, Calkin AC, Drew BG, Vaca L, Lusis AJ, Huertas-Vazquez A, Villarreal-Molina T, Canizales-Quinteros S. Genome-Wide Association Study Identifies a Functional SIDT2 Variant Associated With HDL-C (High-Density Lipoprotein Cholesterol) Levels and Premature Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2021; 41:2494-2508. [PMID: 34233476 PMCID: PMC8664085 DOI: 10.1161/atvbaha.120.315391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Low HDL-C (high-density lipoprotein cholesterol) is the most frequent dyslipidemia in Mexicans, but few studies have examined the underlying genetic basis. Our purpose was to identify genetic variants associated with HDL-C levels and cardiovascular risk in the Mexican population. Approach and Results A genome-wide association studies for HDL-C levels in 2335 Mexicans, identified four loci associated with genome-wide significance: CETP, ABCA1, LIPC, and SIDT2. The SIDT2 missense Val636Ile variant was associated with HDL-C levels and was replicated in 3 independent cohorts (P=5.9×10−18 in the conjoint analysis). The SIDT2/Val636Ile variant is more frequent in Native American and derived populations than in other ethnic groups. This variant was also associated with increased ApoA1 and glycerophospholipid serum levels, decreased LDL-C (low-density lipoprotein cholesterol) and ApoB levels, and a lower risk of premature CAD. Because SIDT2 was previously identified as a protein involved in sterol transport, we tested whether the SIDT2/Ile636 protein affected this function using an in vitro site-directed mutagenesis approach. The SIDT2/Ile636 protein showed increased uptake of the cholesterol analog dehydroergosterol, suggesting this variant affects function. Finally, liver transcriptome data from humans and the Hybrid Mouse Diversity Panel are consistent with the involvement of SIDT2 in lipid and lipoprotein metabolism. Conclusions This is the first genome-wide association study for HDL-C levels seeking associations with coronary artery disease in the Mexican population. Our findings provide new insight into the genetic architecture of HDL-C and highlight SIDT2 as a new player in cholesterol and lipoprotein metabolism in humans.
Collapse
Affiliation(s)
- Paola León-Mimila
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Luis R Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
- Dirección de Planeación, Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Estado de México (L.R.M.-K.)
| | - Leonor Jacobo-Albavera
- Laboratorio de Enfermedades Cardiovasculares, INMEGEN, Mexico City (L.J.-A., M.D.-P., T.V.-M.)
| | - Blanca E López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (R.P.-S., C.P.-R.)
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (R.P.-S., C.P.-R.)
| | | | - Sofía Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City (S.M.-R.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Enfermedades Cardiovasculares, INMEGEN, Mexico City (L.J.-A., M.D.-P., T.V.-M.)
| | - Marisol Olivares-Arevalo
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Priscilla López-Montoya
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Roberto Nieto-Guerra
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | | | - Gastón Macín-Pérez
- Escuela Nacional de Antropología e Historia, Mexico City (V.A.-A., G.M.-P.)
| | | | | | | | | | - Francisco Gómez-Pérez
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (F.G.-P., C.A.A.-S.)
| | - Victor J Valdés
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Alicia Sampieri
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Juan G Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City (J.G.R.-G., F.J.F.-M.)
| | - Miriam Del C Carrasco-Portugal
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City (M.C.-P., F.J.F.-M.)
| | - Francisco J Flores-Murrieta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City (J.G.R.-G., F.J.F.-M.)
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City (M.C.-P., F.J.F.-M.)
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (F.G.-P., C.A.A.-S.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L. Mexico (C.A.A.-S.)
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (G.V.-A.)
| | - Diana Shih
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | - Peter J Meikle
- Head Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M.)
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Central Clinical School, Monash University, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia (A.C.C., B.G.D.)
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Central Clinical School, Monash University, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia (A.C.C., B.G.D.)
| | - Luis Vaca
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | - Adriana Huertas-Vazquez
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | | | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| |
Collapse
|
13
|
Read RW, Schlauch KA, Lombardi VC, Cirulli ET, Washington NL, Lu JT, Grzymski JJ. Genome-Wide Identification of Rare and Common Variants Driving Triglyceride Levels in a Nevada Population. Front Genet 2021; 12:639418. [PMID: 33763119 PMCID: PMC7982958 DOI: 10.3389/fgene.2021.639418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Clinical conditions correlated with elevated triglyceride levels are well-known: coronary heart disease, hypertension, and diabetes. Underlying genetic and phenotypic mechanisms are not fully understood, partially due to lack of coordinated genotypic-phenotypic data. Here we use a subset of the Healthy Nevada Project, a population of 9,183 sequenced participants with longitudinal electronic health records to examine consequences of altered triglyceride levels. Specifically, Healthy Nevada Project participants sequenced by the Helix Exome+ platform were cross-referenced to their electronic medical records to identify: (1) rare and common single-variant genome-wide associations; (2) gene-based associations using a Sequence Kernel Association Test; (3) phenome-wide associations with triglyceride levels; and (4) pleiotropic variants linked to triglyceride levels. The study identified 549 significant single-variant associations (p < 8.75 × 10-9), many in chromosome 11's triglyceride hotspot: ZPR1, BUD13, APOC3, APOA5. A well-known protective loss-of-function variant in APOC3 (R19X) was associated with a 51% decrease in triglyceride levels in the cohort. Sixteen gene-based triglyceride associations were identified; six of these genes surprisingly did not include a single variant with significant associations. Results at the variant and gene level were validated with the UK Biobank. The combination of a single-variant genome-wide association, a gene-based association method, and phenome wide-association studies identified rare and common variants, genes, and phenotypes associated with elevated triglyceride levels, some of which may have been overlooked with standard approaches.
Collapse
Affiliation(s)
- Robert W. Read
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Karen A. Schlauch
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | | | | | - James T. Lu
- Helix Opco, LLC., San Mateo, CA, United States
| | - Joseph J. Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
- Renown Health, Reno, NV, United States
| |
Collapse
|
14
|
Guerra-García MT, Moreno-Macías H, Ochoa-Guzmán A, Ordoñez-Sánchez ML, Rodríguez-Guillen R, Vázquez-Cárdenas P, Ortíz-Ortega VM, Peimbert-Torres M, Aguilar-Salinas CA, Tusié-Luna MT. The -514C>T polymorphism in the LIPC gene modifies type 2 diabetes risk through modulation of HDL-cholesterol levels in Mexicans. J Endocrinol Invest 2021; 44:557-565. [PMID: 32617858 DOI: 10.1007/s40618-020-01346-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Both type 2 diabetes (T2D) and low levels of high-density lipoprotein cholesterol (HDL-C) are very prevalent conditions among Mexicans. Genetic variants in the LIPC gene have been associated with both conditions. This study aimed to evaluate the association of the -514C < T (rs1800588) LIPC gene polymorphism with different metabolic traits, particularly the effects of this polymorphism on HDL-C plasma levels and T2D risk. METHODS Mediation analysis was used to assess the direct and indirect effects of the -514C>T LIPC gene variant on HDL-C levels, T2D risk, and body mass index (BMI), in 2105 Mexican mestizo participants. We also assessed the functional effect of the -514C>T LIPC variant on the promoter activity of a reporter gene in the HepG2 cell line. RESULTS Direct effects show that the -514C>T LIPC polymorphism is significantly associated with increased HDL-C plasma levels (β = 0.03; p < 0.001). The -514C>T variant resulted in an indirect protective effect on T2D risk through increasing HDL-C levels (β = - 0.03; p < 0.001). Marginal direct association between -514C>T and T2D was found (β = 0.08; p = 0.06). Variables directly influencing T2D status were European ethnicity (β = - 7.20; p < 0.001), age (β = 0.04; p < 0.001), gender (β = - 0.15; p = 0.017) and HDL-C (β = - 1.07; p < 0.001). In addition, we found that the -514C>T variant decreases the activity of LIPC promoter by 90% (p < 0.001). CONCLUSIONS The -514C>T polymorphism was not directly associated with T2D risk. HDL-C acts as a mediator between -514C>T LIPC gene variant and T2D risk in the Mexican population.
Collapse
Affiliation(s)
- M T Guerra-García
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - H Moreno-Macías
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
- Economy Department, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - A Ochoa-Guzmán
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - M L Ordoñez-Sánchez
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - R Rodríguez-Guillen
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - P Vázquez-Cárdenas
- Obesity Clinic, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - V M Ortíz-Ortega
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M Peimbert-Torres
- Nature Sciences Department, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - C A Aguilar-Salinas
- Division of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M T Tusié-Luna
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Belisario Domínguez, Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
- Instituto de Investigaciones Biomédicas, Univesidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
15
|
Cruz-Bautista I, Huerta-Chagoya A, Moreno-Macías H, Rodríguez-Guillén R, Ordóñez-Sánchez ML, Segura-Kato Y, Mehta R, Almeda-Valdés P, Gómez-Munguía L, Ruiz-De Chávez X, Rosas-Flota X, Andrade-Amado A, Bernal-Barroeta B, López-Carrasco MG, Guillén-Pineda LE, López-Estrada A, Elías-López D, Martagón-Rosado AJ, Gómez-Velasco D, Lam-Chung CE, Bello-Chavolla OY, Del Razo-Olvera F, Cetina-Pérez LD, Acosta-Rodríguez JL, Tusié-Luna MT, Aguilar-Salinas CA. Familial hypertriglyceridemia: an entity with distinguishable features from other causes of hypertriglyceridemia. Lipids Health Dis 2021; 20:14. [PMID: 33588820 PMCID: PMC7885394 DOI: 10.1186/s12944-021-01436-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Familial hypertriglyceridemia (FHTG) is a partially characterized primary dyslipidemia which is frequently confused with other forms hypertriglyceridemia. The aim of this work is to search for specific features that can help physicians recognize this disease. METHODS This study included 84 FHTG cases, 728 subjects with common mild-to-moderate hypertriglyceridemia (CHTG) and 609 normotriglyceridemic controls. All subjects underwent genetic, clinical and biochemical assessments. A set of 53 single nucleotide polymorphisms (SNPs) previously associated with triglycerides levels, as well as 37 rare variants within the five main genes associated with hypertriglyceridemia (i.e. LPL, APOC2, APOA5, LMF1 and GPIHBP1) were analyzed. A panel of endocrine regulatory proteins associated with triglycerides homeostasis were compared between the FHTG and CHTG groups. RESULTS Apolipoprotein B, fibroblast growth factor 21(FGF-21), angiopoietin-like proteins 3 (ANGPTL3) and apolipoprotein A-II concentrations, were independent components of a model to detect FHTG compared with CHTG (AUC 0.948, 95%CI 0.901-0.970, 98.5% sensitivity, 92.2% specificity, P < 0.001). The polygenic set of SNPs, accounted for 1.78% of the variance in triglyceride levels in FHTG and 6.73% in CHTG. CONCLUSIONS The clinical and genetic differences observed between FHTG and CHTG supports the notion that FHTG is a unique entity, distinguishable from other causes of hypertriglyceridemia by the higher concentrations of insulin, FGF-21, ANGPTL3, apo A-II and lower levels of apo B. We propose the inclusion of these parameters as useful markers for differentiating FHTG from other causes of hypertriglyceridemia.
Collapse
Affiliation(s)
- Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Alicia Huerta-Chagoya
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
- CONACyT. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Hortensia Moreno-Macías
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
- Departamento de Economía, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Rosario Rodríguez-Guillén
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - María Luisa Ordóñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - Roopa Mehta
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Paloma Almeda-Valdés
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Lizeth Gómez-Munguía
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Ximena Ruiz-De Chávez
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Ximena Rosas-Flota
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Arali Andrade-Amado
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Bárbara Bernal-Barroeta
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - María Guadalupe López-Carrasco
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Luz Elizabeth Guillén-Pineda
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Angelina López-Estrada
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Daniel Elías-López
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Alexandro J Martagón-Rosado
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, NL, Mexico
| | - Donají Gómez-Velasco
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Cesar Ernesto Lam-Chung
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Omar Yaxmehen Bello-Chavolla
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
| | - Fabiola Del Razo-Olvera
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Lucely D Cetina-Pérez
- Departamento de Oncología Médica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - María Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico.
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico.
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, NL, Mexico.
| |
Collapse
|
16
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
17
|
Hepatic lipase (LIPC) sequencing in individuals with extremely high and low high-density lipoprotein cholesterol levels. PLoS One 2020; 15:e0243919. [PMID: 33326441 PMCID: PMC7743991 DOI: 10.1371/journal.pone.0243919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Common variants in the hepatic lipase (LIPC) gene have been shown to be associated with plasma lipid levels; however, the distribution and functional features of rare and regulatory LIPC variants contributing to the extreme lipid phenotypes are not well known. This study was aimed to catalogue LIPC variants by resequencing the entire LIPC gene in 95 non-Hispanic Whites (NHWs) and 95 African blacks (ABs) with extreme HDL-C levels followed by in silico functional analyses. A total of 412 variants, including 43 novel variants were identified; 56 were unique to NHWs and 234 were unique to ABs. Seventy-eight variants in NHWs and 89 variants in ABs were present either in high HDL-C group or low HDL-C group. Two non-synonymous variants (p.S289F, p.T405M), found in NHWs with high HDL-C group were predicted to have damaging effect on LIPC protein by SIFT, MT2 and PP2. We also found several non-coding variants that possibly reside in the circRNA and lncRNA binding sites and may have regulatory potential, as identified in rSNPbase and RegulomeDB databases. Our results shed light on the regulatory nature of rare and non-coding LIPC variants as well as suggest their important contributions in affecting the extreme HDL-C phenotypes.
Collapse
|
18
|
Yin Z, Zhao Y, Du H, Nie X, Li H, Fan J, He M, Dai B, Zhang X, Yuan S, Wen Z, Chen C, Wang DW. A Key GWAS-Identified Genetic Variant Contributes to Hyperlipidemia by Upregulating miR-320a. iScience 2020; 23:101788. [PMID: 33294796 PMCID: PMC7689551 DOI: 10.1016/j.isci.2020.101788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
It has been unclear whether the elevated levels of the circulating miR-320a in patients with coronary artery disease is due to environmental influence or genetic basis. By recombinant adeno-associated virus (rAAV)-mediated loss- and gain-of-function studies in the mouse liver, we revealed that elevated miR-320a is sufficient to aggravate diet-induced hyperlipidemia and hepatic steatosis. Then, we analyzed the data from published genome-wide association studies and identified the rs12541335 associated with hyperlipidemia. We demonstrated that the rs13282783 T allele indeed obligated the silencer activity by preventing the repressor ZFP161 and co-repressor HDAC2 from binding to DNA that led to miR-320a upregulation. We further confirmed this genetic connection on an independent population and through direct genome editing in liver cells. Besides environmental (diet) influence, we established a genetic component in the regulation of miR-320a expression, which suggest a potential therapeutic avenue to treat coronary artery disease by blocking miR-320a in patient liver. Hepatic miR-320a overexpression led to hyperlipidemia, not vice versa A hyperlipidemia-associated SNP rs13282783 distally regulated miR-320a expression miR-320a promoted TG accumulation and repressed LDL-C uptake in hepatocytes
Collapse
Affiliation(s)
- Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengzhi Du
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengying He
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Beibei Dai
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xudong Zhang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Paquette M, Fantino M, Bernard S, Baass A. The ZPR1 genotype predicts myocardial infarction in patients with familial hypercholesterolemia. J Clin Lipidol 2020; 14:660-666. [DOI: 10.1016/j.jacl.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
|
20
|
Genis-Mendoza AD, Martínez-Magaña JJ, Ruiz-Ramos D, Gonzalez-Covarrubias V, Tovilla-Zarate CA, Narvaez MLL, Castro TBG, Juárez-Rojop IE, Nicolini H. Interaction of FTO rs9939609 and the native American-origin ABCA1 p.Arg230Cys with circulating leptin levels in Mexican adolescents diagnosed with eating disorders: Preliminary results. Psychiatry Res 2020; 291:113270. [PMID: 32763537 DOI: 10.1016/j.psychres.2020.113270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023]
Abstract
Eating disorders (ED) are characterized by disruption of eating behaviour and alteration of food intake. Leptin, is one of the main hormones that modulate food intake and are altered in individuals diagnosed with ED. Genetic risk variants for obesity, like those reported inFTO and ABCA1, have also been associated to ED disorders. The present study aimed to analysed leptin circulating levels and the interaction between obesity-risk variants in FTO and ABCA1, in adolescents diagnosed with ED. A total of 99 individuals diagnosed with ED were genotype using Taqman probes for FTO (rs9939609) and ABCA1 (p.Arg230Cys, rs9282541). Commercial enzyme-linked immunosorbent assays were utilized to determined circulating leptin. Differences in leptin concentration were analysed by t-Student or ANOVA test. Gene-gene interaction were analysed using general estimation equations. Circulating leptin levels differed between the three diagnostic groups, lead by individuals diagnosed with binge eating-disorder. In individuals with more than 3 of episodes of binge-eating per week having the highest leptin levels. Also, we found that carriers of both risk alleles had the highest leptin levels. Our observations found an interaction between FTO rs9969609 and the native American-origin ABCA1 p.Arg230Cys to modulate circulating leptin levels in Mexican adolescents diagnosed with eating-disorders.
Collapse
Affiliation(s)
- Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, CDMX, México; Hospital Psiquiátrico Infantil "Juan N. Navarro" Servicios de Administración Psiquiátrica, CDMX, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México.
| | - José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, CDMX, México; División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - David Ruiz-Ramos
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, CDMX, México; División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Vanessa Gonzalez-Covarrubias
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, CDMX, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Carlos Alfonso Tovilla-Zarate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Mari Lilia López Narvaez
- Hospital General de Yajalón Dr. Manuel Velasco Siles. Secretaria de Salud de Chiapas. Yajalón, Chiapas, Mexico; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Thelma Beatriz Gonzalez Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Isela Esther Juárez-Rojop
- Hospital General de Yajalón Dr. Manuel Velasco Siles. Secretaria de Salud de Chiapas. Yajalón, Chiapas, Mexico; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, CDMX, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México; Grupo de Estudios Médicos y Familiares Carracci, CDMX, México.
| |
Collapse
|
21
|
Ochoa-Guzmán A, Moreno-Macías H, Guillén-Quintero D, Chávez-Talavera O, Ordoñez-Sánchez ML, Segura-Kato Y, Ortíz V, Díaz-Díaz E, Muñoz-Hernández L, García A, Pérez-Méndez O, Zentella-Dehesa A, Aguilar-Salinas CA, Tusié-Luna MT. R230C but not - 565C/T variant of the ABCA1 gene is associated with type 2 diabetes in Mexicans through an effect on lowering HDL-cholesterol levels. J Endocrinol Invest 2020; 43:1061-1071. [PMID: 32016916 DOI: 10.1007/s40618-020-01187-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/22/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE Type 2 diabetes (T2D) and low serum concentration of high-density lipoprotein cholesterol (HDL-c) are common coexisting metabolic disorders. ABCA1 variants have been shown to be associated to these conditions. We sought to test the combined effect of two ABCA1 gene common variants, rs2422493 (- 565C > T) and rs9282541 (R230C) on HDL-c levels and T2D risk. METHODS Path analysis was conducted in 3,303 Mexican-mestizos to assess the specific contributions of rs2422493 and rs9282541 ABCA1 variants, insulin resistance, waist-to-height ratio (WHtR), and age on HDL-c levels and T2D risk. Participants were classified into four groups according to their ABCA1 variants carrier status: (i) the reference group carried wild type alleles for both ABCA1 variants (-/-), (ii) +/- were carriers of rs2422493 but non-carriers of rs9282541, (iii) -/+ for carriers of rs9282541 but not carriers of rs2422493 and (iv) carriers of minor alleles for both SNPs (+/+). Principal components from two previous genome-wide association studies were used to control for ethnicity. RESULTS We identified significant indirect effects on T2D risk mediated by HDL-c in groups -/+ and +/+ (β = 0.04; p = 0.03 and β = 0.06; p < 0.01, respectively) in comparison to the -/- reference group. Low concentrations of HDL-c were directly and significantly associated with increased T2D risk (β = -0.70; p < 0.01). WHtR, male gender, age, and insulin resistance were also associated with T2D risk (p < 0.05). There was no significant direct effect for any of the ABCA1 groups on T2D risk: p = 0.99, p = 0.58, and p = 0.91 for groups +/-, -/+, and +/+ respectively. CONCLUSIONS The ABCA1 rs9282541 (R230C) allele is associated with T2D in Mexicans through its effect on lowering HDL-c levels. This is the first report demonstrating that HDL-c levels act as an intermediate factor between an ABCA1 variant and T2D.
Collapse
Affiliation(s)
- A Ochoa-Guzmán
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico
| | | | - D Guillén-Quintero
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico
| | | | - M L Ordoñez-Sánchez
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico
| | - Y Segura-Kato
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico
| | - V Ortíz
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - E Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Muñoz-Hernández
- Research Unit On Metabolic Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A García
- Department of Biochemistry, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - O Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - A Zentella-Dehesa
- Department of Biochemistry, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - C A Aguilar-Salinas
- Research Unit On Metabolic Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M T Tusié-Luna
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico.
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
22
|
Antonio-Villa NE, Bello-Chavolla OY, Vargas-Vázquez A, Mehta R, Aguilar-Salinas CA. The combination of insulin resistance and visceral adipose tissue estimation improves the performance of metabolic syndrome as a predictor of type 2 diabetes. Diabet Med 2020; 37:1192-1201. [PMID: 32061103 DOI: 10.1111/dme.14274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 12/16/2022]
Abstract
AIMS To assess the performance of metabolic syndrome as a predictor of type 2 diabetes in a model that also includes both a measure of insulin resistance and a metabolic score for visceral fat, and to propose a novel metabolic syndrome definition. METHODS In a prospective Metabolic Syndrome Cohort (n=6143), we evaluated improvements in type 2 diabetes risk prediction using International Diabetes Federation-defined and Adult Treatment Panel III-defined metabolic syndrome, after inclusion in the model of updated homeostatic model assessment of insulin resistance and a metabolic score for visceral fat. We also developed a modified metabolic syndrome construct, 'MS-METS', which used the metabolic score for visceral fat instead of waist circumference to evaluate improved predictive performance for risk of developing type 2 diabetes. RESULTS Participants who had metabolic syndrome as defined by both the Adult Treatment Panel III and the International Diabetes Federation criteria had a higher risk of type 2 diabetes compared to participants who did not meet these criteria. Addition of updated homeostatic model assessment of insulin resistance and metabolic score for visceral fat to both metabolic syndrome definitions increased predictive performance for type 2 diabetes risk. Homeostatic model assessment of insulin resistance was the only additional predictor of type 2 diabetes in participants without metabolic syndrome. Conversely, in participants with metabolic syndrome, the use of the metabolic score for visceral fat was the stronger added predictor for type 2 diabetes. When evaluating participants using the MS-METS definition we observed the largest improvement in predictive ability for type 2 diabetes risk and a significant reduction in risk overestimation compared to evaluation using metabolic syndrome defined according to the International Diabetes Federation and Adult Treatment Panel III criteria alone. CONCLUSION Inclusion of updated homeostatic model assessment of insulin resistance and metabolic score for visceral fat increases performance of metabolic syndrome in prediction of type 2 diabetes. Assessment of insulin resistance could be more useful than conventional metabolic syndrome and assessment of visceral adipose tissue could be more useful in people with metabolic syndrome. Metabolic syndrome as defined using our modified MS-METS construct improved the accuracy of type 2 diabetes prediction.
Collapse
Affiliation(s)
- N E Antonio-Villa
- Unidad de Investigacion de Enfermedades Metabólicas, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Tlalpan, Mexico
- MD/PhD (PECEM) Program, Faculty of Medicine, Universidad Nacional Autonoma de México, Tlalpan, Mexico
| | - O Y Bello-Chavolla
- Unidad de Investigacion de Enfermedades Metabólicas, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Tlalpan, Mexico
- Department of Physiology, Faculty of Medicine, Universidad Nacional Autonoma de México, Tlalpan, Mexico
- Research Division, Instituto Nacional de Geriatría, Tlalpan, Mexico
| | - A Vargas-Vázquez
- Unidad de Investigacion de Enfermedades Metabólicas, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Tlalpan, Mexico
- MD/PhD (PECEM) Program, Faculty of Medicine, Universidad Nacional Autonoma de México, Tlalpan, Mexico
| | - R Mehta
- Unidad de Investigacion de Enfermedades Metabólicas, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Tlalpan, Mexico
- Department of Endocrinolgy and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Tlalpan, Mexico
| | - C A Aguilar-Salinas
- Unidad de Investigacion de Enfermedades Metabólicas, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Tlalpan, Mexico
- Department of Endocrinolgy and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirán, Tlalpan, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Tlalpan, Mexico
| |
Collapse
|
23
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Main Text. Curr Vasc Pharmacol 2020; 17:498-514. [PMID: 31060488 DOI: 10.2174/1570161117666190507110519] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
Residual vascular risk exists despite the aggressive lowering of Low-Density Lipoprotein Cholesterol (LDL-C). A contributor to this residual risk may be elevated fasting, or non-fasting, levels of Triglyceride (TG)-rich lipoproteins. Therefore, there is a need to establish whethe a standardised Oral Fat Tolerance Test (OFTT) can improve atherosclerotic Cardiovascular (CV) Disease (ASCVD) risk prediction in addition to a fasting or non-fasting lipid profile. An expert panel considered the role of postprandial hypertriglyceridaemia (as represented by an OFTT) in predicting ASCVD. The panel updated its 2011 statement by considering new studies and various patient categories. The recommendations are based on expert opinion since no strict endpoint trials have been performed. Individuals with fasting TG concentration <1 mmol/L (89 mg/dL) commonly do not have an abnormal response to an OFTT. In contrast, those with fasting TG concentration ≥2 mmol/L (175 mg/dL) or nonfasting ≥2.3 mmol/L (200 mg/dL) will usually have an abnormal response. We recommend considering postprandial hypertriglyceridaemia testing when fasting TG concentrations and non-fasting TG concentrations are 1-2 mmol/L (89-175 mg/dL) and 1.3-2.3 mmol/L (115-200 mg/dL), respectively as an additional investigation for metabolic risk prediction along with other risk factors (obesity, current tobacco abuse, metabolic syndrome, hypertension, and diabetes mellitus). The panel proposes that an abnormal TG response to an OFTT (consisting of 75 g fat, 25 g carbohydrate and 10 g proteins) is >2.5 mmol/L (220 mg/dL). Postprandial hypertriglyceridaemia is an emerging factor that may contribute to residual CV risk. This possibility requires further research. A standardised OFTT will allow comparisons between investigational studies. We acknowledge that the OFTT will be mainly used for research to further clarify the role of TG in relation to CV risk. For routine practice, there is a considerable support for the use of a single non-fasting sample.
Collapse
Affiliation(s)
- Genovefa D Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Yang C, Wan X, Lin X, Chen M, Zhou X, Liu J. CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics 2020; 35:1644-1652. [PMID: 30295737 DOI: 10.1093/bioinformatics/bty865] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/15/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Genome-wide association studies (GWASs) have been successful in identifying many genetic variants associated with complex traits. However, the mechanistic links between these variants and complex traits remain elusive. A scientific hypothesis is that genetic variants influence complex traits at the organismal level via affecting cellular traits, such as regulating gene expression and altering protein abundance. Although earlier works have already presented some scientific insights about this hypothesis and their findings are very promising, statistical methods that effectively harness multilayered data (e.g. genetic variants, cellular traits and organismal traits) on a large scale for functional and mechanistic exploration are highly demanding. RESULTS In this study, we propose a collaborative mixed model (CoMM) to investigate the mechanistic role of associated variants in complex traits. The key idea is built upon the emerging scientific evidence that genetic effects at the cellular level are much stronger than those at the organismal level. Briefly, CoMM combines two models: the first model relating gene expression with genotype and the second model relating phenotype with predicted gene expression using the first model. The two models are fitted jointly in CoMM, such that the uncertainty in predicting gene expression has been fully accounted. To demonstrate the advantages of CoMM over existing methods, we conducted extensive simulation studies, and also applied CoMM to analyze 25 traits in NFBC1966 and Genetic Epidemiology Research on Aging (GERA) studies by integrating transcriptome information from the Genetic European in Health and Disease (GEUVADIS) Project. The results indicate that by leveraging regulatory information, CoMM can effectively improve the power of prioritizing risk variants. Regarding the computational efficiency, CoMM can complete the analysis of NFBC1966 dataset and GERA datasets in 2 and 18 min, respectively. AVAILABILITY AND IMPLEMENTATION The developed R package is available at https://github.com/gordonliu810822/CoMM. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Can Yang
- Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiang Wan
- Shenzhen Research Institute of Big Data, Shenzhen, China
| | - Xinyi Lin
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Mengjie Chen
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jin Liu
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| |
Collapse
|
25
|
Zhang L, Shannon CE, Bakewell TM, Abdul-Ghani MA, Fourcaudot M, Norton L. Regulation of ANGPTL8 in liver and adipose tissue by nutritional and hormonal signals and its effect on glucose homeostasis in mice. Am J Physiol Endocrinol Metab 2020; 318:E613-E624. [PMID: 32154742 DOI: 10.1152/ajpendo.00339.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiopoietin-like protein (ANGPTL) family represents a promising therapeutic target for dyslipidemia, which is a feature of obesity and type 2 diabetes (T2DM). The aim of the present study was to determine the metabolic role of ANGPTL8 and to investigate its nutritional, hormonal, and molecular regulation in key metabolic tissues. The regulation of Angptl8 gene expression by insulin and glucose was quantified using a combination of in vivo insulin clamp experiments in mice and in vitro experiments in primary and cultured hepatocytes and adipocytes. The role of AMPK signaling was examined, and the transcriptional control of Angptl8 was determined using bioinformatic and luciferase reporter approaches. The metabolism of Angptl8 knockout mice (ANGPTL8-/-) was examined following chow and high-fat diets (HFD). Insulin acutely increased Angptl8 expression in liver and adipose tissue, which involved the CCAAT/enhancer-binding protein (C/EBPβ) transcription factor. In insulin clamp experiments, glucose further enhanced Angptl8 expression in the presence of insulin in adipose tissue. The activation of AMPK signaling antagonized the effect of insulin on Angptl8 expression in hepatocytes and adipocytes. The ANGPTL8-/- mice had improved glucose tolerance and displayed reduced fed and fasted plasma triglycerides. However, there was no change in body weight or steatosis in ANGPTL8-/- mice after the HFD. These data show that ANGPTL8 plays important metabolic roles in mice that extend beyond triglyceride metabolism. The finding that insulin, glucose, and AMPK signaling regulate Angptl8 expression may provide important clues about the distinct function of ANGPTL8 in these tissues.
Collapse
Affiliation(s)
- Lu Zhang
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Chris E Shannon
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Terry M Bakewell
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | | | - Marcel Fourcaudot
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Luke Norton
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
26
|
Wei W, Hu T, Luo H, Ye Z, Lu F, Wu Y, Ying M. The cross-sectional study of hepatic lipase SNPs and plasma lipid levels. Food Sci Nutr 2020; 8:1162-1172. [PMID: 32341780 PMCID: PMC7180388 DOI: 10.1002/fsn3.1403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022] Open
Abstract
By the combination of meta-analysis, the data of the 1,000 Genomes Project Phase 3, and the promoter sequence of hepatic lipase (LIPC), we performed the cross-sectional study to explore the associations of four variants (rs1077835; rs1077834; rs1800588 [C-514T], and rs2070895 [G-250A]) in LIPC promoter with plasma lipid levels. Our results indicate that the first and the next three of the four SNPs are, respectively, reported to be associated with the decreased and increased HDL-c level. Meta-analysis of 87 studies with 101,988 participants indicates that HDL-c level in rs1800588 (C-514T) (pooled mean difference = 0.03, 95%CI (0.03, 0.04), p < .001) and rs2070895 (G-250A) (pooled mean difference = 0.07, 95%CI (0.05, 0.09), p < .001) is higher in allele T or A carriers. Similarly, LDL-c, TC, TG, and BMI levels are generally increased in T or A alleles carriers. We failed to conduct the meta-analysis of rs1077835 and rs1077834 due to the limited previous reports. Data from the 1,000 Genomes indicate that the allele frequencies of the four SNPs in total or subpopulations are almost equal to each other. The paired value r 2 and D' of the four SNPs are larger than 0.8, which indicate the linkage disequilibrium of the four variants. The analysis of LIPC promoter indicate that C-514T and G-250A are, respectively, located in transcriptional factor binding sites of USF1and Pbx1b, which may partly explain the effect of the two SNPs on the decreased LIPC activity in the alleles carriers and the corresponding increased plasma lipids hydrolyzed by LIPC. These results may help us to better understand the different effects of the four SNPs on the plasma lipid levels among subpopulations and offer clues for future clinical treatment of dyslipidemia-related diseases.
Collapse
Affiliation(s)
- Wang Wei
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
- Department of CardiologyThe Second Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Tian Hu
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
| | - Huilong Luo
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
| | - Zhang Ye
- Department of CardiologyThe Second Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Feiteng Lu
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
| | - Yanqing Wu
- Department of Emergency and Critical Care Medicinethe Second Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Muying Ying
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
| |
Collapse
|
27
|
Huerta-Chagoya A, Moreno-Macías H, Sevilla-González M, Rodríguez-Guillén R, Ordóñez-Sánchez ML, Gómez-Velasco D, Muñóz-Hernández L, Segura-Kato Y, Arellano-Campos O, Cruz-Bautista I, Aguilar-Salinas CA, Tusié-Luna T. Contribution of Known Genetic Risk Variants to Dyslipidemias and Type 2 Diabetes in Mexico: A Population-Based Nationwide Study. Genes (Basel) 2020; 11:genes11010114. [PMID: 31968565 PMCID: PMC7016795 DOI: 10.3390/genes11010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemias are common risk factors for the development of chronic disorders including type 2 diabetes (T2D). Over 100 associated loci have been identified but few reports have evaluated the population attributable fraction captured by them in population-based nationwide surveys. Therefore, we determined the population contribution of a set of known genetic risk variants to the development of dyslipidemias and T2D in Mexico. This study included 1665 participants from a Mexican National Health Survey carried out in the year 2000. It is a probabilistic complex sample survey of households, which comprises representative data at a national level. 103 previously reported SNPs associated with different dyslipidemias or T2D were genotyped and used to compute polygenic risk scores. We found that the previously known variants associated with dyslipidemias explain at most 7% of the total risk variance of lipid levels. In contrast, the known genetic risk component for T2D explained a negligible amount of variance (0.1%). Notably, variants derived from the Native-American ancestry have the strongest effect and contribute with a high proportion of the variance. These results support the need for additional studies aimed to identify specific genetic risk variants for Mexican population.
Collapse
Affiliation(s)
- Alicia Huerta-Chagoya
- CONACYT, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 03940, Mexico;
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | | | - Magdalena Sevilla-González
- Clinical and Traslational Epidemiological Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Rosario Rodríguez-Guillén
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - María L. Ordóñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Donají Gómez-Velasco
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Liliana Muñóz-Hernández
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Olimpia Arellano-Campos
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Ivette Cruz-Bautista
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Carlos A. Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico 04510, Mexico
- Correspondence: ; Tel.: +52-55-5655-0011
| |
Collapse
|
28
|
Ramírez Á, Hernández M, Suárez-Sánchez R, Ortega C, Peralta J, Gómez J, Valladares A, Cruz M, Vázquez-Moreno MA, Suárez-Sánchez F. Type 2 diabetes-associated polymorphisms correlate with SIRT1 and TGF-β1 gene expression. Ann Hum Genet 2019; 84:185-194. [PMID: 31799723 DOI: 10.1111/ahg.12363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/08/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
The polymorphisms rs3758391 and rs1800470 located in SIRT1 and TGF-β1 have been associated with type 2 diabetes in different populations but its functional effect is not clear. In this study, we evaluated their effect on the expression of SIRT1 and TGF-β1 in peripheral blood as well as their participation in the formation of DNA-protein complexes in a pancreas-derived cell line. It has been described that SIRT1 and TGF-β1 participate in cell growth and regulation of production and secretion of insulin in the pancreas. Anthropometric and biochemical profiles of 127 adults were measured. Genotypes for rs3758391 and rs1800470 were determined using TaqMan assays. Expression analysis of SIRT1 and TGF-β1 were performed using real-time PCR. Gene expression of these genes increased 1.8 ± 0.6- and 1.3 ± 0.6-fold in patients carrying the TT genotype of rs3758391 and rs1800470 when compared to carriers of the CC genotype. Then, we tested whether these single-nucleotide polymorphisms (SNPs) (and rs932658, which is in linkage disequilibrium with rs3758391) are located in regulatory DNA-protein binding sites by electrophoretic mobility shift assays using nuclear extract from the pancreas-derived cell line BxPC-3. The electrophoretic mobility shift assay showed no binding of nuclear proteins to DNA. In conclusion, the genotypes of rs3758391 and rs1800470 are associated with modifications in the expression of the genes SIRT1 and TGF-β1, respectively, but none of the tested SNPs are located in regulatory DNA-protein binding sites.
Collapse
Affiliation(s)
- Ángeles Ramírez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Miriam Hernández
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación LGII, Ciudad de México
| | - Clara Ortega
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Jesús Peralta
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Jaime Gómez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Adán Valladares
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | | | - Fernando Suárez-Sánchez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| |
Collapse
|
29
|
Contribution of genetic, biochemical and environmental factors on insulin resistance and obesity in Mexican young adults. Obes Res Clin Pract 2019; 13:533-540. [PMID: 31796261 DOI: 10.1016/j.orcp.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Overweight/obesity, dyslipidemias, hypertension and hyperglycemia are strongly related to non-communicable diseases (NCD) in which genetic and environmental factors interact with each other. The Mexican population exhibit a genetic disposition to metabolic syndrome, type 2 diabetes, as well as many forms of dyslipidemia. This study aimed to determine the association between biochemical, genetic and environmental factors in the development of metabolic syndrome (MS), obesity and insulin resistance (IR) in Mexican young adults. Young women and men (n=6750 between 19.3±2.3 years old) participated in a health promotion program from the Autonomous University of Querétaro, México (SU-Salud program). A sub-sample of 665 participants was taken for the determination of single nucleotide polymorphisms (SNP) rs964184 (APOAV), rs9282541 (ABCA1) and rs1260326 (GCKR), using QuantStudio 12K Flex Real-Time PCR System. For the multivariate analysis, a multiple logistic regression was performed. A prevalence of 22% of overweight and 7% of obesity was determined. The main metabolic risk factors were low levels of HDL-C (30%), IR (19%), and a high level of triglycerides (15%). The main factors associated with IR were body fat percentage and triglycerides; SNP for the ABCA1 gene was related to MS, obesity and low HDL-C; SNP for GCKR gene was related to high fasting glycemia, while APOAV SNP was related with MS, hypertriglyceridemia and low HDL-C. Our findings show that the Mexican genetic predisposition to NCD affects young adults, who can suffer MS, obesity and IR. Public health strategies must focus on prevention actions from an early age.
Collapse
|
30
|
Barboza-Cerda MC, Barboza-Quintana O, Martínez-Aldape G, Garza-Guajardo R, Déctor MA. Phenotypic severity in a family with MEND syndrome is directly associated with the accumulation of potentially functional variants of cholesterol homeostasis genes. Mol Genet Genomic Med 2019; 7:e931. [PMID: 31397093 PMCID: PMC6732292 DOI: 10.1002/mgg3.931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Background Male EBP disorder with neurologic defects (MEND) syndrome is an X‐linked disease caused by hypomorphic mutations in the EBP (emopamil‐binding protein) gene. Modifier genes may explain the clinical variability among individuals who share a primary mutation. Methods We studied four males (Patient 1 to Patient 4) exhibiting a descending degree of phenotypic severity from a family with MEND syndrome. To identify candidate modifier genes that explain the phenotypic variability, variants of homeostasis cholesterol genes identified by whole‐exome sequencing (WES) were ranked according to the predicted magnitude of their effect through an in‐house scoring system. Results Twenty‐seven from 105 missense variants found in 45 genes of the four exomes were considered significant (−5 to −9 scores). We found a direct genotype–phenotype association based on the differential accumulation of potentially functional gene variants among males. Patient 1 exhibited 17 variants, both Patients 2 and 3 exhibited nine variants, and Patient 4 exhibited only five variants. Conclusion We conclude that APOA5 (rs3135506), ABCA1 (rs9282541), and APOB (rs679899 and rs12714225) are the most relevant candidate modifier genes in this family. Relative accumulation of the deficiencies associated with variants of these genes along with other lesser deficiencies in other genes appears to explain the variable expressivity in MEND syndrome.
Collapse
Affiliation(s)
- María Carmen Barboza-Cerda
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.,Facultad de Medicina y Hospital Universitario "Dr. José E. González", Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Oralia Barboza-Quintana
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Gerardo Martínez-Aldape
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Raquel Garza-Guajardo
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Miguel Angel Déctor
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.,Facultad de Medicina y Hospital Universitario "Dr. José E. González", Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| |
Collapse
|
31
|
Andaleon A, Mogil LS, Wheeler HE. Genetically regulated gene expression underlies lipid traits in Hispanic cohorts. PLoS One 2019; 14:e0220827. [PMID: 31393916 PMCID: PMC6687110 DOI: 10.1371/journal.pone.0220827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Plasma lipid levels are risk factors for cardiovascular disease, a leading cause of death worldwide. While many studies have been conducted in genetic variation underlying lipid levels, they mainly comprise individuals of European ancestry and thus their transferability to non-European populations is unclear. We performed genome-wide (GWAS) and imputed transcriptome-wide association studies of four lipid traits in the Hispanic Community Health Study/Study of Latinos cohort (HCHS/SoL, n = 11,103), replicated top hits in the Multi-Ethnic Study of Atherosclerosis (MESA, n = 3,855), and compared the results to the larger, predominantly European ancestry meta-analysis by the Global Lipids Genetics Consortium (GLGC, n = 196,475). In our GWAS, we found significant SNP associations in regions within or near known lipid genes, but in our admixture mapping analysis, we did not find significant associations between local ancestry and lipid phenotypes. In the imputed transcriptome-wide association study in multiple tissues and in different ethnicities, we found 59 significant gene-tissue-phenotype associations (P < 3.61×10-8) with 14 unique significant genes, many of which occurred across multiple phenotypes, tissues, and ethnicities and replicated in MESA (45/59) and in GLGC (44/59). These include well-studied lipid genes such as SORT1, CETP, and PSRC1, as well as genes that have been implicated in cardiovascular phenotypes, such as CCL22 and ICAM1. The majority (40/59) of significant associations colocalized with expression quantitative trait loci (eQTLs), indicating a possible mechanism of gene regulation in lipid level variation. To fully characterize the genetic architecture of lipid traits in diverse populations, larger studies in non-European ancestry populations are needed.
Collapse
Affiliation(s)
- Angela Andaleon
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States of America
| | - Lauren S. Mogil
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Heather E. Wheeler
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States of America
- Department of Computer Science, Loyola University Chicago, Chicago, IL, United States of America
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
| |
Collapse
|
32
|
ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response. Nat Commun 2019; 10:3195. [PMID: 31324766 PMCID: PMC6642147 DOI: 10.1038/s41467-019-10967-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Genome analysis of diverse human populations has contributed to the identification of novel genomic loci for diseases of major clinical and public health impact. Here, we report a genome-wide analysis of type 2 diabetes (T2D) in sub-Saharan Africans, an understudied ancestral group. We analyze ~18 million autosomal SNPs in 5,231 individuals from Nigeria, Ghana and Kenya. We identify a previously-unreported genome-wide significant locus: ZRANB3 (Zinc Finger RANBP2-Type Containing 3, lead SNP p = 2.831 × 10−9). Knockdown or genomic knockout of the zebrafish ortholog results in reduction in pancreatic β-cell number which we demonstrate to be due to increased apoptosis in islets. siRNA transfection of murine Zranb3 in MIN6 β-cells results in impaired insulin secretion in response to high glucose, implicating Zranb3 in β-cell functional response to high glucose conditions. We also show transferability in our study of 32 established T2D loci. Our findings advance understanding of the genetics of T2D in non-European ancestry populations. Type 2 diabetes (T2D) is prevalent in populations worldwide, however, mostly studied in European and mixed-ancestry populations. Here, the authors perform a genome-wide association study for T2D in over 5,000 sub-Saharan Africans and identify a locus, ZRANB3, that is specific for this population.
Collapse
|
33
|
Siddiqa A, Cirillo E, Tareen SHK, Ali A, Kutmon M, Eijssen LMT, Ahmad J, Evelo CT, Coort SL. Biological Pathways Leading From ANGPTL8 to Diabetes Mellitus-A Co-expression Network Based Analysis. Front Physiol 2019; 9:1841. [PMID: 30627105 PMCID: PMC6309236 DOI: 10.3389/fphys.2018.01841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/06/2018] [Indexed: 01/11/2023] Open
Abstract
Angiopoietin like protein 8 (ANGPTL8) is a newly identified hormone with unique nature due to its ability to regulate both glucose and lipid metabolic pathways. It is characterized as an important molecular player of insulin induced nutrient storage and utilization pathway during fasting to re-feeding metabolic transition. Several studies have contributed to increase our knowledge regarding its function and mechanism of action. Moreover, its altered expression levels have been observed in Insulin Resistance, Diabetes Mellitus (Types I & II) and Non Alcohlic Fatty Liver Disease emphasizing its assessment as a drug target. However, there is still a great deal of information that remains to be investigated including its associated biological processes, partner proteins in these processes, its regulators and its association with metabolic pathogenesis. In the current study, the analysis of a transcriptomic data set was performed for functional assessment of ANGPTL8 in liver. Weighted Gene Co-expression Network Analysis coupled with pathway analysis tools was performed to identify genes that are significantly co-expressed with ANGPTL8 in liver and investigate their presence in biological pathways. Gene ontology term enrichment analysis was performed to select the gene ontology classes that over-represent the hepatic ANGPTL8-co-expressed genes. Moreover, the presence of diabetes linked SNPs within the genes set co-expressed with ANGPTL8 was investigated. The co-expressed genes of ANGPTL8 identified in this study (n = 460) provides narrowed down list of molecular targets which are either co-regulated with it and/or might be regulation partners at different levels of interaction. These results are coherent with previously demonstrated roles and regulators of ANGPTL8. Specifically, thirteen co-expressed genes (MAPK8, CYP3A4, PIK3R2, PIK3R4,PRKAB2, G6PC, MAP3K11, FLOT1, PIK3C2G, SHC1, SLC16A2, and RAPGEF1) are also present in the literature curated pathway of ANGPTL8 (WP39151). Moreover, the gene-SNP analysis of highly associated biological processes with ANGPTL8 revealed significant genetic signals associated to Diabetes Mellitus and similar phenotypic traits. It provides meaningful insights on the influencing genes involved and co-expressed in these pathways. Findings of this study have implications in functional characterization of ANGPTL8 with emphasis on the identified genes and pathways and their possible involvement in the pathogenesis of Diabetes Mellitus and Insulin Resistance.
Collapse
Affiliation(s)
- Amnah Siddiqa
- Research Centre for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Samar H K Tareen
- Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Martina Kutmon
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Lars M T Eijssen
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jamil Ahmad
- Research Centre for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan.,Department of Computer Science and Information Technology, University of Malakand, Chakdara, Pakistan
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Susan L Coort
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
34
|
DiStefano JK. Angiopoietin-like 8 (ANGPTL8) expression is regulated by miR-143-3p in human hepatocytes. Gene 2019; 681:1-6. [PMID: 30261196 PMCID: PMC6330893 DOI: 10.1016/j.gene.2018.09.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 12/12/2022]
Abstract
Angiopoietin-like protein 8 (ANGPTL8) is associated with reduced HDL-cholesterol levels and may contribute to the development of dyslipidemia. Factors regulating ANGPTL8 expression remain poorly understood. Here we analyzed the relationship between miRNA-143-3p and ANGPTL8 in liver cells. Using target prediction algorithms, we identified a putative binding site for miR-143-3p in the ANGPTL8 3' untranslated region (3'UTR). Exogenous miR-143-3p interacted with the ANGPTL8 3'UTR to downregulate its expression compared to scrambled sequence control. Transfection of HepG2 cells with miR-143-3p mimic or siRNA resulted in decreased or increased ANGPTL8 transcript and protein levels, respectively. Treatment of HepG2 cells with 30 mM glucose, 100 nM insulin, or 75 ng/ml lipopolysaccharide to mimic hyperglycemic, hyperinsulinemic, and proinflammatory conditions corresponded with increased miR-143-3p and ANGPTL8 levels. Inhibition of miR-143-3p amplified ANGPTL8 response to these treatments, suggesting that the miRNA acts to suppress ANGPTL8 expression under metabolically distorted conditions. These results, combined with growing evidence supporting a role for ANGPTL8 in the regulation of HDL-C metabolism, provide a better understanding of the molecular mechanisms underlying ANGPTL8 expression.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ 85004, United States of America.
| |
Collapse
|
35
|
Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019; 24:296-307. [PMID: 30864331 PMCID: PMC6417797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcriptome-wide association studies (TWAS) have recently gained great attention due to their ability to prioritize complex trait-associated genes and promote potential therapeutics development for complex human diseases. TWAS integrates genotypic data with expression quantitative trait loci (eQTLs) to predict genetically regulated gene expression components and associates predictions with a trait of interest. As such, TWAS can prioritize genes whose differential expressions contribute to the trait of interest and provide mechanistic explanation of complex trait(s). Tissue-specific eQTL information grants TWAS the ability to perform association analysis on tissues whose gene expression profiles are otherwise hard to obtain, such as liver and heart. However, as eQTLs are tissue context-dependent, whether and how the tissue-specificity of eQTLs influences TWAS gene prioritization has not been fully investigated. In this study, we addressed this question by adopting two distinct TWAS methods, PrediXcan and UTMOST, which assume single tissue and integrative tissue effects of eQTLs, respectively. Thirty-eight baseline laboratory traits in 4,360 antiretroviral treatment-naïve individuals from the AIDS Clinical Trials Group (ACTG) studies comprised the input dataset for TWAS. We performed TWAS in a tissue-specific manner and obtained a total of 430 significant gene-trait associations (q-value < 0.05) across multiple tissues. Single tissue-based analysis by PrediXcan contributed 116 of the 430 associations including 64 unique gene-trait pairs in 28 tissues. Integrative tissue-based analysis by UTMOST found the other 314 significant associations that include 50 unique gene-trait pairs across all 44 tissues. Both analyses were able to replicate some associations identified in past variant-based genome-wide association studies (GWAS), such as high-density lipoprotein (HDL) and CETP (PrediXcan, q-value = 3.2e-16). Both analyses also identified novel associations. Moreover, single tissue-based and integrative tissuebased analysis shared 11 of 103 unique gene-trait pairs, for example, PSRC1-low-density lipoprotein (PrediXcan's lowest q-value = 8.5e-06; UTMOST's lowest q-value = 1.8e-05). This study suggests that single tissue-based analysis may have performed better at discovering gene-trait associations when combining results from all tissues. Integrative tissue-based analysis was better at prioritizing genes in multiple tissues and in trait-related tissue. Additional exploration is needed to confirm this conclusion. Finally, although single tissue-based and integrative tissue-based analysis shared significant novel discoveries, tissue context-dependency of eQTLs impacted TWAS gene prioritization. This study provides preliminary data to support continued work on tissue contextdependency of eQTL studies and TWAS.
Collapse
|
36
|
Gene variants in AKT1, GCKR and SOCS3 are differentially associated with metabolic traits in Mexican Amerindians and Mestizos. Gene 2018; 679:160-171. [DOI: 10.1016/j.gene.2018.08.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023]
|
37
|
Pikó P, Fiatal S, Kósa Z, Sándor J, Ádány R. Generalizability and applicability of results obtained from populations of European descent regarding the effect direction and size of HDL-C level-associated genetic variants to the Hungarian general and Roma populations. Gene 2018; 686:187-193. [PMID: 30468910 DOI: 10.1016/j.gene.2018.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Large-scale association studies that mainly involve European populations identified many genetic loci related to high-density lipoprotein cholesterol (HDL-C) levels, one of the most important indicators of the risk for cardiovascular diseases. The question with intense speculation of whether the effect estimates obtained from European populations for different HDL-C level-related SNPs are applicable to the Roma ethnicity, the largest minority group in Europe with a South Asian origin, was addressed in the present study. DESIGN The associations between 21 SNPs (in the genes LIPC(G), CETP, GALNT2, HMGCP, ABCA1, KCTD10 and WWOX) and HDL-C levels were examined separately in adults of the Hungarian general (N = 1542) and Roma (N = 646) populations by linear regression. Individual effects (direction and size) of single SNPs on HDL-C levels were computed and compared between the study groups and with data published in the literature. RESULTS Significant associations between SNPs and HDL-C levels were more frequently found in general subjects than in Roma subjects (11 SNPs in general vs. 4 SNPs in Roma). The CETP gene variants rs1532624, rs708272 and rs7499892 consistently showed significant associations with HDL-C levels across the study groups (p ˂ 0.05), indicating a possible causal variant(s) in this region. Although nominally significant differences in effect size were found for three SNPs (rs693 in gene APOB, rs9989419 in gene CETP, and rs2548861 in gene WWOX) by comparing the general and Roma populations, most of these SNPs did not have a significant effect on HDL-C levels. The β coefficients for SNPs in the Roma population were found to be identical both in direction and magnitude to the effect obtained previously in large-scale studies on European populations. CONCLUSIONS The effect of the vast majority of the SNPs on HDL-C levels could be replicated in the Hungarian general and Roma populations, which indicates that the effect size measurements obtained from the literature can be used for risk estimation for both populations.
Collapse
Affiliation(s)
- Péter Pikó
- MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary
| | - Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary
| | - Zsigmond Kósa
- Department of Health Visitor Methodology and Public Health, Faculty of Health, University of Debrecen, Nyíregyháza 4400, Hungary
| | - János Sándor
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary
| | - Róza Ádány
- MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary.
| |
Collapse
|
38
|
Hannon BA, Khan NA, Teran-Garcia M. Nutrigenetic Contributions to Dyslipidemia: A Focus on Physiologically Relevant Pathways of Lipid and Lipoprotein Metabolism. Nutrients 2018; 10:E1404. [PMID: 30279335 PMCID: PMC6213032 DOI: 10.3390/nu10101404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide, and dyslipidemia is a major predictor of CVD mortality. Elevated lipid concentrations are the result of multiple genetic and environmental factors. Over 150 genetic loci have been associated with blood lipid levels. However, not all variants are present in pathways relevant to the pathophysiology of dyslipidemia. The study of these physiologically relevant variants can provide mechanistic understanding of dyslipidemia and identify potential novel therapeutic targets. Additionally, dietary fatty acids have been evidenced to exert both positive and negative effects on lipid profiles. The metabolism of both dietary and endogenously synthesized lipids can be affected by individual genetic variation to produce elevated lipid concentrations. This review will explore the genetic, dietary, and nutrigenetic contributions to dyslipidemia.
Collapse
Affiliation(s)
- Bridget A Hannon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA.
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA.
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA.
| | - Margarita Teran-Garcia
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA.
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA.
- Department of Human Development and Family Studies, Cooperative Extension, University of Illinois at Urbana-Champaign, Carle Illinois College of Medicine, Urbana-Champaign, IL 61801, USA.
| |
Collapse
|
39
|
Justice AE, Howard AG, Fernández-Rhodes L, Graff M, Tao R, North KE. Direct and indirect genetic effects on triglycerides through omics and correlated phenotypes. BMC Proc 2018; 12:22. [PMID: 30275878 PMCID: PMC6157130 DOI: 10.1186/s12919-018-0118-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even though there has been great success in identifying lipid-associated single-nucleotide polymorphisms (SNPs), the mechanisms through which the SNPs act on each trait are poorly understood. The emergence of large, complex biological data sets in well-characterized cohort studies offers an opportunity to investigate the genetic effects on trait variability as a way of informing the causal genes and biochemical pathways that are involved in lipoprotein metabolism. However, methods for simultaneously analyzing multiple omics, environmental exposures, and longitudinally measured, correlated phenotypes are lacking. The purpose of our study was to demonstrate the utility of the structural equation modeling (SEM) approach to inform our understanding of the pathways by which genetic variants lead to disease risk. With the SEM method, we examine multiple pathways directly and indirectly through previously identified triglyceride (TG)-associated SNPs, methylation, and high-density lipoprotein (HDL), including sex, age, and smoking behavior, while adding in biologically plausible direct and indirect pathways. We observed significant SNP effects (P < 0.05 and directionally consistent) on TGs at visit 4 (TG4) for five loci, including rs645040 (DOCK7), rs964184 (ZPR1/ZNF259), rs4765127 (ZNF664), rs1121980 (FTO), and rs10401969 (SUGP1). Across these loci, we identify three with strong evidence of an indirect genetic effect on TG4 through HDL, one with evidence of pleiotropic effect on HDL and TG4, and one variant that acts on TG4 indirectly through a nearby methylation site. Such information can be used to prioritize candidate genes in regions of interest, inform mechanisms of action of methylation effects, and highlight possible genes with pleiotropic effects.
Collapse
Affiliation(s)
- Anne E Justice
- 1Department of Epidemiology, University of North Carolina, Chapel Hill, NC USA.,2Biomedical and Translational Informatics, Geisinger Health, Danville, PA USA
| | - Annie Green Howard
- 3Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA.,4Carolina Population Center, University of North Carolina, Chapel Hill, NC USA
| | - Lindsay Fernández-Rhodes
- 1Department of Epidemiology, University of North Carolina, Chapel Hill, NC USA.,4Carolina Population Center, University of North Carolina, Chapel Hill, NC USA
| | - Misa Graff
- 1Department of Epidemiology, University of North Carolina, Chapel Hill, NC USA
| | - Ran Tao
- 5Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Kari E North
- 1Department of Epidemiology, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
40
|
Ghasemi H, Karimi J, Khodadadi I, Saidijam M, Tavilani H. Association between rs2278426 (C/T) and rs892066 (C/G) variants of ANGPTL8 (betatrophin) and susceptibility to type2 diabetes mellitus. J Clin Lab Anal 2018; 33:e22649. [PMID: 30191588 DOI: 10.1002/jcla.22649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Angiopoietin-like protein 8 (ANGPTL8) is a hormone that mainly secreted from the liver and adipose tissue and plays an important role in the proliferation of pancreatic beta cells and lipid metabolism. Therefore, we studied the association of ANGPTL8 rs2278426 (C/T) and rs892066 (C/G) polymorphisms with the risk of type 2 diabetes mellitus (T2DM) and their association with biochemical parameters. METHODS Two hundred and eighty-eight subjects (controls; n = 138 and type 2 diabetic patients; n = 150) were enrolled in this study. Direct haplotyping was performed using amplification-refractory mutation system (ARMS)-RFLP-PCR. RESULTS The CT genotype frequency of rs2278426 (C/T) variant was significantly higher in T2DM patients compared to the controls group (P = 0.02), and there was a significant association between this genotype and increased risk of T2DM (OR: 2.41, CI: 1.26-4.59, P = 0.007). In addition, there was a significant relationship between CT genotype of this variant and high-density lipoprotein cholesterol (HDL-C), fasting blood sugar (FBS), insulin, insulin resistance and glycated hemoglobin (P < 0.05). Furthermore, bioinformatics analysis revealed that arginine (Arg) to tryptophan (Trp) substitution at rs2278426 position causes structural instability of ANGPTL8 protein. Genotype and allele distribution of rs892066 (C/G) was not statistically significant in T2DM patients compared to the control group. The distribution of haplotypes had no significant difference between controls and T2DM patients (P = 0.24). CONCLUSION Our results suggest that the rs2278426 (C/T) variant is associated with increased risk of T2DM and may cause dyslipidemia due to its effect on decreasing HDL-C levels.
Collapse
Affiliation(s)
| | - Jamshid Karimi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
41
|
Hsueh WC, Nair AK, Kobes S, Chen P, Göring HHH, Pollin TI, Malhotra A, Knowler WC, Baier LJ, Hanson RL. Identity-by-Descent Mapping Identifies Major Locus for Serum Triglycerides in Amerindians Largely Explained by an APOC3 Founder Mutation. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001809. [PMID: 29237685 DOI: 10.1161/circgenetics.117.001809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Identity-by-descent mapping using empirical estimates of identity-by-descent allele sharing may be useful for studies of complex traits in founder populations, where hidden relationships may augment the inherent genetic information that can be used for localization. METHODS AND RESULTS Through identity-by-descent mapping, using ≈400 000 single-nucleotide polymorphisms (SNPs), of serum lipid profiles, we identified a major linkage signal for triglycerides in 1007 Pima Indians (LOD=9.23; P=3.5×10-11 on chromosome 11q). In subsequent fine-mapping and replication association studies in ≈7500 Amerindians, we determined that this signal reflects effects of a loss-of-function Ala43Thr substitution in APOC3 (rs147210663) and 3 established functional SNPs in APOA5. The association with rs147210663 was particularly strong; each copy of the Thr allele conferred 42% lower triglycerides (β=-0.92±0.059 SD unit; P=9.6×10-55 in 4668 Pimas and 2793 Southwest Amerindians combined). The Thr allele is extremely rare in most global populations but has a frequency of 2.5% in Pimas. We further demonstrated that 3 APOA5 SNPs with established functional impact could explain the association with the most well-replicated SNP (rs964184) for triglycerides identified by genome-wide association studies. Collectively, these 4 SNPs account for 6.9% of variation in triglycerides in Pimas (and 4.1% in Southwest Amerindians), and their inclusion in the original linkage model reduced the linkage signal to virtually null. CONCLUSIONS APOC3/APOA5 constitutes a major locus for serum triglycerides in Amerindians, especially the Pimas, and these results provide an empirical example for the concept that population-based linkage analysis is a useful strategy to identify complex trait variants.
Collapse
Affiliation(s)
- Wen-Chi Hsueh
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.).
| | - Anup K Nair
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| | - Sayuko Kobes
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| | - Peng Chen
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| | - Harald H H Göring
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| | - Toni I Pollin
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| | - Alka Malhotra
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| | - William C Knowler
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| | - Leslie J Baier
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| | - Robert L Hanson
- From the Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, AZ (W.-C.H., A.K.N., S.K., P.C., A.M., W.C.K., L.J.B., R.L.H.); South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio (H.H.H.G.); Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (T.I.P.); and Illumina Inc, San Diego, CA (A.M.)
| |
Collapse
|
42
|
Yang S, Jiao X, Huo X, Zhu M, Wang Y, Fang X, Yang Y, Yue W, Qin Y. Association between circulating full-length angiopoietin-like protein 8 and non-high-density lipoprotein cholesterol levels in Chinese non-diabetic individuals: a cross-sectional study. Lipids Health Dis 2018; 17:161. [PMID: 30021605 PMCID: PMC6052512 DOI: 10.1186/s12944-018-0802-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/15/2018] [Indexed: 01/19/2023] Open
Abstract
Background Angiopoietin-like protein 8 (ANGPTL8) is a novel hormone involved in the regulation of lipid metabolism and glucose homeostasis. There are inconsistent results regarding the association between ANGPTL8 and lipids in humans. We aimed to investigate the associations between ANGPTL8 and lipids in people without diabetes. Methods This was a cross-sectional study of 107 patients with dyslipidemia and 141 patients without. Dyslipidemia diagnosis was based on Chinese guidelines for the prevention and treatment of dyslipidemia in adults. Total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol (HDL-C) were examined. Non-HDL-C was calculated by subtracting HDL-C from TC. Circulating full-length ANGPTL8 concentrations were measured using enzyme-linked immunosorbent assay. Associations between log-transformed circulating full-length ANGPTL8 and serum lipids were examined using multivariate linear regression analysis. Results Circulating ANGPTL8 concentrations were significantly elevated in patients with dyslipidemia compared with patients without dyslipidemia. Circulating full-length ANGPTL8 concentrations were positively associated with non-HDL-C, TG and TC levels after adjusting for age, gender, body mass index, high-sensitivity C-reactive protein, alanine aminotransferase, and creatinine. Conclusion In people without diabetes, circulating full-length ANGPTL8 concentrations in patients with dyslipidemia were significantly elevated compared with non-dyslipidemia, and ANGPTL8 was positively associated with serum non-HDL-C levels. Electronic supplementary material The online version of this article (10.1186/s12944-018-0802-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Song Yang
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiaolu Jiao
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiaoguang Huo
- Zibo Central Hospital, Zibo, 255000, Shandong Province, China
| | - Miaomiao Zhu
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yi Wang
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiangnan Fang
- Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Yunyun Yang
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Weidong Yue
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| | - Yanwen Qin
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
43
|
Angiopoietin-Like 3 (ANGPTL3) and Atherosclerosis: Lipid and Non-Lipid Related Effects. J Cardiovasc Dev Dis 2018; 5:jcdd5030039. [PMID: 30011918 PMCID: PMC6162638 DOI: 10.3390/jcdd5030039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/13/2023] Open
Abstract
Genetic and clinical studies have demonstrated that loss-of-function variants in the angiopoietin-like 3 (ANGPTL3) gene are associated with decreased plasma levels of triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), which leads to a significant reduction in cardiovascular risk. For this reason, ANGPTL3 is considered an important new pharmacological target for the treatment of cardiovascular diseases (CVDs) together with more conventional lipid lowering therapies, such as statins and anti proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies. Experimental evidence demonstrates that anti-ANGPTL3 therapies have an important anti-atherosclerotic effect. Results from phase I clinical trials with a monoclonal anti-ANGPTL3 antibody (evinacumab) and anti-sense oligonucleotide (ASO) clearly show a significant lipid lowering effect. In addition, from the analysis of the protein structure of ANGPTL3, it has been hypothesized that, beyond its inhibitory activity on lipoprotein and endothelial lipases, this molecule may have a pro-inflammatory, pro-angiogenic effect and a negative effect on cholesterol efflux, implying additional pro-atherosclerotic properties. In the future, data from phase II clinical trials and additional experimental evidence will help to define the efficacy and the additional anti-atherosclerotic properties of anti-ANGPTL3 therapies beyond the already available lipid lowering therapies.
Collapse
|
44
|
Vazquez-Vidal I, Voruganti VS, Hannon BA, Andrade FCD, Aradillas-García C, Nakamura MT, Terán-García M. Serum Lipid Concentrations and FADS Genetic Variants in Young Mexican College Students: The UP-AMIGOS Cohort Study. Lifestyle Genom 2018; 11:40-48. [PMID: 29847832 DOI: 10.1159/000488085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/01/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent genome-wide association studies in the Mexican population have identified several genetic loci associated with blood lipid levels in adults. However, studies focusing on the fatty acid desaturase (FADS) gene cluster have been understudied in this population, even though it seems associated with lipid profiles in other ethnicities. The aim of this study was to test associations between single nucleotide polymorphisms (SNPs) in the FADS cluster (rs174546, rs1535, rs174548, rs174550, rs174450, and rs174618) and serum lipid profiles in young Mexicans. METHODS Anthropometrics, serum lipid profiles, and FADS SNPs were measured in 998 subjects in the UP-AMIGOS cohort study. Genotype-phenotype (total cholesterol [TC], triglyceride [TG], high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], and very-low-density lipoprotein [VLDL]) associations were assessed using PLINK adjusted for sex, age, and body mass index (BMI). RESULTS Among 6 FADS SNPs, we found that carriers of the C-allele of the FADS1-rs174546 showed a significant association with lower TG concentrations (β = -12.6 mg/dL, p = 0.009) and lower VLDL concentrations (β = -2.52 mg/dL, p = 0.005). We found that rs174546, rs1535, and rs174550 were in high linkage disequilibrium (r2 > 0.80). There were no significant associations between rs174550, rs174548, and rs174618 and lipid profiles. CONCLUSION A genetic variant in the FADS1 (rs174546) gene is a major contributor of plasma TG and VLDL concentrations in healthy young Mexicans.
Collapse
Affiliation(s)
- Itzel Vazquez-Vidal
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - V Saroja Voruganti
- Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Bridget A Hannon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Celia Aradillas-García
- Coordination for the Innovation and Application of Science and Technology, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Manabu T Nakamura
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Margarita Terán-García
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Human Development and Family Studies, Cooperative Extension, Family Resiliency Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
45
|
Escobedo J, Paz-Aragón E, Vega-Rodríguez LH, Benítez Sanfeliz MA, Estrada-Rodríguez H, González-Figueroa E, Liceaga-Craviotto MG, Gutiérrez-Cuevas J, Valladares-Salgado A, Cruz M. The Methylenetetrahydrofolate Reductase C677T (rs1801133) and Apolipoprotein A5-1131T>C (rs662799) Polymorphisms, and Anemia Are Independent Risk Factors for Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:1357-1362. [PMID: 29398535 DOI: 10.1016/j.jstrokecerebrovasdis.2017.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Although there is adequate knowledge as to the role of traditional cardiovascular risk factors on stroke incidence, knowledge of other risk factors, particularly genetic ones, is still incomplete. METHODS To assess the participation of some polymorphisms, along with other modifiable risk factors, a case-control study was conducted. A total of 253 cases were identified in the emergency room of a general regional hospital, with a clinical trait of stroke confirmed by a skull computerized axial tomography scan. In the surgery ward, 253 controls were identified, gender and age (±5 years) matched. Biochemical parameters were measured, and 4 polymorphisms were genotyped by polymerase chain reaction, rs1801133 (methylenetetrahydrofolate reductase [MTHFR]), rs1498373 (dimethylarginine dimethylaminohydrolase type 1 [DDAH1]), rs662799 (apolipoprotein A5 [APOA5]), and rs1799983 (endothelial nitric oxide). Odds ratios were estimated to assess the strength of association, with 95% confidence intervals, both in a matched case-control analysis and in a conditional regression analysis. RESULTS Cases had higher mean blood pressure and triglycerides and lower hemoglobin levels. Heterozygous and homozygous subjects to the rs1801133 variant of the MTHFR gene had a 3-fold higher risk of stroke. In the dominant model, those with the polymorphism rs662799 of the promoter region for APOA5 had twice the risk of stroke. Anemia increased the risk of stroke 4-fold. CONCLUSIONS Polymorphisms of the genes MTHFR (rs1801133) and APOA5 (rs662799), as well as anemia, are independent risk factors for stroke in Mexicans, together with traditional cardiovascular risk factors such as high triglycerides and high blood pressure.
Collapse
Affiliation(s)
- Jorge Escobedo
- Unidad de Investigación en Epidemiología Clínica, Hospital Regional 1, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico; Internal Medicine Department, Hospital General Regional No. 1. IMSS, Mexico City, Mexico.
| | - Emmanuel Paz-Aragón
- Unidad de Investigación en Epidemiología Clínica, Hospital Regional 1, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico; Internal Medicine Department, Hospital General Regional No. 1. IMSS, Mexico City, Mexico
| | - Luz Helena Vega-Rodríguez
- Unidad de Investigación en Epidemiología Clínica, Hospital Regional 1, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico; Internal Medicine Department, Hospital General Regional No. 1. IMSS, Mexico City, Mexico
| | - Miguel Alejandro Benítez Sanfeliz
- Unidad de Investigación en Epidemiología Clínica, Hospital Regional 1, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico; Internal Medicine Department, Hospital General Regional No. 1. IMSS, Mexico City, Mexico
| | - Humberto Estrada-Rodríguez
- Unidad de Investigación en Epidemiología Clínica, Hospital Regional 1, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico; Internal Medicine Department, Hospital General Regional No. 1. IMSS, Mexico City, Mexico
| | - Evangelina González-Figueroa
- Unidad de Investigación en Epidemiología Clínica, Hospital Regional 1, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Jorge Gutiérrez-Cuevas
- Unidad de Investigación en Epidemiología Clínica, Hospital Regional 1, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Adán Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
46
|
Abstract
Diseases such as Huntington's disease and certain spinocerebellar ataxias are caused by the expansion of genomic cytosine-adenine-guanine (CAG) trinucleotide repeats beyond a specific threshold. These diseases are all characterised by neurological symptoms and central neurodegeneration, but our understanding of how expanded repeats drive neuronal loss is incomplete. Recent human genetic evidence implicates DNA repair pathways, especially mismatch repair, in modifying the onset and progression of CAG repeat diseases. Repair pathways might operate directly on repeat sequences by licensing or inhibiting repeat expansion in neurons. Alternatively, or in addition, because many of the genes containing pathogenic CAG repeats encode proteins that themselves have roles in the DNA damage response, it is possible that repeat expansions impair specific DNA repair pathways. DNA damage could then accrue in neurons, leading to further expansion at repeat loci, thus setting up a vicious cycle of pathology. In this review, we consider DNA damage and repair pathways in postmitotic neurons in the context of disease-causing CAG repeats. Investigating and understanding these pathways, which are clearly relevant in promoting and ameliorating disease in humans, is a research priority, as they are known to modify disease and therefore constitute prevalidated drug targets.
Collapse
Affiliation(s)
- Thomas H Massey
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Lesley Jones
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
47
|
Analysis of the joint effect of SNPs to identify independent loci and allelic heterogeneity in schizophrenia GWAS data. Transl Psychiatry 2017; 7:1289. [PMID: 29249828 PMCID: PMC5802566 DOI: 10.1038/s41398-017-0033-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 01/14/2023] Open
Abstract
We have tested published methods for capturing allelic heterogeneity and identifying loci of joint effects to uncover more of the "hidden heritability" of schizophrenia (SCZ). We used two tools, cojo-GCTA and multi-SNP, to analyze meta-statistics from the latest genome-wide association study (GWAS) on SCZ by the Psychiatric Genomics Consortium (PGC). Stepwise regression on markers with p values <10-7 in cojo-GCTA identified 96 independent signals. Eighty-five passed the genome-wide significance threshold. Cross-validation of cojo-GCTA by CLUMP was 76%, i.e., 26 of the loci identified by the PGC using CLUMP were found to be dependent on another locus by cojo-GCTA. The overlap between cojo-GCTA and multi-SNP was better (up to 92%). Three markers reached genome-wide significance (5 × 10-8) in a joint effect model. In addition, two loci showed possible allelic heterogeneity within 1-Mb genomic regions, while CLUMP analysis had identified 16 such regions. Cojo-GCTA identified fewer independent loci than CLUMP and seems to be more conservative, probably because it accounts for long-range LD and interaction effects between markers. These findings also explain why fewer loci with possible allelic heterogeneity remained significant after cojo-GCTA analysis. With multi-SNP, 86 markers were selected at the threshold 10-7. Multi-SNP identifies fewer independent signals, due to splitting of the data and use of smaller samples. We recommend that cojo-GCTA and multi-SNP are used for post-GWAS analysis of all traits to call independent loci. We conclude that only a few loci in SCZ show joint effects or allelic heterogeneity, but this could be due to lack of power for that data set.
Collapse
|
48
|
Genetic variations of cholesteryl ester transfer protein and diet interactions in relation to lipid profiles and coronary heart disease: a systematic review. Nutr Metab (Lond) 2017; 14:77. [PMID: 29234452 PMCID: PMC5721696 DOI: 10.1186/s12986-017-0231-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
Data on diet–genotype interactions in the prevention or treatment of dyslipidemia have increased remarkably. This systematic review aimed to assess nutrigenetic studies regarding the modulating effect of diet on cholesteryl ester transfer protein (CETP) polymorphisms in relation to metabolic traits. Data were collected through studies published between 2000 and SEP. 2016 using five electronic databases. The quality of eligible studies was assessed using a 12-item quality checklist, derived from the STrengthening the REporting of Genetic Association Studies (STREGA) statement. CETP variants that had associations with lipid profiles in previous studies were extracted for drawing of the linkage disequilibrium (LD) plot. Among CETP variants, the rs9989419 best represented this genome wide association signal across all populations, based on LD r2 estimates from 1000 genomes references. In the 23 found eligible studies (clinical trials and observational), the TaqIB and I405V polymorphisms were the two most intensively studied. Two studies reported the effect of interaction between rs3764261 and diet on lipid levels. Regarding the rs708272 (Taq1B), individuals with the B1 risk allele showed better responses to dietary interventions than those with B2B2 genotype, whereas with I405V, inconsistent results have been reported. Modest alcohol consumption was associated with decreased risk of coronary heart disease among B2 carriers of rs708272. It is concluded that variations in the CETP gene may modulate the effects of dietary components on metabolic traits. These results have been controversial, indicating complex polygenic factors in metabolic response to diet and lack of uniformity in the study conditions and designs.
Collapse
|
49
|
Aguilar-Salinas CA, Sevilla González MDR, Tusie-Luna MT. Searching for the Causal Variants of the Association Between Hypertriglyceridemia and the Genome-Wide Association Studies-Derived Signals? Take a Look in the Native American Populations. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:CIRCGENETICS.117.002010. [PMID: 29237696 DOI: 10.1161/circgenetics.117.002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Carlos A Aguilar-Salinas
- From the Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición, México City, México (C.A.A.-S., M.d.R.S.G.); Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México (C.A.A.-S., M.d.R.S.G.); Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (M.T.T.-L.); and Instituto Nacional de Ciencias Médicas y Nutrición, México City, México (M.T.T.-L.).
| | - Magdalena Del Rocío Sevilla González
- From the Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición, México City, México (C.A.A.-S., M.d.R.S.G.); Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México (C.A.A.-S., M.d.R.S.G.); Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (M.T.T.-L.); and Instituto Nacional de Ciencias Médicas y Nutrición, México City, México (M.T.T.-L.)
| | - María Teresa Tusie-Luna
- From the Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición, México City, México (C.A.A.-S., M.d.R.S.G.); Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México (C.A.A.-S., M.d.R.S.G.); Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (M.T.T.-L.); and Instituto Nacional de Ciencias Médicas y Nutrición, México City, México (M.T.T.-L.)
| |
Collapse
|
50
|
Graff M, Emery LS, Justice AE, Parra E, Below JE, Palmer ND, Gao C, Duan Q, Valladares-Salgado A, Cruz M, Morrison AC, Boerwinkle E, Whitsel EA, Kooperberg C, Reiner A, Li Y, Rodriguez CJ, Talavera GA, Langefeld CD, Wagenknecht LE, Norris JM, Taylor KD, Papanicolaou G, Kenny E, Loos RJF, Chen YDI, Laurie C, Sofer T, North KE. Genetic architecture of lipid traits in the Hispanic community health study/study of Latinos. Lipids Health Dis 2017; 16:200. [PMID: 29025430 PMCID: PMC5639746 DOI: 10.1186/s12944-017-0591-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/04/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite ethnic disparities in lipid profiles, there are few genome-wide association studies investigating genetic variation of lipids in non-European ancestry populations. In this study, we present findings from genetic association analyses for total cholesterol, low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), and triglycerides in a large Hispanic/Latino cohort in the U.S., the Hispanic Community Health Study / Study of Latinos (HCHS/SOL). METHODS We estimated a heritability of approximately 20% for each lipid trait, similar to previous estimates in Europeans. To search for novel lipid loci, we performed conditional association analysis in which the statistical model was adjusted for previously reported SNPs associated with any of the four lipid traits. SNPs that remained genome-wide significant (P < 5 × 10-8) after conditioning on known loci were evaluated for replication. RESULTS We identified eight potentially novel lipid signals with minor allele frequencies <1%, none of which replicated. We tested previously reported SNP-trait associations for generalization to Hispanics/Latinos via a statistical framework. The generalization analysis revealed that approximately 50% of previously established lipid variants generalize to HCHS/SOL based on directional FDR r-value < 0.05. Some failures to generalize were due to lack of power. CONCLUSIONS These results demonstrate that many loci associated with lipid levels are shared across populations.
Collapse
Affiliation(s)
- Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Anne E Justice
- Biomedical and Translational Informatics, Geisinger Health, Danville, PA, USA
| | - Esteban Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbuilt University, Nashville, TN, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adan Valladares-Salgado
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, CMNSXX1-IMSS, Mexico City, Mexico
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, CMNSXX1-IMSS, Mexico City, Mexico
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Public Health Sciences, Seattle, WA, USA
| | - Alex Reiner
- Fred Hutchinson Cancer Research Center, Public Health Sciences, Seattle, WA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carlos Jose Rodriguez
- Department of Medicine and Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory A Talavera
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Department of Medicine and Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Eimear Kenny
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Cathy Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|