1
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Exploring the Genetic Causality of Discordant Phenotypes in Familial Apparently Balanced Translocation Cases Using Whole Exome Sequencing. Genes (Basel) 2022; 14:genes14010082. [PMID: 36672823 PMCID: PMC9859009 DOI: 10.3390/genes14010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) are usually not associated with a phenotype; however, rarely, ABTs segregate with discordant phenotypes in family members carrying identical rearrangements. The current study was a follow-up investigation of four familial ABTs, where whole exome sequencing (WES) was implemented as a diagnostic tool to identify the underlying genetic aetiology of the patients' phenotypes. Data were analysed using an in-house bioinformatics pipeline alongside VarSome Clinical. WES findings were validated with Sanger sequencing, while the impact of splicing and missense variants was assessed by reverse-transcription PCR and in silico tools, respectively. Novel candidate variants were identified in three families. In family 1, it was shown that the de novo pathogenic STXBP1 variant (NM_003165.6:c.1110+2T>G) affected splicing and segregated with the patient's phenotype. In family 2, a likely pathogenic TUBA1A variant (NM_006009.4:c.875C>T, NP_006000.2:p.(Thr292Ile)) could explain the patient's symptoms. In family 3, an SCN1A variant of uncertain significance (NM_006920.6:c.5060A>G, NP_008851.3:p.(Glu1687Gly)) required additional evidence to sufficiently support causality. This first report of WES application in familial ABT carriers with discordant phenotypes supported our previous findings describing such rearrangements as coincidental. Thus, WES can be recommended as a complementary test to find the monogenic cause of aberrant phenotypes in familial ABT carriers.
Collapse
|
4
|
Breakpoint mapping at nucleotide resolution in X-autosome balanced translocations associated with clinical phenotypes. Eur J Hum Genet 2019; 27:760-771. [PMID: 30700833 DOI: 10.1038/s41431-019-0341-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Precise breakpoint mapping of balanced chromosomal rearrangements is crucial to identify disease etiology. Ten female patients with X-autosome balanced translocations associated with phenotypic alterations were evaluated, by mapping and sequencing their breakpoints. The rearrangements' impact on the expression of disrupted genes, and inferred mechanisms of formation in each case were assessed. For four patients that presented one of the chromosomal breaks in heterochromatic and highly repetitive segments, we combined cytogenomic methods and short-read sequencing to characterize, at nucleotide resolution, breakpoints that occurred in reference genome gaps. Most of rearrangements were possibly formed by non-homologous end joining and have breakpoints at repeat elements. Seven genes were found to be disrupted in six patients. Six of the affected genes showed altered expression, and the functional impairment of three of them were considered pathogenic. One gene disruption was considered potentially pathogenic, and three had uncertain clinical significance. Four patients presented no gene disruptions, suggesting other pathogenic mechanisms. Four genes were considered potentially affected by position effect and the expression abrogation of one of them was confirmed. This study emphasizes the importance of breakpoint-junction characterization at nucleotide resolution in balanced rearrangements to reveal genetic mechanisms associated with the patients' phenotypes, mechanisms of formation that originated the rearrangements, and genomic nature of disrupted DNA sequences.
Collapse
|
5
|
Fève K, Foissac S, Pinton A, Mompart F, Esquerré D, Faraut T, Yerle M, Riquet J. Identification of a t(3;4)(p1.3;q1.5) translocation breakpoint in pigs using somatic cell hybrid mapping and high-resolution mate-pair sequencing. PLoS One 2017; 12:e0187617. [PMID: 29121641 PMCID: PMC5679599 DOI: 10.1371/journal.pone.0187617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/23/2017] [Indexed: 02/02/2023] Open
Abstract
Reciprocal translocations are the most frequently occurring constitutional structural rearrangements in mammalian genomes. In phenotypically normal pigs, an incidence of 1/200 is estimated for such rearrangements. Even if constitutional translocations do not necessarily induce defects and diseases, they are responsible for significant economic losses in domestic animals due to reproduction failures. Over the last 30 years, advances in molecular and cytogenetic technologies have led to major improvements in the resolution of the characterization of translocation events. Characterization of translocation breakpoints helps to decipher the mechanisms that lead to such rearrangements and the functions of the genes that are involved in the translocation. Here, we describe the fine characterization of a reciprocal translocation t(3;4) (p1.3;q1.5) detected in a pig line. The breakpoint was identified at the base-pair level using a positional cloning and chromosome walking strategy in somatic cell hybrids that were generated from an animal that carries this translocation. We show that this translocation occurs within the ADAMTSL4 gene and results in a loss of expression in homozygous carriers. In addition, by taking this translocation as a model, we used a whole-genome next-generation mate-pair sequencing approach on pooled individuals to evaluate this strategy for high-throughput screening of structural rearrangements.
Collapse
Affiliation(s)
- Katia Fève
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Sylvain Foissac
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Florence Mompart
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Martine Yerle
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
6
|
Zhang S, Lei C, Wu J, Zhou J, Sun H, Fu J, Sun Y, Sun X, Lu D, Zhang Y. The establishment and application of preimplantation genetic haplotyping in embryo diagnosis for reciprocal and Robertsonian translocation carriers. BMC Med Genomics 2017; 10:60. [PMID: 29041973 PMCID: PMC5646120 DOI: 10.1186/s12920-017-0294-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/02/2017] [Indexed: 01/11/2023] Open
Abstract
Background Preimplantation genetic diagnosis (PGD) is now widely used to select embryos free of chromosomal copy number variations (CNV) from chromosome balanced translocation carriers. However, it remains a difficulty to distinguish in embryos between balanced and structurally normal chromosomes efficiently. Methods For this purpose, genome wide preimplantation genetic haplotyping (PGH) analysis was utilized based on single nucleotide polymorphism (SNP) microarray. SNPs that are heterozygous in the carrier and, homozygous in the carrier’s partner and carrier’s family member are defined as informative SNPs. The haplotypes including the breakpoint regions, the whole chromosomes involved in the translocation and the corresponding homologous chromosomes are established with these informative SNPs in the couple, reference and embryos. In order to perform this analysis, a reference either a translocation carrier’s family member or one unbalanced embryo is required. The positions of translocation breakpoints are identified by molecular karyotypes of unbalanced embryos. The recombination of breakpoint regions in embryos could be identified. Results Eleven translocation families were enrolled. 68 blastocysts were analyzed, in which 42 were unbalanced or aneuploid and the other 26 were balanced or normal chromosomes. Thirteen embryos were transferred back to patients. Prenatal cytogenetic analysis of amniotic fluid cells was performed. The results predicted by PGH and karyotypes were totally consistent. Conclusions With the successful clinical application, we demonstrate that PGH was a simple, efficient, and popularized method to distinguish between balanced and structurally normal chromosome embryos. Electronic supplementary material The online version of this article (10.1186/s12920-017-0294-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.,Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Haiyan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Yijuan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China. .,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.
| | - Daru Lu
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China. .,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.
| |
Collapse
|
7
|
Zhang S, Lei C, Wu J, Sun H, Yang Y, Zhang Y, Sun X. A Retrospective Study of Cytogenetic Results From Amniotic Fluid in 5328 Fetuses With Abnormal Obstetric Sonographic Findings. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:1809-1817. [PMID: 28523762 DOI: 10.1002/jum.14215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the diagnostic utility of karyotype analysis of amniotic fluid for fetuses with abnormal sonographic findings and to determine the detection rates of abnormal karyotypes. METHODS We conducted a retrospective study of 5328 fetuses with abnormal sonographic findings in the first or second trimester enrolled from October 1998 and September 2015. Cytogenetic results from amniotic fluid were obtained in all of these pregnancies. Sonographic abnormalities were stratified according to anatomic system involvement. RESULTS A total of 238 abnormal karyotypes were encountered in the 5328 fetuses (4.5%). The highest rate of chromosomal anomalies was in fetuses with structural abnormalities in multiple organ systems (25.7%), followed by an abnormal amniotic fluid volume (7.9%), structural abnormalities in a single system (7.3%), multiple nonstructural anomalies (7.2%), isolated placental abnormalities (7.1%), and isolated soft markers for aneuploidy (2.4%; P < .01). Among abnormalities in a single system, gastrointestinal and neck/body fluids had particularly high detection rates (26.1% and 26.2%, respectively). A detailed analysis suggested that the probability of an abnormal karyotype among every anatomic system was statistically significant (P < .01). This study identified several common indications with extremely high abnormal rates: duodenal atresia (53.1%), holoprosencephaly (48.8%), fetal hydrops (39.5%), cerebellar hypoplasia (32.0%), cystic hygroma (31.5%), absent/short nasal bone (11.0%), and bilateral choroid plexus cysts (8.5%). CONCLUSIONS Cytogenetic analysis has important clinical utility in a wide range of settings, such as prenatal diagnosis. For fetuses with indications of a highly abnormal detection rate, karyotype analysis should be suggested.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiyan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yuezhou Yang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Xin Y, Zhou J, Ding Q, Chen C, Wu X, Wang X, Wang H, Jiang X. A pericentric inversion of chromosome X disruptingF8and resulting in haemophilia A. J Clin Pathol 2017; 70:656-661. [DOI: 10.1136/jclinpath-2016-204050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/04/2022]
|
9
|
Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing. PLoS One 2017; 12:e0169935. [PMID: 28072833 PMCID: PMC5225008 DOI: 10.1371/journal.pone.0169935] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged as an efficacious methodology for precise detection of translocation breakpoints. However, studies so far have mainly focused on de novo translocations. The present study focuses specifically on familial cases in order to shed some light to this diagnostic dilemma. Whole-genome mate-pair sequencing (WG-MPS) was applied to map the breakpoints in nine two-way ABT carriers from four families. Translocation breakpoints and patient-specific structural variants were validated by Sanger sequencing and quantitative Real Time PCR, respectively. Identical sequencing patterns and breakpoints were identified in affected and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any pathogenic mutations or unique variants in the affected individuals that could explain the phenotypic differences between carriers of the same translocations. In conclusion, we suggest that NGS-based methods, such as WG-MPS, can be successfully used for detailed mapping of translocation breakpoints, which can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been excluded. Future whole-exome or whole-genome sequencing will potentially reveal unidentified mutations in the patients underlying the discordant phenotypes within each family. In addition, larger studies are needed to determine the exact percentage for phenotypic risk in families with ABTs.
Collapse
|
10
|
Arumugam B, Samuel CR, Thyagarajan SS. Balanced Autosomal Translocations in Two Women Reporting Recurrent Miscarriage. J Clin Diagn Res 2016; 10:GD01-GD03. [PMID: 28208880 DOI: 10.7860/jcdr/2016/23828.9075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022]
Abstract
Spontaneous abortion or loss of fetus prior to 20 weeks of gestation is observed in 15-20% of clinically recognized pregnancies. Recurrent Miscarriage (RM) is defined as three or more consecutive pregnancy losses and it affects 1-2% of women. Parental chromosomal rearrangements account for 2-5% of RM. This report describes two couples with a clinical history of RM who were subjected to conventional cytogenetic analysis to ascertain the chromosomal aetiology. Analysis of GTG-banded metaphases obtained from cultured lymphocytes at approximately 500-band resolution revealed balanced translocation in the female spouses as 46,XX,t(8;11)(p11.2;q23.3) in BR27W and 46,XX,t(5;7)(p15.1;q32) pat in BR49W. Both the male partners exhibited 46,XY karyotype. Fluorescent In Situ Hybridization (FISH) analysis was subsequently carried out to confirm the balanced translocation using suitable whole chromosome paint probes. These balanced chromosomal abnormalities in the parents could be responsible for the repeated fetal losses. Hence, karyotype analysis should be a mandatory etiological investigation for couples with RM towards genetic counselling. Disruption of critical genes through these rearrangements could also underlie the pregnancy outcome.
Collapse
Affiliation(s)
- Brindha Arumugam
- Research Scholar, Department of Genetics, Dr. ALM PG IBMS, University of Madras , Chennai, Tamilnadu, India
| | - Chandra R Samuel
- Associate Professor, Department of Genetics, Dr. ALM PG IBMS, University of Madras , Chennai, Tamilnadu, India
| | | |
Collapse
|
11
|
Christiaens AB, Deprez PML, Amyere M, Mendola A, Bernard P, Gillerot Y, Clapuyt P, Godfraind C, Lengelé BG, Vikkula M, Nyssen-Behets C. Isolated bilateral transverse agenesis of the distal segments of the lower limbs at the level of the knee joint in a human fetus. Am J Med Genet A 2015; 170A:523-530. [PMID: 26544544 DOI: 10.1002/ajmg.a.37462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 10/15/2015] [Indexed: 11/12/2022]
Abstract
Congenital limb anomalies occur in Europe with a prevalence of 3.81/1,000 births and can have a major impact on patients and their families. The present study concerned a female fetus aborted at 23 weeks of gestation because she was affected by non-syndromic bilateral absence of the zeugopod (leg) and autopod (foot). Autopsy of the aborted fetus, X-ray imaging, MRI, and histochemical analysis showed that the distal extremity of both femurs was continued by a cartilage-like mass, without joint cavitation. Karyotype was normal. Moreover, no damaging variant was detected by exome sequencing. The limb characteristics of the fetus, which to our knowledge have not yet been reported in humans, suggest a developmental arrest similar to anomalies described in chicks following surgical experiments on the apical ectodermal ridge of the lower limbs.
Collapse
Affiliation(s)
- Antoine B Christiaens
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre M L Deprez
- Ecole de Kinésiologie et Récréologie, Faculté des Sciences de la Santé et Services Communautaires, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Mustapha Amyere
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Antonella Mendola
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre Bernard
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Yves Gillerot
- Centre for Human Genetics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe Clapuyt
- Department of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Godfraind
- Laboratory of Pathology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Benoît G Lengelé
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Nyssen-Behets
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
12
|
Smetanina NS, Mersiyanova IV, Kurnikova MA, Ovsyannikova GS, Hachatryan LA, Bobrynina VO, Maschan MA, Novichkova GA, Lipton JM, Maschan AA. Clinical and genomic heterogeneity of Diamond Blackfan anemia in the Russian Federation. Pediatr Blood Cancer 2015; 62:1597-600. [PMID: 25946618 PMCID: PMC4515145 DOI: 10.1002/pbc.25534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Diamond Blackfan anemia (DBA) is a genetically and clinically heterogeneous ribosomopathy and inherited bone marrow failure syndrome characterized by anemia, reticulocytopenia, and decreased erythroid precursors in the bone marrow with an increased risk of malignancy and, in approximately 50%, physical abnormalities. METHODS We retrospectively analyzed clinical data from 77 patients with DBA born in the Russian Federation from 1993 to 2014. In 74 families there was one clinically affected individual; in only three instances a multiplex family was identified. Genomic DNA from 57 DBA patients and their first-degree relatives was sequenced for mutations in RPS19, RPS10, RPS24, RPS26, RPS7, RPS17, RPL5, RPL11, RPL35a, and GATA1. RESULTS Severe anemia presented before 8 months of age in all 77 patients; before 2 months in 61 (78.2%); before 4 months in 71 (92.2%). Corticosteroid therapy was initiated after 1 year of age in the majority of patients. Most responded initially to steroids, while 5 responses were transient. Mutations in RP genes were detected in 35 of 57 patients studied: 15 in RPS19, 6 in RPL5, 3 in RPS7, 3 each in RPS10, RPS26, and RPL11 and 1 each in RPS24 and RPL35a; 24 of these mutations have not been previously reported. One patient had a balanced chromosomal translocation involving RPS19. No mutations in GATA1 were found. CONCLUSION In our cohort from an ethnically diverse population the distribution of mutations among RP genes was approximately the same as was reported by others, although within genotypes most of the mutations had not been previously reported.
Collapse
Affiliation(s)
- Natalia S. Smetanina
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Irina V. Mersiyanova
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Galina S. Ovsyannikova
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Lili A. Hachatryan
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vlasta O. Bobrynina
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael A. Maschan
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina. A. Novichkova
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Jeffrey M. Lipton
- Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA,Feinstein Institute for Medical Research (FIMR); Manhasset, NY, USA,Division of Hematology/Oncology and Stem Cell Transplantation, CCMC, New Hyde Park, NY, USA
| | - Alexey A. Maschan
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
13
|
Córdova-Fletes C, Domínguez MG, Delint-Ramirez I, Martínez-Rodríguez HG, Rivas-Estilla AM, Barros-Núñez P, Ortiz-López R, Neira VA. A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations. Neurogenetics 2015; 16:287-98. [PMID: 26163108 DOI: 10.1007/s10048-015-0452-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
We report a girl with intellectual disability (ID), neuropsychiatric alterations, and a de novo balanced t(10;19)(q22.3;q13.33) translocation. After chromosome sorting, fine mapping of breakpoints by array painting disclosed disruptions of the zinc finger, MIZ-type containing 1 (ZMIZ1) (on chr10) and proline-rich 12 (PRR12) (on chr19) genes. cDNA analyses revealed that the translocation resulted in gene fusions. The resulting hybrid transcripts predict mRNA decay or, if translated, formation of truncated proteins, both due to frameshifts that introduced premature stop codons. Though other molecular mechanisms may be operating, these results suggest that haploinsufficiency of one or both genes accounts for the patient's phenotype. ZMIZ1 is highly expressed in the brain, and its protein product appears to interact with neuron-specific chromatin remodeling complex (nBAF) and activator protein 1 (AP-1) complexes which play a role regulating the activity of genes essential for normal synapse and dendrite growth/behavior. Strikingly, the patient's phenotype overlaps with phenotypes caused by mutations in SMARCA4 (BRG1), an nBAF subunit presumably interacting with ZMIZ1 in brain cells as suggested by our results of coimmunoprecipitation in the mouse brain. PRR12 is also expressed in the brain, and its protein product possesses domains and residues thought to be related in formation of large protein complexes and chromatin remodeling. Our observation from E15 mouse brain cells that a Prr12 isoform was confined to nucleus suggests a role as a transcription nuclear cofactor likely involved in neuronal development. Moreover, a pilot transcriptome analysis from t(10;19) lymphoblastoid cell line suggests dysregulation of genes linked to neurodevelopment processes/neuronal communication (e.g., NRCAM) most likely induced by altered PRR12. This case represents the first constitutional balanced translocation disrupting and fusing both genes and provides clues for the potential function and effects of these in the central nervous system.
Collapse
Affiliation(s)
- Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México.
| | - Ma Guadalupe Domínguez
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, 44340, México
| | - Ilse Delint-Ramirez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México
| | - Herminia G Martínez-Rodríguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México
| | - Ana María Rivas-Estilla
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México
| | - Patricio Barros-Núñez
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, 44340, México
| | - Rocío Ortiz-López
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Nuevo León, México
| | - Vivian Alejandra Neira
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, 44340, México
| |
Collapse
|
14
|
Hemmat M, Yang X, Chan P, McGough RA, Ross L, Mahon LW, Anguiano AL, Boris WT, Elnaggar MM, Wang JCJ, Strom CM, Boyar FZ. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay. Mol Cytogenet 2014; 7:50. [PMID: 25478007 PMCID: PMC4255717 DOI: 10.1186/1755-8166-7-50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient’s developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient.
Collapse
Affiliation(s)
- Morteza Hemmat
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Xiaojing Yang
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Patricia Chan
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Robert A McGough
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Leslie Ross
- Quest Diagnostics, 695 South Broadway, Denver, Colorado 80209, USA
| | - Loretta W Mahon
- Quest Diagnostics, 8401 Fallbrook Avenue , West, Hills, California 91304, USA
| | - Arturo L Anguiano
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Wang T Boris
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Mohamed M Elnaggar
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Jia-Chi J Wang
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Charles M Strom
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| | - Fatih Z Boyar
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Hwy, San Juan Capistrano, California 92675, USA
| |
Collapse
|
15
|
Eppa K, Kalal IG, Guttala PR, Aneeb S. De novo reciprocal translocation t(4;20) (q28;q11) associated in a child with developmental delay: Case report. APOLLO MEDICINE 2014. [DOI: 10.1016/j.apme.2014.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
Rasmussen MB, Nielsen JV, Lourenço CM, Melo JB, Halgren C, Geraldi CVL, Marques W, Rodrigues GR, Thomassen M, Bak M, Hansen C, Ferreira SI, Venâncio M, Henriksen KF, Lind-Thomsen A, Carreira IM, Jensen NA, Tommerup N. Neurodevelopmental disorders associated with dosage imbalance ofZBTB20correlate with the morbidity spectrum of ZBTB20 candidate target genes. J Med Genet 2014; 51:605-13. [DOI: 10.1136/jmedgenet-2014-102535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Minocherhomji S, Hansen C, Kim HG, Mang Y, Bak M, Guldberg P, Papadopoulos N, Eiberg H, Doh GD, Møllgård K, Hertz JM, Nielsen JE, Ropers HH, Tümer Z, Tommerup N, Kalscheuer VM, Silahtaroglu A. Epigenetic remodelling and dysregulation of DLGAP4 is linked with early-onset cerebellar ataxia. Hum Mol Genet 2014; 23:6163-76. [PMID: 24986922 PMCID: PMC4222360 DOI: 10.1093/hmg/ddu337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genome instability, epigenetic remodelling and structural chromosomal rearrangements are hallmarks of cancer. However, the coordinated epigenetic effects of constitutional chromosomal rearrangements that disrupt genes associated with congenital neurodevelopmental diseases are poorly understood. To understand the genetic-epigenetic interplay at breakpoints of chromosomal translocations disrupting CG-rich loci, we quantified epigenetic modifications at DLGAP4 (SAPAP4), a key post-synaptic density 95 (PSD95) associated gene, truncated by the chromosome translocation t(8;20)(p12;q11.23), co-segregating with cerebellar ataxia in a five-generation family. We report significant epigenetic remodelling of the DLGAP4 locus triggered by the t(8;20)(p12;q11.23) translocation and leading to dysregulation of DLGAP4 expression in affected carriers. Disruption of DLGAP4 results in monoallelic hypermethylation of the truncated DLGAP4 promoter CpG island. This induced hypermethylation is maintained in somatic cells of carriers across several generations in a t(8;20) dependent-manner however, is erased in the germ cells of the translocation carriers. Subsequently, chromatin remodelling of the locus-perturbed monoallelic expression of DLGAP4 mRNAs and non-coding RNAs in haploid cells having the translocation. Our results provide new mechanistic insight into the way a balanced chromosomal rearrangement associated with a neurodevelopmental disorder perturbs allele-specific epigenetic mechanisms at breakpoints leading to the deregulation of the truncated locus.
Collapse
Affiliation(s)
- Sheroy Minocherhomji
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Claus Hansen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Hyung-Goo Kim
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Yuan Mang
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Per Guldberg
- Danish Cancer Society, Institute of Cancer Biology, Copenhagen DK-2100, Denmark
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Hans Eiberg
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Gerald Dayebga Doh
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense C DK-5000, Denmark
| | - Jørgen E Nielsen
- Section for Neurogenetics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark, Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø 2100, Denmark and
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Zeynep Tümer
- Wilhelm Johannsen Centre for Functional Genome Research, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup DK-2600, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Vera M Kalscheuer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Asli Silahtaroglu
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark,
| |
Collapse
|
18
|
Vandeweyer G, Kooy RF. Detection and interpretation of genomic structural variation in health and disease. Expert Rev Mol Diagn 2014; 13:61-82. [DOI: 10.1586/erm.12.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Vona B, Neuner C, El Hajj N, Schneider E, Farcas R, Beyer V, Zechner U, Keilmann A, Poot M, Bartsch O, Nanda I, Haaf T. Disruption of the ATE1 and SLC12A1 Genes by Balanced Translocation in a Boy with Non-Syndromic Hearing Loss. Mol Syndromol 2013; 5:3-10. [PMID: 24550759 DOI: 10.1159/000355443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2013] [Indexed: 01/21/2023] Open
Abstract
We report on a boy with non-syndromic hearing loss and an apparently balanced translocation t(10;15)(q26.13;q21.1). The same translocation was found in the normally hearing brother, father and paternal grandfather; however, this does not exclude its involvement in disease pathogenesis, for example, by unmasking a second mutation. Breakpoint analysis via FISH with BAC clones and long-range PCR products revealed a disruption of the arginyltransferase 1 (ATE1) gene on translocation chromosome 10 and the solute carrier family 12, member 1 gene (SLC12A1) on translocation chromosome 15. SNP array analysis revealed neither loss nor gain of chromosomal regions in the affected child, and a targeted gene enrichment panel consisting of 130 known deafness genes was negative for pathogenic mutations. The expression patterns in zebrafish and humans did not provide evidence for ear-specific functions of the ATE1 and SLC12A1 genes. Sanger sequencing of the 2 genes in the boy and 180 GJB2 mutation-negative hearing-impaired individuals did not detect homozygous or compound heterozygous pathogenic mutations. Our study demonstrates the many difficulties in unraveling the molecular causes of a heterogeneous phenotype. We cannot directly implicate disruption of ATE1 and/or SLC12A1 to the abnormal hearing phenotype; however, mutations in these genes may have a role in polygenic or multifactorial forms of hearing impairment. On the other hand, it is conceivable that our patient carries a disease-causing mutation in a so far unidentified deafness gene. Evidently, disruption of ATE1 and/or SLC12A1 gene function alone does not have adverse effects.
Collapse
Affiliation(s)
- B Vona
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - C Neuner
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - N El Hajj
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - E Schneider
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - R Farcas
- Institute of Human Genetics, Department of ORL, University Medical Center, Mainz, Germany
| | - V Beyer
- Institute of Human Genetics, Department of ORL, University Medical Center, Mainz, Germany
| | - U Zechner
- Institute of Human Genetics, Department of ORL, University Medical Center, Mainz, Germany
| | - A Keilmann
- Division of Communication Disorders, Department of ORL, University Medical Center, Mainz, Germany
| | - M Poot
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | - O Bartsch
- Institute of Human Genetics, Department of ORL, University Medical Center, Mainz, Germany
| | - I Nanda
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - T Haaf
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| |
Collapse
|
20
|
Chien WH, Gau SSF, Liao HM, Chiu YN, Wu YY, Huang YS, Tsai WC, Tsai HM, Chen CH. Deep exon resequencing of DLGAP2 as a candidate gene of autism spectrum disorders. Mol Autism 2013; 4:26. [PMID: 23915500 PMCID: PMC3751063 DOI: 10.1186/2040-2392-4-26] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/26/2013] [Indexed: 01/31/2023] Open
Abstract
Background We recently reported a terminal deletion of approximately 2.4 Mb at chromosome 8p23.2-pter in a boy with autism. The deleted region contained the DLGAP2 gene that encodes the neuronal post-synaptic density protein, discs, large (Drosophila) homolog-associated protein 2. The study aimed to investigate whether DLGAP2 is genetically associated with autism spectrum disorders (ASD) in general. Methods We re-sequenced all the exons of DLGPA2 in 515 patients with ASD and 596 control subjects from Taiwan. We also conducted bioinformatic analysis and family study of variants identified in this study. Results We detected nine common single nucleotide polymorphisms (SNPs) and sixteen novel missense rare variants in this sample. We found that AA homozygotes of rs2906569 (minor allele G, alternate allele A) at intron 1 (P = 0.003) and CC homozygotes of rs2301963 (minor allele A, alternate allele C) at exon 3 (P = 0.0003) were significantly over-represented in the patient group compared to the controls. We also found no differences in the combined frequency of rare missense variants between the two groups. Some of these rare variants were predicted to have an impact on the function of DLGAP2 using informatics analysis, and the family study revealed most of the rare missense mutations in patients were inherited from their unaffected parents. Conclusions We detected some common and rare genetic variants of DLGAP2 that might have implication in the pathogenesis of ASD, but they alone may not be sufficient to lead to clinical phenotypes. We suggest that further genetic or environmental factors in affected patients may be present and determine the clinical manifestations. Trial registration ClinicalTrial.gov, NCT00494754
Collapse
Affiliation(s)
- Wei-Hsien Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Guilherme RS, Cernach MCSP, Sfakianakis TE, Takeno SS, Nardozza LMM, Rossi C, Bhatt SS, Liehr T, Melaragno MI. A complex chromosome rearrangement involving four chromosomes, nine breakpoints and a cryptic 0.6-Mb deletion in a boy with cerebellar hypoplasia and defects in skull ossification. Cytogenet Genome Res 2013; 141:317-23. [PMID: 23817307 DOI: 10.1159/000353302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
Constitutional complex chromosomal rearrangements (CCRs) are considered rare cytogenetic events. Most apparently balanced CCRs are de novo and are usually found in patients with abnormal phenotypes. High-resolution techniques are unveiling genomic imbalances in a great percentage of these cases. In this paper, we report a patient with growth and developmental delay, dysmorphic features, nervous system anomalies (pachygyria, hypoplasia of the corpus callosum and cerebellum), a marked reduction in the ossification of the cranial vault, skull base sclerosis, and cardiopathy who presents a CCR with 9 breakpoints involving 4 chromosomes (3, 6, 8 and 14) and a 0.6-Mb deletion in 14q24.1. Although the only genomic imbalance revealed by the array technique was a deletion, the clinical phenotype of the patient most likely cannot be attributed exclusively to haploinsufficiency. Other events must also be considered, including the disruption of critical genes and position effects. A combination of several different investigative approaches (G-banding, FISH with different probes and SNP array techniques) was required to describe this CCR in full, suggesting that CCRs may be more frequent than initially thought. Additionally, we propose that a chain chromosome breakage mechanism may have occurred as a single rearrangement event resulting in this CCR. This study demonstrates the importance of applying different cytogenetic and molecular techniques to detect subtle rearrangements and to delineate the rearrangements at a more accurate level, providing a better understanding of the mechanisms involved in CCR formation and a better correlation with phenotype.
Collapse
Affiliation(s)
- R S Guilherme
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Alves JM, Lopes AM, Chikhi L, Amorim A. On the structural plasticity of the human genome: chromosomal inversions revisited. Curr Genomics 2013; 13:623-32. [PMID: 23730202 PMCID: PMC3492802 DOI: 10.2174/138920212803759703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 01/02/2023] Open
Abstract
With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement – inversions – was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome.
Collapse
Affiliation(s)
- Joao M Alves
- Doctoral Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Portugal ; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal ; Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | | | | | | |
Collapse
|
23
|
Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 2011; 70:863-85. [PMID: 21658581 DOI: 10.1016/j.neuron.2011.05.002] [Citation(s) in RCA: 902] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2011] [Indexed: 11/22/2022]
Abstract
We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.
Collapse
|
24
|
Rao L, Kanakavalli M, Padmalatha V, Nallari P, Singh L. Paternally derived translocation t(8;18)(q22.1;q22)pat associated in a patient with developmental delay: Case report and review. J Pediatr Neurosci 2011; 5:64-7. [PMID: 21042514 PMCID: PMC2964802 DOI: 10.4103/1817-1745.66686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The common cause of mental impairment and the wide range of physical abnormalities is balanced chromosome rearrangement. As such, it is difficult to interpret, posing as a diagnostic challenge in human development. We present a unique familial case report with the paternally inherited autosomal-balanced reciprocal translocation involving chromosomal regions 8q and 18q. The etiology of the translocation, i.e. 46,XX,t(8;18)(q22.1;q22) was detected by conventional high-resolution Giemsa–Trypsin–Giemsa-banding and fluorescence in situ hybridization techniques. The father was found to be the carrier of the chromosome defect and also the same was observed in the first female child referred with a history of delayed milestone development. However, the second female child showed normal 46, XX karyotype. This is the first report of reciprocal translocation involving 8q and 18q associated with the delayed milestone development. The reason likely may be due to the rearrangement of genetic material at these breakpoints having a crucial relationship and thus manifesting developmental delay in the progeny. Accordingly, this paper also shows genetic counseling discussion for the cause.
Collapse
Affiliation(s)
- Lakshmi Rao
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | | | | | |
Collapse
|
25
|
Karimov CB, Moragianni VA, Cronister A, Srouji S, Petrozza J, Racowsky C, Ginsburg E, Thornton KL, Welt CK. Increased frequency of occult fragile X-associated primary ovarian insufficiency in infertile women with evidence of impaired ovarian function. Hum Reprod 2011; 26:2077-83. [PMID: 21646280 DOI: 10.1093/humrep/der168] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The FMR1 premutation is associated with overt primary ovarian insufficiency (POI). However, its prevalence in women with occult POI (i.e. menstrual cycles, but impaired ovarian response) has not been examined. We hypothesized that both the FMR1 premutation and intermediate allele is more frequent in infertile women with occult POI than in controls, and that a repeat length cutoff might predict occult POI. METHODS All subjects were menstruating women <42 years old and with no family history of unexplained mental retardation, autism or fragile X syndrome. Cases had occult POI defined by elevated FSH or poor response to gonadotrophin therapy (n = 535). Control subjects (n = 521) had infertility from other causes or were oocyte donors. Prevalence of the FMR1 premutation and intermediate alleles was examined and allele length was compared between controls and women with occult POI. RESULTS The frequency of the premutation (7/535 versus 1/521; P< 0.05) and intermediate alleles (17/535 versus 7/521; P< 0.05) was higher in women with occult POI than in controls. The allele with the greatest number of CGG repeats was longer in women with occult POI compared with controls (32.7 ± 7.1 versus 31.6 ± 4.3; P < 0.01). A receiver operating characteristic curve examining repeat length as a test for occult POI had an area of 0.56 ± 0.02 (P < 0.01). A repeat cutoff of 45 had a specificity of 98%, but a sensitivity of only 5% to identify occult POI. The positive predictive value was only 21% for a fertility population that has ∼ 22% of its patients with occult POI. CONCLUSIONS The data suggest that FMR1 premutations and intermediate alleles are increased in women with occult POI. Thus, FMR1 testing should be performed in these women as some will have fragileX-associated POI. Although the FMR1 repeat lengths were longer in women with occult POI, the data do not support the use of a repeat length cutoff to predict occult POI.
Collapse
Affiliation(s)
- C B Karimov
- Reproductive Endocrine Unit, Massachusetts General Hospital, BHX 511, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tucker JD. Chromosome translocations and assessing human exposure to adverse environmental agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:815-824. [PMID: 20213842 DOI: 10.1002/em.20561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article discusses the use of chromosome translocations for assessing adverse environmental exposure in humans. Translocations are a persistent biomarker of exposure and a biomarker of effect, making them the endpoint of choice for certain human exposure studies because they indicate a potential relationship between exposure and adverse health outcomes, particularly cancer and birth defects. Presented here are the different types of translocations, their origins and persistence, the strengths and limitations of using translocations for exposure assessments, the current state of the art for quantifying exposure including the importance of confounding effects, and the use of model organisms. This article concludes with an assessment of the future of translocation analyses.
Collapse
Affiliation(s)
- James D Tucker
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202-3917, USA.
| |
Collapse
|
27
|
A Cohort of Balanced Reciprocal Translocations Associated with Dyslexia: Identification of Two Putative Candidate Genes at DYX1. Behav Genet 2010; 41:125-33. [PMID: 20798984 DOI: 10.1007/s10519-010-9389-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 08/11/2010] [Indexed: 01/22/2023]
|
28
|
Chien WH, Gau SSF, Wu YY, Huang YS, Fang JS, Chen YJ, Soong WT, Chiu YN, Chen CH. Identification and molecular characterization of two novel chromosomal deletions associated with autism. Clin Genet 2010; 78:449-56. [DOI: 10.1111/j.1399-0004.2010.01395.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Stam AJ, Schothorst PF, Vorstman JA, Staal WG. The genetic overlap of attention deficit hyperactivity disorder and autistic spectrum disorder. APPLICATION OF CLINICAL GENETICS 2009; 2:7-13. [PMID: 23776346 PMCID: PMC3681037 DOI: 10.2147/tacg.s4683] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autistic spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD) are classified as distinct disorders within the DSM-IV-TR (1994). The manual excludes simultaneous use of both diagnoses in case of overlap on a symptomatic level. However this does not always represent clinical observations and findings of previous studies. This review explores the genetic basis of the phenomenological overlap between ADHD and ASD. Based on an extensive review of twin-, linkage-, association studies, and reported structural genomic abnormalities associated with these disorders, we have identified seventeen regions on the human genome that can be related to both disorders. These regions of shared genetic association are: 2q35, 3p14, 4p16.1, 4p16.3, 5p15.31, 5p15.33, 7p12.3, 7p22, 7q21, 8q24.3, 14q12, 15q11–12, 16p13, 17q11, 18q21–23, 22q11.2, Xp22.3. The presented data are of interest for future genetic studies and appear to suggest the existence of a phenotype partition that may differ from the current classification of psychiatric disorders.
Collapse
Affiliation(s)
- Arie J Stam
- University Medical Center Utrecht (UMC Utrecht), Utrecht, The Netherlands
| | | | | | | |
Collapse
|
30
|
Schneider E, Märker T, Daser A, Frey-Mahn G, Beyer V, Farcas R, Schneider-Rätzke B, Kohlschmidt N, Grossmann B, Bauss K, Napiontek U, Keilmann A, Bartsch O, Zechner U, Wolfrum U, Haaf T. Homozygous disruption of PDZD7 by reciprocal translocation in a consanguineous family: a new member of the Usher syndrome protein interactome causing congenital hearing impairment. Hum Mol Genet 2008; 18:655-66. [DOI: 10.1093/hmg/ddn395] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
31
|
Daoud H, Gruchy N, Constans JM, Moussaoui E, Saumureau S, Bayou N, Amy M, Védrine S, Vu PY, Rötig A, Laumonnier F, Vourc'h P, Andres CR, Leporrier N, Briault S. Haploinsufficiency of the GPD2 gene in a patient with nonsyndromic mental retardation. Hum Genet 2008; 124:649-58. [PMID: 19011903 DOI: 10.1007/s00439-008-0588-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 11/05/2008] [Indexed: 12/22/2022]
Abstract
We have investigated the chromosome abnormalities in a female patient exhibiting mild nonsyndromic mental retardation. The patient carries a de novo balanced reciprocal translocation 46,XX,t(2;7)(q24.1;q36.1). Physical mapping of the breakpoints by fluorescent in situ hybridization experiments revealed the disruption of the GPD2 gene at the 2q24.1 region. This gene encodes the mitochondrial glycerophosphate dehydrogenase (mGPDH), which is located on the outer surface of the inner mitochondrial membrane, and catalyzes the unidirectional conversion of glycerol-3-phosphate (G3P) to dihydroxyacetone phosphate with concomitant reduction of the enzyme-bound FAD. Molecular and functional studies showed approximately a twofold decrease of GPD2 transcript level as well as decreased activity of the coded mGPDH protein in lymphoblastoid cell lines of the patient compared to controls. Bioinformatics analysis allowed us to confirm the existence of a novel transcript of the GPD2 gene, designated GPD2c, which is directly disrupted by the 2q breakpoint. To validate GPD2 as a new candidate gene for mental retardation, we performed mutation screening of the GPD2 gene in 100 mentally retarded patients; however, no mutations have been identified. Nevertheless, our results propose that a functional defect of the mGPDH protein could be associated with mental retardation, suggesting that GPD2 gene could be involved in mental retardation in some cases.
Collapse
Affiliation(s)
- Hussein Daoud
- Faculté de Médecine, INSERM U930, Université François Rabelais, Tours, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Autism (ie, the autism spectrum disorders) is now recognized in 1 in 150 children. This article highlights the definition, neurobiology, screening, and diagnosis of autism. The genetics, immunology, imaging, and neurophysiology of autism are reviewed, with particular emphasis on areas that impact pediatricians. Early recognition of the social deficits that characterize autism is key to maximizing the potential of these children.
Collapse
Affiliation(s)
- Isabelle Rapin
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
33
|
Shimizu R, Mitsui N, Mori Y, Cho S, Yamamori S, Osawa M, Ohashi H. Cryptic 17q22 deletion in a boy with a t(10;17)(p15.3;q22) translocation, multiple synostosis syndrome 1, and hypogonadotropic hypogonadism. Am J Med Genet A 2008; 146A:1458-61. [PMID: 18449926 DOI: 10.1002/ajmg.a.32319] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report on a boy who had multiple synostosis syndrome 1, an autosomal dominant disorder characterized by progressive symphalangism, multiple joint fusions, conductive deafness, and mild facial dysmorphism. In addition the boy developed delay of puberty, bone age, and closure of the epiphyseal lines of long bones with tall stature. These findings and decreased plasma LH and FSH levels at age 19 years were compatible with hypogonadotropic hypogonadism. G-banded chromosomes showed a balanced translocation t(10;17)(p15.3;q22). Chromosomal FISH analysis, using a series of BAC clones surrounding the translocation breakpoints, detected a 2.2-3.9 Mb deletion at 17q22. The deletion encompassed NOG, a gene responsible for multiple synostosis syndrome 1. It was assumed that a gene for pituitary secretion of gonoadotropic hormones was deleted at the 17q22 segment.
Collapse
Affiliation(s)
- Reiko Shimizu
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ropers HH. Genetics of intellectual disability. Curr Opin Genet Dev 2008; 18:241-50. [DOI: 10.1016/j.gde.2008.07.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 07/15/2008] [Indexed: 11/16/2022]
|
35
|
Chen W, Kalscheuer V, Tzschach A, Menzel C, Ullmann R, Schulz MH, Erdogan F, Li N, Kijas Z, Arkesteijn G, Pajares IL, Goetz-Sothmann M, Heinrich U, Rost I, Dufke A, Grasshoff U, Glaeser B, Vingron M, Ropers HH. Mapping translocation breakpoints by next-generation sequencing. Genome Res 2008; 18:1143-9. [PMID: 18326688 DOI: 10.1101/gr.076166.108] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Balanced chromosome rearrangements (BCRs) can cause genetic diseases by disrupting or inactivating specific genes, and the characterization of breakpoints in disease-associated BCRs has been instrumental in the molecular elucidation of a wide variety of genetic disorders. However, mapping chromosome breakpoints using traditional methods, such as in situ hybridization with fluorescent dye-labeled bacterial artificial chromosome clones (BAC-FISH), is rather laborious and time-consuming. In addition, the resolution of BAC-FISH is often insufficient to unequivocally identify the disrupted gene. To overcome these limitations, we have performed shotgun sequencing of flow-sorted derivative chromosomes using "next-generation" (Illumina/Solexa) multiplex sequencing-by-synthesis technology. As shown here for three different disease-associated BCRs, the coverage attained by this platform is sufficient to bridge the breakpoints by PCR amplification, and this procedure allows the determination of their exact nucleotide positions within a few weeks. Its implementation will greatly facilitate large-scale breakpoint mapping and gene finding in patients with disease-associated balanced translocations.
Collapse
Affiliation(s)
- Wei Chen
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tzschach A, Ramel C, Kron A, Seipel B, Wüster C, Cordes U, Liehr T, Hoeltzenbein M, Menzel C, Ropers HH, Ullmann R, Kalscheuer V, Decker J, Steinberger D. Hypergonadotropic hypogonadism in a patient with inv ins (2;4). ACTA ACUST UNITED AC 2007; 32:226-30. [PMID: 18042180 DOI: 10.1111/j.1365-2605.2007.00839.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report on a 30-year-old man with azoospermia, primary hypogonadism and minor dysmorphic features who carried a balanced insertional chromosome translocation inv ins (2p24;4q28.3q31.22)de novo. Molecular cytogenetic analyses of the chromosome breakpoints revealed the localization of the breakpoint in 4q28.3 between BACs RP11-143E9 and RP11-285A15, an interval that harbours the PCDH10 gene. In 4q31.22, a breakpoint-spanning clone (RP11-6L6) was identified which contains the genes LSM6 and SLC10A7. On chromosome 2, BACs RP11-531P14 and RP11-360O18 flank the breakpoint in 2p24, a region void of known genes. In conclusion, the chromosome aberration of this patient suggests a gene locus for primary hypogonadism in 2p24, 4q28.3 or 4q31.2, and three possible candidate genes (LSM6, SLC10A7 and PCDH10) were identified by breakpoint analyses.
Collapse
Affiliation(s)
- A Tzschach
- Max Planck Institute for Molecular Genetics, Department Ropers, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ropers HH. New perspectives for the elucidation of genetic disorders. Am J Hum Genet 2007; 81:199-207. [PMID: 17668371 PMCID: PMC1950818 DOI: 10.1086/520679] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/06/2007] [Indexed: 12/29/2022] Open
Abstract
For almost 15 years, genome research has focused on the search for major risk factors in common diseases, with disappointing results. Only recently, whole-genome association studies have begun to deliver because of the introduction of high-density single-nucleotide-polymorphism arrays and massive enlargement of cohort sizes, but most of the risk factors detected account for only a small proportion of the total genetic risk, and their diagnostic value is negligible. There is reason to believe that the complexity of many "multifactorial" disorders is primarily due to genetic heterogeneity, with defects of different genes causing the same disease. Moreover, de novo copy-number variation has been identified as a major cause of mental retardation and other complex disorders, suggesting that new mutations are an important, previously overlooked factor in the etiology of complex diseases. These observations support the notion that research into the previously neglected monogenic disorders should become a priority of genome research. Because of the introduction of novel high-throughput, low-cost sequencing methods, sequencing and genotyping will soon converge, with far-reaching implications for the elucidation of genetic disease and health care.
Collapse
|
38
|
Callier P, Faivre L, Marle N, Thauvin-Robinet C, Mosca AL, Masurel-Paulet A, Borgnon J, Falcon-Eicher S, Danino A, Malka G, Le Merrer M, Huet F, Mugneret F. Untreated growth hormone deficiency with extremely short stature, bone dysplasia, cleft lip--palate and severe mental retardation in a 26-year-old man with a de novo unbalanced translocation t(1;12)(q24;q24). Eur J Med Genet 2007; 50:455-64. [PMID: 17720646 DOI: 10.1016/j.ejmg.2007.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
We report on a 26-year-old patient presenting with extremely short stature (height 72cm, weight 6.5kg, OFC 42.5cm), facial dysmorphism, cleft lip--palate, severe mental retardation and de novo 1q24.2--q25.2 and 12q24.31 interstitial deletion. He was the only child of non-consanguineous parents and his birth length was 43cm. He had severe feeding difficulties and required enteral nutrition until the age of 3 years. Standard cytogenetic analysis showed an apparently balanced de novo translocation t(1;12)(q24;q24). Endocrine studies at 11 years of age for severe growth retardation revealed multiple pituitary hormone deficiency with severe growth hormone deficiency, but the child was untreated because of associated mental retardation. At 26 years of age, he could not walk or speak and had no signs of puberty. Investigations revealed spondylo-epi-metaphyseal dysplasia with severe osteoporosis, enlarged aorta when compared to the patient's size and apparently normal pituitary development. High resolution karyotype showed a 1q24-q25 deletion, and comparative genomic hybridization studies confirmed the 1q interstitial deletion. FISH studies of both breakpoints using PACs and BACs enabled us to further characterize the 1q interstitial deletion (1q24.2-1q25.2) and also revealed a 12q24.31 interstitial microdeletion. This case is compared with previously reported patients with similar deletions, but the untreated pituitary deficiency could also be responsible in part for the severity of the growth deficiency. This observation is of interest for two reasons. First, these deletions could be a clue in the search for a gene responsible for growth hormone deficiency/midline defects. Second, it shows the importance of molecular cytogenetics in the study of de novo apparently balanced translocation with abnormal phenotype.
Collapse
Affiliation(s)
- P Callier
- Laboratoire de Cytogénétique, Département de Génétique, CHU Le Bocage, 2 Bd Maréchal de Lattre de Tassigny, 21034 Dijon cédex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, Fernandez C, Cardoso C, Figarella-Branger D, Moncla A, Lindsay S, Dobyns WB, Villard L. Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat 2007; 28:356-64. [PMID: 17191205 DOI: 10.1002/humu.20450] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polymicrogyria (PMG) is a common malformation of the human cerebral cortex for which both acquired and genetic causes are known. Although genetic heterogeneity is documented, only one gene is currently known to cause isolated PMG. To clone new genes involved in this type of cerebral malformation, we studied a fetus presenting a defect of cortical organization consisting of a polymicrogyric cortex and neuronal heterotopia within the white matter. Karyotype analysis revealed that the fetus was carrier of a balanced, de novo, chromosomal translocation t(2;7)(q35;p22). Cloning and sequencing of the two translocation breakpoints reveals that the chromosomal rearrangement disrupts the coding region of a single gene, called NHEJ1, Cernunnos, or XLF, in 2q35. The NHEJ1 gene was recently identified as being responsible for autosomal recessive immunodeficiency with microcephaly. Using quantitative PCR experiments, we show that a truncated transcript is expressed in the polymicrogyric patient cells, suggesting a potential dominant negative effect possibly leading to a different phenotype. We performed in situ hybridization on human embryos and showed that the NHEJ1 transcript is preferentially expressed in the telencephalic ventricular and subventricular zones, consistent with the phenotype of the affected individual. In the human adult central nervous system (CNS), NHEJ1 is mainly expressed in the cerebral cortex and in the cerebellum. The association of PMG with the disruption of its transcript suggests that, in addition to its recently uncovered function in the immune system, the NHEJ1 protein may also play a role during development of the human cerebral cortex.
Collapse
|
40
|
Yue Y, Farcas R, Thiel G, Bommer C, Grossmann B, Galetzka D, Kelbova C, Küpferling P, Daser A, Zechner U, Haaf T. De novo t(12;17)(p13.3;q21.3) translocation with a breakpoint near the 5′ end of the HOXB gene cluster in a patient with developmental delay and skeletal malformations. Eur J Hum Genet 2007; 15:570-7. [PMID: 17327879 DOI: 10.1038/sj.ejhg.5201795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A boy with severe mental retardation, funnel chest, bell-shaped thorax, and hexadactyly of both feet was found to have a balanced de novo t(12;17)(p13.3;q21.3) translocation. FISH with BAC clones and long-range PCR products assessed in the human genome sequence localized the breakpoint on chromosome 17q21.3 to a 21-kb segment that lies <30 kb upstream of the HOXB gene cluster and immediately adjacent to the 3' end of the TTLL6 gene. The breakpoint on chromosome 12 occurred within telomeric hexamer repeats and, therefore, is not likely to affect gene function directly. We propose that juxtaposition of the HOXB cluster to a repetitive DNA domain and/or separation from required cis-regulatory elements gave rise to a position effect.
Collapse
Affiliation(s)
- Ying Yue
- Institute for Human Genetics, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gupta AR, State MW. Recent advances in the genetics of autism. Biol Psychiatry 2007; 61:429-37. [PMID: 16996486 DOI: 10.1016/j.biopsych.2006.06.020] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Autism is a strongly genetic disorder, with an estimated heritability of greater than 90%. Nonetheless, its specific genetic etiology remains largely unknown. Over the past several years, the convergence of rapidly advancing genomic technologies, the completion of the human genome project, and successful collaborative efforts to increase the number of deoxyribonucleic acid samples available for study have led to the first solid clues regarding the genetic origins of autism spectrum disorders. This article addresses the obstacles that have confronted gene discovery efforts and reviews recent linkage, cytogenetic, and candidate gene association studies relevant to autism spectrum disorders. In addition, promising avenues for future research and the potential contribution of emerging genomic technologies are considered.
Collapse
Affiliation(s)
- Abha R Gupta
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
42
|
Hysert M, Bruyère H, Côté GB, Dawson AJ, Dolling JA, Fetni R, Hrynchak M, Lavoie J, McGowan-Jordan J, Tihy F, Duncan AMV. Prenatal cytogenetic assessment and inv(2)(p11.2q13). Prenat Diagn 2006; 26:810-3. [PMID: 16821252 DOI: 10.1002/pd.1508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To present a series of prenatally detected cases of recurrent pericentric inversions with euchromatic breakpoints and to review the literature to determine whether parental karyotyping is required for genetic counselling. METHODS Cases of recurrent pericentric inversions with euchromatic breakpoints were collected from Canadian Cytogenetic Laboratories. Cases included inversions for chromosome 1(p13q21), chromosome 2(p11.2q13), chromosome 5(p13q13) and chromosome 10(p11.2q21.2). RESULTS The incidence of de novo inv(2)(p11.2q13) was low, with one case among 91 inversions. There were no cases of de novo inv(10) (p11.2q21.2) among 17 reported and one case of de novo inv(5)(p13q13) among 21 reported. CONCLUSION Our study, and data from the literature, suggests that most cases of inv(2)(p11.2q13) have been stably inherited, that de novo cases of inv(2) are rare and that both inherited and de novo forms are without phenotypic or developmental consequences. We suggest that parental karyotyping for cases of inv(2) is not useful in counselling as it may generate unnecessary parental anxiety over a chromosomal finding that is likely innocuous.
Collapse
Affiliation(s)
- Meaghan Hysert
- Pathology, Montreal Children's Hospital, 2300 Tupper St, Montreal, QC H3H 1P3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Feuk L, Marshall CR, Wintle RF, Scherer SW. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 2006; 15 Spec No 1:R57-66. [PMID: 16651370 DOI: 10.1093/hmg/ddl057] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The near completeness of human chromosome sequences is facilitating accurate characterization and assessment of all classes of genomic variation. Particularly, using the DNA reference sequence as a guide, genome scanning technologies, such as microarray-based comparative genomic hybridization (array CGH) and genome-wide single nucleotide polymorphism (SNP) platforms, have now enabled the detection of a previously unrecognized degree of larger-sized (non-SNP) variability in all genomes. This heterogeneity can include copy number variations (CNVs), inversions, insertions, deletions and other complex rearrangements, most of which are not detected by standard cytogenetics or DNA sequencing. Although these genomic alterations (collectively termed structural variants or polymorphisms) have been described previously, mainly through locus-specific studies, they are now known to be more global in occurrence. Moreover, as just one example, CNVs can contain entire genes and their number can correlate with the level of gene expression. It is also plausible that structural variants may commonly influence nearby genes through chromosomal positional or domain effects. Here, we discuss what is known of the prevalence of structural variants in the human genome and how they might influence phenotype, including the continuum of etiologic events underlying monogenic to complex diseases. Particularly, we highlight the newest studies and some classic examples of how structural variants might have adverse genetic consequences. We also discuss why analysis of structural variants should become a vital step in any genetic study going forward. All these progresses have set the stage for a golden era of combined microscopic and sub-microscopic (cytogenomic)-based research of chromosomes leading to a more complete understanding of the human genome.
Collapse
Affiliation(s)
- Lars Feuk
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
44
|
Bocciardi R, Giorda R, Marigo V, Zordan P, Montanaro D, Gimelli S, Seri M, Lerone M, Ravazzolo R, Gimelli G. Molecular characterization of a t(2;6) balanced translocation that is associated with a complex phenotype and leads to truncation of the TCBA1 gene. Hum Mutat 2006; 26:426-36. [PMID: 16145689 DOI: 10.1002/humu.20235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The molecular characterization of balanced chromosomal rearrangements has often been a powerful tool for the positional identification of genes associated with specific diseases. In some instances, these rearrangements may be associated with a variety of different phenotypes, and thus establishing a genotype-phenotype correlation may be a complex process. However, molecular characterization of the rearrangement remains a useful tool for diagnoses or prognoses, or for identifying new genes and establishing a gene-to-function relationship. In this work we describe the characterization of a de novo balanced translocation t(2;6)(q24.3;q22.31) found in a patient with a complex phenotype. The major clinical finding was a severe neurological involvement. Thanks to the molecular characterization of this translocation we found that the rearrangement led to the truncation of the TCBA1 gene on chromosome 6q. We found that the gene is transcribed in different splice variants and is highly specific for the central nervous system. TCBA1 does not show any similarity with other known genes, and no information is available about its function. However, the gene appears to be well conserved among species, and we were able to infer the sequence of a putative mouse homolog of TCBA1. This allowed us to perform a more detailed expression study in mice, thus confirming its specificity for the nervous system. This finding is of particular interest because it suggests that TCBA1 may be correlated with the neurological phenotype of our patient, and possibly mutated in genetic diseases with a neurological phenotype.
Collapse
Affiliation(s)
- Renata Bocciardi
- Laboratory of Molecular Genetics, G. Gaslini Institute, Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bache I, Hjorth M, Bugge M, Holstebroe S, Hilden J, Schmidt L, Brondum-Nielsen K, Bruun-Petersen G, Jensen PKA, Lundsteen C, Niebuhr E, Rasmussen K, Tommerup N. Systematic re-examination of carriers of balanced reciprocal translocations: a strategy to search for candidate regions for common and complex diseases. Eur J Hum Genet 2006; 14:410-7. [PMID: 16493440 DOI: 10.1038/sj.ejhg.5201592] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Balanced reciprocal translocations associated with genetic disorders have facilitated the identification of a variety of genes for early-onset monogenic disorders, but only rarely the genes associated with common and complex disorders. To assess the potential of chromosomal breakpoints associated with common/ complex disorders, we investigated the full spectrum of diseases in 731 carriers of balanced reciprocal translocations without known early-onset disorders in a nation-wide questionnaire-based re-examination. In 42 families, one of the breakpoints at the cytogenetic level concurred with known linkage data and/or the translocation co-segregated with the reported phenotype, for example, we found a significant linkage (lod score=2.1) of dyslexia and a co-segregating translocation with a breakpoint in a previously confirmed locus for dyslexia. Furthermore, we identified 441 instances of at least two unrelated carriers with concordant breakpoints and traits. If applied to other populations, re-examination of translocation carriers may identify additional genotype-phenotype associations, some of which may be novel and others that may coincide with and provide additional support of data presented here.
Collapse
Affiliation(s)
- Iben Bache
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tzschach A, Hoffmann K, Hoeltzenbein M, Bache I, Tommerup N, Bommer C, Körner H, Kalscheuer V, Ropers HH. Molecular characterization of a balanced chromosome translocation in psoriasis vulgaris. Clin Genet 2005; 69:189-93. [PMID: 16433702 DOI: 10.1111/j.1399-0004.2005.00558.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Leach NT, Cole SM, Sandstrom DJ, Weremowicz S. A novel pericentric inversion of chromosome 14 involving the rRNA gene cluster. Prenat Diagn 2005; 25:620-1. [PMID: 16034815 DOI: 10.1002/pd.1200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Borg K, Stankiewicz P, Bocian E, Kruczek A, Obersztyn E, Lupski JR, Mazurczak T. Molecular analysis of a constitutional complex genome rearrangement with 11 breakpoints involving chromosomes 3, 11, 12, and 21 and a ∼0.5-Mb submicroscopic deletion in a patient with mild mental retardation. Hum Genet 2005; 118:267-75. [PMID: 16160854 DOI: 10.1007/s00439-005-0021-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/03/2005] [Indexed: 02/02/2023]
Abstract
Complex chromosome rearrangements (CCRs) are extremely rare but often associated with mental retardation, congenital anomalies, or recurrent spontaneous abortions. We report a de novo apparently balanced CCR involving chromosomes 3 and 12 and a two-way translocation between chromosomes 11 and 21 in a woman with mild intellectual disability, obesity, coarse facies, and apparent synophrys without other distinctive dysmorphia or congenital anomalies. Molecular analysis of breakpoints using fluorescence in situ hybridization (FISH) with region-specific BAC clones revealed a more complex character for the CCR. The rearrangement is a result of nine breaks and involves reciprocal translocation of terminal chromosome fragments 3p24.1-->pter and 12q23.1-->qter, insertion of four fragments of the long arm of chromosome 12: q14.1-->q21?, q21?-->q22, q22-->q23.1, and q23.1-->q23.1 and a region 3p22.3-->p24.1 into chromosome 3q26.31. In addition, we detected a approximately 0.5-Mb submicroscopic deletion at 3q26.31. The deletion involves the chromosome region that has been previously associated with Cornelia de Lange syndrome (CdLS) in which a novel gene NAALADL2 has been mapped recently. Other potential genes responsible for intellectual deficiency disrupted as a result of patient's chromosomal rearrangement map at 12q14.1 (TAFA2), 12q23.1 (METAP2), and 11p14.1 (BDNF).
Collapse
Affiliation(s)
- Katarzyna Borg
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
49
|
Ciccone R, Giorda R, Gregato G, Guerrini R, Giglio S, Carrozzo R, Bonaglia MC, Priolo E, Laganà C, Tenconi R, Rocchi M, Pramparo T, Zuffardi O, Rossi E. Reciprocal translocations: a trap for cytogenetists? Hum Genet 2005; 117:571-82. [PMID: 16041583 DOI: 10.1007/s00439-005-1324-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 04/08/2005] [Indexed: 12/01/2022]
Abstract
We report four cases of subjects with phenotypic abnormalities and mental retardation associated with apparently balanced translocations, two inherited and two de novo, which showed, by molecular analysis, a hidden complexity. All the cases have been analyzed with different molecular techniques, including array-CGH, and in two of them the translocation breakpoints have been defined at the level of base pairs via studies in somatic hybrids containing single derivative chromosomes. We demonstrated that all the translocations were in fact complex rearrangements and that an imbalance was present in three of them, thus accounting for the phenotypic abnormalities. In one case, a Prader-Willi subject, we were not able to determine the molecular cause of his phenotype. This study, while confirming previous data showing unexpected complexity in translocations, further underscores the need for molecular investigations before taking for granted an apparently simple cytogenetic interpretation.
Collapse
Affiliation(s)
- Roberto Ciccone
- Biologia Generale e Genetica Medica, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yue Y, Stout K, Grossmann B, Zechner U, Brinckmann A, White C, Pilz DT, Haaf T. Disruption of TCBA1 associated with a de novo t(1;6)(q32.2;q22.3) presenting in a child with developmental delay and recurrent infections. J Med Genet 2005; 43:143-7. [PMID: 15908570 PMCID: PMC2564632 DOI: 10.1136/jmg.2004.029660] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A boy with developmental delay, particularly of speech, a distinct face, antineutrophil cytoplasmic antibodies, and recurrent infections was found to have an apparently balanced de novo t(1;6)(q32.3;q22.3) translocation. Fluorescent in situ hybridisation with BAC/PAC clones and long range polymerase chain reaction products assessed in the human genome sequence localised the chromosome 1 breakpoint to a 9.8 kb segment within a hypothetical gene, LOC388735, and the chromosome 6 breakpoint to a 12.8 kb segment in intron 4 of the T-cell lymphoma breakpoint-associated target 1 (TCBA1) gene. Disruption and/or formation of TCBA1 fusion genes in T cell lymphoma and leukaemia cell lines suggests a role for this gene in tumorigenesis. The isolated mouse Tcba1 gene shows 91% amino acid sequence similarity with human TCBA1. It is expressed in fetal and adult brain and with lower levels in liver and testis. The human gene has been reported to be expressed exclusively in brain and thymus. Reduced TCBA1 expression in brain and thymus may explain at least some of the symptoms in this patient. It is concluded that germline alterations of the TCBA1 gene are associated with developmental delay and typical physical features.
Collapse
Affiliation(s)
- Y Yue
- Institute for Human Genetics, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|