1
|
Räuber S, Förster M, Schüller J, Willison A, Golombeck KS, Schroeter CB, Oeztuerk M, Jansen R, Huntemann N, Nelke C, Korsen M, Fischer K, Kerkhoff R, Leven Y, Kirschner P, Kölsche T, Nikolov P, Mehsin M, Marae G, Kokott A, Pul D, Schulten J, Vogel N, Ingwersen J, Ruck T, Pawlitzki M, Meuth SG, Melzer N, Kremer D. The Use of Nitrosative Stress Molecules as Potential Diagnostic Biomarkers in Multiple Sclerosis. Int J Mol Sci 2024; 25:787. [PMID: 38255863 PMCID: PMC10815836 DOI: 10.3390/ijms25020787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) of still unclear etiology. In recent years, the search for biomarkers facilitating its diagnosis, prognosis, therapy response, and other parameters has gained increasing attention. In this regard, in a previous meta-analysis comprising 22 studies, we found that MS is associated with higher nitrite/nitrate (NOx) levels in the cerebrospinal fluid (CSF) compared to patients with non-inflammatory other neurological diseases (NIOND). However, many of the included studies did not distinguish between the different clinical subtypes of MS, included pre-treated patients, and inclusion criteria varied. As a follow-up to our meta-analysis, we therefore aimed to analyze the serum and CSF NOx levels in clinically well-defined cohorts of treatment-naïve MS patients compared to patients with somatic symptom disorder. To this end, we analyzed the serum and CSF levels of NOx in 117 patients (71 relapsing-remitting (RR) MS, 16 primary progressive (PP) MS, and 30 somatic symptom disorder). We found that RRMS and PPMS patients had higher serum NOx levels compared to somatic symptom disorder patients. This difference remained significant in the subgroup of MRZ-negative RRMS patients. In conclusion, the measurement of NOx in the serum might indeed be a valuable tool in supporting MS diagnosis.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Moritz Förster
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
- Department of Neurology, Kliniken Maria Hilf GmbH, Academic Teaching Hospital of the RWTH Aachen University Hospital, 41063 Moenchengladbach, Germany
| | - Julia Schüller
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Kristin S. Golombeck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Christina B. Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Menekse Oeztuerk
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Robin Jansen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Melanie Korsen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Katinka Fischer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Ruth Kerkhoff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
- Department of Neurology, Kliniken Maria Hilf GmbH, Academic Teaching Hospital of the RWTH Aachen University Hospital, 41063 Moenchengladbach, Germany
| | - Yana Leven
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Patricia Kirschner
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Tristan Kölsche
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Petyo Nikolov
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Mohammed Mehsin
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Gelenar Marae
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Alma Kokott
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Duygu Pul
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Julius Schulten
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Niklas Vogel
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Jens Ingwersen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - David Kremer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
- Department of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich Heine University Düsseldorf, 47906 Kempen, Germany
| |
Collapse
|
2
|
Vezzoli A, Mrakic-Sposta S, Dellanoce C, Montorsi M, Vietti D, Ferrero ME. Chelation Therapy Associated with Antioxidant Supplementation Can Decrease Oxidative Stress and Inflammation in Multiple Sclerosis: Preliminary Results. Antioxidants (Basel) 2023; 12:1338. [PMID: 37507878 PMCID: PMC10376540 DOI: 10.3390/antiox12071338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
An imbalance of oxy-inflammation status has been involved in axonal damage and demyelination in multiple sclerosis (MS). The aim of this study was to investigate the efficacy of an antioxidant treatment (calcium disodium ethylenediaminetetracetic acid-EDTA) chelation therapy associated with a micronutrient complex in MS patients. A total of 20 MS patients and 20 healthy subjects, enrolled as a control group (CTR), were recruited. We measured the plasma ROS production and total antioxidant capacity (TAC) by a direct assessment using Electron Paramagnetic Resonance; activities of the antioxidant system (thiols' redox status and enzymes); and the urinary presence of biomarkers of oxidative stress by immunoenzymatic assays. We also evaluated the levels of inflammation by plasmatic cytokines (TNFα, IL-1β, and IL-6) and assessed the sICAM levels, as well as the nitric oxide (NO) catabolism and transthyretin (TTR) concentration. Comparing CTR and MS, in the latter ROS production, oxidative damage, inflammatory biomarkers, and NO metabolite concentrations results were significantly higher, while TAC was significantly lower. Treatment in MS induced significant (p < 0.05) down-regulating of pro-inflammatory sICAM1, TNF-α, IL6, as well as biomarkers of lipid peroxidation and DNA damage production. The protective effect exhibited may occur by decreasing ROS production and increasing antioxidant capacity, turning into a more reduced thiols' status.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di val Cannuta 247, 00166 Roma, Italy
| | - Daniele Vietti
- Driatec Srl, Via Leonardo da Vinci 21/E, 20060 Cassina de' Pecchi, Italy
| | - Maria Elena Ferrero
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| |
Collapse
|
3
|
Hayter EA, Azibere S, Skrajewski LA, Soule LD, Spence DM, Martin RS. A 3D-printed, multi-modal microfluidic device for measuring nitric oxide and ATP release from flowing red blood cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3171-3179. [PMID: 35959771 PMCID: PMC10227723 DOI: 10.1039/d2ay00931e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, a 3D-printed multi-modal device was designed and fabricated to simultaneously detect nitric oxide (NO) and adenosine triphosphate (ATP) in red blood cell suspensions prepared from whole blood. Once a sample was injected into the device, NO was first detected (via amperometry) using a three-electrode, dual-opposed, electrode configuration with a platinum-black/Nafion coated gold working electrode. After in-line amperometric detection of NO, ATP was detected via a chemiluminescence reaction, with a luciferin/luciferase solution continuously pumped into an integrated mixing T and the resulting light being measured with a PMT underneath the channel. The device was optimized for mixing/reaction conditions, limits of detection (40 nM for NO and 30 nM for ATP), and sensitivity. This device was used to determine the basal (normoxic) levels of NO and ATP in red blood cells, as well as an increase in concentration of both analytes under hypoxic conditions. Finally, the effect of storing red blood cells in a commonly used storage solution was also investigated by monitoring the production of NO and ATP over a three-week storage time.
Collapse
Affiliation(s)
- Elizabeth A Hayter
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Samuel Azibere
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Lauren A Skrajewski
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Logan D Soule
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
4
|
Förster M, Nelke C, Räuber S, Lassmann H, Ruck T, Sormani MP, Signori A, Hartung HP, Küry P, Meuth SG, Kremer D. Nitrosative Stress Molecules in Multiple Sclerosis: A Meta-Analysis. Biomedicines 2021; 9:biomedicines9121899. [PMID: 34944714 PMCID: PMC8698769 DOI: 10.3390/biomedicines9121899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system of unknown etiology. As it is still a diagnosis of exclusion, there is an urgent need for biomarkers supporting its diagnosis. Increasing evidence suggests that nitrosative stress may play a pivotal role in the pathogenesis of MS. However, previous reports supporting the role of nitrosative stress molecules as disease biomarkers are inconsistent overall. We therefore systematically analyzed the existing literature to compare the serum and cerebrospinal fluid (CSF) levels of nitrite/nitrate in MS patients with those in patients with noninflammatory other neurological diseases (NIOND) and healthy controls (HC), respectively. We searched the PubMed database and included original articles investigating nitrite/nitrate levels in MS patients and NIOND patients or HC based on predefined selection criteria. Effect sizes were estimated by the standardized mean difference using a random effects model. Our results suggest that MS is associated with higher nitrite/nitrate levels within the CSF compared with patients with NIOND (SMD of 1.51; 95% CI: 0.72, 2.30; p = 0.0008). Likewise, nitrite/nitrate in the CSF of MS patients trends towards increased levels compared with those of HC but does not reach statistical significance (SMD of 3.35; 95% CI: −0.48, 7.19; p = 0.07). Measurement of nitrite/nitrate in the CSF might be a valuable tool facilitating the differentiation of MS and NIOND. Further studies with more homogeneous study criteria are needed to corroborate this hypothesis.
Collapse
Affiliation(s)
- Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa, 16121 Genoa, Italy; (M.P.S.); (A.S.)
- IRCCS Ospedale Policlinico San Martino, 16121 Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, 16121 Genoa, Italy; (M.P.S.); (A.S.)
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
- Brain and Mind Center, University of Sydney, Sydney 2006, Australia
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Neurology, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
- Correspondence: ; Tel.: +49-(0)2-1181-08084
| |
Collapse
|
5
|
Agúndez JAG, García-Martín E, Rodríguez C, Benito-León J, Millán-Pascual J, Díaz-Sánchez M, Calleja P, Turpín-Fenoll L, Alonso-Navarro H, García-Albea E, Plaza-Nieto JF, Jiménez-Jiménez FJ. Endothelial nitric oxide synthase (NOS3) rs2070744 polymorphism and risk for multiple sclerosis. J Neural Transm (Vienna) 2020; 127:1167-1175. [PMID: 32449012 DOI: 10.1007/s00702-020-02211-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/16/2020] [Indexed: 11/28/2022]
Abstract
The possible role of oxidative stress and nitric oxide (NO) in the pathogenesis of multiple sclerosis (MS) has been suggested by several neuropathological, biochemical, and experimental data. Because the single-nucleotide polymorphism (SNP) rs2070744 in the endothelial nitric oxide synthase (eNOS or NOS3) gene (chromosome 7q36.1) showed association with the risk for MS in Iranians, we attempted to replicate the possible association between this SNP and the risk for MS in the Caucasian Spanish population. The frequencies of NOS3rs2070744 genotypes and allelic variants in 300 patients diagnosed with MS and 380 healthy controls were assessed with a TaqMan-based qPCR assay. The possible influence of the genotype frequency on age at onset of MS, the severity of MS, clinical evolutive subtypes of MS, and HLA-DRB1*1501 genotype were also analyzed. The frequencies of rs2070744 genotypes and allelic variants were not associated with the risk of developing MS and were not influenced by gender, age at onset and severity of MS, the clinical subtype of MS or the HLA-DRB1*1501 genotype. This study found a lack of association between NOS3 rs2070744 SNP and the risk for MS in Caucasian Spanish people.
Collapse
Affiliation(s)
- José A G Agúndez
- UNEx, ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Elena García-Martín
- UNEx, ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Christopher Rodríguez
- UNEx, ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Julián Benito-León
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Jorge Millán-Pascual
- Section of Neurology, Hospital La Mancha-Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - María Díaz-Sánchez
- Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Patricia Calleja
- Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Laura Turpín-Fenoll
- Section of Neurology, Hospital La Mancha-Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, C/ Marroquina 14, 3º B, Arganda del Rey, 28030, Madrid, Spain
| | - Esteban García-Albea
- Department of Medicine-Neurology, Hospital "Príncipe de Asturias", Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - José Francisco Plaza-Nieto
- Section of Neurology, Hospital Universitario del Sureste, C/ Marroquina 14, 3º B, Arganda del Rey, 28030, Madrid, Spain
| | - Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, C/ Marroquina 14, 3º B, Arganda del Rey, 28030, Madrid, Spain. .,Department of Medicine-Neurology, Hospital "Príncipe de Asturias", Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
6
|
Buture A, Boland JW, Dikomitis L, Ahmed F. Update on the pathophysiology of cluster headache: imaging and neuropeptide studies. J Pain Res 2019; 12:269-281. [PMID: 30655693 PMCID: PMC6324919 DOI: 10.2147/jpr.s175312] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Cluster headache (CH) is the most severe primary headache condition. Its pathophysiology is multifaceted and incompletely understood. This review brings together the latest neuroimaging and neuropeptide evidence on the pathophysiology of CH. METHODS A review of the literature was conducted by searching PubMed and Web of Science. The search was conducted using the following keywords: imaging studies, voxel-based morphometry, diffusion-tensor imaging, diffusion magnetic resonance imaging, tractography, connectivity, cerebral networks, neuromodulation, central modulation, deep brain stimulation, orexin-A, orexin-B, tract-based spatial statistics, single-photon emission computer tomography studies, positron-emission tomography, functional magnetic resonance imaging, magnetic resonance spectroscopy, trigeminovascular system, neuropeptides, calcitonin gene-related peptide, neurokinin A, substance P, nitric oxide synthase, pituitary adenylate cyclase-activating peptide, vasoactive intestinal peptide, neuropeptide Y, acetylcholine, noradrenaline, and ATP. "Cluster headache" was combined with each keyword for more relevant results. All irrelevant and duplicated records were excluded. Search dates were from October 1976 to May 2018. RESULTS Neuroimaging studies support the role of the hypothalamus in CH, as well as other brain areas involved in the pain matrix. Activation of the trigeminovascular system and the release of neuropeptides play an important role in CH pathophysiology. Among neuropeptides, calcitonin gene-related peptide, vasoactive intestinal peptide, and pituitary adenylate cyclase-activating peptide have been reported to be reliable biomarkers for CH attacks, though not specific for CH. Several other neuropeptides are involved in trigeminovascular activation, but the current evidence does not qualify them as reliable biomarkers in CH. CONCLUSION CH has a complex pathophysiology and the pain mechanism is not completely understood. Recent neuroimaging studies have provided insight into the functional and structural network bases of CH pathophysiology. Although there has been important progress in neuropeptide studies, a specific biomarker for CH is yet to be found.
Collapse
Affiliation(s)
- Alina Buture
- Department of Neurology, Hull Royal Infirmary, Hull, UK,
- Hull York Medical School, University of Hull, Hull, UK,
| | | | - Lisa Dikomitis
- School of Medicine and Institute of Primary Care and Health Sciences, Keele University, Newcastle, UK
| | - Fayyaz Ahmed
- Department of Neurology, Hull Royal Infirmary, Hull, UK,
- Hull York Medical School, University of Hull, Hull, UK,
| |
Collapse
|
7
|
Lee SK, Mokin M, Hetts SW, Fifi JT, Bousser MG, Fraser JF. Current endovascular strategies for cerebral venous thrombosis: report of the SNIS Standards and Guidelines Committee. J Neurointerv Surg 2018; 10:803-810. [DOI: 10.1136/neurintsurg-2018-013973] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/03/2022]
|
8
|
Blood Mononuclear Cell Mitochondrial Respiratory Chain Complex IV Activity Is Decreased in Multiple Sclerosis Patients: Effects of β-Interferon Treatment. J Clin Med 2018; 7:jcm7020036. [PMID: 29461488 PMCID: PMC5852452 DOI: 10.3390/jcm7020036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 12/03/2022] Open
Abstract
Objectives: Evidence of mitochondrial respiratory chain (MRC) dysfunction and oxidative stress has been implicated in the pathophysiology of multiple sclerosis (MS). However, at present, there is no reliable low invasive surrogate available to evaluate mitochondrial function in these patients. In view of the particular sensitivity of MRC complex IV to oxidative stress, the aim of this study was to assess blood mononuclear cell (BMNC) MRC complex IV activity in MS patients and compare these results to age matched controls and MS patients on β-interferon treatment. Methods: Spectrophotometric enzyme assay was employed to measure MRC complex IV activity in blood mononuclear cell obtained multiple sclerosis patients and aged matched controls. Results: MRC Complex IV activity was found to be significantly decreased (p < 0.05) in MS patients (2.1 ± 0.8 k/nmol × 10−3; mean ± SD] when compared to the controls (7.2 ± 2.3 k/nmol × 10−3). Complex IV activity in MS patients on β-interferon (4.9 ± 1.5 k/nmol × 10−3) was not found to be significantly different from that of the controls. Conclusions: This study has indicated evidence of peripheral MRC complex IV deficiency in MS patients and has highlighted the potential utility of BMNCs as a potential means to evaluate mitochondrial function in this disorder. Furthermore, the reported improvement of complex IV activity may provide novel insights into the mode(s) of action of β-interferon.
Collapse
|
9
|
Karimi A, Bahrampour K, Momeni Moghaddam MA, Asadikaram G, Ebrahimi G, Torkzadeh-Mahani M, Esmaeili Tarzi M, Nematollahi MH. Evaluation of lithium serum level in multiple sclerosis patients: A neuroprotective element. Mult Scler Relat Disord 2017; 17:244-248. [DOI: 10.1016/j.msard.2017.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
|
10
|
Khalili M, Soltani M, Moghadam SA, Dehghan P, Azimi A, Abbaszadeh O. Effect of alpha-lipoic acid on asymmetric dimethylarginine and disability in multiple sclerosis patients: A randomized clinical trial. Electron Physician 2017; 9:4899-4905. [PMID: 28894553 PMCID: PMC5587011 DOI: 10.19082/4899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/14/2017] [Indexed: 01/17/2023] Open
Abstract
Background Multiple Sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system. Oxidative stress plays a major role in the onset and progression of MS. Asymmetric dimethylarginine (ADMA) formation is dependent on oxidative stress status. Objective We examined whether alpha-lipoic acid (ALA) as a potent antioxidant could improve the Expanded Disability Status Scale (EDSS) and decrease plasma level of ADMA in multiple sclerosis patients. Methods In a randomized, double-blinded clinical trial conducted at Sina Hospital in Tehran, Iran, from September 2009 to July 2011, 24 patients with relapsing-remitting MS were divided into a treatment group receiving ALA (1200mg/day) for 12 weeks and a control group receiving placebo. Then patients’ EDSS and Plasma levels of ADMA were measured at baseline and 12 weeks later. Statistical analysis was done by SPSS software version 16 using the K-S test, Chi square, Mann–Whitney U-test and Wilcoxon test. Results The plasma levels of ADMA in the intervention group were decreased significantly (p=0.04). Also, no patient had increased EDSS score in the supplement group, where 2 out of 12 patients in the placebo group experienced so. Comparing the serum level of ADMA between the two groups failed to show any significant change in the supplement group compared with the control group. Conclusion Considering that ADMA is produced by oxidative stress in MS patients and leads to increase of inflammation, ALA may have the potential of beneficial effects in them, in part, by decreasing the plasma level of ADMA and stopping progression. Trial registration The trial was registered at the Iranian Registry of Clinical Trials (http://www.irct.ir) with the Irct ID: No. IRCT138812222602N2. Funding The authors received no financial support for the research, authorship, and/or publication of this article.
Collapse
Affiliation(s)
- Mohammad Khalili
- Ph.D. of Nutrition, Assistant Professor, Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shirin Amiri Moghadam
- M.D., Ph.D. of Nutrition, Assistant Professor, Department of community medicine, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parvin Dehghan
- Ph.D. of Nutrition, Assistant Professor, Department of Food Science and Technology, Faculty of Nutrition and food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Azimi
- M.D., Neurologist, Assistant Professor, Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Abbaszadeh
- M.D., Research Development and Coordination Center, faculty of Medicine, Deputy of Research and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med 2016; 10:889-902. [PMID: 27416337 DOI: 10.2217/bmm-2016-0097] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To provide an up-to-date review of oxidative stress biomarkers in multiple sclerosis and thus identify candidate molecules with greatest promise as biomarkers of diagnosis, disease activity or prognosis. METHOD A semi-systematic literature search using PubMed and other databases. RESULTS Nitric oxide metabolites, superoxide dismutase, catalase, glutathione reductase, inducible nitric oxide synthase, protein carbonyl, 3-nitrotyrosine, isoprostanes, malondialdehyde and products of DNA oxidation have been identified across multiple studies as having promise as diagnostic, therapeutic or prognostic markers in MS. CONCLUSION Heterogeneity of study design, particularly patient selection, limits comparability across studies. Further cohort studies are needed, and we would recommend promising markers be incorporated into future clinical trials to prospectively validate their potential.
Collapse
Affiliation(s)
- Richard Ibitoye
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kevin Kemp
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Claire Rice
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kelly Hares
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Alastair Wilkins
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| |
Collapse
|
12
|
La Mantia L, D'Amico D, Rigamonti A, Mascoli N, Bussone G, Milanese C. Interferon treatment may trigger primary headaches in multiple sclerosis patients. Mult Scler 2016; 12:476-80. [PMID: 16900761 DOI: 10.1191/1352458506ms1298oa] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent data have suggested that interferon-b (IFN-β) may aggravate headaches in multiple sclerosis (MS) patients. The aim of this study was to investigate the life-time prevalence of primary headaches in MS patients treated with interferons in comparison with patients treated with other disease-modifying agents. Attention was focused on the onset of headache and the changes in pre-existing headaches in relation to the onset of therapy. The study was open-labelled and not randomized. We studied 150 consecutive MS patients treated with IFN-β (109 patients: 54 with 1b, 55 with 1a) and with other drugs (41 patients: 14 with glatiramer acetate, 27 with azathioprine). All patients underwent a semi-structured interview to diagnose headache type, according to the International Headache Society criteria. The frequency of primary headaches was higher in the interferon-group (72%) compared to patients in the other group (54%) ( P = 0.03). Worsening of pre-existing headaches or development of de novo headache occurred only in the interferon-group (41 and 48%, respectively) and not in the other group ( P<0.001). These results show that headache should be considered among the side-effects of interferon in MS patients.
Collapse
Affiliation(s)
- L La Mantia
- MS Center, C. Besta National Neurological Institute, Milan, 20133, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The Role of ATP Synthase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3869610. [PMID: 27034734 PMCID: PMC4806282 DOI: 10.1155/2016/3869610] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) targeting mitochondria are major causative factors in disease pathogenesis. The mitochondrial permeability transition pore (PTP) is a mega-channel modulated by calcium and ROS/RNS modifications and it has been described to play a crucial role in many pathophysiological events since prolonged channel opening causes cell death. The recent identification that dimers of ATP synthase form the PTP and the fact that posttranslational modifications caused by ROS/RNS also affect cellular bioenergetics through the modulation of ATP synthase catalysis reveal a dual function of these modifications in the cells. Here, we describe mitochondria as a major site of production and as a target of ROS/RNS and discuss the pathophysiological conditions in which oxidative and nitrosative modifications modulate the catalytic and pore-forming activities of ATP synthase.
Collapse
|
14
|
Long-distance effects of inflammation on differentiation of adult spinal cord neural stem/progenitor cells. J Neuroimmunol 2015; 288:47-55. [DOI: 10.1016/j.jneuroim.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022]
|
15
|
Giacoppo S, Galuppo M, Lombardo GE, Ulaszewska MM, Mattivi F, Bramanti P, Mazzon E, Navarra M. Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 2015; 103:171-86. [PMID: 25863350 DOI: 10.1016/j.fitote.2015.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
In the last 20 years, wine phenolic compounds have received increasing interest since several epidemiological studies have suggested associations between regular consumption of moderate amount of wine and prevention of certain chronic pathologies, such as neurodegenerative diseases. This study was aimed to investigate the possible neuroprotective role of a polyphenolic white grape juice extract (WGJe) in an experimental mice model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS) in vivo. EAE mimics the main features of MS, including paralysis, weight loss, demyelination, central nervous system (CNS) inflammation and blood-brain barrier (BBB) breakdown. Our study demonstrated that oral administration of WGJe (20 and 40 mg/kg/day) may exert neuroprotective effects against MS, diminishing both clinical signs and histological score typical of disease (lymphocytic infiltration and demyelination). In particular, by western blot, histological evaluations and immunolocalization of the main markers of inflammation, oxidative stress and apoptosis (TNF-α, iNOS, Nitrotyrosine, PARP, Foxp3, Bcl-2, Caspase 3 and DNA fragmentation), we documented that WGJe counteracts the alteration of all these inflammatory and oxidative pathway, without any apparent sign of toxicity. On these bases, we propose this natural product as putative novel helpful tools for the prevention of autoimmune and neurodegenerative diseases such as MS. WGJe could have considerable implication for future therapies of MS, and this study may represents the starting point for further investigation on the role of WGJe in neuroinflammation.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy
| | - Maria Galuppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy
| | - Giovanni Enrico Lombardo
- Università degli Studi di Messina, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168, Messina, Italy
| | - Maria Malgorzata Ulaszewska
- Fondazione Edmund Mach, Centro Ricerca e Innovazione, Dipartimento Qualità Alimentare e Nutrizione, Via E. Mach 1, 38010 - San Michele all'Adige, Trento, Italy
| | - Fulvio Mattivi
- Fondazione Edmund Mach, Centro Ricerca e Innovazione, Dipartimento Qualità Alimentare e Nutrizione, Via E. Mach 1, 38010 - San Michele all'Adige, Trento, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy.
| | - Michele Navarra
- Università degli Studi di Messina, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168, Messina, Italy
| |
Collapse
|
16
|
Efficacy of fish oil on serum of TNF α , IL-1 β , and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:709493. [PMID: 23861993 PMCID: PMC3703725 DOI: 10.1155/2013/709493] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/08/2013] [Indexed: 02/05/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease, which leads to focal plaques of demyelination and tissue injury in the central nervous system. Oxidative stress is also thought to promote tissue damage in multiple sclerosis. Current research findings suggest that omega-3 polyunsaturated fatty acids (PUFAs) such as eicosapenta-enoic acid (EPA) and docosahexaenoic acid (DHA) contained in fish oil may have anti-inflammatory, antioxidant, and neuroprotective effects. The aim of the present work was to evaluate the efficacy of fish oil supplementation on serum proinflammatory cytokine levels, oxidative stress markers, and disease progression in MS. 50 patients with relapsing-remitting MS were enrolled. The experimental group received orally 4 g/day of fish oil for 12 months. The primary outcome was serum TNFα levels; secondary outcomes were IL-1β 1b, IL-6, nitric oxide catabolites, lipoperoxides, progression on the expanded disability status scale (EDSS), and annualized relapses rate (ARR). Fish oil treatment decreased the serum levels of TNFα, IL-1β, IL-6, and nitric oxide metabolites compared with placebo group (P ≤ 0.001). There was no significant difference in serum lipoperoxide levels during the study. No differences in EDSS and ARR were found. Conclusion. Fish oil supplementation is highly effective in reducing the levels of cytokines and nitric oxide catabolites in patients with relapsing-remitting MS.
Collapse
|
17
|
Stępień A, Chalimoniuk M, Lubina-Dąbrowska N, Chrapusta SJ, Galbo H, Langfort J. Effects of interferon β-1a and interferon β-1b monotherapies on selected serum cytokines and nitrite levels in patients with relapsing-remitting multiple sclerosis: a 3-year longitudinal study. Neuroimmunomodulation 2013; 20:213-22. [PMID: 23711618 DOI: 10.1159/000348701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Interferon (IFN)β treatment is a mainstay of relapsing-remitting multiple sclerosis (RRMS) immunotherapy. Its efficacy is supposedly a consequence of impaired trafficking of inflammatory cells into the central nervous system and modification of the proinflammatory/antiinflammatory cytokine balance. However, the effects of long-term monotherapy using various IFNβ preparations on cytokine profiles and the relevance of these effects for the therapy outcome have not yet been elucidated. METHODS Changes were compared in serum levels of TNFα, IFNγ, interleukin (IL)-6, IL-10 and nitrite between RRMS patients given 3-year treatment with intramuscular IFNβ-1a (30 μg once a week) or subcutaneous IFNβ-1b (250 μg every other day). Only the data from patients who completed the 3-year study (n = 20 and n = 18, respectively) were analyzed. RESULTS Three-year IFNβ-1a or IFNβ-1b monotherapy reduced serum nitrite levels by 77 and 71%, respectively, lowered multiple sclerosis relapse annual rate by 70 and 71%, respectively, and significantly and similarly lowered Expanded Disability Status Scale scores in both study groups (by 0.9 on average). The two monotherapies showed little if any effect on cytokine levels and cytokine level ratios after the first year, but exerted diverging effects on these indices later on; the only exception was the IFNγ/IL-6 ratio that showed a monotonous rise in both study groups over the entire study period. CONCLUSION During long-term IFNβ monotherapy, the levels of the studied cytokines show no relevance to the course of RRMS and neurological status of patients, whereas there seems to be a link between these clinical indices and the activity of nitric oxide-mediated pathways.
Collapse
Affiliation(s)
- Adam Stępień
- Department of Neurology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Nitric oxide (NO) is an important molecule in headache pathophysiology. NO regulates vascular tone and acts as a potent vasodilator, and thus participates in regulating blood flow. NO is also considered to play a role in processing sensory information and pain sensitization. In this article, we review the role of NO in one of the primary headache disorders, cluster headache (CH). The pathophysiology of CH is still not completely understood. A multifactorial genesis where NO is likely to be involved is probable. The level of NO production has been shown to correlate with disease activity in several inflammatory disorders, such as cystitis, multiple sclerosis, and cerebral lupus erythematosus. In this article, the issue of whether similar circumstances apply for CH and also the role of NO in the pathophysiology of CH in a wider perspective are discussed.
Collapse
Affiliation(s)
- Anna Steinberg
- Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
19
|
Lindquist S, Hassinger S, Lindquist JA, Sailer M. The balance of pro-inflammatory and trophic factors in multiple sclerosis patients: effects of acute relapse and immunomodulatory treatment. Mult Scler 2011; 17:851-66. [DOI: 10.1177/1352458511399797] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: In multiple sclerosis inflammation is primarily injurious to the central nervous system, but its therapeutic suppression might inhibit repair-promoting factors. Objectives: We aimed at better describing the complexity of biological effects during an acute relapse and analysed the effects of intervention with high-dose i.v. glucocorticoids and immunomodulatory treatment with interferon-beta (IFNβ). Methods: We studied the intracellular expression levels of the pro-inflammatory mediators tumour necrosis factor alpha (TNFα) and inducible nitric oxide synthase (iNOS) together with the neurotrophins ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in freshly isolated peripheral blood mononuclear cells of multiple sclerosis patients during an acute relapse, after intervention with i.v. methylprednisolone and at baseline, using a highly quantitative flow-cytometric approach. Results: We demonstrated the expression of CNTF in human leucocytes. We showed that CNTF levels differed in acutely relapsing multiple sclerosis patients compared with controls and increased after corticosteroid treatment. CNTF can counteract the toxicity of TNFα towards oligodendrocytes and we found TNFα increased during acute relapses. Following corticosteroids, neither TNFα nor iNOS expression was reduced. Levels of BDNF were not affected by glucocorticoids, but increased during IFNβ therapy. However, IFNβ also increased the expression of iNOS and major histocompatibility complex class I (MHC-I), underlining its immunomodulatory potential. Conclusions: Multiple sclerosis patients might benefit from reparative, and not solely from anti-inflammatory, effects of glucocorticoids. Interactive effects of glucocorticoid- and IFNβ-treatment need to be considered to improve neuroprotection and remyelination resulting from immunomodulatory treatment.
Collapse
Affiliation(s)
- Sabine Lindquist
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Sarah Hassinger
- University Clinic for Neurology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jonathan A Lindquist
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany
- Co-senior authors
| | - Michael Sailer
- University Clinic for Neurology, Otto-von-Guericke-University, Magdeburg, Germany
- Centre for Neurological Rehabilitation, Magdeburg, Germany
- Co-senior authors
| |
Collapse
|
20
|
Jana M, Dasgupta S, Pal U, Pahan K. IL-12 p40 homodimer, the so-called biologically inactive molecule, induces nitric oxide synthase in microglia via IL-12R beta 1. Glia 2009; 57:1553-65. [PMID: 19306359 DOI: 10.1002/glia.20869] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Earlier we have demonstrated that IL-12 p40 homodimer (p40(2)) induces the expression of inducible nitric oxide synthase (iNOS) in microglia. This study was undertaken to investigate underlying mechanisms required for IL-12 p40(2)- and IL-12 p70-induced expression of iNOS in microglia. IL-12 p40(2) alone induced the activation of both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Interestingly, the ERK pathway coupled p40(2) to iNOS expression via C/EBP beta, but not NF-kappaB, whereas the p38 pathway relayed the signal from p40(2) to iNOS expression via both NF-kappaB and C/EBP beta. Furthermore, by using microglia from IL-12R beta 1 (-/-) and IL-12R beta 2 (-/-) mice or siRNA against IL-12R beta 1 and IL-12R beta 2, we demonstrate that p40(2) induced the expression of iNOS in microglia via IL-12R beta 1-(ERK+p38)-(NF-kappaB +C/EBP beta) pathway. In contrast, both IL-12R beta 1 and IL-12R beta 2 were involved for IL-12 p70-induced microglial expression of iNOS. Although IL-12R beta 1 coupled p70 to NF-kappaB and C/EBP beta, IL-12R beta 2 was responsible for p70-mediated activation of GAS. This study delineates a new role of IL-12R beta 1 and IL-12R beta 2 for the expression of iNOS and production of NO in microglia that may participate in the pathogenesis of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
21
|
Tumani H, Hartung HP, Hemmer B, Teunissen C, Deisenhammer F, Giovannoni G, Zettl UK. Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis 2009; 35:117-27. [PMID: 19426803 DOI: 10.1016/j.nbd.2009.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/10/2009] [Accepted: 04/27/2009] [Indexed: 12/25/2022] Open
Abstract
In patients with multiple sclerosis (MS) intensive efforts are directed at identifying biomarkers in bodily fluids related to underlying disease mechanisms, disease activity and progression, and therapeutic response. Besides MR imaging parameters cerebrospinal fluid (CSF) biomarkers provide important and specific information since changes in the CSF composition may reflect disease mechanisms inherent to MS. The different cellular and protein-analytical methods of the CSF and the recommended standard of the diagnostic CSF profile in MS are described. A brief update on possible CSF biomarkers that might reflect key pathological processes of MS such as inflammation, demyelination, neuroaxonal loss, gliosis and regeneration is provided.
Collapse
Affiliation(s)
- Hayrettin Tumani
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm D-89081, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In making a selection of cellular tools and animal models for generating screening assays in the search for new drugs, one needs to take into consideration the practicality of their use in the drug discovery process. Conducting high-throughput primary screens using libraries of small molecules, close to 1 million members in size, requires the generation of large numbers of cells which are easily acquired, reliably enriched, and reproducibly responsive to standard positive controls. These cells need to be similar in form and function to their counterparts in human disease. In vitro assays that can be mechanized by using robots can therefore save time and costs. In selecting in vivo models, consideration must be given to the species and strain of animal chosen, the appropriateness of the model to human disease, the extent of animal husbandry required during the in-life pharmacological assessment, the technical aspects of generating the model and harvesting the tissues for analyses, the cost of research tools in terms of time and money (demyelinating and remyelinating agents, amount of compound to be generated), and the length of time required for drug testing in the model. A consideration of the translational aspects of the in vivo model compared to those used in the clinic is also important. These themes will be developed with examples for drug discovery in the field of CNS demyelination and repair, specifically as it pertains to multiple sclerosis.
Collapse
|
23
|
Rejdak K, Petzold A, Stelmasiak Z, Giovannoni G. Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis. Mult Scler 2007; 14:59-66. [PMID: 17893112 DOI: 10.1177/1352458507082061] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the cerebrospinal fluid (CSF) levels of ferritin, S100B as biomarkers for glial activation and NfH(SM135)--a biomarker of axonal damage--in relation to nitric oxide (NO) metabolites: nitrate and nitrite (NOx) during acute multiple sclerosis (MS) relapse. Thirty-four relapsing-remitting MS (RR-MS) patients during acute relapse and 12 controls were enrolled. Patients were assessed on Expanded Disability Status Scale (EDSS) and underwent lumbar puncture within two weeks following relapse. Twenty patients were available for further follow-up and were assessed on EDSS 6-8 weeks since the relapse onset. The CSF NOx (P<0.0001), NfH(SM135) (P=0.01) and S100B (P=0.009) but not ferritin (P>0.05) were significantly raised in MS group. There was a significant correlation between CSF ferritin and S100B in RR-MS group (P=0.004). CSF NOx did not correlate with S100B and ferritin in study groups. RR-MS patients with detectable NfH(SM135) levels had higher NOx compared with subjects having undetectable NfH(SM135) (P=0.03). In the follow-up study, raised baseline levels of NOx (P=0.016) or NfH(SM135) (P=0.04) inversely correlated with the clinical recovery grade expressed as relative EDSS change between baseline and follow-up. In conclusion, NO metabolites were increased and because of their correlation with a biomarker of axonal degeneration (neurofilaments) and a measure for clinical disability (EDSS), relapse-related nitrosative stress is likely to be relevant to the development of sustained disability in an individual patient.
Collapse
Affiliation(s)
- K Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland.
| | | | | | | |
Collapse
|
24
|
Lehmann HC, Köhne A, Meyer zu Hörste G, Dehmel T, Kiehl O, Hartung HP, Kastenbauer S, Kieseier BC. Role of Nitric Oxide as Mediator of Nerve Injury in Inflammatory Neuropathies. J Neuropathol Exp Neurol 2007; 66:305-12. [PMID: 17413321 DOI: 10.1097/nen.0b013e3180408daa] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Different lines of evidence suggest that nitric oxide (NO) plays a key role in the pathogenesis of inflammatory neuropathies; however, it is still unclear which structures in the peripheral nerve are the primary targets of NO-mediated nerve injury. To address this issue, we determined the expression of NO metabolites in sural nerve biopsies and in cerebrospinal fluid from patients with inflammatory neuropathies and studied the pathologic effects of NO in an in vitro model of myelinated Schwann cell-neuron cocultures. In cerebrospinal fluid samples, nitrite levels remained unaltered; however, nitrotyrosine, a marker for peroxynitrite formation, could be identified in nerve biopsies from patients with inflammatory neuropathies. In an in vitro model of Schwann cell neuron cocultures, high concentrations of NO induced robust demyelination, which was the result of NO-mediated axonal injury, whereas Schwann cell viability remained unaffected. These findings suggest that in contrast to Schwann cells, sensory neurons are the primary target of NO-mediated cytotoxicity and the loss of myelin is the result of selective damage to axons rather than a direct harmful effect to Schwann cells. Our findings imply that NO contributes to the pathologic changes seen in the inflamed peripheral nervous system, which is characterized by the features of axonal injury and subsequent myelin degradation, previously described as Wallerian-like degeneration.
Collapse
Affiliation(s)
- Helmar C Lehmann
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rejdak K, Petzold A, Kocki T, Kurzepa J, Grieb P, Turski WA, Stelmasiak Z. Astrocytic activation in relation to inflammatory markers during clinical exacerbation of relapsing-remitting multiple sclerosis. J Neural Transm (Vienna) 2007; 114:1011-5. [PMID: 17393066 DOI: 10.1007/s00702-007-0667-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 02/16/2007] [Indexed: 11/30/2022]
Abstract
The study aimed to assay the cerebrospinal fluid (CSF) levels of protein S100B, a biomarker of astrocyte activation in relation to kynurenic acid (KYNA) and nitric oxide (NO) metabolites, nitrate/nitrite (NOx) concentrations in acute relapse multiple sclerosis (MS) patients. Twenty relapsing-remitting MS (RR-MS) patients and 10 controls were enrolled. RR-MS patients were assessed on the expanded disability status scale (EDSS) and underwent lumbar puncture. The CSF KYNA, NOx and S100B levels were significantly higher in RR-MS group compared to controls (p = 0.01, 0.001, 0.04, respectively). There was a significant correlation between CSF S100B and KYNA (p = 0.01) but not NOx (p > 0.05) in RR-MS. CSF KYNA, NOx or S100B concentrations did not correlate with disease characteristics of MS patients. Our study suggests the activation of the kynurenine pathway leading to the increase of neuroprotective KYNA in the CSF of MS patients during acute relapse what contrasts with chronic phases of the disease.
Collapse
Affiliation(s)
- K Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Luque FA, Jaffe SL. Cerebrospinal fluid analysis in multiple sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:341-56. [PMID: 17531849 DOI: 10.1016/s0074-7742(07)79015-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although the diagnosis of multiple sclerosis (MS) may be clinically suspect and the magnetic resonance imaging findings compatible, cerebrospinal fluid (CSF) analysis remains mandatory in order to support the diagnosis. This is especially important since our understanding of the defining disease pathogenesis remains incomplete. However, there is no specifically diagnostic CSF test. And until recently, laboratory techniques for CSF analysis had not been rigorously standardized. Unconcentrated CSF without fixative should be used for the determinations of cell count and differential, protein and glucose, lactate, myelin basic protein, and the CSF/serum albumin ratio which is an indicator of blood-CSF barrier disruption. Additionally, CSF immunoglobulin-gamma (IgG) determinations are of major importance and are now included in the MS diagnostic criteria. Testing for oligoclonal IgG bands utilizing isoelectric focusing with IgG immunoblotting, the IgG synthesis rate, and the IgG index should be included. CSF analysis for kappa light chains and IGM may be diagnostically helpful. The search for biomarkers including those possibly present in the CSF which could predict and assess the course as well as response to treatment in a particular MS patient has not yet been successful. CSF immunoglobulin and T-cell/B-cell patterns, soluble HLA class I and II antigens, nitrous oxide metabolites, neurofilament and microtubule components and antibodies, tau protein, 14-3-3-protein, neuronal cell and intercellular adhesion molecules, and chemokines are actively being investigated as MS biomarkers.
Collapse
Affiliation(s)
- Francisco A Luque
- Neurology Service, Overton Brooks VA Medical Center Shreveport, Louisiana 71101, USA
| | | |
Collapse
|
27
|
Covacu R, Danilov AI, Rasmussen BS, Hallén K, Moe MC, Lobell A, Johansson CB, Svensson MA, Olsson T, Brundin L. Nitric oxide exposure diverts neural stem cell fate from neurogenesis towards astrogliogenesis. Stem Cells 2006; 24:2792-800. [PMID: 16916924 DOI: 10.1634/stemcells.2005-0640] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regeneration of cells in the central nervous system is a process that might be affected during neurological disease and trauma. Because nitric oxide (NO) and its derivatives are powerful mediators in the inflammatory cascade, we have investigated the effects of pathophysiological concentrations of NO on neurogenesis, gliogenesis, and the expression of proneural genes in primary adult neural stem cell cultures. After exposure to NO, neurogenesis was downregulated, and this corresponded to decreased expression of the proneural gene neurogenin-2 and beta-III-tubulin. The decreased ability to generate neurons was also found to be transmitted to the progeny of the cells. NO exposure was instead beneficial for astroglial differentiation, which was confirmed by increased activation of the Janus tyrosine kinase/signal transducer and activator of transcription transduction pathway. Our findings reveal a new role for NO during neuroinflammatory conditions, whereby its proastroglial fate-determining effect on neural stem cells might directly influence the neuroregenerative process.
Collapse
Affiliation(s)
- Ruxandra Covacu
- Department of Clinical Neuroscience, Division of Neurology, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
Following stimulation of NMDA receptors, neurons transiently synthesize nitric oxide (NO) in a calcium/calmodulin-dependent manner through the activation of neuronal NO synthase. Nitric oxide acts as a messenger, activating soluble guanylyl cyclase and participating in the transduction signalling pathways involving cyclic GMP. Nitric oxide also binds to cytochrome c oxidase, and is able to inhibit cell respiration in a process that is reversible and in competition with oxygen. This action can also lead to the release of superoxide anion from the mitochondrial respiratory chain. Here, we discuss recent evidence that this mitochondrial interaction represents a molecular switch for cell signalling pathways involved in the control of physiological functions. These include superoxide- or oxygen-dependent modulation of gene transcription, calcium-dependent cell signalling responses, changes in the mitochondrial membrane potential or AMP-activated protein kinase-dependent control of glycolysis. In pathophysiological conditions, such as brain ischaemia or neurological disorders, NO is formed excessively by NMDA receptor over-activation in neurons, or by inducible NO synthase from neighbouring glia (microglial cells and astrocytes). Elevated NO concentrations can then interact with superoxide anion, generated by the mitochondria or by other mechanisms, leading to the formation of the powerful oxidant species peroxynitrite. During pathological conditions activation of the NAD(+)-consuming enzyme poly(APD-ribose) polymerase-1 (PARP-1) is also a likely mechanism for NO-mediated energy failure and neurotoxicity. Activation of PARP-1 is, however, a repair process, which in milder forms of oxidative stress protects neurons from death. Thus, whilst NO plays a physiological role in neuronal cell signalling, its over-production may cause neuronal energy compromise leading to neurodegeneration.
Collapse
Affiliation(s)
- Salvador Moncada
- The Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | |
Collapse
|
30
|
Jana M, Anderson JA, Saha RN, Liu X, Pahan K. Regulation of inducible nitric oxide synthase in proinflammatory cytokine-stimulated human primary astrocytes. Free Radic Biol Med 2005; 38:655-64. [PMID: 15683721 DOI: 10.1016/j.freeradbiomed.2004.11.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 10/05/2004] [Accepted: 11/11/2004] [Indexed: 12/19/2022]
Abstract
The present study was undertaken to investigate the mechanism of expression of inducible nitric oxide synthase (iNOS) in human primary astrocytes. Among IL-1beta, TNF-alpha, and IFN-gamma, only IL-1beta alone was capable of inducing iNOS. Similarly, among different cytokine combinations, the combinations involving only IL-1beta as a partner were capable of inducing iNOS. The combination of IL-1beta and IFN-gamma (IL-IF) induced the expression of iNOS at the highest level. All three cytokines alone induced the activation of AP-1 while IL-1beta and TNF-alpha but not IFN-gamma induced the activation of NF-kappaB. However, among the three cytokines, only IL-1beta was capable of inducing the activation of CCAAT/enhancer-binding proteinbeta (C/EBPbeta), suggesting an essential role of C/EBPbeta in the expression of iNOS in astrocytes. Although IL-1beta and IFN-gamma alone induced the activation of AP-1, the combination of these two cytokines (IL-IF) markedly inhibited the activation of AP-1. Consistently, JNK-I, a specific inhibitor of JNK, inhibited IL-1beta-mediated activation of AP-1 and expression of iNOS. On the other hand, JNK-I had no effect on (IL-IF)-induced expression of iNOS, suggesting that the activation of AP-1 is involved only during the low level of iNOS induction by IL-1beta but not during the high level of induction by IL-IF. In contrast, the activation of gamma-activation site (GAS) was involved only during the high level of induction by IL-IF but not during the low level of induction by IL-1beta. However, the activation of NF-kappaB and C/EBPbeta was involved in the induction of iNOS by IL-1beta as well as by IL-IF.
Collapse
Affiliation(s)
- Malabendu Jana
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, 40th and Holdrege, Lincoln, NE 68583, USA
| | | | | | | | | |
Collapse
|
31
|
Bizzozero OA, DeJesus G, Bixler HA, Pastuszyn A. Evidence of Nitrosative Damage in the Brain White Matter of Patients with Multiple Sclerosis. Neurochem Res 2005; 30:139-49. [PMID: 15756942 DOI: 10.1007/s11064-004-9695-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) has been implicated in the pathophysiology of both experimental autoimmune encephalomyelitis and multiple sclerosis (MS). NO-mediated protein damage in MS appears to be confined to large plaques where 3-nitrotyrosine has been detected. To determine whether nitrosative damage takes place beyond visible MS plaques, the occurrence of various NO-triggered protein modifications in normal-appearing white matter (NAWM) of eight MS brains was assessed and compared to that in white matter (WM) of four control brains. As determined by amino acid analysis and western blotting, no evidence of tyrosine nitration was found in the MS samples studied, suggesting that they did not contain appreciable amounts of plaque-derived material. The amino acid composition of total myelin proteins and proteolipid protein (PLP) was also unaltered in the diseased tissue, as was the fatty acid composition of PLP. In addition, we detected no changes in the number of protein free thiols suggesting that oxidation do not occur to any appreciable extent. However, the levels of nitrite in MS-NAWM were higher than those in control WM, while in the MS-gray matter (GM) the concentration of this ion was unaltered. Furthermore, five of the MS samples analyzed, and the same as those with high levels of glial fibrilary acidic protein, showed increased amounts of protein nitrosothiols as determined by the "biotin switch" method. S-nitrosation of GM proteins was again normal. There was no indication of N-nitrosation of tryptophan and N-terminal amino groups in both control and MS tissue. Overall, the data suggests that WM, but not GM, from MS brains is subjected to considerable nitrosative stress. This is the first report to present direct evidence of increased protein S-nitrosation and nitrite content in the brain parenchyma of MS patients.
Collapse
Affiliation(s)
- Oscar A Bizzozero
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Basic Medical Sciences Building, 914 Camino de Salud, Albuquerque, NM 87131-5218, USA.
| | | | | | | |
Collapse
|
32
|
Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 2004; 151:66-77. [PMID: 15145605 DOI: 10.1016/j.jneuroim.2004.02.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 02/18/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
Intranasal (i.n.) administration of IFN beta-1b was examined as a route for targeted delivery to the rat central nervous system (CNS). Intranasal administration resulted in significant delivery throughout the CNS and cervical lymph nodes with low delivery to peripheral organs. At similar blood levels, intravenous (i.v.) administration of IFN beta-1b yielded 88-98% lower CNS levels and 100-1650% greater peripheral organ levels compared to intranasal. Autoradiography confirmed much greater delivery to the CNS with intranasal administration. Intranasally administered IFN beta-1b reached the brain intact and produced tyrosine phosphorylation of IFN receptor in the CNS. Intranasal administration offers a non-invasive method of drug delivery for multiple sclerosis (MS) that bypasses the blood-brain barrier (BBB) and directly targets the CNS and lymph nodes.
Collapse
Affiliation(s)
- T M Ross
- Alzheimer's Research Center, Regions Hospital, 640 Jackson St., St. Paul, MN 55101, USA
| | | | | | | | | | | |
Collapse
|
33
|
Golde S, Coles A, Lindquist JA, Compston A. Decreased iNOS synthesis mediates dexamethasone-induced protection of neurons from inflammatory injury in vitro. Eur J Neurosci 2004; 18:2527-37. [PMID: 14622153 DOI: 10.1046/j.1460-9568.2003.02917.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Brain inflammation is accompanied by transection of axons and death of neurons in the acute lesions of multiple sclerosis. We explored mechanisms of inflammatory damage to neurons in vitro using cocultures of rat embryonal cortical neurons with microglia activated by interferon-gamma (IFNgamma) and lipopolysaccharide (LPS). Previously, we have demonstrated that microglia are highly toxic to neurons and that nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) is necessary and sufficient to mediate this toxicity. Here, we show that addition of dexamethasone (1 micro M) to activated cocultures provides effective neuroprotection. We demonstrate that dexamethasone down-regulates NO production of primary microglia by approximately 50% and reduces steady-state iNOS protein and mRNA expression by approximately 70%. These changes were reversed by the glucocorticoid receptor blocker RU-486. Furthermore, we analysed the stability of iNOS protein and show that whilst inhibitors of the proteasome blocked iNOS degradation they did not reverse the dexamethasone effect. Our results indicate that the main mechanism of corticosteroid activity on iNOS is reduction in protein synthesis, not destabilization as previously suggested.
Collapse
Affiliation(s)
- Sabine Golde
- Department of Neurology II, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
34
|
Hatoum OA, Miura H, Binion DG. The vascular contribution in the pathogenesis of inflammatory bowel disease. Am J Physiol Heart Circ Physiol 2003; 285:H1791-6. [PMID: 14561675 DOI: 10.1152/ajpheart.00552.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Danilov AI, Andersson M, Bavand N, Wiklund NP, Olsson T, Brundin L. Nitric oxide metabolite determinations reveal continuous inflammation in multiple sclerosis. J Neuroimmunol 2003; 136:112-8. [PMID: 12620649 DOI: 10.1016/s0165-5728(02)00464-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is formed as a consequence of induction of the iNOS enzyme during inflammatory disorders. To investigate NO production in multiple sclerosis (MS), we determined the concentrations of its oxidation products (NOx) in the cerebrospinal fluid (CSF) and plasma of 61 MS patients. The patients were divided into three groups on the basis of their clinical disease activity. The total levels of NOx in CSF were significantly increased in all MS groups as compared to healthy controls and tension headache patients. CSF nitrite correlated with clinical disease activity. At exacerbation, the CSF nitrite levels exceed the plasma level. This suggests that clinical disease activity is due to a CNS inflammatory response, which is more intense and qualitatively different from that during clinical stable phases. This study supports NO involvement in the pathogenesis of MS and determination of nitrite levels may be useful a surrogate marker for disease activity.
Collapse
Affiliation(s)
- Alexandre I Danilov
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Hospital, S-17176 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Excessive generation of nitric oxide (NO) has been implicated in the pathogenesis of several neurodegenerative disorders. Damage to the mitochondrial electron transport chain has also been implicated in these disorders. NO and its toxic metabolite peroxynitrite (ONOO(-)) can inhibit the mitochondrial respiratory chain, leading to energy failure and ultimately cell death. There appears to be a differential susceptibility of brain cell types to NO/ONOO(-), which may be influenced by factors including cellular antioxidant status and the ability to maintain energy requirements in the face of marked respiratory chain damage. Although formation of NO/ONOO(-) following cytokine exposure does not affect astrocyte survival, these molecules may diffuse out and cause mitochondrial damage to neighboring NO/ONOO(-)-sensitive cells such as neurons. Evidence suggests that NO/ONOO(-) causes release of neuronal glutamate, leading to glutamate-induced activation of neuronal NO synthase and generation of further damaging species. While neurons appear able to recover from short-term exposure to NO/ONOO(-), extending the period of exposure results in persistent damage to the respiratory chain and cell death ensues. These findings have important implications for acute infection vs. chronic neuroinflammatory disease states. The evidence for NO/ONOO(-)-mediated mitochondrial damage in neurodegenerative disorders is reviewed and potential therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Victoria C Stewart
- Department of Molecular Pathogenesis, Division of Neurochemistry, Institute of Neurology, University College London, London, England
| | | |
Collapse
|
37
|
Dasgupta S, Jana M, Liu X, Pahan K. Myelin basic protein-primed T cells induce nitric oxide synthase in microglial cells. Implications for multiple sclerosis. J Biol Chem 2002; 277:39327-33. [PMID: 12176974 PMCID: PMC1955480 DOI: 10.1074/jbc.m111841200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of autoreactive T cells recognizing self myelin antigens is necessary for the development of central nervous system autoimmune diseases such as multiple sclerosis (MS). The present study was undertaken to investigate the role of myelin basic protein (MBP)-primed T cells in the expression of inducible nitric oxide synthase (iNOS) in microglial cells. MBP-primed T cells alone markedly induced the production of NO and the expression of iNOS protein and mRNA in mouse BV-2 microglial cells. Similarly, MBP-primed T cells also induced the production of NO in mouse primary microglia. This induction of NO production was primarily dependent on the contact between MBP-primed T cells and microglia. The expression of very late antigen-4 (VLA-4) on the surface of MBP-primed T cells and inhibition of MBP-primed T cell-induced microglial NO production by functional blocking of antibodies to the alpha(4) chain of VLA-4 (CD49d) suggest that VLA-4 integrin on MBP-primed T cells plays an important role in contact-mediated induction of iNOS. Since IFN-beta has been used to treat MS patients, we examined the effect of IFN-beta on MBP-primed T cell-induced the production of NO. Surprisingly, IFN-beta alone induced the production of NO in microglial cells. However, the pretreatment of MBP-primed T cells with IFN-beta inhibited the expression of VLA-4 integrin on the surface of MBP-primed T cells and thereby inhibited the ability of those T cells to induce the production of NO in microglial cells. This study illustrates a novel role of neuroantigen-primed T cells in inducing contact-mediated expression of iNOS in microglial cells that may participate in the pathogenesis of MS.
Collapse
Affiliation(s)
- Subhajit Dasgupta
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Malabendu Jana
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Xiaojuan Liu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Kalipada Pahan
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| |
Collapse
|
38
|
Nazliel B, Taşkiran D, Irkec C, Kutay FZ, Pöğün S. Serum nitric oxide metabolites in patients with multiple sclerosis. J Clin Neurosci 2002; 9:530-2. [PMID: 12383409 DOI: 10.1054/jocn.2001.1077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by myelin breakdown. The free radical nitric oxide (NO), which is considered to be a major metabolite in immune function and in autoimmune disorders, is among the possible mediators causing the inflammatory reactions in MS. Consequently, NO has been implicated in the pathogenesis of MS and its animal model experimental allergic encephalomyelitis (EAE). In this study, stable metabolites of NO (NO(2-)+NO(3-)) levels were determined in sera of MS patients (n=23) and control subjects (n=16). NO(2-)+NO(3-) levels were higher in MS patients when compared to control subjects. However, there was not any correlation with serum NO(2-)+NO(3-) values and clinical features of the disease such as duration of sickness, the time elapsed from the last attack and EDSS values. Our results imply that nitric oxide may be involved in the pathogenesis of MS although further studies are required to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- B Nazliel
- Department of Neurology, Gazi University School of Medicine, Izmir, Turkey
| | | | | | | | | |
Collapse
|
39
|
Abstract
Nitric oxide (NO) is a free radical found at higher than normal concentrations within inflammatory multiple sclerosis (MS) lesions. These high concentrations are due to the appearance of the inducible form of nitric oxide synthase (iNOS) in cells such as macrophages and astrocytes. Indeed, the concentrations of markers of NO production (eg, nitrate and nitrite) are raised in the CSF, blood, and urine of patients with MS. Circumstantial evidence suggests that NO has a role in several features of the disease, including disruption of the blood-brain barrier, oligodendrocyte injury and demyelination, axonal degeneration, and that it contributes to the loss of function by impairment of axonal conduction. However, despite these considerations, the net effect of NO production in MS is not necessarily deleterious because it also has several beneficial immunomodulatory effects. These dual effects may help to explain why iNOS inhibition has not provided reliable and encouraging results in animal models of MS, but alternative approaches based on the inhibition of superoxide production, partial sodium-channel blockade, or the replacement of lost immunomodulatory function, may prove beneficial.
Collapse
Affiliation(s)
- Kenneth J Smith
- Neuroinflammation Research Group, Guy's, King's, and St Thomas' School of Medicine, King's College, London SE1 1UL, UK.
| | | |
Collapse
|
40
|
Miljkovic D, Drulovic J, Trajkovic V, Mesaros S, Dujmovic I, Maksimovic D, Samardzic T, Stojsavljevic N, Levic Z, Mostarica Stojkovic M. Nitric oxide metabolites and interleukin-6 in cerebrospinal fluid from multiple sclerosis patients. Eur J Neurol 2002; 9:413-8. [PMID: 12099927 DOI: 10.1046/j.1468-1331.2002.00437.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin-6 (IL-6) and nitric oxide (NO) are implicated in the pathology of multiple sclerosis (MS). We have investigated the levels of these mediators in the cerebrospinal fluid (CSF) from 50 patients with MS and 23 control subjects. Mean CSF IL-6 level was higher in the total MS group in comparison with controls, but not significantly, whilst the difference between patients with stable MS and controls reached the level of statistical significance. Mean CSF nitrite/nitrate level was significantly higher in the total MS group compared with the control group, as well as in active MS patients versus controls. There was significant difference neither in the mean CSF IL-6 nor in nitrite/nitrate levels between active and stable MS patients. Interestingly, we observed a significant negative correlation between IL-6 and nitrite/nitrate levels in the CSF in the total MS group. Such a trend existed in both subgroups with active and stable MS, but without reaching the level of statistical significance. Our data further support the involvement of IL-6 and NO in ongoing pathological processes in MS, suggesting their potential interplay within the central nervous system in this disease.
Collapse
Affiliation(s)
- Dj Miljkovic
- Institute for Biological Research Sinisa Stankovic, Belgrade, Yugoslavia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Renganathan M, Cummins TR, Waxman SG. Nitric oxide blocks fast, slow, and persistent Na+ channels in C-type DRG neurons by S-nitrosylation. J Neurophysiol 2002; 87:761-75. [PMID: 11826045 DOI: 10.1152/jn.00369.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
C-type dorsal root ganglion (DRG) neurons express three types of Na+ currents: fast TTX-sensitive, slow TTX-resistant, and persistent TTX-resistant Na+ currents. The nitric oxide (NO) donors papa-NONOate and S-nitroso-N-acetyl-DL-penicillamine inhibit all three types of Na+ currents. The NO scavenger hemoglobin abolished the effects of papa-NONOate on Na+ currents, indicating that NO or NO-related species inhibit these Na+ currents. NO donor inhibition of all three types of Na+ currents was reversed by washout. Incubation of neurons with 8-bromo cGMP, a membrane-permeable analogue of cGMP, and cG-PKI, an inhibitor of cGMP-dependent protein kinase, had no effect on papa-NONOate-mediated Na+ current block, demonstrating that Na+ current inhibition is independent of cGMP. Alkylation of free thiols with N-ethylmaleimide prevented the actions of papa-NONOate, suggesting that NO, or a related reactive nitrogen species, modifies sulfhydryl groups on Na+ channels or a closely associated protein. Papa-NONOate-mediated block of Na+ currents is not due to a hyperpolarizing shift in steady state voltage-dependent inactivation. The absence of NO-mediated enhancement of slow inactivation in fast and slow Na+ channels indicates that NO does not inhibit fast and slow Na+ channels by facilitating the transition to a slow inactivated state. These results demonstrate that inhibition of Na+ currents is not due to the modulation of fast and slow sodium channel inactivation. Taken together, these results show that NO or NO-related products modify the sulfhydryl groups on Na+ channels and inhibit Na+ currents by blocking the channel conductance.
Collapse
Affiliation(s)
- M Renganathan
- Department of Neurology and Paralyzed Veterans Association/Eastern Paralyzed Veterans Association Neuroscience Research Center, Yale Medical School, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
42
|
Yuceyar N, Taşkiran D, Sağduyu A. Serum and cerebrospinal fluid nitrite and nitrate levels in relapsing-remitting and secondary progressive multiple sclerosis patients. Clin Neurol Neurosurg 2001; 103:206-11. [PMID: 11714562 DOI: 10.1016/s0303-8467(01)00144-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) has been implicated in immune mediated cellular cytotoxicity and inflammatory processes including multiple sclerosis (MS). We aimed to assess NO production in MS patients and to delineate its involvement in different stages. The stable end-products of NO; nitrite(NO2-) and nitrate(NO3-) were analysed both in serum and CSF (cerebrospinal fluid) of patients with MS and non-inflammatory neurological diseases. Nitrite levels were quantified by calorimetric assay based on the Griess reaction. Nitrate levels were examined spectrophotometrically. MS patients exhibited significantly increased serum and CSF levels of NO2-+NO3- compared with the control subjects. CSF NO2-+NO3- levels were raised significantly in MS patients with both relapsing remitting (RR) and secondary progressive (SP) course. There was no significant difference between RR and SP MS patients with regard to NO metabolites. No significant correlation was found between NO metabolites and disability score, disease progression index, MRI (magnetic resonance imaging) activity and development of cortical atrophy on MRI. This study provides further evidence for excessive NO production both in CSF and peripheral blood of MS patients. Excessive CSF NO2-+NO3- levels being more increased than the levels in sera supports pathological inflammatory process within CNS (central nervous system) in both stages of MS. Another implication for the role of NO and INOS inhibitors in the treatment of MS patients with both RR and SP courses was also suggested.
Collapse
Affiliation(s)
- N Yuceyar
- Department of Neurology, Ege University Medical School Hospital, Bornova 35100, Izmir, Turkey
| | | | | |
Collapse
|
43
|
Raybon JJ, Boje KM. A critical evaluation of the brain efflux index method as applied to the nitric oxide synthase inhibitor, aminoguanidine. Biopharm Drug Dispos 2001; 22:391-401. [PMID: 11870678 DOI: 10.1002/bdd.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Brain Efflux Index (BEI) method is an in vivo procedure designed to quantitate saturable efflux mechanisms resident at the blood--brain barrier (BBB). The present work utilized the BEI method to assess the BBB efflux mechanisms of [(14)C]aminoguanidine, a nitric oxide synthase inhibitor. The BEI for [(14)C]aminoguanidine was >100% (relative to [(3)H]inulin diffusion) over a range of 41-184 pmol after 40 min. The unusually high retention (>100%) of [(14)C]aminoguanidine suggested brain parenchymal sequestration, either by neuronal uptake or tissue protein binding. The uptake of [(14)C]aminoguanidine in dendritic neuronal endings (synaptosomes) showed a saturable concentration dependency, consistent with a carrier-mediated process. Nonlinear least-squares regression yielded the following Michaelis--Menten and diffusional (k(ns)) parameters for synaptosomal [(14)C]aminoguanidine uptake: V(max)=118.50 +/- 28.77 pmol x mg protein(-1)/3 min; K(m)=58.34 +/- 8.33 muM; k(ns)=0.15 +/- 0.029 pmol x mg protein(-1)/3 min/muM; mean +/- SEM; n=3 concentration profiles). Protein binding studies using brain tissue showed negligible binding. In summary, this work identified three principle findings: (1) An apparent lack of quantifiable aminoguanidine BBB efflux; (2) a previously undescribed synaptosomal accumulation process for aminoguanidine; and (3) an interesting limitation of the BEI technique where unusual brain parenchymal sequestration yields values >100%.
Collapse
Affiliation(s)
- J J Raybon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
44
|
Jana M, Liu X, Koka S, Ghosh S, Petro TM, Pahan K. Ligation of CD40 stimulates the induction of nitric-oxide synthase in microglial cells. J Biol Chem 2001; 276:44527-33. [PMID: 11551948 PMCID: PMC2041871 DOI: 10.1074/jbc.m106771200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study was undertaken to investigate the role of CD40 ligation in the expression of inducible nitric-oxide synthase (iNOS) in mouse BV-2 microglial cells and primary microglia. Ligation of CD40 alone by either cross-linking antibodies against CD40 or a recombinant CD40 ligand (CD154) was unable to induce the production of NO in BV-2 microglial cells. The absence of induction of NO production by CD40 ligation alone even in CD40-overexpressed BV-2 microglial cells suggests that a signal transduced by the ligation of CD40 alone is not sufficient to induce NO production. However, CD40 ligation markedly stimulated interferon-gamma (IFN-gamma)-mediated NO production. Ligation of CD40 in CD40-overexpressed cells further stimulated IFN-gamma-induced production of NO. This stimulation of NO production was accompanied by stimulation of the iNOS protein and mRNA. In addition to BV-2 glial cells, CD40 ligation also stimulated IFN-gamma-mediated NO production in mouse primary microglia and peritoneal macrophages. To understand the mechanism of induction/stimulation of iNOS, we investigated the roles of nuclear factor kappaB (NF-kappaB) and CCAAT/enhancer-binding protein beta (C/EBPbeta), transcription factors responsible for the induction of iNOS. IFN-gamma alone was able to induce the activation of NF-kappaB as well as C/EBPbeta. However, CD40 ligation alone induced the activation of only NF-kappaB but not of C/EBPbeta, suggesting that the activation of NF-kappaB alone by CD40 ligation is not sufficient to induce the expression of iNOS and that the activation of C/EBPbeta is also necessary for the expression of iNOS. Consistently, dominant-negative mutants of p65 (Deltap65) and C/EBPbeta (DeltaC/EBPbeta) inhibited the expression of iNOS in BV-2 microglial cells that were stimulated with the combination of IFN-gamma and CD40 ligand. Stimulation of IFN-gamma-mediated activation of NF-kappaB but not of C/EBPbeta by CD40 ligation suggests that CD40 ligation stimulates the expression of iNOS in IFN-gamma-treated BV-2 microglial cells through the stimulation of NF-kappaB activation. This study illustrates a novel role for CD40 ligation in stimulating the expression of iNOS in microglial cells, which may participate in the pathogenesis of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Xiaojuan Liu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Sreenivas Koka
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Sankar Ghosh
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Thomas M. Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Kalipada Pahan
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
- ¶ To whom correspondence should be addressed: Dept. of Oral Biology, University of Nebraska Medical Center, 40th and Holdrege, Lincoln, NE 68583-0740. Tel.: 402-472-1324; Fax: 402-472-2551; E-mail:
| |
Collapse
|
45
|
Bizzozero OA, Bixler H, Parkhani J, Pastuszyn A. Nitric oxide reduces the palmitoylation of rat myelin proteolipid protein by an indirect mechanism. Neurochem Res 2001; 26:1127-37. [PMID: 11700955 DOI: 10.1023/a:1012370822754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain slices from 20-day-old rats were incubated with [3H]palmitate for 2 hours in the absence or presence of the NO-donors S-nitroso-N-acetyl-penicillamine (SNAP), ethyl-2-[hydroxyimino]-5-nitro-3-hexeneamide (NOR-3), 4-phenyl-3-furoxan carbonitrile (PFC) and sodium nitroprusside (SNP). Each of these drugs reduced the incorporation of [3H]palmitate into myelin proteolipid protein (PLP) in a concentration-dependent manner, SNP being the most active. The effect of SNAP was prevented by the NO-scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide). Furthermore, decayed-SNAP, sodium nitrite and N- nitrosopyrrolidine were inactive, suggesting that free NO and/or some of its direct oxidation products are the active molecular species. The amount of fatty acids bound to PLP and the rate of deacylation were unaffected by NO. Although NO diminished the number of thiols in brain and myelin proteins, with the formation of both nitrosothiols and disulfides, these changes did not parallel those in PLP acylation. In contrast, NO was effective at reducing the palmitoylation of brain and myelin lipids, and this effect along with that of PLP, was ascribed to a decrease in palmitoyl-CoA levels. The NO-induced reduction in acyl-CoA concentration was due to the decline in ATP levels, while the amount of [3H]palmitate incorporated into the tissue, the activity of palmitoyl-CoA ligase and palmitoyl-CoA hydrolase, and the concentration of CoASH were unaltered by the drugs. Experiments with endogenously-synthesized [18O]fatty acids confirmed that NO affects predominantly the ATP-dependent palmitoylation of PLP. In conclusion, the inhibitory action of NO on the fatty acylation of PLP is indirect and caused by energy depletion.
Collapse
Affiliation(s)
- O A Bizzozero
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Albuquerque 87131-5218, USA.
| | | | | | | |
Collapse
|
46
|
Bolaños JP, García-Nogales P, Vega-Agapito V, Delgado-Esteban M, Cidad P, Almeida A. Nitric oxide-mediated mitochondrial impairment in neural cells: a role for glucose metabolism in neuroprotection. PROGRESS IN BRAIN RESEARCH 2001; 132:441-54. [PMID: 11545010 DOI: 10.1016/s0079-6123(01)32094-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- J P Bolaños
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Hurst RD, Azam S, Hurst A, Clark JB. Nitric-oxide-induced inhibition of glyceraldehyde-3-phosphate dehydrogenase may mediate reduced endothelial cell monolayer integrity in an in vitro model blood-brain barrier. Brain Res 2001; 894:181-8. [PMID: 11251191 DOI: 10.1016/s0006-8993(01)01992-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The process of nitric-oxide (NO)-induced cellular toxicity may involve energy deprivation since the radical is reported to prevent both mitochondrial oxidative phosphorylation and glycolysis. In order to determine whether these processes are important in NO-induced blood-brain barrier (BBB) dysfunction, we used a cell culture model of the BBB and compared the effects of gaseous NO, potassium cyanide (KCN, a mitochondrial respiratory chain inhibitor) and iodoacetate [IA, an inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)] on endothelial cell ATP content, GAPDH activity and barrier integrity. NO lead to a rapid breakdown in model barrier integrity and resulted in a reduction in endothelial cell ATP content and GAPDH activity. KCN had no effect on endothelial cell ATP content or barrier integrity, while IA, at a concentration that completely blocked endothelial cell GAPDH activity, resulted in a rapid decline in ATP content but did not lead to a decline in barrier integrity until at least 2 h of exposure. These results indicate that inhibition of endothelial cell GAPDH activity rather than mitochondrial respiration causes an energy deficiency and delayed barrier dysfunction. However, the rapid detrimental effects of gaseous NO on barrier integrity cannot be fully explained by endothelial cell energy depletion and may be related to the actions of the free radical and its products on cellular lipids.
Collapse
Affiliation(s)
- R D Hurst
- Centre for Research in Biomedicine, Faculty of Applied Sciences, University of the West of England, Bristol, UK.
| | | | | | | |
Collapse
|
48
|
Pahan K, Sheikh FG, Liu X, Hilger S, McKinney M, Petro TM. Induction of nitric-oxide synthase and activation of NF-kappaB by interleukin-12 p40 in microglial cells. J Biol Chem 2001; 276:7899-905. [PMID: 11110796 PMCID: PMC2041874 DOI: 10.1074/jbc.m008262200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-12 (IL-12) is composed of two different subunits, p40 and p35. Expression of p40 mRNA but not that of p35 mRNA in excessive amount in the central nervous system of patients with multiple sclerosis (MS) suggests that IL-12 p40 may have a role in the pathogenesis of the disease. However, the mode of action of p40 is completely unknown. Because nitric oxide produced from the induction of nitric-oxide synthase (iNOS) also plays a vital role in the pathophysiology of MS, the present study was undertaken to explore the role of p40 in the induction of NO production and the expression of iNOS in microglia. Both IL-12 and p40(2), the p40 homodimer, dose-dependently induced the production of NO in BV-2 microglial cells. This induction of NO production was accompanied by an induction of iNOS protein and mRNA. Induction of NO production by the expression of mouse p40 cDNA but not that of the mouse p35 cDNA suggests that the p40 but not the p35 subunit of IL-12 is involved in the expression of iNOS. In addition to BV-2 glial cells, p40(2) also induced the production of NO in mouse primary microglia and peritoneal macrophages. However, both IL-12 and p40(2) were unable to induce the production of NO in mouse primary astrocytes. Because activation of NF-kappaB is important for the expression of iNOS, we investigated the effect of p40(2) on the activation of NF-kappaB. Induction of the DNA binding as well as the transcriptional activity of NF-kappaB by p40(2) and inhibition of p40(2)-induced expression of iNOS by SN50, a cell-permeable peptide carrying the nuclear localization sequence of p50 NF-kappaB, but not by SN50M, a nonfunctional peptide mutant, suggests that p40(2) induces the expression of iNOS through the activation of NF-kappaB. This study delineates a novel role of IL-12 p40 in inducing the expression of iNOS in microglial cells, which may participate in the pathogenesis of neuroinflammatory diseases.
Collapse
Affiliation(s)
- K Pahan
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Drulović J, Dujmović I, Mesaros S, Samardzić T, Maksimović D, Stojsavljević N, Lević Z, Mostarica Stojokvić M. Raised cerebrospinal fluid nitrite and nitrate levels in patients with multiple sclerosis: no correlation with disease activity. Mult Scler 2001; 7:19-22. [PMID: 11321188 DOI: 10.1177/135245850100700104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A growing body of evidence implicates excessive generation of nitric oxide (NO) within the central nervous system (CNS) in multiple sclerosis (MS). The aim of our study is to analyse nitrite and nitrate as end products of NO in the cerebrospinal fluid (CSF) from MS patients and correlate the concentrations with clinicol characteristics of the disease. CSF nitrite and nitrate concentrations were measured after reduction of nitrate, by Griess reaction, in 105 MS potients, 27 patients with non-inflammatory neurological disorders (NIND) and 13 individuals without neurological disorder (Co). Mean CSF nitrite and nitrate concentrations were significantly higher in patients with MS and NIND compared with the Co patients (9.44 and 8.68, respectively, versus 6.85 microM; P=0.0001 and P=0.031, respectively). There was no significant correlation between CSF nitrite and nitrate concentrations and activity, phase, severity and duration of MS. Our data are in agreement with the results of previous studies which have demonstrated raised concentrations of CSF NO metabolites in MS patients, providing further evidence for NO involvement in MS. The lack of correlation between NO metabolites and disease activity speaks in favour of the possible dual role of NO, as both immunoregulatory and pro-inflammatory molecule, in the pathogenesis of MS.
Collapse
Affiliation(s)
- J Drulović
- Institute of Neurology, Clinical Centre of Serbia, Belgrade, Yugoslavia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Boullerne AI, Nedelkoska L, Benjamins JA. Role of calcium in nitric oxide-induced cytotoxicity: EGTA protects mouse oligodendrocytes. J Neurosci Res 2001; 63:124-35. [PMID: 11169622 DOI: 10.1002/1097-4547(20010115)63:2<124::aid-jnr1004>3.0.co;2-c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Active nitrogen species are overproduced in inflammatory brain lesions in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). NO has been shown to mediate the death of oligodendrocytes (OLs), a primary target of damage in MS. To develop strategies to protect OLs, we examined the mechanisms of cytotoxicity of two NO donors, S-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) on mature mouse OLs. Nitrosonium ion (NO+) rather than NO. mediates damage with both SNAP and SNP, as shown by significant protection with hemoglobin (HbO2), but not with the NO. scavenger PTIO. SNAP and SNP differ in time course and mechanisms of killing OLs. With SNAP, OL death is delayed for at least 6 hr, but with SNP, OL death is continuous over 18 hr with no delay. Relative to NO release, SNP is more toxic than SNAP, due to synergism of NO with cyanide released by SNP. SNAP elicits a Ca2+ influx in over half of the OLs within min. Further, OL death due to NO release from SNAP is Ca2+-dependent, because the Ca2+ chelator EGTA protects OLs from killing by SNAP, and also from killing by the NONOates NOC-9 and NOC-18, which spontaneously release NO. SNP does not elicit a Ca2+ influx, and EGTA is not protective. In comparison to the N20.1 OL cell line (Boullerne et al., [1999] J. Neurochem. 72:1050-1060), mature OLs are (1) more sensitive to SNAP, (2) much more resistant to SNP, (3) sensitive to cyanide, but not iron, and (4) exhibit a Ca2+ influx and EGTA protection in response to NO generated by SNAP.
Collapse
Affiliation(s)
- A I Boullerne
- Department of Neurology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|