1
|
Shin J, Fujiwara T, Saitsu H, Yamaguchi A. Ontology-based expansion of virtual gene panels to improve diagnostic efficiency for rare genetic diseases. BMC Med Inform Decis Mak 2025; 25:59. [PMID: 39910609 DOI: 10.1186/s12911-025-02910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Virtual Gene Panels (VGP) comprising disease-associated causal genes are utilized in the diagnosis of rare genetic diseases to evaluate candidate genes identified by whole-genome and whole-exome sequencing. VGPs generated by the PanelApp software were utilized in a UK 100,000 Genome Project pilot study to filter candidate genes, thus enhancing diagnostic efficiency for rare diseases. However, PanelApp also filtered out disease-causing genes in nearly 50% of the cases. METHODS Here, we propose various methods for optimized approach to design VGPs that significantly improve the diagnostic efficiency by leveraging the hierarchical structure of the Mondo disease ontology, without excluding disease-causing genes. We also performed computational experiments on an evaluation dataset comprising 74 patients to determine the optimal VGP design method. RESULTS Our results demonstrate that the proposed method can significantly enhance rare disease diagnosis efficiency by automatically identifying candidate genes. The proposed method successfully designed VGPs that improve diagnosis efficiency without excluding disease-causing genes. CONCLUSION We have developed novel methods for VGP design that leverage the hierarchical structure of the Mondo disease ontology to improve rare genetic disease diagnosis efficiency. This approach identifies candidate genes without excluding disease-causing genes, and thereby improves diagnostic efficiency.
Collapse
Affiliation(s)
- Jaemoon Shin
- Database Center for Life Science, Kashiwa, Chiba, Japan
| | | | | | | |
Collapse
|
2
|
Nyaga DM, Tsai P, Gebbie C, Phua HH, Yap P, Le Quesne Stabej P, Farrow S, Rong J, Toldi G, Thorstensen E, Stark Z, Lunke S, Gamet K, Van Dyk J, Greenslade M, O'Sullivan JM. Benchmarking nanopore sequencing and rapid genomics feasibility: validation at a quaternary hospital in New Zealand. NPJ Genom Med 2024; 9:57. [PMID: 39516456 PMCID: PMC11549486 DOI: 10.1038/s41525-024-00445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately 200 critically ill infants and children in New Zealand are in high-dependency care, many suspected of having genetic conditions, requiring scalable genomic testing. We adopted an acute care genomics protocol from an accredited laboratory and established a clinical pipeline using Oxford Nanopore Technologies PromethION 2 solo system and Fabric GEM™ software. Benchmarking of the pipeline was performed using Global Alliance for Genomics and Health benchmarking tools and Genome in a Bottle samples (HG002-HG007). Evaluation of single nucleotide variants resulted in a precision and recall of 0.997 and 0.992, respectively. Small indel identification approached a precision of 0.922 and recall of 0.838. Large genomic variations from Coriell Copy Number Variation Reference Panel 1 were reliably detected with ~2 M long reads. Finally, we present results obtained from fourteen trio samples, ten of which were processed in parallel with a clinically accredited short-read rapid genomic testing pipeline (Newborn Genomics Programme; NCT06081075; 2023-10-12).
Collapse
Affiliation(s)
- Denis M Nyaga
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Clare Gebbie
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Hui Hui Phua
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand-Northern Hub, Te Toka Tumai, Auckland, New Zealand
| | - Polona Le Quesne Stabej
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Sophie Farrow
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Jing Rong
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Gergely Toldi
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Starship Child Health, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Eric Thorstensen
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Kimberley Gamet
- Genetic Health Service New Zealand-Northern Hub, Te Toka Tumai, Auckland, New Zealand
| | - Jodi Van Dyk
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Mark Greenslade
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Toka Tumai, Auckland, New Zealand
| | | |
Collapse
|
3
|
Wang T, Zhang Y, Wang H, Zheng Q, Yang J, Zhang T, Sun G, Liu W, Yin L, He X, You R, Wang C, Liu Z, Liu Z, Wang J, Jin X, He Z. Fast and accurate DNASeq variant calling workflow composed of LUSH toolkit. Hum Genomics 2024; 18:114. [PMID: 39390620 PMCID: PMC11465951 DOI: 10.1186/s40246-024-00666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Whole genome sequencing (WGS) is becoming increasingly prevalent for molecular diagnosis, staging and prognosis because of its declining costs and the ability to detect nearly all genes associated with a patient's disease. The currently widely accepted variant calling pipeline, GATK, is limited in terms of its computational speed and efficiency, which cannot meet the growing analysis needs. RESULTS Here, we propose a fast and accurate DNASeq variant calling workflow that is purely composed of tools from LUSH toolkit. The precision and recall measurements indicate that both the LUSH and GATK pipelines exhibit high levels of consistency, with precision and recall rates exceeding 99% on the 30x NA12878 dataset. In terms of processing speed, the LUSH pipeline outperforms the GATK pipeline, completing 30x WGS data analysis in just 1.6 h, which is approximately 17 times faster than GATK. Notably, the LUSH_HC tool completes the processing from BAM to VCF in just 12 min, which is around 76 times faster than GATK. CONCLUSION These findings suggest that the LUSH pipeline is a highly promising alternative to the GATK pipeline for WGS data analysis, with the potential to significantly improve bedside analysis of acutely ill patients, large-scale cohort data analysis, and high-throughput variant calling in crop breeding programs. Furthermore, the LUSH pipeline is highly scalable and easily deployable, allowing it to be readily applied to various scenarios such as clinical diagnosis and genomic research.
Collapse
Affiliation(s)
- Taifu Wang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Youjin Zhang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Haoling Wang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Qiwen Zheng
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Jiaobo Yang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Tiefeng Zhang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Geng Sun
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Weicong Liu
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Longhui Yin
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Xinqiu He
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Rui You
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Chu Wang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Zhencheng Liu
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Zhijian Liu
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Jin'an Wang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Xiangqian Jin
- BGI Genomics, Shenzhen, 518083, China.
- Clin Lab, BGI Genomics, Shenzhen, 518083, China.
| | - Zengquan He
- BGI Genomics, Shenzhen, 518083, China.
- Clin Lab, BGI Genomics, Shenzhen, 518083, China.
| |
Collapse
|
4
|
Backal A, Velinov M, Garcia J, Louis CL. Novel, likely pathogenic variant in ATP7A associated with Menkes disease diagnosed with ultrarapid genome sequencing. BMJ Case Rep 2024; 17:e259792. [PMID: 39353672 DOI: 10.1136/bcr-2024-259792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Menkes disease is a multisystem disorder caused by disturbances in copper absorption and metabolism. This lethal neurodegenerative disease presents with fine, 'kinky' hair, connective tissue dysfunction and developmental regression after 2-3 months of age. The primary variant associated with Menkes is in the ATP7A gene with X-linked recessive inheritance. Historically, the diagnosis of Menkes has relied on clinical signs and symptoms, but as the disease has varying levels of severity and presentation, it can take months to diagnose and treat. Emerging technology for ultrarapid genome sequencing offers a DNA-based route of diagnosis with preliminary results in hours, allowing for earlier discovery and treatment of Menkes with the potential for better long-term outcomes. Ultrarapid whole genome sequencing identified a novel, likely pathogenic, frameshift variant in the ATP7A gene consistent with a diagnosis of Menkes disease. The clinical manifestations and pathophysiology of this disorder, as well as a rapid DNA-based diagnosis, are described in this case.
Collapse
Affiliation(s)
- Amy Backal
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Milen Velinov
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Jazmin Garcia
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Cassandra L Louis
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
5
|
Bhatia S, Pal S, Kulshrestha S, Gupta D, Soni A, Saxena R, Bijarnia-Mahay S, Verma IC, Puri RD. Role of next generation sequencing in diagnosis and management of critically ill children with suspected monogenic disorder. Eur J Hum Genet 2024; 32:1106-1115. [PMID: 38605122 PMCID: PMC11369102 DOI: 10.1038/s41431-024-01569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 04/13/2024] Open
Abstract
Next generation sequencing based diagnosis has emerged as a promising tool for evaluating critically ill neonates and children. However, there is limited data on its utility in developing countries. We assessed its diagnostic rate and clinical impact on management of pediatric patients with a suspected genetic disorder requiring critical care. The study was conducted at a single tertiary hospital in Northern India. We analyzed 70 children with an illness requiring intensive care and obtained a precise molecular diagnosis in 32 of 70 probands (45.3%) using diverse sequencing techniques such as clinical exome, whole exome, and whole genome. A significant change in clinical outcome was observed in 13 of 32 (40.6%) diagnosed probands with a change in medication in 11 subjects and redirection to palliative care in two subjects. Additional benefits included specific dietary management (three cases), avoidance of a major procedure (one case) and better reproductive counseling. Dramatic therapeutic responses were observed in three cases with SCN1A, SCN2A and KCNQ2-related epileptic encephalopathy. A delayed turn-around for sequencing results was perceived as a major limiting factor in the study, as rapid and ultra-rapid sequencing was not available. Achieving a precise molecular diagnosis has great utility in managing critically ill patients with suspected genetic disorders in developing countries.
Collapse
Affiliation(s)
- Sameer Bhatia
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Swasti Pal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Dhiren Gupta
- Department of Paediatrics, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Arun Soni
- Department of Neonatology, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar Chander Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| |
Collapse
|
6
|
Ahmadi N, Zoch M, Guengoeze O, Facchinello C, Mondorf A, Stratmann K, Musleh K, Erasmus HP, Tchertov J, Gebler R, Schaaf J, Frischen LS, Nasirian A, Dai J, Henke E, Tremblay D, Srisuwananukorn A, Bornhäuser M, Röllig C, Eckardt JN, Middeke JM, Wolfien M, Sedlmayr M. How to customize common data models for rare diseases: an OMOP-based implementation and lessons learned. Orphanet J Rare Dis 2024; 19:298. [PMID: 39143600 PMCID: PMC11325822 DOI: 10.1186/s13023-024-03312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Given the geographical sparsity of Rare Diseases (RDs), assembling a cohort is often a challenging task. Common data models (CDM) can harmonize disparate sources of data that can be the basis of decision support systems and artificial intelligence-based studies, leading to new insights in the field. This work is sought to support the design of large-scale multi-center studies for rare diseases. METHODS In an interdisciplinary group, we derived a list of elements of RDs in three medical domains (endocrinology, gastroenterology, and pneumonology) according to specialist knowledge and clinical guidelines in an iterative process. We then defined a RDs data structure that matched all our data elements and built Extract, Transform, Load (ETL) processes to transfer the structure to a joint CDM. To ensure interoperability of our developed CDM and its subsequent usage for further RDs domains, we ultimately mapped it to Observational Medical Outcomes Partnership (OMOP) CDM. We then included a fourth domain, hematology, as a proof-of-concept and mapped an acute myeloid leukemia (AML) dataset to the developed CDM. RESULTS We have developed an OMOP-based rare diseases common data model (RD-CDM) using data elements from the three domains (endocrinology, gastroenterology, and pneumonology) and tested the CDM using data from the hematology domain. The total study cohort included 61,697 patients. After aligning our modules with those of Medical Informatics Initiative (MII) Core Dataset (CDS) modules, we leveraged its ETL process. This facilitated the seamless transfer of demographic information, diagnoses, procedures, laboratory results, and medication modules from our RD-CDM to the OMOP. For the phenotypes and genotypes, we developed a second ETL process. We finally derived lessons learned for customizing our RD-CDM for different RDs. DISCUSSION This work can serve as a blueprint for other domains as its modularized structure could be extended towards novel data types. An interdisciplinary group of stakeholders that are actively supporting the project's progress is necessary to reach a comprehensive CDM. CONCLUSION The customized data structure related to our RD-CDM can be used to perform multi-center studies to test data-driven hypotheses on a larger scale and take advantage of the analytical tools offered by the OHDSI community.
Collapse
Affiliation(s)
- Najia Ahmadi
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Michele Zoch
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Oya Guengoeze
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Carlo Facchinello
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Antonia Mondorf
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Katharina Stratmann
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Khader Musleh
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Hans-Peter Erasmus
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Jana Tchertov
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Richard Gebler
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jannik Schaaf
- Goethe University Frankfurt, University Hospital, Institute of Medical Informatics, Frankfurt, Germany
| | - Lena S Frischen
- University Hospital Frankfurt, Goethe University, Executive Department for Medical IT-Systems and Digitalization, Frankfurt, Germany
| | - Azadeh Nasirian
- Center of Medical Informatics, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jiabin Dai
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Elisa Henke
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Else-Kroener-Fresenius-Center for Digital Health, TUD Dresden University of Technology, Dresden, Germany
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Else-Kroener-Fresenius-Center for Digital Health, TUD Dresden University of Technology, Dresden, Germany
| | - Markus Wolfien
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Dresden, Germany
| | - Martin Sedlmayr
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
7
|
Cho SH, Jeong SH, Choi WH, Lee SY. Genomic Landscape of Branchio-Oto-Renal Syndrome through Whole-Genome Sequencing: A Single Rare Disease Center Experience in South Korea. Int J Mol Sci 2024; 25:8149. [PMID: 39125727 PMCID: PMC11311636 DOI: 10.3390/ijms25158149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Branchio-oto-renal (BOR) and branchio-otic (BO) syndromes are characterized by anomalies affecting the ears, often accompanied by hearing loss, as well as abnormalities in the branchial arches and renal system. These syndromes exhibit a broad spectrum of phenotypes and a complex genomic landscape, with significant contributions from the EYA1 gene and the SIX gene family, including SIX1 and SIX5. Due to their diverse phenotypic presentations, which can overlap with other genetic syndromes, molecular genetic confirmation is essential. As sequencing technologies advance, whole-genome sequencing (WGS) is increasingly used in rare disease diagnostics. We explored the genomic landscape of 23 unrelated Korean families with typical or atypical BOR/BO syndrome using a stepwise approach: targeted panel sequencing and exome sequencing (Step 1), multiplex ligation-dependent probe amplification (MLPA) with copy number variation screening (Step 2), and WGS (Step 3). Integrating WGS into our diagnostic pipeline detected structure variations, including cryptic inversion and complex genomic rearrangement, eventually enhancing the diagnostic yield to 91%. Our findings expand the genomic architecture of BOR/BO syndrome and highlight the need for WGS to address the genetic diagnosis of clinically heterogeneous rare diseases.
Collapse
Affiliation(s)
- Sung Ho Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.H.C.); (S.H.J.); (W.H.C.)
| | - Sung Ho Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.H.C.); (S.H.J.); (W.H.C.)
| | - Won Hoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.H.C.); (S.H.J.); (W.H.C.)
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.H.C.); (S.H.J.); (W.H.C.)
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| |
Collapse
|
8
|
Thorpe E, Williams T, Shaw C, Chekalin E, Ortega J, Robinson K, Button J, Jones MC, Campo MD, Basel D, McCarrier J, Keppen LD, Royer E, Foster-Bonds R, Duenas-Roque MM, Urraca N, Bosfield K, Brown CW, Lydigsen H, Mroczkowski HJ, Ward J, Sirchia F, Giorgio E, Vaux K, Salguero HP, Lumaka A, Mubungu G, Makay P, Ngole M, Lukusa PT, Vanderver A, Muirhead K, Sherbini O, Lah MD, Anderson K, Bazalar-Montoya J, Rodriguez RS, Cornejo-Olivas M, Milla-Neyra K, Shinawi M, Magoulas P, Henry D, Gibson K, Wiafe S, Jayakar P, Salyakina D, Masser-Frye D, Serize A, Perez JE, Taylor A, Shenbagam S, Abou Tayoun A, Malhotra A, Bennett M, Rajan V, Avecilla J, Warren A, Arseneault M, Kalista T, Crawford A, Ajay SS, Perry DL, Belmont J, Taft RJ. The impact of clinical genome sequencing in a global population with suspected rare genetic disease. Am J Hum Genet 2024; 111:1271-1281. [PMID: 38843839 PMCID: PMC11267518 DOI: 10.1016/j.ajhg.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024] Open
Abstract
There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.
Collapse
Affiliation(s)
| | | | - Chad Shaw
- Genetic and Genomic Services PBC, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Statistics, Rice University, Houston, TX, USA
| | | | - Julia Ortega
- Illumina Inc, San Diego, CA, USA; C2N Diagnostics, St. Louis, MO, USA
| | | | | | - Marilyn C Jones
- Rady Children's Hospital, San Diego, CA, USA; University of California, San Diego, San Diego, CA, USA
| | - Miguel Del Campo
- Rady Children's Hospital, San Diego, CA, USA; University of California, San Diego, San Diego, CA, USA
| | - Donald Basel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie McCarrier
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Erin Royer
- Sanford Children's Specialty Clinics at Sanford Health, USD Sanford School of Medicine, Sioux Falls, SD, USA
| | | | | | - Nora Urraca
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Kerri Bosfield
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Chester W Brown
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Holly Lydigsen
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Henry J Mroczkowski
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Jewell Ward
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Medical Genetics Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Keith Vaux
- Point Loma Pediatrics, San Diego, CA, USA
| | | | - Aimé Lumaka
- Centre de Genetique Humaine, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo; Center for Human Genetics, Centre Hospitalier Universitaire, Liège, Belgium
| | - Gerrye Mubungu
- Centre de Genetique Humaine, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Prince Makay
- Centre de Genetique Humaine, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Mamy Ngole
- Centre de Genetique Humaine, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Prosper Tshilobo Lukusa
- Centre de Genetique Humaine, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Omar Sherbini
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melissa D Lah
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru; Neurogenetics Working Group, Universidad Científica del Sur, Lima, Peru
| | - Karina Milla-Neyra
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Marwan Shinawi
- Washington University, St. Louis, MO, USA; St. Louis Children's Hospital, St. Louis, MO, USA
| | | | - Duncan Henry
- UCSF Benioff Children's Hospitals, San Francisco, CA, USA
| | - Kate Gibson
- Canterbury District Health Board, Canterbury, New Zealand
| | | | | | | | - Diane Masser-Frye
- Rady Children's Hospital, San Diego, CA, USA; San Diego-Imperial Counties Developmental Services, Inc., San Diego, CA, USA
| | | | | | - Alan Taylor
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Shruti Shenbagam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | | | - Vani Rajan
- Illumina Inc, San Diego, CA, USA; Veracyte, San Diego, CA, USA
| | | | | | | | | | | | | | | | - John Belmont
- Genetic and Genomic Services PBC, Houston, TX, USA
| | | |
Collapse
|
9
|
Weymann D, Buckell J, Fahr P, Loewen R, Ehman M, Pollard S, Friedman JM, Stockler-Ipsiroglu S, Elliott AM, Wordsworth S, Buchanan J, Regier DA. Health Care Costs After Genome-Wide Sequencing for Children With Rare Diseases in England and Canada. JAMA Netw Open 2024; 7:e2420842. [PMID: 38985473 PMCID: PMC11238031 DOI: 10.1001/jamanetworkopen.2024.20842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Importance Etiologic diagnoses for rare diseases can involve a diagnostic odyssey, with repeated health care interactions and inconclusive diagnostics. Prior studies reported cost savings associated with genome-wide sequencing (GWS) compared with cytogenetic or molecular testing through rapid genetic diagnosis, but there is limited evidence on whether diagnosis from GWS is associated with reduced health care costs. Objective To measure changes in health care costs after diagnosis from GWS for Canadian and English children with suspected rare diseases. Design, Setting, and Participants This cohort study was a quasiexperimental retrospective analysis across 3 distinct English and Canadian cohorts, completed in 2023. Mixed-effects generalized linear regression was used to estimate associations between GWS and costs in the 2 years before and after GWS. Difference-in-differences regression was used to estimate associations of genetic diagnosis and costs. Costs are in 2019 US dollars. GWS was conducted in a research setting (Genomics England 100 000 Genomes Project [100KGP] and Clinical Assessment of the Utility of Sequencing and Evaluation as a Service [CAUSES] Research Clinic) or clinical outpatient setting (publicly reimbursed GWS in British Columbia [BC], Canada). Participants were children with developmental disorders, seizure disorders, or both undergoing GWS between 2014 and 2019. Data were analyzed from April 2021 to September 2023. Exposures GWS and genetic diagnosis. Main Outcomes and Measures Annual health care costs and diagnostic costs per child. Results Study cohorts included 7775 patients in 100KGP, among whom 788 children had epilepsy (mean [SD] age at GWS, 11.6 [11.1] years; 400 female [50.8%]) and 6987 children had an intellectual disability (mean [SD] age at GWS, 8.2 [8.4] years; 2750 female [39.4%]); 77 patients in CAUSES (mean [SD] age at GWS, 8.5 [4.4] years; 33 female [42.9%]); and 118 publicly reimbursed GWS recipients from BC (mean [SD] age at GWS, 5.5 [5.2] years; 58 female [49.2%]). GWS diagnostic yield was 143 children (18.1%) for those with epilepsy and 1323 children (18.9%) for those with an intellectual disability in 100KGP, 47 children (39.8%) in the BC publicly reimbursed setting, and 42 children (54.5%) in CAUSES. Mean annual per-patient spending over the study period was $5283 (95% CI, $5121-$5427) for epilepsy and $3373 (95% CI, $3322-$3424) for intellectual disability in the 100KGP, $724 (95% CI, $563-$886) in CAUSES, and $1573 (95% CI, $1372-$1773) in the BC reimbursed setting. Receiving a genetic diagnosis from GWS was not associated with changed costs in any cohort. Conclusions and Relevance In this study, receiving a genetic diagnosis was not associated with cost savings. This finding suggests that patient benefit and cost-effectiveness should instead drive GWS implementation.
Collapse
Affiliation(s)
- Deirdre Weymann
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John Buckell
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Patrick Fahr
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Rosalie Loewen
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Morgan Ehman
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Samantha Pollard
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sylvia Stockler-Ipsiroglu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Biochemical Genetics, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Alison M. Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - James Buchanan
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Dean A. Regier
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Pucel J, Briere LC, Reuter C, Gochyyev P, LeBlanc K. Exome and genome sequencing in a heterogeneous population of patients with rare disease: Identifying predictors of a diagnosis. Genet Med 2024; 26:101115. [PMID: 38436216 PMCID: PMC11161308 DOI: 10.1016/j.gim.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Exome (ES) and genome sequencing (GS) are increasingly being utilized for individuals with rare and undiagnosed diseases; however, guidelines on their use remain limited. This study aimed to identify factors associated with diagnosis by ES and/or GS in a heterogeneous population of patients with rare and undiagnosed diseases. METHODS In this case control study, we reviewed data from 400 diagnosed and 400 undiagnosed randomly selected participants in the Undiagnosed Diseases Network, all of whom had undergone ES and/or GS. We analyzed factors associated with receiving a diagnosis by ES and/or GS. RESULTS Factors associated with a decreased odds of being diagnosed included adult symptom onset, singleton sequencing, and having undergone ES and/or GS before acceptance to the Undiagnosed Diseases Network (48%, 51%, and 32% lower odds, respectively). Factors that increased the odds of being diagnosed by ES and/or GS included having primarily neurological symptoms and having undergone prior chromosomal microarray testing (44% and 59% higher odds, respectively). CONCLUSION We identified several factors that were associated with receiving a diagnosis by ES and/or GS. This will ideally inform the utilization of ES and/or GS and help manage expectations of individuals and families undergoing these tests.
Collapse
Affiliation(s)
- Jenna Pucel
- MGH Institute of Health Professions, Boston, MA.
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Chloe Reuter
- Stanford Center for Undiagnosed Diseases, Cardiovascular Medicine, Stanford University, Palo Alto, CA
| | | | - Kimberly LeBlanc
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Ciancia S, Madeo SF, Calabrese O, Iughetti L. The Approach to a Child with Dysmorphic Features: What the Pediatrician Should Know. CHILDREN (BASEL, SWITZERLAND) 2024; 11:578. [PMID: 38790573 PMCID: PMC11120268 DOI: 10.3390/children11050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
The advancement of genetic knowledge and the discovery of an increasing number of genetic disorders has made the role of the geneticist progressively more complex and fundamental. However, most genetic disorders present during childhood; thus, their early recognition is a challenge for the pediatrician, who will be also involved in the follow-up of these children, often establishing a close relationship with them and their families and becoming a referral figure. In this review, we aim to provide the pediatrician with a general knowledge of the approach to treating a child with a genetic syndrome associated with dysmorphic features. We will discuss the red flags, the most common manifestations, the analytic collection of the family and personal medical history, and the signs that should alert the pediatrician during the physical examination. We will offer an overview of the physical malformations most commonly associated with genetic defects and the way to describe dysmorphic facial features. We will provide hints about some tools that can support the pediatrician in clinical practice and that also represent a useful educational resource, either online or through apps downloaded on a smartphone. Eventually, we will offer an overview of genetic testing, the ethical considerations, the consequences of incidental findings, and the main indications and limitations of the principal technologies.
Collapse
Affiliation(s)
- Silvia Ciancia
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| | - Simona Filomena Madeo
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| | - Olga Calabrese
- Medical Genetics Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124 Modena, Italy
| |
Collapse
|
13
|
van der Geest MA, Maeckelberghe ELM, van Gijn ME, Lucassen AM, Swertz MA, van Langen IM, Plantinga M. Systematic reanalysis of genomic data by diagnostic laboratories: a scoping review of ethical, economic, legal and (psycho)social implications. Eur J Hum Genet 2024; 32:489-497. [PMID: 38480795 PMCID: PMC11061183 DOI: 10.1038/s41431-023-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/02/2024] Open
Abstract
With the introduction of Next Generation Sequencing (NGS) techniques increasing numbers of disease-associated variants are being identified. This ongoing progress might lead to diagnoses in formerly undiagnosed patients and novel insights in already solved cases. Therefore, many studies suggest introducing systematic reanalysis of NGS data in routine diagnostics. Introduction will, however, also have ethical, economic, legal and (psycho)social (ELSI) implications that Genetic Health Professionals (GHPs) from laboratories should consider before possible implementation of systematic reanalysis. To get a first impression we performed a scoping literature review. Our findings show that for the vast majority of included articles ELSI aspects were not mentioned as such. However, often these issues were raised implicitly. In total, we identified nine ELSI aspects, such as (perceived) professional responsibilities, implications for consent and cost-effectiveness. The identified ELSI aspects brought forward necessary trade-offs for GHPs to consciously take into account when considering responsible implementation of systematic reanalysis of NGS data in routine diagnostics, balancing the various strains on their laboratories and personnel while creating optimal results for new and former patients. Some important aspects are not well explored yet. For example, our study shows GHPs see the values of systematic reanalysis but also experience barriers, often mentioned as being practical or financial only, but in fact also being ethical or psychosocial. Engagement of these GHPs in further research on ELSI aspects is important for sustainable implementation.
Collapse
Affiliation(s)
- Marije A van der Geest
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Els L M Maeckelberghe
- Institute for Medical Education, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marielle E van Gijn
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anneke M Lucassen
- Faculty of Medicine, Clinical Ethics and Law, University of Southampton, Southampton, UK
- Centre for Personalised Medicine, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene M van Langen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mirjam Plantinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Johnson D, Del Fiol G, Kawamoto K, Romagnoli KM, Sanders N, Isaacson G, Jenkins E, Williams MS. Genetically guided precision medicine clinical decision support tools: a systematic review. J Am Med Inform Assoc 2024; 31:1183-1194. [PMID: 38558013 PMCID: PMC11031215 DOI: 10.1093/jamia/ocae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES Patient care using genetics presents complex challenges. Clinical decision support (CDS) tools are a potential solution because they provide patient-specific risk assessments and/or recommendations at the point of care. This systematic review evaluated the literature on CDS systems which have been implemented to support genetically guided precision medicine (GPM). MATERIALS AND METHODS A comprehensive search was conducted in MEDLINE and Embase, encompassing January 1, 2011-March 14, 2023. The review included primary English peer-reviewed research articles studying humans, focused on the use of computers to guide clinical decision-making and delivering genetically guided, patient-specific assessments, and/or recommendations to healthcare providers and/or patients. RESULTS The search yielded 3832 unique articles. After screening, 41 articles were identified that met the inclusion criteria. Alerts and reminders were the most common form of CDS used. About 27 systems were integrated with the electronic health record; 2 of those used standards-based approaches for genomic data transfer. Three studies used a framework to analyze the implementation strategy. DISCUSSION Findings include limited use of standards-based approaches for genomic data transfer, system evaluations that do not employ formal frameworks, and inconsistencies in the methodologies used to assess genetic CDS systems and their impact on patient outcomes. CONCLUSION We recommend that future research on CDS system implementation for genetically GPM should focus on implementing more CDS systems, utilization of standards-based approaches, user-centered design, exploration of alternative forms of CDS interventions, and use of formal frameworks to systematically evaluate genetic CDS systems and their effects on patient care.
Collapse
Affiliation(s)
- Darren Johnson
- Department of Genomic Health, Geisinger Health Systems, Danville, PA 17822, United States
| | - Guilherme Del Fiol
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, United States
| | - Kensaku Kawamoto
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, United States
| | - Katrina M Romagnoli
- Department of Genomic Health, Geisinger Health Systems, Danville, PA 17822, United States
| | - Nathan Sanders
- School of Medicine, Geisinger Health Systems, Danville, PA 17822, United States
| | - Grace Isaacson
- Family Medicine, Penn Highlands Healthcare, DuBois, PA 16830, United States
| | - Elden Jenkins
- School of Medicine, Noorda College of Osteopathic Medicine, Provo, UT 84606, United States
| | - Marc S Williams
- Department of Genomic Health, Geisinger Health Systems, Danville, PA 17822, United States
| |
Collapse
|
15
|
AlMail A, Jamjoom A, Pan A, Feng MY, Chau V, D'Gama AM, Howell K, Liang NSY, McTague A, Poduri A, Wiltrout K, Bassett AS, Christodoulou J, Dupuis L, Gill P, Levy T, Siper P, Stark Z, Vorstman JAS, Diskin C, Jewitt N, Baribeau D, Costain G. Consensus reporting guidelines to address gaps in descriptions of ultra-rare genetic conditions. NPJ Genom Med 2024; 9:27. [PMID: 38582909 PMCID: PMC10998895 DOI: 10.1038/s41525-024-00408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and "behavioural issues", or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.
Collapse
Affiliation(s)
- Ali AlMail
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Ahmed Jamjoom
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amy Pan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Min Yi Feng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Alissa M D'Gama
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Katherine Howell
- Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Nicole S Y Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Wiltrout
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anne S Bassett
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Lucie Dupuis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Gill
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Tess Levy
- Division of Psychiatry, Ichan School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paige Siper
- Division of Psychiatry, Ichan School of Medicine at Mount Sinai, New York City, NY, USA
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
| | - Jacob A S Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Catherine Diskin
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Natalie Jewitt
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Danielle Baribeau
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada.
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.
| | - Gregory Costain
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
16
|
Durbin MD, Helvaty LR, Posorske A, Zhang S, Huang M, Li M, Abreu D, Fairman K, Geddes GC, Helm BM, Landis BJ, McEntire A, Mitchell DK, Ware SM. Rapid Genome Sequencing Shows Diagnostic Utility In Infants With Congenital Heart Defects. RESEARCH SQUARE 2024:rs.3.rs-3976548. [PMID: 38562732 PMCID: PMC10984023 DOI: 10.21203/rs.3.rs-3976548/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect and a leading cause of infant mortality. CHD often has a genetic etiology and recent studies demonstrate utility in genetic testing. In clinical practice, decisions around genetic testing choices continue to evolve, and the incorporation of rapid genome sequencing (rGS) in CHD has not been well studied. Though smaller studies demonstrate the value of rGS, they also highlight the burden of results interpretation. We analyze genetic testing in CHD at two time-points, in 2018 and 2022-2023, across a change in clinical testing guidelines from chromosome microarray (CMA) to rGS. Analysis of 421 hospitalized infants with CHD demonstrated consistent genetic testing across time. Overall, after incorporation of rGS in 2022-2023, the diagnostic yield was 6.8% higher compared to 2018, and this pattern was consistent across all patient subtypes analyzed. In 2018, CMA was the most common test performed, with diagnostic results for CHD in 14.3%, while in 2022-2023, rGS was the most frequent test performed, with results diagnostic for CHD in 16.9%. Additionally, rGS identified 44% more unique genetic diagnoses than CMA. This is the largest study to highlight the value of rGS in CHD and has important implications for management.
Collapse
Affiliation(s)
- Matthew D. Durbin
- Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indianapolis, IN
| | | | - Alyx Posorske
- Indiana University School of Medicine, Indianapolis, IN
| | - Samuel Zhang
- Indiana University School of Medicine, Indianapolis, IN
| | - Manyan Huang
- Indiana University Bloomington School of Public Health, Bloomington, IN
| | - Ming Li
- Indiana University Bloomington School of Public Health, Bloomington, IN
| | - Daniel Abreu
- Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | - Benjamin J. Landis
- Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indianapolis, IN
| | | | | | - Stephanie M. Ware
- Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indianapolis, IN
| |
Collapse
|
17
|
Yang Y, del Gaudio D, Santani A, Scott SA. Applications of genome sequencing as a single platform for clinical constitutional genetic testing. GENETICS IN MEDICINE OPEN 2024; 2:101840. [PMID: 39822265 PMCID: PMC11736070 DOI: 10.1016/j.gimo.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 01/19/2025]
Abstract
The number of human disease genes has dramatically increased over the past decade, largely fueled by ongoing advances in sequencing technologies. In parallel, the number of available clinical genetic tests has also increased, including the utilization of exome sequencing for undiagnosed diseases. Although most clinical sequencing tests have been centered on enrichment-based multigene panels and exome sequencing, the continued improvements in performance and throughput of genome sequencing suggest that this technology is emerging as a potential platform for routine clinical genetic testing. A notable advantage is a single workflow with the opportunity to reflexively interrogate content as clinically indicated; however, challenges with implementing routine clinical genome sequencing still remain. This review is centered on evaluating the applications of genome sequencing as a single platform for clinical constitutional genetic testing, including its potential utility for diagnostic testing, carrier screening, cytogenomic molecular karyotyping, prenatal testing, mitochondrial genome interrogation, and pharmacogenomic and polygenic risk score testing.
Collapse
Affiliation(s)
- Yao Yang
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| | | | | | - Stuart A. Scott
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| |
Collapse
|
18
|
Wigby KM, Brockman D, Costain G, Hale C, Taylor SL, Belmont J, Bick D, Dimmock D, Fernbach S, Greally J, Jobanputra V, Kulkarni S, Spiteri E, Taft RJ. Evidence review and considerations for use of first line genome sequencing to diagnose rare genetic disorders. NPJ Genom Med 2024; 9:15. [PMID: 38409289 PMCID: PMC10897481 DOI: 10.1038/s41525-024-00396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.
Collapse
Affiliation(s)
- Kristen M Wigby
- University of California, Davis, CA, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
| | | | | | | | | | - John Belmont
- Genetics & Genomics Services Inc, Houston, TX, USA
| | | | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | | | - John Greally
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
19
|
Kvapilova K, Misenko P, Radvanszky J, Brzon O, Budis J, Gazdarica J, Pos O, Korabecna M, Kasny M, Szemes T, Kvapil P, Paces J, Kozmik Z. Validated WGS and WES protocols proved saliva-derived gDNA as an equivalent to blood-derived gDNA for clinical and population genomic analyses. BMC Genomics 2024; 25:187. [PMID: 38365587 PMCID: PMC10873937 DOI: 10.1186/s12864-024-10080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Whole exome sequencing (WES) and whole genome sequencing (WGS) have become standard methods in human clinical diagnostics as well as in population genomics (POPGEN). Blood-derived genomic DNA (gDNA) is routinely used in the clinical environment. Conversely, many POPGEN studies and commercial tests benefit from easy saliva sampling. Here, we evaluated the quality of variant call sets and the level of genotype concordance of single nucleotide variants (SNVs) and small insertions and deletions (indels) for WES and WGS using paired blood- and saliva-derived gDNA isolates employing genomic reference-based validated protocols. METHODS The genomic reference standard Coriell NA12878 was repeatedly analyzed using optimized WES and WGS protocols, and data calls were compared with the truth dataset published by the Genome in a Bottle Consortium. gDNA was extracted from the paired blood and saliva samples of 10 participants and processed using the same protocols. A comparison of paired blood-saliva call sets was performed in the context of WGS and WES genomic reference-based technical validation results. RESULTS The quality pattern of called variants obtained from genomic-reference-based technical replicates correlates with data calls of paired blood-saliva-derived samples in all levels of tested examinations despite a higher rate of non-human contamination found in the saliva samples. The F1 score of 10 blood-to-saliva-derived comparisons ranged between 0.8030-0.9998 for SNVs and between 0.8883-0.9991 for small-indels in the case of the WGS protocol, and between 0.8643-0.999 for SNVs and between 0.7781-1.000 for small-indels in the case of the WES protocol. CONCLUSION Saliva may be considered an equivalent material to blood for genetic analysis for both WGS and WES under strict protocol conditions. The accuracy of sequencing metrics and variant-detection accuracy is not affected by choosing saliva as the gDNA source instead of blood but much more significantly by the genomic context, variant types, and the sequencing technology used.
Collapse
Affiliation(s)
- Katerina Kvapilova
- Faculty of Science, Charles University, Albertov 6, Prague, 128 00, Czech Republic.
- Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic.
| | - Pavol Misenko
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
| | - Jan Radvanszky
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, 845 05, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 3278/6, Karlova Ves, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
| | - Ondrej Brzon
- Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic
| | - Jaroslav Budis
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
- Slovak Centre for Scientific and Technical Information, Staré Mesto, Lamačská Cesta 8A, Bratislava, 811 04, Slovakia
| | - Juraj Gazdarica
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
- Slovak Centre for Scientific and Technical Information, Staré Mesto, Lamačská Cesta 8A, Bratislava, 811 04, Slovakia
| | - Ondrej Pos
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
| | - Marie Korabecna
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Prague, 128 00, Czech Republic
| | - Martin Kasny
- Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Tomas Szemes
- Geneton s.r.o, Ilkovičova 8, Bratislava, 841 04, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 3278/6, Karlova Ves, Bratislava, 841 04, Slovakia
- Comenius University Science Park, Comenius University, Ilkovičova 8, Karlova Ves, Bratislava, 841 04, Slovakia
| | - Petr Kvapil
- Institute of Applied Biotechnologies a.s, Služeb 4, Prague, 108 00, Czech Republic
| | - Jan Paces
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| |
Collapse
|
20
|
Aekka A, Weisman AG, Papadakis J, Yerkes E, Baker J, Keswani M, Weinstein J, Finlayson C. Clinical utility of early rapid genome sequencing in the evaluation of patients with differences of sex development. Am J Med Genet A 2024; 194:351-357. [PMID: 37789729 DOI: 10.1002/ajmg.a.63377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
Establishing an early and accurate genetic diagnosis among patients with differences of sex development (DSD) is crucial in guiding the complex medical and psychosocial care they require. Genetic testing routinely utilized in clinical practice for this population is predicated upon physical exam findings and biochemical and endocrine profiling. This approach, however, is inefficient and unstandardized. Many patients with DSD, particularly those with 46,XY DSD, never receive a molecular genetic diagnosis. Rapid genome sequencing (rGS) is gaining momentum as a first-tier diagnostic instrument in the evaluation of patients with DSD given its ability to provide greater diagnostic yield and timely results. We present the case of a patient with nonbinary genitalia and systemic findings for whom rGS identified a novel variant of the WT1 gene and resulted in a molecular diagnosis within two weeks of life. This timeframe of diagnosis for syndromic DSD is largely unprecedented at our institution. Rapid GS expedited mobilization of a multidisciplinary medical team; enabled early understanding of clinical trajectory; informed planning of medical and surgical interventions; and guided individualized psychosocial support provided to the family. This case highlights the potential of early rGS in transforming the evaluation and care of patients with DSD.
Collapse
Affiliation(s)
- Apoorva Aekka
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Allison Goetsch Weisman
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jaclyn Papadakis
- Department of Psychiatry and Behavioral Health, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth Yerkes
- Division of Urology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua Baker
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mahima Keswani
- Division of Nephrology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joanna Weinstein
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Courtney Finlayson
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
21
|
Curic E, Ewans L, Pysar R, Taylan F, Botto LD, Nordgren A, Gahl W, Palmer EE. International Undiagnosed Diseases Programs (UDPs): components and outcomes. Orphanet J Rare Dis 2023; 18:348. [PMID: 37946247 PMCID: PMC10633944 DOI: 10.1186/s13023-023-02966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Over the last 15 years, Undiagnosed Diseases Programs have emerged to address the significant number of individuals with suspected but undiagnosed rare genetic diseases, integrating research and clinical care to optimize diagnostic outcomes. This narrative review summarizes the published literature surrounding Undiagnosed Diseases Programs worldwide, including thirteen studies that evaluate outcomes and two commentary papers. Commonalities in the diagnostic and research process of Undiagnosed Diseases Programs are explored through an appraisal of available literature. This exploration allowed for an assessment of the strengths and limitations of each of the six common steps, namely enrollment, comprehensive clinical phenotyping, research diagnostics, data sharing and matchmaking, results, and follow-up. Current literature highlights the potential utility of Undiagnosed Diseases Programs in research diagnostics. Since participants have often had extensive previous genetic studies, research pipelines allow for diagnostic approaches beyond exome or whole genome sequencing, through reanalysis using research-grade bioinformatics tools and multi-omics technologies. The overall diagnostic yield is presented by study, since different selection criteria at enrollment and reporting processes make comparisons challenging and not particularly informative. Nonetheless, diagnostic yield in an undiagnosed cohort reflects the potential of an Undiagnosed Diseases Program. Further comparisons and exploration of the outcomes of Undiagnosed Diseases Programs worldwide will allow for the development and improvement of the diagnostic and research process and in turn improve the value and utility of an Undiagnosed Diseases Program.
Collapse
Affiliation(s)
- Ela Curic
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Bright Alliance Building, Level 8, Randwick, NSW, Australia
| | - Lisa Ewans
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Bright Alliance Building, Level 8, Randwick, NSW, Australia
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ryan Pysar
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Bright Alliance Building, Level 8, Randwick, NSW, Australia
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
- Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - William Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth Emma Palmer
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Bright Alliance Building, Level 8, Randwick, NSW, Australia.
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia.
| |
Collapse
|
22
|
Ferri-Rufete D, López-González A, Casas-Alba D, Cuadras D, Palau F, Martínez-Monseny A. Clinical Genetics Assessment Triangle (CGAT): A simple tool to identify patients with genetic conditions. Eur J Med Genet 2023; 66:104858. [PMID: 37758166 DOI: 10.1016/j.ejmg.2023.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE The objective of this study was to develop a simple tool for general physicians to promptly identify and refer pediatric patients with a higher probability of having a genetic condition. STUDY DESIGN This retrospective, descriptive study was conducted at a tertiary pediatric hospital's Clinical Genetics Unit from June 2019 to January 2020. We included patients under 18 years of age who visited the unit, excluding those without genetic testing. Epidemiological, clinical, and genetic variables were collected from electronic medical records. The primary outcome was the diagnosis of a genetic condition based on genetic testing. RESULTS Among 445 patients, 304 were included; 163 (53.6%) were male, and mean age was 7.4 years (SD 5.1 years). A genetic condition was diagnosed in 139 patients (45.7%). Using a multiple logistic regression model, five variables significantly contributed to reaching a diagnosis: suspected diagnosis at referral (OR 3.45, P < 0.001), short stature (OR 3.11, P < 0.001), global developmental delay/intellectual disability (OR 2.65, P < 0.001), dysmorphic craniofacial features (OR 1.99, P = 0.035), and multiple congenital anomalies (OR 2.54, P = 0.033). The association strength (OR) increased when these variables were paired with each other. The study's findings are presented in the form of a triangle, known as the Clinical Genetics Assessment Triangle (CGAT), which summarizes the results. A decision tree model is applied to guide clinical department referrals based on the affected sides of the triangle. CONCLUSIONS The CGAT has the potential to enable general physicians to promptly identify pediatric patients with an increased probability of having a genetic condition.
Collapse
Affiliation(s)
- David Ferri-Rufete
- Pediatrics Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| | - Aitor López-González
- Pediatrics Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| | - Dídac Casas-Alba
- Department of Genetic Medicine, Pediatric Institute of Rare Diseases (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| | - Daniel Cuadras
- Statistics Department, Fundació Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| | - Francesc Palau
- Department of Genetic Medicine, Pediatric Institute of Rare Diseases (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Antonio Martínez-Monseny
- Department of Genetic Medicine, Pediatric Institute of Rare Diseases (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| |
Collapse
|
23
|
Jo HS, Yang M, Ahn SY, Sung SI, Park WS, Jang JH, Chang YS. Optimal Protocols and Management of Clinical and Genomic Data Collection to Assist in the Early Diagnosis and Treatment of Multiple Congenital Anomalies. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1673. [PMID: 37892336 PMCID: PMC10605914 DOI: 10.3390/children10101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Standardized protocols have been designed and developed specifically for clinical information collection and obtaining trio genomic information from infants affected with congenital anomalies (CA) and their parents, as well as securing human biological resources. The protocols include clinical and genomic information collection on multiple CA that were difficult to diagnose using pre-existing screening methods. We obtained human-derived resources and genomic information from 138 cases, including 45 families of infants with CA and their parent trios. For the clinical information collection protocol, criteria for target patient selection and a consent system for collecting and utilizing research resources are crucial. Whole genome sequencing data were generated for all participants, and standardized protocols were developed for resource collection and manufacturing. We recorded the phenotype information according to the Human Phenotype Ontology term, and epidemiological information was collected through an environmental factor questionnaire. Updating and recording of clinical symptoms and genetic information that have been newly added or changed over time are significant. The protocols enabled long-term tracking by including the growth and development status that reflect the important characteristics of newborns. Using these clinical and genetic information collection protocols for CA, an essential platform for early genetic diagnosis and diagnostic research can be established, and new genetic diagnostic guidelines can be presented in the near future.
Collapse
Affiliation(s)
- Heui Seung Jo
- Department of Pediatrics, Kangwon National University Hospital, Kangwon National University School of Medicine, Kangwon 24289, Republic of Korea
| | - Misun Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| |
Collapse
|
24
|
Tesi B, Boileau C, Boycott KM, Canaud G, Caulfield M, Choukair D, Hill S, Spielmann M, Wedell A, Wirta V, Nordgren A, Lindstrand A. Precision medicine in rare diseases: What is next? J Intern Med 2023; 294:397-412. [PMID: 37211972 DOI: 10.1111/joim.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.
Collapse
Affiliation(s)
- Bianca Tesi
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Catherine Boileau
- Département de Génétique, APHP, Hôpital Bichat-Claude Bernard, Université Paris Cité, Paris, France
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Guillaume Canaud
- INSERM U1151, Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, Université Paris Cité, AP-HP, Paris, France
| | - Mark Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sue Hill
- Chief Scientific Officer, NHS England, London, UK
| | - Malte Spielmann
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institutet of Technology, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Johnson EK, Whitehead J, Cheng EY. Differences of Sex Development: Current Issues and Controversies. Urol Clin North Am 2023; 50:433-446. [PMID: 37385705 DOI: 10.1016/j.ucl.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Differences of sex development (DSD) encompass a broad range of conditions in which the development of chromosomal, gonadal, or anatomic sex is not typically male or female. Terms used to describe DSD are controversial, and continuously evolving. An individualized, multidisciplinary approach is key to both the diagnosis and management of DSD. Recent advances in DSD care include expanded genetic testing options, a more nuanced approach to gonadal management, and an emphasis on shared decision-making, particularly related to external genital surgical procedures. The timing of DSD surgery is currently being questioned and debated in both medical and advocacy/activism spheres.
Collapse
Affiliation(s)
- Emilie K Johnson
- Division of Urology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 24, Chicago, IL 60611, USA; Department of Urology, Northwestern University Feinberg School of Medicine, 676 North Saint Clair, Suite 2300, Chicago, IL, 60611, USA.
| | - Jax Whitehead
- Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 54, Chicago, IL 60611, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, 225 East Chicago Avenue, Box 86, Chicago, IL 60611, USA
| | - Earl Y Cheng
- Division of Urology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 24, Chicago, IL 60611, USA; Department of Urology, Northwestern University Feinberg School of Medicine, 676 North Saint Clair, Suite 2300, Chicago, IL, 60611, USA
| |
Collapse
|
26
|
Sharo AG, Zou Y, Adhikari AN, Brenner SE. ClinVar and HGMD genomic variant classification accuracy has improved over time, as measured by implied disease burden. Genome Med 2023; 15:51. [PMID: 37443081 PMCID: PMC10347827 DOI: 10.1186/s13073-023-01199-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Curated databases of genetic variants assist clinicians and researchers in interpreting genetic variation. Yet, these databases contain some misclassified variants. It is unclear whether variant misclassification is abating as these databases rapidly grow and implement new guidelines. METHODS Using archives of ClinVar and HGMD, we investigated how variant misclassification has changed over 6 years, across different ancestry groups. We considered inborn errors of metabolism (IEMs) screened in newborns as a model system because these disorders are often highly penetrant with neonatal phenotypes. We used samples from the 1000 Genomes Project (1KGP) to identify individuals with genotypes that were classified by the databases as pathogenic. Due to the rarity of IEMs, nearly all such classified pathogenic genotypes indicate likely variant misclassification in ClinVar or HGMD. RESULTS While the false-positive rates of both ClinVar and HGMD have improved over time, HGMD variants currently imply two orders of magnitude more affected individuals in 1KGP than ClinVar variants. We observed that African ancestry individuals have a significantly increased chance of being incorrectly indicated to be affected by a screened IEM when HGMD variants are used. However, this bias affecting genomes of African ancestry was no longer significant once common variants were removed in accordance with recent variant classification guidelines. We discovered that ClinVar variants classified as Pathogenic or Likely Pathogenic are reclassified sixfold more often than DM or DM? variants in HGMD, which has likely resulted in ClinVar's lower false-positive rate. CONCLUSIONS Considering misclassified variants that have since been reclassified reveals our increasing understanding of rare genetic variation. We found that variant classification guidelines and allele frequency databases comprising genetically diverse samples are important factors in reclassification. We also discovered that ClinVar variants common in European and South Asian individuals were more likely to be reclassified to a lower confidence category, perhaps due to an increased chance of these variants being classified by multiple submitters. We discuss features for variant classification databases that would support their continued improvement.
Collapse
Affiliation(s)
- Andrew G. Sharo
- Biophysics Graduate Group, University of California, Berkeley, CA 94720 USA
- Center for Computational Biology, University of California, Berkeley, CA 94720 USA
- Department of Ecology and Evolutionary Biology, University of California, 124 Biomed Building, 1156 High St., Santa Cruz, CA 95064 USA
| | - Yangyun Zou
- Center for Computational Biology, University of California, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, 461 Koshland Hall, Berkeley, CA 94720 USA
- Currently at: Department of Clinical Research, Yikon Genomics Company, Ltd., Shanghai, China
| | - Aashish N. Adhikari
- Center for Computational Biology, University of California, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, 461 Koshland Hall, Berkeley, CA 94720 USA
- Currently at: Illumina, Foster City, CA 94404 USA
| | - Steven E. Brenner
- Biophysics Graduate Group, University of California, Berkeley, CA 94720 USA
- Center for Computational Biology, University of California, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, 461 Koshland Hall, Berkeley, CA 94720 USA
| |
Collapse
|
27
|
Balciuniene J, Liu R, Bean L, Guo F, Nallamilli BRR, Guruju N, Chen-Deutsch X, Yousaf R, Fura K, Chin E, Mathur A, Ma Z, Carmichael J, da Silva C, Collins C, Hegde M. At-Risk Genomic Findings for Pediatric-Onset Disorders From Genome Sequencing vs Medically Actionable Gene Panel in Proactive Screening of Newborns and Children. JAMA Netw Open 2023; 6:e2326445. [PMID: 37523181 PMCID: PMC10391308 DOI: 10.1001/jamanetworkopen.2023.26445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Importance Although the clinical utility of genome sequencing for critically ill children is well recognized, its utility for proactive pediatric screening is not well explored. Objective To evaluate molecular findings from screening ostensibly healthy children with genome sequencing compared with a gene panel for medically actionable pediatric conditions. Design, Setting, and Participants This case series study was conducted among consecutive, apparently healthy children undergoing proactive genetic screening for pediatric disorders by genome sequencing (n = 562) or an exome-based panel of 268 genes (n = 606) from March 1, 2018, through July 31, 2022. Exposures Genetic screening for pediatric-onset disorders using genome sequencing or an exome-based panel of 268 genes. Main Outcomes and Measures Molecular findings indicative of genetic disease risk. Results Of 562 apparently healthy children (286 girls [50.9%]; median age, 29 days [IQR, 9-117 days]) undergoing screening by genome sequencing, 46 (8.2%; 95% CI, 5.9%-10.5%) were found to be at risk for pediatric-onset disease, including 22 children (3.9%) at risk for high-penetrance disorders. Sequence analysis uncovered molecular diagnoses among 32 individuals (5.7%), while copy number variant analysis uncovered molecular diagnoses among 14 individuals (2.5%), including 4 individuals (0.7%) with chromosome scale abnormalities. Overall, there were 47 molecular diagnoses, with 1 individual receiving 2 diagnoses; of the 47 potential diagnoses, 22 (46.8%) were associated with high-penetrance conditions. Pathogenic variants in medically actionable pediatric genes were found in 6 individuals (1.1%), constituting 12.8% (6 of 47) of all diagnoses. At least 1 pharmacogenomic variant was reported for 89.0% (500 of 562) of the cohort. In contrast, of 606 children (293 girls [48.3%]; median age, 26 days [IQR, 10-67 days]) undergoing gene panel screening, only 13 (2.1%; 95% CI, 1.0%-3.3%) resulted in potential childhood-onset diagnoses, a significantly lower rate than those screened by genome sequencing (P < .001). Conclusions and Relevance In this case series study, genome sequencing as a proactive screening approach for children, due to its unrestrictive gene content and technical advantages in comparison with an exome-based gene panel for medically actionable childhood conditions, uncovered a wide range of heterogeneous high-penetrance pediatric conditions that could guide early interventions and medical management.
Collapse
Affiliation(s)
| | - Ruby Liu
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Lora Bean
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Fen Guo
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Naga Guruju
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Rizwan Yousaf
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Kristina Fura
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Ephrem Chin
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Abhinav Mathur
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Zeqiang Ma
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | | | | | - Madhuri Hegde
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Oddsson A, Sulem P, Sveinbjornsson G, Arnadottir GA, Steinthorsdottir V, Halldorsson GH, Atlason BA, Oskarsson GR, Helgason H, Nielsen HS, Westergaard D, Karjalainen JM, Katrinardottir H, Fridriksdottir R, Jensson BO, Tragante V, Ferkingstad E, Jonsson H, Gudjonsson SA, Beyter D, Moore KHS, Thordardottir HB, Kristmundsdottir S, Stefansson OA, Rantapää-Dahlqvist S, Sonderby IE, Didriksen M, Stridh P, Haavik J, Tryggvadottir L, Frei O, Walters GB, Kockum I, Hjalgrim H, Olafsdottir TA, Selbaek G, Nyegaard M, Erikstrup C, Brodersen T, Saevarsdottir S, Olsson T, Nielsen KR, Haraldsson A, Bruun MT, Hansen TF, Steingrimsdottir T, Jacobsen RL, Lie RT, Djurovic S, Alfredsson L, Lopez de Lapuente Portilla A, Brunak S, Melsted P, Halldorsson BV, Saemundsdottir J, Magnusson OT, Padyukov L, Banasik K, Rafnar T, Askling J, Klareskog L, Pedersen OB, Masson G, Havdahl A, Nilsson B, Andreassen OA, Daly M, Ostrowski SR, Jonsdottir I, Stefansson H, Holm H, Helgason A, Thorsteinsdottir U, Stefansson K, Gudbjartsson DF. Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality. Nat Commun 2023; 14:3453. [PMID: 37301908 PMCID: PMC10257723 DOI: 10.1038/s41467-023-38951-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.
Collapse
Affiliation(s)
| | | | | | - Gudny A Arnadottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Henriette Svarre Nielsen
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Juha M Karjalainen
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Kristjan H S Moore
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Helga B Thordardottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernilla Stridh
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Laufey Tryggvadottir
- Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik, Iceland
- Faculty of Medicine, BMC, Laeknagardur, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Oleksandr Frei
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | | | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Hjalgrim
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Geir Selbaek
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tonsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mette Nyegaard
- Deptartment of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thorsten Brodersen
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kaspar Rene Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Thomas Folkmann Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | - Leonid Padyukov
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Johan Askling
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | | | - Alexandra Havdahl
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Bjorn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund, Sweden
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark Daly
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Deptartment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Agnar Helgason
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
29
|
Stenton SL, Campagna M, Philippakis A, O'Donnell-Luria A, Gelb MH. First-Tier Next Generation Sequencing for Newborn Screening: An Important Role for Biochemical Second-Tier Testing. GENETICS IN MEDICINE OPEN 2023; 1:100821. [PMID: 39238532 PMCID: PMC11377026 DOI: 10.1016/j.gimo.2023.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 09/07/2024]
Abstract
There is discussion of expanding newborn screening (NBS) through the use of genomic sequence data; yet, challenges remain in the interpretation of DNA variants. Population-level DNA variant databases are available, and it is possible to estimate the number of newborns who would be flagged as having a risk for a genetic disease (including rare variants of unknown significance, VUS) via next-generation sequencing (NGS) positive. Estimates of the number of newborns screened as NGS positive for monogenic recessive diseases were obtained by analysis of the Genome Aggregation Database (gnomAD). For a collection of diseases for which there is interest in NBS, we provided 2 estimates for the expected number of newborns screened as NGS positive. For a set of lysosomal storage diseases, we estimated that 100 to approximately 600 NGS screen positives would be found per disease per year in a large NBS laboratory (California), and this figure may be expected to rise to a limit of about 1000 if we account for the fact that gnomAD does not contain all worldwide variants. The number of positives would drop 2.5- to 10-fold if the 10 VUS with highest allele frequency were biochemically annotated as benign. It is proposed that a second-tier biochemical assay using the same dried blood spot could be carried out as a filter and as part of NBS to reduce the number of high-risk NGS positive newborns to a manageable number.
Collapse
Affiliation(s)
- Sarah L. Stenton
- Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | | | | | - Anne O'Donnell-Luria
- Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, WA
| |
Collapse
|
30
|
Exploring the Potential Challenges for Developing Generic Orphan Drugs for Rare Diseases: A Survey of US and European Markets. Value Health Reg Issues 2023; 35:87-94. [PMID: 36921379 DOI: 10.1016/j.vhri.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVES The US Food and Drug Administration in 1983 and the European Union's European Medicines Agency in 2000 implemented the orphan drug development program for rare diseases. The study aimed to find the potential challenges encountered by generic companies in developing generics for rare diseases. METHODS We performed a thematic analysis, which consists of qualitative and quantitative research. For data analysis of approved orphan drugs, we used statistical methods, and for the industrial case study, we selected 14 generic companies and conducted semistructured interviews related to 10 critical areas of drug development. RESULTS The orphan drug approvals were classified into 4 categories: the number of orphan approvals, pediatric claims, formulation, and therapeutic areas. We analyzed the approvals from 2001 to 2021; the Food and Drug Administration approved 815 drugs and European Medicines Agency approved 258 drugs. The pediatric orphan approvals were analyzed from 2010 to 2021; the average percentage of orphan drugs claim pediatric exclusivity during this period was found to be 31.8%. In formulation, we found the highest percentage of drugs belong to small molecules at 71%. In the therapeutic class, oncology drugs have a majority of approvals at 25%. The industrial case study responses revealed that the major challenge for drug development is the complexity of the disease at 21%, followed by the limited market at 17%. CONCLUSIONS There is a high need for generic orphan drugs in the developing countries. The generic companies can use the opportunities provided by health authorities for the benefit of both the company and the patient perspective.
Collapse
|
31
|
Deshwar AR, Yuki KE, Hou H, Liang Y, Khan T, Celik A, Ramani A, Mendoza-Londono R, Marshall CR, Brudno M, Shlien A, Meyn MS, Hayeems RZ, McKinlay BJ, Klentrou P, Wilson MD, Kyriakopoulou L, Costain G, Dowling JJ. Trio RNA sequencing in a cohort of medically complex children. Am J Hum Genet 2023; 110:895-900. [PMID: 36990084 PMCID: PMC10183368 DOI: 10.1016/j.ajhg.2023.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown. We performed GS plus RNA-seq from blood using an automated clinical-grade high-throughput platform on 97 individuals from 39 families where the proband was a child with unexplained medical complexity. RNA-seq was an effective adjunct test when paired with GS. It enabled clarification of putative splice variants in three families, but it did not reveal variants not already identified by GS analysis. Trio RNA-seq decreased the number of candidates requiring manual review when filtering for de novo dominant disease-causing variants, allowing for the exclusion of 16% of gene-expression outliers and 27% of allele-specific-expression outliers. However, clear diagnostic benefit from the trio design was not observed. Blood-based RNA-seq can facilitate genome analysis in children with suspected undiagnosed genetic disease. In contrast to DNA sequencing, the clinical advantages of a trio RNA-seq design may be more limited.
Collapse
|
32
|
Pan A, Scodellaro S, Khan T, Ushcatz I, Wu W, Curtis M, Cohen E, Cohn RD, Hayeems RZ, Meyn MS, Orkin J, Otal J, Reuter MS, Walker S, Scherer SW, Marshall CR, Cohn I, Costain G. Pharmacogenetic profiling via genome sequencing in children with medical complexity. Pediatr Res 2023; 93:905-910. [PMID: 36167815 PMCID: PMC10033400 DOI: 10.1038/s41390-022-02313-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/25/2022] [Accepted: 09/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Children with medical complexity (CMC) are a priority pediatric population, with high resource use and associated costs. Genome-wide sequencing is increasingly organized for CMC early in life as a diagnostic test. Polypharmacy becomes common as CMC age. Clinically relevant pharmacogenetic (PGx) information can be extracted from existing genome sequencing (GS) data via GS-PGx profiling. The role of GS-PGx profiling in the CMC population is unclear. METHODS Prescribed medications were extracted from care plans of 802 eligible CMC enrolled in a structured Complex Care Program over a 10-year period. Drug-gene associations were annotated using curated Clinical Pharmacogenetics Implementation Consortium data. GS-PGx profiling was then performed for a subset of 50 CMC. RESULTS Overall, 546 CMC (68%) were prescribed at least one medication with an established PGx association. In the GS-PGx subgroup, 24 (48%) carried variants in pharmacogenes with drug-gene guidelines for one or more of their current medications. All had findings of potential relevance to some medications, including 32 (64%) with variants in CYP2C19 that could affect their metabolism of proton-pump inhibitors. CONCLUSION GS-PGx profiling at the time of diagnostics-focused genetic testing could be an efficient way to incorporate precision prescribing practices into the lifelong care of CMC. IMPACT Polypharmacy and genetic test utilization are both common in children with medical complexity. The role of repurposing genome sequencing data for pharmacogenetic profiling in children with medical complexity was previously unclear. We identified a high rate of medication use with clinically relevant drug-gene associations in this priority pediatric population and demonstrated that relevant pharmacogenetic information can be extracted from their existing genome sequencing data. Pharmacogenetic profiling at the time of diagnostics-focused genetic testing could be an efficient way to incorporate precision prescribing practices into the lifelong care of children with medical complexity.
Collapse
Affiliation(s)
- Amy Pan
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sierra Scodellaro
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Tayyaba Khan
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Inna Ushcatz
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wendy Wu
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meredith Curtis
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eyal Cohen
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Edwin S.H. Leong Centre for Healthy Children, University of Toronto, Toronto, ON, Canada
| | - Ronald D Cohn
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Robin Z Hayeems
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Stephen Meyn
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Center for Human Genomics and Precision Medicine, University of Wisconsin, Madison, WI, USA
| | - Julia Orkin
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jaskiran Otal
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Susan Walker
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christian R Marshall
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Iris Cohn
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Pena SDJ, Tarazona-Santos E. Clinical genomics and precision medicine. Genet Mol Biol 2022; 45:e20220150. [PMID: 36218382 PMCID: PMC9555143 DOI: 10.1590/1678-4685-gmb-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Precision Medicine emerges from the genomic paradigm of health and disease. For precise molecular diagnoses of genetic diseases, we must analyze the Whole Exome (WES) or the Whole Genome (WGS). By not needing exon capture, WGS is more powerful to detect single nucleotide variants and copy number variants. In healthy individuals, we can observe monogenic highly penetrant variants, which may be causally responsible for diseases, and also susceptibility variants, associated with common polygenic diseases. But there is the major problem of penetrance. Thus, there is the question of whether it is worthwhile to perform WGS in all healthy individuals as a step towards Precision Medicine. The genetic architecture of disease is consistent with the fact that they are all polygenic. Moreover, ancestry adds another layer of complexity. We are now capable of obtaining Polygenic Risk Scores for all complex diseases using only data from new generation sequencing. Yet, review of available evidence does not at present favor the idea that WGS analyses are sufficiently developed to allow reliable predictions of the risk components for monogenic and polygenic hereditary diseases in healthy individuals. Probably, it is still better for WGS to remain reserved for the diagnosis of pathogenic variants of Mendelian diseases.
Collapse
Affiliation(s)
- Sérgio D. J. Pena
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil. ,Núcleo de Genética Médica, Belo Horizonte, MG, Brazil
| | - Eduardo Tarazona-Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Motelow JE, Lippa NC, Hostyk J, Feldman E, Nelligan M, Ren Z, Alkelai A, Milner JD, Gharavi AG, Tang Y, Goldstein DB, Kernie SG. Risk Variants in the Exomes of Children With Critical Illness. JAMA Netw Open 2022; 5:e2239122. [PMID: 36306130 PMCID: PMC9617179 DOI: 10.1001/jamanetworkopen.2022.39122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Diagnostic genetic testing can lead to changes in management in the pediatric intensive care unit. Genetic risk in children with critical illness but nondiagnostic exome sequencing (ES) has not been explored. OBJECTIVE To assess the association between loss-of-function (LOF) variants and pediatric critical illness. DESIGN, SETTING, AND PARTICIPANTS This genetic association study examined ES first screened for causative variants among 267 children at the Morgan Stanley Children's Hospital of NewYork-Presbyterian, of whom 22 were otherwise healthy with viral respiratory failure; 18 deceased children with bronchiolitis from the Office of the Chief Medical Examiner of New York City, of whom 14 were previously healthy; and 9990 controls from the Institute for Genomic Medicine at Columbia University Irving Medical Center. The ES data were generated between January 1, 2015, and December 31, 2020, and analyzed between January 1, 2017, and September 2, 2022. EXPOSURE Critical illness. MAIN OUTCOMES AND MEASURES Odds ratios and P values for genes and gene-sets enriched for rare LOF variants and the loss-of-function observed/expected upper bound fraction (LOEUF) score at which cases have a significant enrichment. RESULTS This study included 285 children with critical illness (median [range] age, 4.1 [0-18.9] years; 148 [52%] male) and 9990 controls. A total of 228 children (80%) did not receive a genetic diagnosis. After quality control (QC), 231 children harbored excess rare LOF variants in genes with a LOEUF score of 0.680 or less (intolerant genes) (P = 1.0 × 10-5). After QC, 176 children without a diagnosis harbored excess ultrarare LOF variants in intolerant genes but only in those without a known disease association (odds ratio, 1.8; 95% CI, 1.3-2.5). After QC, 25 children with viral respiratory failure harbored excess ultrarare LOF variants in intolerant genes but only in those without a known disease association (odds ratio, 2.8; 95% CI, 1.1-6.6). A total of 114 undiagnosed children were enriched for de novo LOF variants in genes without a known disease association (observed, 14; expected, 6.8; enrichment, 2.05). CONCLUSIONS AND RELEVANCE In this genetic association study, excess LOF variants were observed among critically ill children despite nondiagnostic ES. Variants lay in genes without a known disease association, suggesting future investigation may connect phenotypes to causative genes.
Collapse
Affiliation(s)
- Joshua E. Motelow
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Natalie C. Lippa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Evin Feldman
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Matthew Nelligan
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York
| | | | - Ali G. Gharavi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian, New York, New York
| | - Yingying Tang
- Molecular Genetics Laboratory, New York City Office of Chief Medical Examiner, New York, New York
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Steven G. Kernie
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
- NewYork-Presbyterian Hospital, New York, New York
| |
Collapse
|
35
|
Owen MJ, Lefebvre S, Hansen C, Kunard CM, Dimmock DP, Smith LD, Scharer G, Mardach R, Willis MJ, Feigenbaum A, Niemi AK, Ding Y, Van Der Kraan L, Ellsworth K, Guidugli L, Lajoie BR, McPhail TK, Mehtalia SS, Chau KK, Kwon YH, Zhu Z, Batalov S, Chowdhury S, Rego S, Perry J, Speziale M, Nespeca M, Wright MS, Reese MG, De La Vega FM, Azure J, Frise E, Rigby CS, White S, Hobbs CA, Gilmer S, Knight G, Oriol A, Lenberg J, Nahas SA, Perofsky K, Kim K, Carroll J, Coufal NG, Sanford E, Wigby K, Weir J, Thomson VS, Fraser L, Lazare SS, Shin YH, Grunenwald H, Lee R, Jones D, Tran D, Gross A, Daigle P, Case A, Lue M, Richardson JA, Reynders J, Defay T, Hall KP, Veeraraghavan N, Kingsmore SF. An automated 13.5 hour system for scalable diagnosis and acute management guidance for genetic diseases. Nat Commun 2022; 13:4057. [PMID: 35882841 PMCID: PMC9325884 DOI: 10.1038/s41467-022-31446-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/08/2022] [Indexed: 12/31/2022] Open
Abstract
While many genetic diseases have effective treatments, they frequently progress rapidly to severe morbidity or mortality if those treatments are not implemented immediately. Since front-line physicians frequently lack familiarity with these diseases, timely molecular diagnosis may not improve outcomes. Herein we describe Genome-to-Treatment, an automated, virtual system for genetic disease diagnosis and acute management guidance. Diagnosis is achieved in 13.5 h by expedited whole genome sequencing, with superior analytic performance for structural and copy number variants. An expert panel adjudicated the indications, contraindications, efficacy, and evidence-of-efficacy of 9911 drug, device, dietary, and surgical interventions for 563 severe, childhood, genetic diseases. The 421 (75%) diseases and 1527 (15%) effective interventions retained are integrated with 13 genetic disease information resources and appended to diagnostic reports ( https://gtrx.radygenomiclab.com ). This system provided correct diagnoses in four retrospectively and two prospectively tested infants. The Genome-to-Treatment system facilitates optimal outcomes in children with rapidly progressive genetic diseases.
Collapse
Affiliation(s)
- Mallory J. Owen
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Sebastien Lefebvre
- grid.422288.60000 0004 0408 0730Alexion Pharmaceuticals, Inc., Boston, MA 02210 USA
| | - Christian Hansen
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Chris M. Kunard
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - David P. Dimmock
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.419735.d0000 0004 0615 8415Keck Graduate Institute, Claremont, CA 91711 USA
| | - Laurie D. Smith
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - Gunter Scharer
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - Rebecca Mardach
- grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Mary J. Willis
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - Annette Feigenbaum
- grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Anna-Kaisa Niemi
- grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Yan Ding
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Luca Van Der Kraan
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Katarzyna Ellsworth
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Lucia Guidugli
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Bryan R. Lajoie
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | | | | | - Kevin K. Chau
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Yong H. Kwon
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Zhanyang Zhu
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Sergey Batalov
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Shimul Chowdhury
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.419735.d0000 0004 0615 8415Keck Graduate Institute, Claremont, CA 91711 USA
| | - Seema Rego
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - James Perry
- grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Mark Speziale
- grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Mark Nespeca
- grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Neuroscience, University of California San Diego, San Diego, CA 92093 USA
| | - Meredith S. Wright
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.419735.d0000 0004 0615 8415Keck Graduate Institute, Claremont, CA 91711 USA
| | | | | | - Joe Azure
- Fabric Genomics, Inc., Oakland, CA 94612 USA
| | - Erwin Frise
- Fabric Genomics, Inc., Oakland, CA 94612 USA
| | | | - Sandy White
- Fabric Genomics, Inc., Oakland, CA 94612 USA
| | - Charlotte A. Hobbs
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Sheldon Gilmer
- grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Gail Knight
- grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Albert Oriol
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Jerica Lenberg
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.419735.d0000 0004 0615 8415Keck Graduate Institute, Claremont, CA 91711 USA
| | - Shareef A. Nahas
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Kate Perofsky
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Kyu Kim
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Jeanne Carroll
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Nicole G. Coufal
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Erica Sanford
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - Kristen Wigby
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, San Diego, CA 92093 USA
| | - Jacqueline Weir
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Vicki S. Thomson
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Louise Fraser
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Seka S. Lazare
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Yoon H. Shin
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | | | - Richard Lee
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - David Jones
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Duke Tran
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Andrew Gross
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Patrick Daigle
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Anne Case
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Marisa Lue
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | | | - John Reynders
- grid.422288.60000 0004 0408 0730Alexion Pharmaceuticals, Inc., Boston, MA 02210 USA
| | - Thomas Defay
- grid.422288.60000 0004 0408 0730Alexion Pharmaceuticals, Inc., Boston, MA 02210 USA
| | - Kevin P. Hall
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA 92122 USA
| | - Narayanan Veeraraghavan
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Stephen F. Kingsmore
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.419735.d0000 0004 0615 8415Keck Graduate Institute, Claremont, CA 91711 USA
| |
Collapse
|
36
|
Bick D, Ahmed A, Deen D, Ferlini A, Garnier N, Kasperaviciute D, Leblond M, Pichini A, Rendon A, Satija A, Tuff-Lacey A, Scott RH. Newborn Screening by Genomic Sequencing: Opportunities and Challenges. Int J Neonatal Screen 2022; 8:40. [PMID: 35892470 PMCID: PMC9326745 DOI: 10.3390/ijns8030040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Newborn screening for treatable disorders is one of the great public health success stories of the twentieth century worldwide. This commentary examines the potential use of a new technology, next generation sequencing, in newborn screening through the lens of the Wilson and Jungner criteria. Each of the ten criteria are examined to show how they might be applied by programmes using genomic sequencing as a screening tool. While there are obvious advantages to a method that can examine all disease-causing genes in a single assay at an ever-diminishing cost, implementation of genomic sequencing at scale presents numerous challenges, some which are intrinsic to screening for rare disease and some specifically linked to genomics-led screening. In addition to questions specific to routine screening considerations, the ethical, communication, data management, legal, and social implications of genomic screening programmes require consideration.
Collapse
Affiliation(s)
- David Bick
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Arzoo Ahmed
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Dasha Deen
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | | | - Dalia Kasperaviciute
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Mathilde Leblond
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Amanda Pichini
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Augusto Rendon
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Aditi Satija
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Alice Tuff-Lacey
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Richard H. Scott
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| |
Collapse
|
37
|
A Formative Study of the Implementation of Whole Genome Sequencing in Northern Ireland. Genes (Basel) 2022; 13:genes13071104. [PMID: 35885887 PMCID: PMC9316942 DOI: 10.3390/genes13071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The UK 100,000 Genomes Project was a transformational research project which facilitated whole genome sequencing (WGS) diagnostics for rare diseases. We evaluated experiences of introducing WGS in Northern Ireland, providing recommendations for future projects. Methods: This formative evaluation included (1) an appraisal of the logistics of implementing and delivering WGS, (2) a survey of participant self-reported views and experiences, (3) semi-structured interviews with healthcare staff as key informants who were involved in the delivery of WGS and (4) a workshop discussion about interprofessional collaboration with respect to molecular diagnostics. Results: We engaged with >400 participants, with detailed reflections obtained from 74 participants including patients, caregivers, key National Health Service (NHS) informants, and researchers (patient survey n = 42; semi-structured interviews n = 19; attendees of the discussion workshop n = 13). Overarching themes included the need to improve rare disease awareness, education, and support services, as well as interprofessional collaboration being central to an effective, mainstreamed molecular diagnostic service. Conclusions: Recommendations for streamlining precision medicine for patients with rare diseases include administrative improvements (e.g., streamlining of the consent process), educational improvements (e.g., rare disease training provided from undergraduate to postgraduate education alongside genomics training for non-genetic specialists) and analytical improvements (e.g., multidisciplinary collaboration and improved computational infrastructure).
Collapse
|
38
|
[Research advances in the clinical genetics of leukodystrophy in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:711-716. [PMID: 35762440 PMCID: PMC9250391 DOI: 10.7499/j.issn.1008-8830.2202020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Leukodystrophy (LD) is a group of genetic heterogeneous diseases characterized by primary abnormalities in glial cells and myelin sheath, and it is a common nervous system disease in children and has significant genotype-phenotype correlation. In recent years, the improvement in high-throughput sequencing has changed the diagnostic and therapeutic mode of LD, and elaborative phenotype analysis, such as the collection of natural history and multimodal neuroimaging evaluation during development, also provides important information for subsequent genetic diagnosis. This article reviews LD from the perspective of clinical genetics, in order to improve the awareness of this disease among pediatricians in China.
Collapse
|
39
|
Del Borrello G, Miano M, Micalizzi C, Lupia M, Ceccherini I, Grossi A, Cavalli A, Gustincich S, Rusmini M, Faraci M, Dell'Orso G, Ramenghi U, Mesini A, Ricci E, Schiavone M, Di Iorgi N, Dufour C. Sirolimus Restores Erythropoiesis and Controls Immune Dysregulation in a Child With Cartilage-Hair Hypoplasia: A Case Report. Front Immunol 2022; 13:893000. [PMID: 35663969 PMCID: PMC9160192 DOI: 10.3389/fimmu.2022.893000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Cartilage-hair hypoplasia (CHH) is a syndromic immunodeficiency characterized by metaphyseal dysplasia, cancer predisposition, and varying degrees of anemia. It may present as severe combined immunodeficiency in infancy, or slowly progress until fully manifesting in late adolescence/adulthood. No targeted treatment is currently available, and patients are usually managed with supportive measures, or are offered a bone marrow transplant if the clinical phenotype is severe and a suitable donor is available. We report the case of a young girl presenting with transfusion-dependent erythropoietic failure and immunological features resembling autoimmune lymphoproliferative syndrome who responded well to empirical sirolimus. She later developed a marked growth delay, which was ultimately attributed to metaphyseal dysplasia. A diagnosis of CHH was reached through whole-genome sequencing (WGS), after a less sensitive genetic diagnostic strategy failed. The patient eventually underwent a haploidentical bone marrow transplant due to progressive combined immunodeficiency manifested as cryptococcal meningoencephalitis. This case illustrates the potential role of sirolimus in correcting anemia and partially controlling the immune aberrations associated with CHH, and serves as a reminder of the invaluable role of WGS in diagnosing patients with complex and atypical presentations.
Collapse
Affiliation(s)
- Giovanni Del Borrello
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Concetta Micalizzi
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Lupia
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Marta Rusmini
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Dell'Orso
- Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Ugo Ramenghi
- Haematology Unit, Regina Margherita Hospital, Turin, Italy.,Department of Public Health and Pediatrics, School of Medicine, University of Turin, Turin, Italy
| | - Alessio Mesini
- Covid Hospital, Unità Operativa di Malattie Infettive, Dipartimento di Scienze Pediatriche, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Erica Ricci
- Covid Hospital, Unità Operativa di Malattie Infettive, Dipartimento di Scienze Pediatriche, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | | | - Natascia Di Iorgi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy.,Department of Pediatrics, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
40
|
Rajan V, Terry SF, Green J, Ortega J. Diagnostic Yield and Cost-Benefit When Utilizing Clinical Whole Genome Sequencing. Genet Test Mol Biomarkers 2022; 26:253-254. [PMID: 35593883 DOI: 10.1089/gtmb.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vani Rajan
- Genetic Alliance, Damascus, Maryland, USA
| | | | | | | |
Collapse
|
41
|
Coelho AVC, Mascaro-Cordeiro B, Lucon DR, Nóbrega MS, Reis RDS, de Alexandre RB, Moura LMS, de Oliveira GS, Guedes RLM, Caraciolo MP, Zurro NB, Cervato MC, Oliveira JB. The Brazilian Rare Genomes Project: Validation of Whole Genome Sequencing for Rare Diseases Diagnosis. Front Mol Biosci 2022; 9:821582. [PMID: 35586190 PMCID: PMC9108541 DOI: 10.3389/fmolb.2022.821582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Rare diseases affect up to 13.2 million individuals in Brazil. The Brazilian Rare Genomes Project is envisioned to further the implementation of genomic medicine into the Brazilian public healthcare system. Here we report the validation results of a whole genome sequencing (WGS) procedure for implementation in clinical laboratories. In addition, we report data quality for the first 1,200 real-world patients sequenced. We sequenced a well-characterized group of 76 samples, including seven gold standard genomes, using a PCR-free WGS protocol on Illumina Novaseq 6,000 equipment. We compared the observed variant calls with their expected calls, observing good concordance for single nucleotide variants (SNVs; mean F-measure = 99.82%) and indels (mean F-measure = 99.57%). Copy number variants and structural variants events detection performances were as expected (F-measures 96.6% and 90.3%, respectively). Our WGS protocol presented excellent intra-assay reproducibility (coefficients of variation ranging between 0.03% and 0.20%) and inter-assay reproducibility (coefficients of variation ranging between 0.02% and 0.09%). Limitations of the WGS protocol include the inability to confidently detect variants such as uniparental disomy, balanced translocations, repeat expansion variants, and low-level mosaicism. In summary, the observed performance of the WGS protocol was in accordance with that seen in the best centers worldwide. The Rare Genomes Project is an important initiative to bring pivotal improvements to the quality of life of the affected individuals.
Collapse
|
42
|
Demarest S, Calhoun J, Eschbach K, Yu HC, Mirsky D, Angione K, Shaikh TH, Carvill GL, Benke TA, Gunti J, Vanderveen G. Whole-exome sequencing and adrenocorticotropic hormone therapy in individuals with infantile spasms. Dev Med Child Neurol 2022; 64:633-640. [PMID: 35830182 DOI: 10.1111/dmcn.15109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
AIM To identify additional genes associated with infantile spasms using a cohort with defined infantile spasms. METHOD Whole-exome sequencing (WES) was performed on 21 consented individuals with infantile spasms and their unaffected parents (a trio-based study). Clinical history and imaging were reviewed. Potentially deleterious exonic variants were identified and segregated. To refine potential candidates, variants were further prioritized on the basis of evidence for relevance to disease phenotype or known associations with infantile spasms, epilepsy, or neurological disease. RESULTS Likely pathogenic de novo variants were identified in NR2F1, GNB1, NEUROD2, GABRA2, and NDUFAF5. Suggestive dominant and recessive candidate variants were identified in PEMT, DYNC1I1, ASXL1, RALGAPB, and STRADA; further confirmation is required to support their relevance to disease etiology. INTERPRETATION This study supports the utility of WES in uncovering the genetic etiology in undiagnosed individuals with infantile spasms with an overall yield of five out of 21. High-priority candidates were identified in an additional five individuals. WES provides additional support for previously described disease-associated genes and expands their already broad mutational and phenotypic spectrum.
Collapse
Affiliation(s)
- Scott Demarest
- Children's Hospital Colorado, Aurora, CO, USA.,Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Jeff Calhoun
- Ken and Ruth Davee Department of Neurology, Northwestern University, School of Medicine, Chicago, IL, USA
| | - Krista Eschbach
- Children's Hospital Colorado, Aurora, CO, USA.,Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Hung-Chun Yu
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - David Mirsky
- Children's Hospital Colorado, Aurora, CO, USA.,Department of Radiology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Katie Angione
- Children's Hospital Colorado, Aurora, CO, USA.,Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Tamim H Shaikh
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University, School of Medicine, Chicago, IL, USA.,Department of Pharmacology, Northwestern University, School of Medicine, Chicago, IL, USA.,Department of Pediatrics, Northwestern University, School of Medicine, Chicago, IL, USA
| | - Tim A Benke
- Children's Hospital Colorado, Aurora, CO, USA.,Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA.,Department of Pharmacology, University of Colorado, School of Medicine, Aurora, CO, USA.,Department of Neurology, University of Colorado, School of Medicine, Aurora, CO, USA.,Department of Otolaryngology, University of Colorado, School of Medicine, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
43
|
Wang Q, Tang X, Yang K, Huo X, Zhang H, Ding K, Liao S. Deep phenotyping and whole-exome sequencing improved the diagnostic yield for nuclear pedigrees with neurodevelopmental disorders. Mol Genet Genomic Med 2022; 10:e1918. [PMID: 35266334 PMCID: PMC9034680 DOI: 10.1002/mgg3.1918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background Neurodevelopmental disorders, a group of early‐onset neurological disorders with significant clinical and genetic heterogeneity, remain a diagnostic challenge for clinical genetic evaluation. Therefore, we assessed the diagnostic yield by combining standard phenotypes and whole‐exome sequencing in families with these disorders that were “not yet diagnosed” by the traditional testing methods. Methods Using a standardized vocabulary of phenotypic abnormalities from human phenotype ontology (HPO), we performed deep phenotyping for 45 “not yet diagnosed” pedigrees to characterize multiple clinical features extracted from Chinese electronic medical records (EMRs). By matching HPO terms with known human diseases and phenotypes from model organisms, together with whole‐exome sequencing data, we prioritized candidate mutations/genes. We made probable genetic diagnoses for the families. Results We obtained a diagnostic yield of 29% (13 out of 45) with probably genetic diagnosis, of which compound heterozygosity and de novo mutations accounted for 77% (10/13) of the diagnosis. Of note, these pedigrees are accompanied by a more significant number of non‐neurological features. Conclusions Deep phenotyping and whole‐exome sequencing improve the etiological evaluation for neurodevelopmental disorders in the clinical setting.
Collapse
Affiliation(s)
- Qingqing Wang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| | - Xia Tang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| | - Ke Yang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| | - Xiaodong Huo
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| | - Hui Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, China
| |
Collapse
|
44
|
Austin-Tse CA, Jobanputra V, Perry DL, Bick D, Taft RJ, Venner E, Gibbs RA, Young T, Barnett S, Belmont JW, Boczek N, Chowdhury S, Ellsworth KA, Guha S, Kulkarni S, Marcou C, Meng L, Murdock DR, Rehman AU, Spiteri E, Thomas-Wilson A, Kearney HM, Rehm HL. Best practices for the interpretation and reporting of clinical whole genome sequencing. NPJ Genom Med 2022; 7:27. [PMID: 35395838 PMCID: PMC8993917 DOI: 10.1038/s41525-022-00295-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.
Collapse
Affiliation(s)
- Christina A Austin-Tse
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Vaidehi Jobanputra
- Molecular Diagnostics Laboratory, New York Genome Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Eric Venner
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ted Young
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah Barnett
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Nicole Boczek
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shimul Chowdhury
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | | | - Saurav Guha
- Molecular Diagnostics Laboratory, New York Genome Center, New York, NY, USA
| | - Shashikant Kulkarni
- Baylor Genetics and Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cherisse Marcou
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linyan Meng
- Baylor Genetics and Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David R Murdock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Atteeq U Rehman
- Molecular Diagnostics Laboratory, New York Genome Center, New York, NY, USA
| | - Elizabeth Spiteri
- Department of Pathology, Stanford Medicine, Stanford University, Stanford, CA, USA
| | | | - Hutton M Kearney
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
45
|
Muriello M, Basel D. Rapid Exome and Genome Sequencing in the Intensive Care Unit. Crit Care Clin 2022; 38:173-184. [DOI: 10.1016/j.ccc.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Ahmed Z, Renart EG, Zeeshan S. Investigating underlying human immunity genes, implicated diseases and their relationship to COVID-19. Per Med 2022; 19:229-250. [PMID: 35261286 PMCID: PMC8919975 DOI: 10.2217/pme-2021-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aim: A human immunogenetics variation study was conducted in samples collected from diverse COVID-19 populations. Materials & methods: Whole-genome and whole-exome sequencing (WGS/WES), data processing, analysis and visualization pipeline were applied to identify variants associated with genes of interest. Results: A total of 2886 mutations were found across the entire set of 13 genomes. Functional annotation of the gene variants revealed mutation type and protein change. Many variants were found to be biologically implicated in COVID-19. The involvement of these genes was also found in multiple other diseases. Conclusion: The analysis determined that ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI had functional implications and TMPRSS4 was the gene most altered in virally infected patients. The quest to establish an understanding of the genetics underlying COVID-19 is a central focus of life sciences today. COVID-19 is triggered by SARS-CoV-2, a single-stranded RNA respiratory virus. Several clinical-genomics studies have emerged positing different human gene mutations occurring due to COVID-19. A global analysis of these genes was conducted targeting major components of the immune system to identify possible variations likely to be involved in COVID-19 predisposition. Gene-variant analysis was performed on whole-genome sequencing samples collected from diverse populations. ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI were found to have functional implications and TMPRSS4 may have a role in the severity of clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical & Health Sciences, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Eduard Gibert Renart
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
47
|
Abstract
The role of genomic sequencing (exome and whole genome) in the neonatal intensive care unit (NICU) has changed with advances in technology and bioinformatics in the last decade. Evidence from 18 retrospective and prospective studies of exome and whole genome sequencing in pediatric intensive care settings has demonstrated an average diagnostic yield of close to 40% and an immediate impact on clinical management in more than 20% of patients tested, and the highest clinical utility was in the perinatal setting. Genomic sequencing, when indicated, should be the standard of care for patients in the NICU.
Collapse
Affiliation(s)
- Michael Muriello
- Division of Genetics, Medical College of Wisconsin, 9000 W Wisconsin Avenue, MS 716, Milwaukee, WI 53226, USA.
| |
Collapse
|
48
|
High-risk phenotypes of genetic disease in a Neonatal Intensive Care Unit population. Chin Med J (Engl) 2022; 135:625-627. [PMID: 35026772 PMCID: PMC8920417 DOI: 10.1097/cm9.0000000000001959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Guo J, Liu P, Chen L, Lv H, Li J, Yu W, Xu K, Zhu Y, Wu Z, Tian Z, Jin Y, Yang R, Gu W, Zhang S. National Rare Diseases Registry System (NRDRS): China's first nation-wide rare diseases demographic analyses. Orphanet J Rare Dis 2021; 16:515. [PMID: 34922584 PMCID: PMC8684272 DOI: 10.1186/s13023-021-02130-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/28/2021] [Indexed: 12/04/2022] Open
Abstract
Background China has made tremendous progresses in serving the needs of its people living with rare diseases in the past decade, especially over the last 5 years. The Chinese government’s systematic approach included a series of coordinated initiatives, amongst these are: forming the Rare Disease Expert Committee (2016), funding the “Rare Diseases Cohort Study” (2016–2020), and publishing its first “Rare Disease Catalog” (2018). Herein, we present the National Rare Diseases Registry System (NRDRS)—China’s first national rare diseases registry, and the analysis of cases registered in the first 5 years ending Dec 31, 2020.
Results The total 62,590 cases covered 166 disease/disease types, forming 183 disease cohorts. The data from nearly 22% of them (13,947 cases) is also linked to valuable biological samples. The average age of definitive diagnosis was 30.88 years; 36.07% of cases were under 18 years of age. Regional distribution analysis showed 60% of cases were from the more developed, wealthier East and North China, suggesting the local availability of quality care and patients’ financial status were key access factors. Finally, 82.04% of cases were registered from the five clinical departments: Neurology, Endocrine, Hematology, Cardiovascular, and Nephrology, suggesting that either these are most affected by rare diseases, or that there were disease non-specific ascertainment factors. Conclusions The preliminary analysis of the first 5-year’s data provides unique and valuable insight on rare disease distribution in China, and higlights the directions for enhancing equity, scale and utility. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02130-7.
Collapse
Affiliation(s)
- Jian Guo
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.,Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Peng Liu
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Limeng Chen
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.,Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haohan Lv
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China
| | - Jie Li
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China
| | - Weichao Yu
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China
| | - Kaifeng Xu
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.,Department of Respiratory and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yicheng Zhu
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.,Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhihong Wu
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhuang Tian
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.,Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ye Jin
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Rachel Yang
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China. .,China Alliance for Rare Diseases (CHARD), Beijing, China.
| | - Weihong Gu
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China.
| | - Shuyang Zhang
- The Administrative Group of National Rare Diseases Registry System of China, Beijing, 100730, China. .,Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | | |
Collapse
|
50
|
Schroeder BE, Gonzaludo N, Everson K, Than KS, Sullivan J, Taft RJ, Belmont JW. The diagnostic trajectory of infants and children with clinical features of genetic disease. NPJ Genom Med 2021; 6:98. [PMID: 34811359 PMCID: PMC8609026 DOI: 10.1038/s41525-021-00260-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
We characterized US pediatric patients with clinical indicators of genetic diseases, focusing on the burden of disease, utilization of genetic testing, and cost of care. Curated lists of diagnosis, procedure, and billing codes were used to identify patients with clinical indicators of genetic disease in healthcare claims from Optum's de-identified Clinformatics® Database (13,076,038 unique patients). Distinct cohorts were defined to represent permissive and conservative estimates of the number of patients. Clinical phenotypes suggestive of genetic diseases were observed in up to 9.4% of pediatric patients and up to 44.7% of critically-ill infants. Compared with controls, patients with indicators of genetic diseases had higher utilization of services (e.g., mean NICU length of stay of 31.6d in a cohort defined by multiple congenital anomalies or neurological presentations compared with 10.1d for patients in the control population (P < 0.001)) and higher overall costs. Very few patients received any genetic testing (4.2-8.4% depending on cohort criteria). These results highlight the substantial proportion of the population with clinical features associated with genetic disorders and underutilization of genetic testing in these populations.
Collapse
Affiliation(s)
| | - Nina Gonzaludo
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA USA
| | | | | | | | - Ryan J. Taft
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA USA
| | - John W. Belmont
- grid.185669.50000 0004 0507 3954Illumina, Inc., San Diego, CA USA
| |
Collapse
|