1
|
Wang T, Yang J, Zhu Y, Niu N, Ding B, Wang P, Zhao H, Li N, Chao Y, Gao S, Dong X, Wang Z. Evaluation of metabolomics-based urinary biomarker models for recognizing major depression disorder and bipolar disorder. J Affect Disord 2024; 356:1-12. [PMID: 38548210 DOI: 10.1016/j.jad.2024.03.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and bipolar disorder (BD) are psychiatric disorders with overlapping symptoms, leading to high rates of misdiagnosis due to the lack of biomarkers for differentiation. This study aimed to identify metabolic biomarkers in urine samples for diagnosing MDD and BD, as well as to establish unbiased differential diagnostic models. METHODS We utilized a metabolomics approach employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) to analyze the metabolic profiles of urine samples from individuals with MDD (n = 50), BD (n = 12), and healthy controls (n = 50). The identification of urine metabolites was verified using MS data analysis tools and online metabolite databases. RESULTS Two diagnostic panels consisting of a combination of metabolites and clinical indicators were identified-one for MDD and another for BD. The discriminative capacity of these panels was assessed using the area under the receiver operating characteristic (ROC) curve, yielding an area under the curve (AUC) of 0.9084 for MDD and an AUC value of 0.9017 for BD. CONCLUSIONS High-resolution mass spectrometry-based assays show promise in identifying urinary biomarkers for depressive disorders. The combination of urine metabolites and clinical indicators is effective in differentiating healthy controls from individuals with MDD and BD. The metabolic pathway indicating oxidative stress is seen to significantly contribute to depressive disorders.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuncheng Zhu
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Na Niu
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Binbin Ding
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Ping Wang
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Hongxia Zhao
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China.
| | - Zuowei Wang
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China.
| |
Collapse
|
2
|
Qu Z, Wu S, Zheng Y, Bing Y, Liu X, Li S, Li W, Zou X. Fecal metabolomics combined with metagenomics sequencing to analyze the antidepressant mechanism of Yueju Wan. J Pharm Biomed Anal 2024; 238:115807. [PMID: 37924576 DOI: 10.1016/j.jpba.2023.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Yueju Wan (YJW), defined in Danxi's Mastery of Medicine, has Qi-regulating and Qi-promoting effects. YJW has frequently been applied in the clinic for the treatment of depression. Substantial evidence has shown that depression is related to metabolic abnormalities of the gut microbiota, and traditional Chinese medicine (TCM) can treat depression by adjusting gut microbiota metabolism. The antidepressant effect of YJW is well established, but thus far, whether its mechanism of action is achieved by regulating the intestinal flora has not been elucidated. METHODS In this study, chronic unpredictable mild stress (CUMS) along with isolated feeding created a rat depression model, and YJW was administered for intervention. Rats were put through behavioral tests to determine their level of depression, and ELISA was utilized for measuring the level of monoamine neurotransmitters (MNTs) in the hippocampus. Metagenomic gene sequencing analysis was used to study the effect of depression on the intestinal flora in rats and the regulatory mechanism of YJW on the intestinal flora. Furthermore, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was utilized for fecal metabolomics studies to further reveal the antidepressant mechanism of YJW. The antidepressant mechanism of YJW was explored and further verified by Western blot analysis. RESULTS Different doses of YJW improved the depressive state of rats and raised the levels of MNTs in the hippocampus. The results of metagenomic sequencing indicated that the YJW recovered the structure and diversity of the intestinal flora in depressed rats. Metabolomics revealed sustained changes in 21 metabolites after the treatment of YJW, suggesting that YJW can play an antidepressant role by improving abnormal metabolic pathways. The results of correlation analysis suggested that YJW might mediate Eubacterium, Oscillibacter, Roseburia, Romboutsia and Bacterium to regulate purine metabolism, tryptophan metabolism, primary bile acid biosynthesis, and glutamate metabolism and exert antidepressant effects. Western blot analysis showed that YJW reduced the content of IL-1β in the hippocampus, inhibited the activation of the NLRP3 inflammasome in the hippocampus of rats, and increased the content of ZO-1 in the colon of rats. CONCLUSION YJW can alleviate depressive symptoms in depressed rats, and its mechanism is connected to improving intestinal flora and regulating body metabolism.
Collapse
Affiliation(s)
- Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Shuang Wu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yan Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yifan Bing
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xueqin Liu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Sunan Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xiang Zou
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
3
|
Xu M, Tian P, Zhu H, Zou R, Zhao J, Zhang H, Wang G, Chen W. Lactobacillus paracasei CCFM1229 and Lactobacillus rhamnosus CCFM1228 Alleviated Depression- and Anxiety-Related Symptoms of Chronic Stress-Induced Depression in Mice by Regulating Xanthine Oxidase Activity in the Brain. Nutrients 2022; 14:nu14061294. [PMID: 35334950 PMCID: PMC8953819 DOI: 10.3390/nu14061294] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Depression is a common mood disorder that affects around 350 million people worldwide. We studied the effect of supplementation with Lactobacillus strains for the treatment of depression. Except for control group (n = 8), C57BL/6J mice were treated with Lactobacillus during six weeks of chronic unpredictable stress (depression group: n = 9, Lactobacillus intervention group: n = 7). L. paracasei CCFM1229 and L. rhamnosus CCFM1228 significantly reduced depressive behaviour in the forced swimming test and tail suspension test, significantly reduced anxiety behaviour in the open field test, and reduced anxiety behaviour in the marble burying test and light/dark box test. L. paracasei CCFM1229 and L. rhamnosus CCFM1228 significantly increased the brain serotonin and brain-derived neurotrophic factor concentrations, and CCFM1229 significantly decreased the serum corticosterone concentration, all of which are closely associated with the relief of depressive symptoms. Furthermore, CCFM1229 and CCFM1228 were shown to regulate purine metabolism in mice, as indicated by decreases in brain xanthine oxidase activity and an increase in liver adenosine deaminase activity. Anxiety- and depression-related indicators were significantly associated with xanthine oxidase activity in the cerebral cortex. The strains CCFM1229 and CCFM1228 reduced anxiety- and depression-related behaviour in a mouse model of chronic stress-induced depression, which may be achieved by regulating the activity of brain xanthine oxidase.
Collapse
Affiliation(s)
- Mengshu Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renying Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: ; Tel.: +86-510-85912155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Szopa A, Socała K, Serefko A, Doboszewska U, Wróbel A, Poleszak E, Wlaź P. Purinergic transmission in depressive disorders. Pharmacol Ther 2021; 224:107821. [PMID: 33607148 DOI: 10.1016/j.pharmthera.2021.107821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Purinergic signaling involves the actions of purine nucleotides and nucleosides (such as adenosine) at P1 (adenosine), P2X, and P2Y receptors. Here, we present recent data contributing to a comprehensive overview of the association between purinergic signaling and depression. We start with background information on adenosine production and metabolism, followed by a detailed characterization of P1 and P2 receptors, with an emphasis on their expression and function in the brain as well as on their ligands. We provide data suggestive of altered metabolism of adenosine in depressed patients, which might be regarded as a disease biomarker. We then turn to considerable amount of preclinical/behavioral data obtained with the aid of the forced swim test, tail suspension test, learned helplessness model, or unpredictable chronic mild stress model and genetic activation/inactivation of P1 or P2 receptors as well as nonselective or selective ligands of P1 or P2 receptors. We also aimed to discuss the reason underlying discrepancies observed in such studies.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Anna Serefko
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
5
|
He Y, Wang Y, Wu Z, Lan T, Tian Y, Chen X, Li Y, Dang R, Bai M, Cheng K, Xie P. Metabolomic abnormalities of purine and lipids implicated olfactory bulb dysfunction of CUMS depressive rats. Metab Brain Dis 2020; 35:649-659. [PMID: 32152797 DOI: 10.1007/s11011-020-00557-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) is a serious mood disorder and leads to a high suicide rate as well as financial burden. The volume and function (the sensitivity and neurogenesis) of the olfactory bulb (OB) were reported to be altered among the MDD patients and rodent models of depression. In addition, the olfactory epithelium was newly reported to decrease its volume and function under chronic unpredictable mild stress (CUMS) treatment. However, the underlying molecular mechanism still remains unclear. Herein, we conducted the non-targeted metabolomics method based on gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical analysis to characterize the differential metabolites in OB of CUMS rats. Our results showed that 19 metabolites were categorized into two perturbed pathways: purine metabolism and lipid metabolism, which were regarded as the vital pathways concerned with dysfunction of OB. These findings indicated that the turbulence of metabolic pathways may be partly responsible for the dysfunction of OB in MDD.
Collapse
Affiliation(s)
- Yong He
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhonghao Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Tianlan Lan
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tian
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xi Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402460, China
| | - Yan Li
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ruozhi Dang
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengge Bai
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Cheng
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402460, China.
| |
Collapse
|
6
|
Purinergic Signaling and Related Biomarkers in Depression. Brain Sci 2020; 10:brainsci10030160. [PMID: 32178222 PMCID: PMC7139781 DOI: 10.3390/brainsci10030160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
It is established that purinergic signaling can shape a wide range of physiological functions, including neurotransmission and neuromodulation. The purinergic system may play a role in the pathophysiology of mood disorders, influencing neurotransmitter systems and hormonal pathways of the hypothalamic-pituitary-adrenal axis. Treatment with mood stabilizers and antidepressants can lead to changes in purinergic signaling. In this overview, we describe the biological background on the possible link between the purinergic system and depression, possibly involving changes in adenosine- and ATP-mediated signaling at P1 and P2 receptors, respectively. Furthermore, evidence on the possible antidepressive effects of non-selective adenosine antagonist caffeine and other purinergic modulators is reviewed. In particular, A2A and P2X7 receptors have been identified as potential targets for depression treatment. Preclinical studies highlight that both selective A2A and P2X7 antagonists may have antidepressant effects and potentiate responses to antidepressant treatments. Consistently, recent studies feature the possible role of the purinergic system peripheral metabolites as possible biomarkers of depression. In particular, variations of serum uric acid, as the end product of purinergic metabolism, have been found in depression. Although several open questions remain, the purinergic system represents a promising research area for insights into the molecular basis of depression.
Collapse
|
7
|
Steen NE, Dieset I, Hope S, Vedal TSJ, Smeland OB, Matson W, Kaddurah-Daouk R, Agartz I, Melle I, Djurovic S, Jönsson EG, Bogdanov M, Andreassen OA. Metabolic dysfunctions in the kynurenine pathway, noradrenergic and purine metabolism in schizophrenia and bipolar disorders. Psychol Med 2020; 50:595-606. [PMID: 30867076 DOI: 10.1017/s0033291719000400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND We aimed at exploring potential pathophysiological processes across psychotic disorders, applying metabolomics in a large and well-characterized sample of patients and healthy controls. METHODS Patients with schizophrenia and bipolar disorders (N = 212) and healthy controls (N = 68) had blood sampling with subsequent metabolomics analyses using electrochemical coulometric array detection. Concentrations of 52 metabolites including tyrosine, tryptophan and purine pathways were compared between patients and controls while controlling for demographic and clinical characteristics. Significant findings were further tested in medication-free subsamples. RESULTS Significantly decreased plasma concentrations in patients compared to healthy controls were found for 3-hydroxykynurenine (3OHKY, p = 0.0008), xanthurenic acid (XANU, p = 1.5×10-5), vanillylmandelic acid (VMA, p = 4.5×10-5) and metanephrine (MN, p = 0.0001). Plasma concentration of xanthine (XAN) was increased in the patient group (p = 3.5×10-5). Differences of 3OHKY, XANU, VMA and XAN were replicated across schizophrenia spectrum disorders and bipolar disorders subsamples of medication-free individuals. CONCLUSIONS Although prone to residual confounding, the present results suggest the kynurenine pathway of tryptophan metabolism, noradrenergic and purinergic system dysfunction as trait factors in schizophrenia spectrum and bipolar disorders. Of special interest is XANU, a metabolite previously not found to be associated with bipolar disorders.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sigrun Hope
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Trude S J Vedal
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neuroscience, University of California San Diego, La Jolla, CA92093, USA
| | | | - Rima Kaddurah-Daouk
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Erik G Jönsson
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Zeng D, He S, Ma C, Wen Y, Xie Y, Zhao N, Sun X, Wang D, Shen Y, Yu Y, Li H. Co-Expression Network Analysis Revealed That the ATP5G1 Gene Is Associated With Major Depressive Disorder. Front Genet 2019; 10:703. [PMID: 31428135 PMCID: PMC6688554 DOI: 10.3389/fgene.2019.00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide, although its etiology and mechanism remain unknown. The aim of our study was to identify hub genes associated with MDD and to illustrate the underlying mechanisms. A weighted gene co-expression network analysis (WGCNA) was performed to identify significant gene modules and hub genes associated with MDD in peripheral blood mononuclear cells (PBMCs) (n = 45). In the blue module (R 2 = 0.95), five common hub genes in both co-expression network and protein-protein interaction (PPI) network were regarded as "real" hub genes. In another independent dataset, GSE52790, four genes were still significantly down-regulated in PBMCs from MDD patients compared with the controls. Furthermore, these four genes were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in PBMCs from 33 MDD patients and 41 healthy controls. The qRT-PCR analysis showed that ATP synthase membrane subunit c locus 1 (ATP5G1) was significantly down-regulated in samples from MDD patients than in control samples (t = -2.89, p-value = 0.005). Moreover, this gene was significantly differentially expressed between patients and controls in the prefrontal cortex (z = -2.83, p-value = 0.005). Highly significant differentially methylated positions were identified in the Brodmann area 25 (BA25), with probes in the ATP5G1 gene being significantly associated with MDD: cg25495775 (t = 2.82, p-value = 0.008), cg25856120 (t = -2.23, p-value = 0.033), and cg23708347 (t = -2.24, p-value = 0.032). These findings indicate that the ATP5G1 gene is associated with the pathogenesis of MDD and that it could serve as a peripheral biomarker for MDD.
Collapse
Affiliation(s)
- Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changlin Ma
- Department of Psychiatry,Shanghai Jiading District Mental Health Center, Shanghai, China
| | - Yi Wen
- Department of Psychiatry,Shanghai Jiading District Mental Health Center, Shanghai, China
| | - Ying Xie
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Zhao
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Xirong Sun
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Dongxiang Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Shen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ali-Sisto T, Tolmunen T, Toffol E, Viinamäki H, Mäntyselkä P, Valkonen-Korhonen M, Honkalampi K, Ruusunen A, Velagapudi V, Lehto SM. Purine metabolism is dysregulated in patients with major depressive disorder. Psychoneuroendocrinology 2016; 70:25-32. [PMID: 27153521 DOI: 10.1016/j.psyneuen.2016.04.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The purine cycle and altered purinergic signaling have been suggested to play a role in major depressive disorder (MDD). Nevertheless, data on this topic are scarce. Based on previous studies, we hypothesized that compared with non-depressed controls, MDD patients have distinct purine metabolite profiles. METHODS The samples comprised 99 MDD patients and 253 non-depressed controls, aged 20-71 years. Background data were collected with questionnaires. Fasting serum samples were analyzed using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) to determine seven purine cycle metabolites belonging to the purine cycle. We investigated the levels of these metabolites in three settings: (1) MDD patients vs. non-depressed controls and (2) remitted vs. non-remitted MDD patients, and also (3) within-group changes in metabolite levels during the follow-up period. RESULTS In logistic regression adjusted for age, gender, smoking, alcohol use, physical exercise, glycosylated hemoglobin, and high-density lipoprotein cholesterol, lower levels of inosine (OR 0.89, 95% CI 0.82-0.97) and guanosine (OR 0.32, 95% CI 0.17-0.59), and higher levels of xanthine (OR 2.21, 95% CI 1.30-3.75) were associated with MDD vs. the non-depressed group. Levels of several metabolites changed significantly during the follow-up period in the MDD group, but there were no differences between remitted and non-remitted groups. CONCLUSIONS We observed altered purine metabolism in MDD patients compared with non-depressed controls. Furthermore, our observations suggest that circulating xanthine may accumulate in MDD patients.
Collapse
Affiliation(s)
- Toni Ali-Sisto
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Tommi Tolmunen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Elena Toffol
- Metabolomics Unit, Institute for Molecular Medicine, Finland
| | - Heimo Viinamäki
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Pekka Mäntyselkä
- Primary Health Care Unit, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, 70211, Kuopio, Finland
| | - Minna Valkonen-Korhonen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Kirsi Honkalampi
- Department of Education and Psychology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Anu Ruusunen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine, Finland; FIMM, P.O. Box 20, FI-00014, University of Helsinki, Finland
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| |
Collapse
|
10
|
Ortiz R, Ulrich H, Zarate CA, Machado-Vieira R. Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:117-31. [PMID: 25445063 PMCID: PMC4262688 DOI: 10.1016/j.pnpbp.2014.10.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 02/09/2023]
Abstract
Uric acid and purines (such as adenosine) regulate mood, sleep, activity, appetite, cognition, memory, convulsive threshold, social interaction, drive, and impulsivity. A link between purinergic dysfunction and mood disorders was first proposed a century ago. Interestingly, a recent nationwide population-based study showed elevated risk of gout in subjects with bipolar disorder (BD), and a recent meta-analysis and systematic review of placebo-controlled trials of adjuvant purinergic modulators confirmed their benefits in bipolar mania. Uric acid may modulate energy and activity levels, with higher levels associated with higher energy and BD spectrum. Several recent genetic studies suggest that the purinergic system - particularly the modulation of P1 and P2 receptor subtypes - plays a role in mood disorders, lending credence to this model. Nucleotide concentrations can be measured using brain spectroscopy, and ligands for in vivo positron emission tomography (PET) imaging of adenosine (P1) receptors have been developed, thus allowing potential target engagement studies. This review discusses the key role of the purinergic system in the pathophysiology of mood disorders. Focusing on this promising therapeutic target may lead to the development of therapies with antidepressant, mood stabilization, and cognitive effects.
Collapse
Affiliation(s)
- Robin Ortiz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | - Henning Ulrich
- Departament of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neuroscience, LIM27, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
11
|
Perroud B, Jafar-Nejad P, Wikoff WR, Gatchel JR, Wang L, Barupal DK, Crespo-Barreto J, Fiehn O, Zoghbi HY, Kaddurah-Daouk R. Pharmacometabolomic signature of ataxia SCA1 mouse model and lithium effects. PLoS One 2013; 8:e70610. [PMID: 23936457 PMCID: PMC3732229 DOI: 10.1371/journal.pone.0070610] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/21/2013] [Indexed: 02/03/2023] Open
Abstract
We have shown that lithium treatment improves motor coordination in a spinocerebellar ataxia type 1 (SCA1) disease mouse model (Sca1(154Q/+)). To learn more about disease pathogenesis and molecular contributions to the neuroprotective effects of lithium, we investigated metabolomic profiles of cerebellar tissue and plasma from SCA1-model treated and untreated mice. Metabolomic analyses of wild-type and Sca1(154Q/+) mice, with and without lithium treatment, were performed using gas chromatography time-of-flight mass spectrometry and BinBase mass spectral annotations. We detected 416 metabolites, of which 130 were identified. We observed specific metabolic perturbations in Sca1(154Q/+) mice and major effects of lithium on metabolism, centrally and peripherally. Compared to wild-type, Sca1(154Q/+) cerebella metabolic profile revealed changes in glucose, lipids, and metabolites of the tricarboxylic acid cycle and purines. Fewer metabolic differences were noted in Sca1(154Q/+) mouse plasma versus wild-type. In both genotypes, the major lithium responses in cerebellum involved energy metabolism, purines, unsaturated free fatty acids, and aromatic and sulphur-containing amino acids. The largest metabolic difference with lithium was a 10-fold increase in ascorbate levels in wild-type cerebella (p<0.002), with lower threonate levels, a major ascorbate catabolite. In contrast, Sca1(154Q/+) mice that received lithium showed no elevated cerebellar ascorbate levels. Our data emphasize that lithium regulates a variety of metabolic pathways, including purine, oxidative stress and energy production pathways. The purine metabolite level, reduced in the Sca1(154Q/+) mice and restored upon lithium treatment, might relate to lithium neuroprotective properties.
Collapse
Affiliation(s)
- Bertrand Perroud
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Paymaan Jafar-Nejad
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - William R. Wikoff
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Jennifer R. Gatchel
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lu Wang
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dinesh K. Barupal
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Juan Crespo-Barreto
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Oliver Fiehn
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Huda Y. Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- The Departments of Pediatrics, Neurology, and Neuroscience and the Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (HZ); (RKD)
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (HZ); (RKD)
| |
Collapse
|
12
|
Yao JK, Dougherty GG, Reddy RD, Matson WR, Kaddurah-Daouk R, Keshavan MS. Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis. Front Cell Neurosci 2013; 7:90. [PMID: 23781173 PMCID: PMC3678099 DOI: 10.3389/fncel.2013.00090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia (SZ) is a biochemically complex disorder characterized by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to examine. Rather, evidence for these alterations has been collected piecemeal, limiting the potential to inform our understanding of the interactions amongst relevant biochemical pathways. We herein review perturbations in purine and neurotransmitter metabolism observed in early SZ using a metabolomic approach. Purine catabolism is an underappreciated, but important component of the homeostatic response of mitochondria to oxidant stress. We have observed a homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with SZ (FENNS). Precursor and product relationships within purine pathways are tightly correlated. Although some of these correlations persist across disease or medication status, others appear to be lost among FENNS suggesting that steady formation of the antioxidant uric acid (UA) via purine catabolism is altered early in the course of illness. As is the case for within-pathway correlations, there are also significant cross-pathway correlations between respective purine and tryptophan (TRP) pathway metabolites. By contrast, purine metabolites show significant cross-pathway correlation only with tyrosine, and not with its metabolites. Furthermore, several purine metabolites (UA, guanosine, or xanthine) are each significantly correlated with 5-hydroxyindoleacetic acid (5-HIAA) in healthy controls, but not in FENNS at baseline or 4-week after antipsychotic treatment. Taken together, the above findings suggest that purine catabolism strongly associates with the TRP pathways leading to serotonin (5-hydroxytryptamine, 5-HT) and kynurenine metabolites. The lack of a significant correlation between purine metabolites and 5-HIAA, suggests alterations in key 5-HT pathways that may both be modified by and contribute to oxidative stress via purine catabolism in FENNS.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System Pittsburgh, PA, USA ; Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep 2012; 2:667. [PMID: 22993692 PMCID: PMC3446657 DOI: 10.1038/srep00667] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 08/23/2012] [Indexed: 12/20/2022] Open
Abstract
Targeted metabolomics provides an approach to quantify metabolites involved in specific molecular pathways. We applied an electrochemistry-based, targeted metabolomics platform to define changes in tryptophan, tyrosine, purine and related pathways in the depressed and remitted phases of major depressive disorder (MDD). Biochemical profiles in the cerebrospinal fluid of unmedicated depressed (n = 14; dMDD) or remitted MDD subjects (n = 14; rMDD) were compared against those in healthy controls (n = 18; HC). The rMDD group showed differences in tryptophan and tyrosine metabolism relative to the other groups. The rMDD group also had higher methionine levels and larger methionine-to-glutathione ratios than the other groups, implicating methylation and oxidative stress pathways. The dMDD sample showed nonsignificant differences in the same direction in several of the metabolic branches assessed. The reductions in metabolites associated with tryptophan and tyrosine pathways in rMDD may relate to the vulnerability this population shows for developing depressive symptoms under tryptophan or catecholamine depletion.
Collapse
|
14
|
Abstract
Though the search for cerebrospinal fluid (CSF) biomarkers of Parkinson's disease (PD) began more than 40 years ago, the most promising results are relatively recent. Disease-specific indicators have been sought among the hundreds of proteins and other biochemicals found in CSF (which is contiguous with the extracellular fluid compartment of the brain). Initially, research focused on the selective neurotransmitter disturbance in PD. While investigations of dopamine metabolism (as reflected by its major metabolite, homovanillic acid [HVA]) have been relatively uninformative, we found that indexing HVA concentration to that of the purine metabolite xanthine permits differentiation of PD specimens from healthy controls (p < 0.0016) [Brain Research 2011;1408:88-97]. In another recent biomarker study, we utilized ultrahigh-performance liquid chromatography linked to gas chromatography-mass spectrometry for metabolomic analysis [Movement Disorders 2011;26(Suppl 2):S193]. Using t-tests to differentiate PD and control groups at p < 0.02, we found changes in compounds not known to be related to the neurodegenerative process (4 increased in CSF concentration and 8 decreased). Other recent investigations have reported distinctive biomarker findings in proteins and other biochemicals. The ultimate goal is for CSF biomarkers also found in peripheral biospecimens, aiding in diagnostic screening applications and providing further clues as to the etiology of PD.
Collapse
Affiliation(s)
- Peter LeWitt
- Department of Neurology, Henry Ford Hospital, Michigan 48322, USA.
| |
Collapse
|
15
|
LeWitt P, Schultz L, Auinger P, Lu M. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson's disease. Brain Res 2011; 1408:88-97. [PMID: 21784416 PMCID: PMC4120020 DOI: 10.1016/j.brainres.2011.06.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/28/2022]
Abstract
Diminished nigrostriatal dopaminergic neurotransmission is a biochemical hallmark of Parkinson's disease. Despite this, a reliable trait biomarker of sporadic Parkinson's disease has not emerged from measurements of cerebrospinal fluid dopamine metabolites. Previous studies have highlighted strong neurochemical relationships between dopamine and various purine compounds. In this study, we analyzed cerebrospinal fluid concentrations of homovanillic acid (the major catabolite of dopamine) and the purine compound xanthine for a comparison of 217 unmedicated Parkinson's disease subjects and 26 healthy controls. These compounds were highly correlated for both the Parkinson's disease subjects (r=0.68) and for controls (r=0.73; both groups, p<0.001). While neither homovanillic acid nor xanthine concentrations differentiated Parkinson's disease from controls, their ratio did. For controls, the mean [xanthine]/[homovanillic acid] quotient was 13.1±5.5 as compared to the Parkinson's disease value of 17.4±6.7 at an initial lumbar CSF collection (p=0.0017), and 19.7±8.7 (p<0.001) at a second CSF collection up to 24 months later. The [xanthine]/[homovanillic acid] ratio in the Parkinson's disease subjects differed as a function of disease severity, as measured by the sum of Unified Parkinson's Disease Rating Scale Activities of Daily Living and Motor Exam ratings. The [xanthine]/[homovanillic acid] ratio also increased between the first and second CSF collections, suggesting that this quotient provides both a state and trait biomarker of Parkinson's disease. These observations add to other neurochemical evidence that links purine metabolism to Parkinson's disease.
Collapse
Affiliation(s)
- Peter LeWitt
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- The Department of Neurology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA
| | - Lonni Schultz
- Department of Biostatistics, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Peggy Auinger
- The Department of Neurology, Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, 1351 Mount Hope Avenue, Rochester, NY 14620, USA
| | - Mei Lu
- Department of Biostatistics, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| |
Collapse
|
16
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
17
|
Loeffler DA, Camp DM, Juneau PL, Harel E, LeWitt PA. Purine-induced alterations of dopamine metabolism in rat pheochromocytoma PC12 cells. Brain Res Bull 2000; 52:553-8. [PMID: 10974496 DOI: 10.1016/s0361-9230(00)00293-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies with cerebrospinal fluid from subjects with Parkinson's disease suggest that purine abnormalities may be present in this disorder. The effects of purines on dopamine metabolism have not been characterized, though adenosine is known to inhibit dopaminergic neurotransmission. In this study, dopamine, its precursor 3,4-dihydroxyphenylalanine (DOPA), and its degradation products 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) were measured in rat pheochromocytoma PC12 cells following 24-h incubation with 5, 50, and 500 microM adenosine, adenine, guanosine, guanine, hypoxanthine, xanthine, and uric acid. Incubation with adenosine increased DOPA, DOPAC, and HVA, while adenine treatment decreased DOPA. Guanosine (500 microM) decreased DOPA, dopamine, and DOPAC, while lower concentrations increased DOPAC and HVA. Incubation with guanine decreased dopamine, and xanthine decreased dopamine and DOPAC. Hypoxanthine and uric acid exerted minimal effects. These results indicate that purines exert a variety of effects on dopamine metabolism. The influence of purine metabolism on the dopaminergic deficit in the Parkinsonian brain merits further investigation.
Collapse
Affiliation(s)
- D A Loeffler
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
18
|
Loeffler DA, LeWitt PA, Juneau PL, Camp DM, DeMaggio AJ, Milbury P, Matson WR, Rathbone MP. Altered guanosine and guanine concentrations in rabbit striatum following increased dopamine turnover. Brain Res Bull 1998; 45:297-9. [PMID: 9510422 DOI: 10.1016/s0361-9230(97)00367-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The significance of guanine nucleotides and nucleosides in neurodegenerative disorders is suggested by recent reports that these molecules enhance neurite branching and astrocyte proliferation. The objective of this study was to investigate the influence of increased dopamine metabolism, produced by 5-day treatment of rabbits with reserpine (2 mg/kg) or levodopa (LD) (50 mg/kg), on striatal concentrations of guanosine, guanine, and their metabolites. Reserpine treatment decreased striatal guanosine by 41% and increased guanine by 50%, while LD decreased guanosine by 48% (all p < 0.01 vs. vehicle-treated controls). LD also increased guanine by 22% (not statistically significant). Xanthine and uric acid concentrations were unchanged. Because of the neurotrophic properties of guanosine and guanine, changes in striatal concentrations of these purines secondary to increased dopamine (DA) turnover may have relevance for survival of remaining dopaminergic neurons in Parkinson's disease (PD).
Collapse
Affiliation(s)
- D A Loeffler
- Clinical Neuroscience Program, Sinai Hospital, Detroit, MI 48235, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pastuszko P, Marro P, Delivoria-Papadopoulos M, Wilson DF. Response of purine metabolism and cortical oxygen pressure to hypoxia and reoxygenation in newborn piglets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 428:147-53. [PMID: 9500041 DOI: 10.1007/978-1-4615-5399-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- P Pastuszko
- Department of Physiology, Medical School, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
20
|
Harkness RA, McCreanor GM, Greenwood R. The pathogenesis of the Lesch-Nyhan syndrome: ATP use is positively related to hypoxanthine supply to hypoxanthine guanine phosphoribosyltransferase. J Inherit Metab Dis 1991; 14:202-14. [PMID: 1886405 DOI: 10.1007/bf01800592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to explain features of severe hypoxanthine guanine phosphoribosyltransferase (HPRT) deficiency, the Lesch-Nyhan syndrome, a continuous supply of substrate, hypoxanthine, for the enzyme must be generated. This supply must be increased in association with increased ATP turnover. We have shown that ATP turnover continuously supplies hypoxanthine for recycling by the enzyme HPRT and that this supply increases curvilinearly with increasing ATP turnover. The effects of increasing exercise on ATP turnover were examined using a Latin square experimental design. The outputs of hypoxanthine, xanthine, urate and creatinine were measured. The data were then examined statistically.
Collapse
Affiliation(s)
- R A Harkness
- Division of Inherited Metabolic Diseases, MRC Clinical Research Centre, Middlesex, UK
| | | | | |
Collapse
|
21
|
Swahn CG. Determination of N-acetylaspartic acid in human cerebrospinal fluid by gas chromatography-mass spectrometry. J Neurochem 1990; 54:1584-8. [PMID: 2324740 DOI: 10.1111/j.1471-4159.1990.tb01208.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-Acetyl-L-aspartic acid was identified and determined in human cerebrospinal fluid. The concentration in lumbar fluid was about 2 nmol/ml and about 20 nmol/ml in ventricular fluid. There was no difference between healthy subjects and schizophrenic patients.
Collapse
Affiliation(s)
- C G Swahn
- Department of Psychiatry and Psychology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Abstract
Two healthy volunteers were treated with hypoxanthine 3 x 1 g and allopurinol 3 x 100 mg daily for 1 week. During this treatment serum oxypurine concentration and urinary oxypurine excretion increased as expected. No side effects were observed except for some mild daytime drowsiness and lethargy. Measurements of urinary serotonin (5-HT) excretion showed decreases to as much as 60% below initial values. Decreased urinary 5-HT excretion was also found in a patient with incomplete Lesch-Nyhan syndrome during treatment with high doses of hypoxanthine. His neurological symptoms improved slightly. The results suggest that high doses of hypoxanthine exert a nonspecific sedative effect on both patients with Lesch-Nyhan syndrome and healthy controls. The cause is probably a reduced synthesis or release of 5-HT.
Collapse
Affiliation(s)
- H Manzke
- Kinderkrankenhaus Seehospiz Kaiserin Friedrich, Norderney, Federal Republic of Germany
| | | |
Collapse
|
23
|
Niklasson F, Hetta J, Degrell I. Hypoxanthine, xanthine, urate and creatinine concentration gradients in cerebrospinal fluid. Ups J Med Sci 1988; 93:225-32. [PMID: 3238822 DOI: 10.3109/03009738809178548] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The purine metabolites hypoxanthine, xanthine and urate as well as creatinine were measured in cerebrospinal fluid (CSF) from two groups of patients and a reference sample group. In one of the patient groups lumbar CSF was collected in 2 ml portions until a total volume of 14 ml was withdrawn. Every second portion was analysed for its content of the metabolites in focus. In the other patient group both cisternal CSF and a fixed volume (20 ml) of lumbar CSF were obtained and analysed. An increase in concentration of hypoxanthine, xanthine and creatinine and a decrease in urate concentration was found in the successive CSF specimens. The mean individual increase in hypoxanthine concentration between the first and the last 2 ml portion was as high as 39.6%, while it was lower for xanthine, 21.5%, and creatinine, 6.7%. The decrease in urate concentration was 17.2%. The results from the other patient group were in good agreement with these findings. The concentrations in the cisternal CSF was 162% of that in lumbar CSF for hypoxanthine, 155% for xanthine, 123% for creatinine and 80% for urate. Mechanisms behind inter- and intraindividual differences in gradients are discussed.
Collapse
Affiliation(s)
- F Niklasson
- Department of Clinical Chemistry, University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
24
|
Bridge TP, Kleinman JE, Soldo BJ, Karoum F. Central catecholamines, cognitive impairment, and affective state in elderly schizophrenics and controls. Biol Psychiatry 1987; 22:139-47. [PMID: 3814666 DOI: 10.1016/0006-3223(87)90224-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Central catecholamine concentrations were determined in autopsy samples from older schizophrenic and control subjects for both the hypothalamus and the nucleus accumbens. The results of these analyses and demographic variables were regressed on antemortem measures of cognitive function and mood state. In the hypothalamus, there are significant direct relationships of homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) with depressed mood, as measured by an adaptation of the Hamilton Rating Scale for depression. In the nucleus accumbens, dopamine (DA) and MHPG had significant inverse relationships with antemortem cognitive function, as measured by an adaptation of the Mini Mental State Exam. Results in this sample indicate that after controlling for age, the catecholamine concentrations accounted for approximately 50% of the variance in the antemortem measures of mood or cognition, depending on the loci measured.
Collapse
|
25
|
Edwards NL, Silverstein FS, Johnston MV. Purine and monoamine metabolites in cerebrospinal fluid. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 195 Pt B:53-6. [PMID: 2429511 DOI: 10.1007/978-1-4684-1248-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Abstract
Somatostatin-like immunoreactivity was measured in the cerebrospinal fluid (CSF) of 85 inpatients with current or recent episodes of major depressive disorders, diagnosed according to Research Diagnostic Criteria (RDC) as assessed with the Schedule for Affective Disorders and Schizophrenia (SADS). Several biopsychiatric tests were run during the same week of investigation. Results indicate low levels of CSF somatostatin to be a state marker for episodes of depression characterized by sad appearance, feelings of tiredness, insomnia, and subjective inability to acknowledge any external precipitants for the depression. CSF somatostatin was negatively related to platelet monoamine oxidase (MAO) activity; MAO activity appeared to account better for the degree of melancholic features than did somatostatin. The ratio between 3-methoxy-4-hydroxyphenylglycol (MHPG) and homovanillic acid (HVA) in CSF also correlated negatively with somatostatin. A positive relationship was noted between CSF xanthine and somatostatin. There was a highly significant curvilinear correlation between CSF somatostatin and serum TSH concentrations, but no correlations between CSF somatostatin and serum GH or prolactin, or with plasma cortisol before or after dexamethasone.
Collapse
|
27
|
Agren H, Niklasson F, Hällgren R. Brain purinergic activity linked with depressive symptomatology: hypoxanthine and xanthine in CSF of patients with major depressive disorders. Psychiatry Res 1983; 9:179-89. [PMID: 6578531 DOI: 10.1016/0165-1781(83)90042-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purine metabolites hypoxanthine and xanthine were analyzed in cerebrospinal fluid (CSF) of 70 patients with major depressive disorders (diagnosed according to Research Diagnostic Criteria) and, for reference, in 26 nonpsychiatric individuals. In the patient group, levels adjusted by analysis of covariance to same sex, age, height, and weight were univariately and multivariately correlated with both depressive subdiagnoses and individual depressive symptoms. Results indicate that raw CSF levels in depressed patients are significantly correlated with the four variables used in adjustment (for hypoxanthine mainly negatively with height; for xanthine mainly positively with age). Hypoxanthine and xanthine both appear to be linked with the expression of depressive symptomatology: lower levels of hypoxanthine are associated with anger and suicidal tendencies, and higher levels are related to memory disturbance; lower xanthine levels characterize patients with subjective feelings of depression, and in patients with higher levels appetite is poor.
Collapse
|