1
|
Hao Z, Zhang X, Wang Y. Evidence of the Long-Term Protective Effect of Moderate-Intensity Physical Activity on Cognitive Function in Middle-Aged and Elderly Individuals: A Predictive Analysis of Longitudinal Studies. Life (Basel) 2024; 14:1343. [PMID: 39459642 PMCID: PMC11509916 DOI: 10.3390/life14101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE To investigate the effects of different intensities of physical activity (PA) on cognitive function in middle-aged and elderly individuals, and to predict future trends in cognitive ability using longitudinal data to assess the long-term role of PA in cognitive preservation. METHODS Data from the China Health and Retirement Longitudinal Study (CHARLS) were utilized. Mixed-effects models were employed to analyze the impacts of low-intensity PA (LPA), moderate-intensity PA (MPA), and vigorous-intensity PA (VPA) on overall cognition, episodic memory, and mental intactness. Random forest and XGBoost machine learning methods were employed to further validate the effects of PA. ARIMA models predicted future cognitive trends under the influence of PA. RESULTS MPA demonstrated significant advantages in preserving cognitive function, particularly in overall cognition and episodic memory. While LPA had some protective effects, they were less significant than those of MPA, and VPA did not show advantages. Machine learning methods confirmed these findings. ARIMA model predictions indicated that the protective effects of MPA on cognitive function are likely to persist in the future. CONCLUSIONS Moderate-intensity physical activity is associated with the preservation of cognitive ability in middle-aged and elderly individuals and may continue to provide this benefit in the future; however, further in-depth research is needed for confirmation.
Collapse
Affiliation(s)
- Zikang Hao
- School of Physical Education, Shandong University, Jinan 250061, China
- Exercise Science Laboratory, Department of Physical Education, Ocean University of China, Qingdao 266005, China
| | - Xianliang Zhang
- School of Physical Education, Shandong University, Jinan 250061, China
| | - Yu Wang
- Department of Physical Education, Moscow State University of Sport and Tourism, Kirovogradskaya Street, 21, Moscow 117519, Russia
| |
Collapse
|
2
|
Krishnamurthy R, Krishnamoorthy C, Dietsch AM, Natarajan SK. Molecular biomarkers of dysphagia targeted exercise induced neuroplasticity: A review of mechanistic processes and preliminary data on detraining effects. Brain Res 2024; 1846:149287. [PMID: 39437875 DOI: 10.1016/j.brainres.2024.149287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
While molecular adaptations accompanying neuroplasticity during physical exercises are well-established, little is known about adaptations during dysphagia-targeted exercises. This research article has two primary purposes. First, we aim to review the existing literature on the intersection between resistance (strength) training, molecular markers of neuroplasticity, and dysphagia rehabilitation. Specifically, we discuss the molecular mechanisms of two potential molecular markers: brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) in exercise-induced neuroplasticity. Second, we present preliminary data on the effects of two weeks of detraining on circulating serum BDNF, IGF-1 levels, and expiratory muscle strength. This subset is a part of our more extensive studies related to dysphagia-targeted resistance exercise and neuroplasticity. Five young adult males underwent four weeks of expiratory muscle strength training, followed by two weeks of detraining. We measured expiratory strength, circulating levels of BDNF, and IGF-1 at post-training and detraining conditions. Our results show that expiratory muscle strength, serum BDNF, and IGF-1 levels decreased after detraining; however, this effect was statistically significant only for serum BDNF levels. Oropharyngeal and upper airway musculature involved in swallowing undergoes similar adaptation patterns to skeletal muscles during physical exercise. To fully comprehend the mechanisms underlying the potential neuroplastic benefits of targeted exercise on swallowing functions, mechanistic studies (models) investigating neuroplasticity induced by exercises addressing dysphagia are critical. Such models would ensure that interventions effectively and efficiently achieve neuroplastic benefits and improve patient outcomes, ultimately advancing our understanding of dysphagia-targeted exercise-induced neuroplasticity.
Collapse
Affiliation(s)
- Rahul Krishnamurthy
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, United States; Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States.
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| | - Angela M Dietsch
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, United States
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| |
Collapse
|
3
|
Ewuzie Z, Ezeano C, Aderinto N. A review of exercise interventions for reducing anxiety symptoms: Insights and implications. Medicine (Baltimore) 2024; 103:e40084. [PMID: 39465822 PMCID: PMC11479437 DOI: 10.1097/md.0000000000040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Generalized anxiety disorder (GAD) is a prevalent mental health condition affecting a significant proportion of the adult population. Despite the availability of pharmacological treatments, their long-term efficacy and potential side effects necessitate exploring alternative interventions. Aerobic exercise has emerged as a promising non-pharmacological approach for managing anxiety symptoms in individuals with GAD. This narrative review examines the efficacy of aerobic exercise interventions in alleviating symptoms of anxiety disorders, drawing on a comprehensive analysis of relevant literature. The review synthesizes findings from studies investigating various forms of aerobic exercise, including high-intensity interval training, resistance training, Pilates, and walking. The results indicate that aerobic exercise interventions demonstrate efficacy in reducing anxiety symptoms and improving overall well-being across diverse populations, including primary care patients, individuals with coronary heart disease, and older adults with cancer undergoing chemotherapy. The review discusses the neurobiological and psychological mechanisms underlying the anxiolytic effects of aerobic exercise. It highlights the implications of these findings for clinical practice, public health initiatives, and future research directions. Despite the promising evidence, limitations in study methodologies and heterogeneity across interventions warrant a cautious interpretation of the results. Further research is needed to elucidate optimal exercise modalities, dosages, and long-term effects on anxiety outcomes.
Collapse
Affiliation(s)
- Zimakor Ewuzie
- Cygnet Hospital, Harrogate, North Yorkshire, United Kingdom
| | - Chimezirim Ezeano
- University of North Texas, Health Science Center, Fort Worth, TX, USA
| | | |
Collapse
|
4
|
Chen J, Fang Q, Yang K, Pan J, Zhou L, Xu Q, Shen Y. Development and Validation of the Communities Geriatric Mild Cognitive Impairment Risk Calculator (CGMCI-Risk). Healthcare (Basel) 2024; 12:2015. [PMID: 39451430 PMCID: PMC11506964 DOI: 10.3390/healthcare12202015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives: The aim was to develop and validate the Communities Geriatric Mild Cognitive Impairment Risk Calculator (CGMCI-Risk), aiding community healthcare workers in the early identification of individuals at high risk of mild cognitive impairment (MCI). Methods: Based on nationally representative community survey data, backward stepwise regression was employed to screen the variables, and logistic regression was utilized to construct the CGMCI-Risk. Internal validation was conducted using bootstrap resampling, while external validation was performed using temporal validation. The area under the receiver operating characteristic curve (AUROC), calibration curve, and decision curve analysis (DCA) were employed to evaluate the CGMCI-Risk in terms of discrimination, calibration, and net benefit, respectively. Results: The CGMCI-Risk model included variables such as age, educational level, sex, exercise, garden work, TV watching or radio listening, Instrumental Activity of Daily Living (IADL), hearing, and masticatory function. The AUROC was 0.781 (95% CI = 0.766 to 0.796). The calibration curve showed strong agreement, and the DCA suggested substantial clinical utility. In external validation, the CGMCI-Risk model maintained a similar performance with an AUROC of 0.782 (95% CI = 0.763 to 0.801). Conclusions: CGMCI-Risk is an effective tool for assessing cognitive function risk within the community. It uses readily predictor variables, allowing community healthcare workers to identify the risk of MCI in older adults over a three-year span.
Collapse
Affiliation(s)
- Jiangwei Chen
- School of Nursing, Hangzhou Normal University, Hangzhou 311121, China; (J.C.); (Q.F.)
| | - Qing Fang
- School of Nursing, Hangzhou Normal University, Hangzhou 311121, China; (J.C.); (Q.F.)
| | - Kehua Yang
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Jiayu Pan
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou 311121, China;
| | - Lanlan Zhou
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Qunli Xu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Yuedi Shen
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou 311121, China;
| |
Collapse
|
5
|
Meyer JD, Kelly SJE, Gidley JM, Lansing JE, Smith SL, Churchill SL, Thomas EBK, Goldberg SB, Abercrombie HC, Murray TA, Wade NG. Protocol for a randomized controlled trial: exercise-priming of CBT for depression (the CBT+ trial). Trials 2024; 25:663. [PMID: 39375728 PMCID: PMC11460085 DOI: 10.1186/s13063-024-08495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Depression is a leading cause of disability worldwide, and treatments could be more effective. Identifying methods to improve treatment success has the potential to reduce disease burden dramatically. Preparing or "priming" someone to respond more effectively to psychotherapy (e.g., cognitive behavioral therapy [CBT]) by preceding sessions with aerobic exercise, a powerful neurobiological activator, could enhance the success of the subsequently performed therapy. However, the success of this priming approach for increasing engagement of working mechanisms of psychotherapy (e.g., increased working alliance and behavioral activation) has yet to be formally tested. METHODS The CBT + trial will be a parallel-arm randomized controlled trial that will recruit 40 adult participants with DSM-5 diagnosed depression (verified with clinical interview) via referrals, mass emails, local flyers, and social media posts. Participants will be randomized to an ActiveCBT or CalmCBT condition. The ActiveCBT group will receive an 8-week CBT intervention primed with 30 min of moderate-intensity aerobic exercise (cycling on a stationary bike at a 13 rating of perceived exertion). The CalmCBT group will receive the same 8-week CBT intervention while resting for 30 min before CBT (i.e., cycling vs no cycling is the only difference). The primary outcome measures will be mean working alliance (assessed with the client version of the Working Alliance Inventory-Short Revised) and mean behavioral activation (self-reported Behavioral Activation for Depression Scale) recorded at each of the 8 therapy sessions. Secondary outcomes include evaluation of state anhedonia and serum brain-derived neurotrophic factor before the active/calm conditions, between the condition and therapy, and after the therapy. Additional exploratory analyses will evaluate group differences in algorithm-generated ratings of therapist-participant interactions via the Lyssn platform. DISCUSSION The novel approach of priming CBT with moderate-intensity aerobic exercise evaluated in a randomized controlled trial (CBT + trial) has the potential to demonstrate the usefulness of exercise as an augmentation strategy that improves working mechanisms of therapy and overall treatment outcomes for adults with depression. TRIAL REGISTRATION ClinicalTrials.gov NCT06001346 . Registered on August 21, 2023.
Collapse
Affiliation(s)
- Jacob D Meyer
- Department of Kinesiology, Iowa State University, Ames, IA, USA.
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | - John M Gidley
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Jeni E Lansing
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Seana L Smith
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | | | - Emily B K Thomas
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Simon B Goldberg
- Department of Counseling Psychology, University of Wisconsin, Madison, WI, USA
| | | | - Thomas A Murray
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
6
|
King C, Rogers LG, Jansen J, Sivayokan B, Neyhard J, Warnes E, Hall SE, Plakke B. Adolescent treadmill exercise enhances hippocampal brain-derived neurotrophic factor (BDNF) expression and improves cognition in autism-modeled rats. Physiol Behav 2024; 284:114638. [PMID: 39004196 DOI: 10.1016/j.physbeh.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by repetitive behaviors and altered communication abilities. Exercise is a low-cost intervention that could improve cognitive function and improve brain plasticity mechanisms. Here, the valproic acid (VPA) model was utilized to induce ASD-like phenotypes in rodents. Animals were exercised on a treadmill and performance was evaluated on a cognitive flexibility task. Biomarkers related to exercise and plasticity regulation were quantified from the prefrontal cortex, hippocampus, and skeletal muscle. Exercised VPA animals had higher levels of hippocampal BDNF compared to sedentary VPA animals and upregulated antioxidant enzyme expression in skeletal muscle. Cognitive improvements were demonstrated in both sexes, but in different domains of cognitive flexibility. This research demonstrates the benefits of exercise and provides evidence that molecular responses to exercise occur in both the central nervous system and in the periphery. These results suggest that improving regulation of BDNF via exercise, even at low intensity, could provide better synaptic regulation and cognitive benefits for individuals with ASD.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Liza G Rogers
- Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jeremy Jansen
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Bhavana Sivayokan
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Jenna Neyhard
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Ellie Warnes
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Stephanie E Hall
- Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Smith CM, Salmon OF. Safety and effectiveness of acute intermittent hypoxia during a single treatment at different hypoxic severities. Respir Physiol Neurobiol 2024; 331:104358. [PMID: 39349270 DOI: 10.1016/j.resp.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE Examine the cardiovascular, muscular function, cognitive, and neural plastic responses to determine the safety and effectiveness of acute Intermittent hypoxia (AIH) at a low, high, and control fractional inspired oxygen (FiO2) dosage METHODS: Thirteen human participants performed 30-min of AIH in 60-s intervals at FiO2's of 0.21 (AIH21), 0.15 (AIH15), and 0.09 (AIH9). Heart rate variability (root mean squared of successive differences; RMSSD), heart rate, oxygen saturation (SpO2), blood pressure, muscular strength, neuromuscular activation, cerebral hemodynamic responses, cognition, symptomology, and brain-derived neurotrophic factor (BDNF) responses were measured before (Pre-AIH), after (post-AIH), and at 20-min of recovery (Recovery-AIH) RESULTS: There were no differences between AIH protocols for heart rate, RMSSD, blood pressure, or SpO2. Muscular strength improved Post-AIH for AIH15 (10 %) and AIH9 (14 %) and remained elevated (6 %) at Recovery-AIH. Neuromuscular activation increased Pre-AIH to Post-AIH for AIH15 (10 %) and AIH9 (11 %). Cerebral hemodynamic responses were not impacted between conditions. Both AIH15 and AIH9 increased BDNF Post-AIH (62 %) and Recovery-AIH (63 %) CONCLUSION: Acute intermittent hypoxia is generally safe and effective at producing neural plastic responses, but further examination of co-occurring cardiovascular diseases is needed. This study provides safety focused findings which will widen the adoption and refinement of AIH protocols.
Collapse
Affiliation(s)
- Cory M Smith
- Robbins College of Health and Human Sciences, Human & Environmental Physiology Laboratory, Baylor University, Waco, TX, USA.
| | - Owen F Salmon
- Robbins College of Health and Human Sciences, Human & Environmental Physiology Laboratory, Baylor University, Waco, TX, USA
| |
Collapse
|
8
|
Descollonges M, Chaney R, Garnier P, Prigent-Tessier A, Brugniaux JV, Deley G. Electrical stimulation: a potential alternative to positively impact cerebral health? Front Physiol 2024; 15:1464326. [PMID: 39371600 PMCID: PMC11450234 DOI: 10.3389/fphys.2024.1464326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
An increasing body of evidence confirms the effectiveness of physical exercise (PE) in promoting brain health by preventing age-related cognitive decline and reducing the risk of neurodegenerative diseases. The benefits of PE are attributed to neuroplasticity processes which have been reported to enhance cerebral health. However, moderate to high-intensity PE is necessary to induce these responses and these intensities cannot always be achieved especially by people with physical limitations. As a countermeasure, electrical stimulation (ES) offers several benefits, particularly for improving physical functions, for various neurological diseases. This review aims to provide an overview of key mechanisms that could contribute to the enhancement in brain health in response to ES-induced exercise, including increases in cerebral blood flow, neuronal activity, and humoral pathways. This narrative review also focuses on the effects of ES protocols, applied to both humans and animals, on cognition. Despite a certain paucity of research when compared to the more classical aerobic exercise, it seems that ES could be of interest for improving cerebral health, particularly in people who have difficulty engaging in voluntary exercise.
Collapse
Affiliation(s)
- Maël Descollonges
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
- Kurage, Lyon, France
| | - Rémi Chaney
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| | - Philippe Garnier
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
- Département Génie Biologique, IUT, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| | - Julien V. Brugniaux
- INSERM UMR 1300 – Laboratoire HP2, University Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Gaëlle Deley
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| |
Collapse
|
9
|
Kim Y, Smith BE, Shigo LM, Shaikh AG, Loparo KA, Ridgel AL. Utilizing Entropy of Cadence to Optimize Cycling Rehabilitation in Individuals With Parkinson's Disease. Neurorehabil Neural Repair 2024; 38:693-704. [PMID: 39104198 DOI: 10.1177/15459683241268556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
BACKGROUND Previous studies have established that increased Sample Entropy (SampEn) of cadence, a measure of non-linear variability, during dynamic cycling leads to greater improvements in motor function for individuals with Parkinson's disease (PD). However, there is significant variability in responses among individuals with PD due to symptoms and disease progression. OBJECTIVES The aim of this study was to develop and test a paradigm for adapting a cycling exercise intervention using SampEn of cadence and rider effort to improve motor function. METHODS Twenty-two participants were randomized into either patient-specific adaptive dynamic cycling (PSADC) or non-adaptive (NA) group. SampEn of cadence was calculated after each of the 12 sessions, and motor function was evaluated using the Kinesia test. Pearson's correlation coefficient was used to analyze the relationship between SampEn of cadence and motor function improvement. Multiple linear regression (MLR) was used to identify the strongest predictors of motor function improvement. RESULTS Pearson's correlation coefficient revealed a significant correlation between SampEn of cadence and motor function improvements (R2 = -.545, P = .009), suggesting that higher SampEn of cadence led to greater motor function improvement. MLR demonstrated that SampEn of cadence was the strongest predictor of motor function improvement (β = -8.923, t = -2.632, P = .018) over the BMI, Levodopa equivalent daily dose, and effort. CONCLUSIONS The findings show that PSADC paradigm promoted a greater improvement in motor function than NA dynamic cycling. These data will be used to develop a predictive model to optimize motor function improvement after cycling in individuals with PD.
Collapse
Affiliation(s)
- Younguk Kim
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, OH, USA
- Department of Physical Medicine and Rehabilitation, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brittany E Smith
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, OH, USA
| | - Lara M Shigo
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, OH, USA
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Kenneth A Loparo
- Institute for Smart, Secure and Connected Systems, Case Western Reserve University, Cleveland, OH, USA
| | - Angela L Ridgel
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, OH, USA
| |
Collapse
|
10
|
Khaledi N, Jeddi S, Abbasi S, Eftekharzadeh M, Khodadadi H, Namdari M, Noye Tuplin E. The impact of early-life exercise on CREB-signaling pathway and hippocampus neuroplasticity in diabetic adult male rats; the study of developmental model. Neurol Res 2024; 46:835-847. [PMID: 38808654 DOI: 10.1080/01616412.2024.2359265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Childhood exercise enhances brain structure, while diabetes detrimentally affects it. This study examines early-life exercise's influence on adult diabetic rats' memory and neuroplasticity. METHODS Male Wistar pups were divided into Control, Diabetes, Exercise Training, and Diabetes exercise groups. Diabetes was induced on day 23 with Alloxan (200 mg/kg). A 3-week regimen included aerobic and resistance training thrice weekly. The aerobic intensity was 70%, and resistance varied from 50% to 100% of the maximal carrying capacity (MCC). Following the last training sessions, spatial memory and retrieval tests were performed in infancy, childhood, and emerging adulthood using the Morris Water Maze test (MWM). The hippocampus was excised to measure protein and gene expression of brain-derived neurotrophic factor (BDNF), calmodulin-dependent protein kinase (CAMKII), N-methyl-D-aspartate receptors (NMDAR), and cAMP-response element-binding protein (CREB) by western blotting and reverse transcription-polymerase-chain reaction (RT-PCR) methods. Blood samples were collected during each developmental stage to measure glucose levels, at the study's conclusion, to assess Interleukin-1β levels using the ELISA method. The Nissel staining assessed dead hippocampal cells in CA1. RESULTS Post-natal exercise improved spatial memory (p < 0.05) and glucose levels (p < 0.05) in diabetic rats during adolescence and emerging adulthood. Despite reduced mRNA expression (NMDAR 40%, BDNF 62%, CREB 43%, CAMKII 66%), diabetic rats, by study end, showed increased BDNF, NMDARR, CAMKII, CREB protein/gene expression (p < 0.05) in emerging adulthood for both training groups. CONCLUSION Early-life exercise influenced hippocampal BDNF/NMDAR-CAMKII/CREB pathways in a diabetic rat model, highlighting post-natal exercise's role in neuroplasticity memory enhancement and improved glucose level.
Collapse
Affiliation(s)
- Neda Khaledi
- Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran
- Faculty of Kinesiology, The University of Calgary, Calgary, Canada
| | - Sajjad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Abbasi
- Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Khodadadi
- Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran
| | - Maryam Namdari
- Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran
| | - Erin Noye Tuplin
- Faculty of Kinesiology, The University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Vasileva F, Font-Lladó R, Carreras-Badosa G, López-Ros V, Ferrusola-Pastrana A, López-Bermejo A, Prats-Puig A. Increased Salivary BDNF and Improved Fundamental Motor Skills in Children Following a 3-Month Integrated Neuromuscular Training in Primary School. J Funct Morphol Kinesiol 2024; 9:154. [PMID: 39311262 PMCID: PMC11417929 DOI: 10.3390/jfmk9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a protein involved in synaptic transmission and neuronal plasticity, which underlie the processes of learning and memory formation. Acute exercise and exercise training increase BDNF concentration. We aimed to evaluate the effects of a 3-month integrated neuromuscular training (INT) on salivary BDNF concentration and the mastery of fundamental motor skills in school-aged children. An additional goal was to explore the associations between potential changes in BDNF and fundamental motor skills. Sixty-seven primary school-aged children were randomly allocated to control (N = 32; 7.52 ± 0.31 y) or INT groups (N = 35; 7.56 ± 0.29 y). A 3-month INT was applied during the warm-up of physical education (PE) classes, twice weekly. Salivary BDNF was measured using a sandwich-enzyme-linked immunosorbent assay and the mastery of fundamental motor skills was assessed using the CAMSA test, at baseline and after 3 months. The children in the INT group, as compared to the children in the control group, exhibited higher salivary BDNF (F = 8.865; p = 0.004), higher scores for sidestep (F = 13.240, p = 0.001), 1-foot hop (F = 11.684, p = 0.001), kick (F = 4.010, p = 0.050), the sum of locomotor skills (F = 18.799, p < 0.0001), and the sum of control and manipulative skills (F = 8.151, p = 0.006), as well as the total sum of fundamental motor skills (F = 11.266, p = 0.001) after the 3 months. Interestingly, the increase in salivary BDNF concentration after the 3-month INT was associated with an improvement in locomotor skills (beta = 0.385; p = 0.039; adjusted R2 = 0.088) and the total improvement in fundamental motor skills (beta = 0.428; p = 0.020; adjusted R2 = 0.124). A school-based 3-month INT increased salivary BDNF and improved the mastery of fundamental motor skills in children, highlighting the positive impact of this intervention for a pediatric population.
Collapse
Affiliation(s)
- Fidanka Vasileva
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, 17190 Girona, Spain; (F.V.); (G.C.-B.); (A.L.-B.)
- University School of Health and Sport, University of Girona, 17190 Girona, Spain; (R.F.-L.); (A.F.-P.)
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, 17190 Girona, Spain; (R.F.-L.); (A.F.-P.)
- Faculty of Education and Psychology, University of Girona, 17004 Girona, Spain;
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, 17004 Girona, Spain
- Chair of Sport and Physical Education—Centre of Olympic Studies, University of Girona, 17004 Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, 17190 Girona, Spain; (F.V.); (G.C.-B.); (A.L.-B.)
- Department of Biology, University of Girona, 17003 Girona, Spain
| | - Víctor López-Ros
- Faculty of Education and Psychology, University of Girona, 17004 Girona, Spain;
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, 17004 Girona, Spain
- Chair of Sport and Physical Education—Centre of Olympic Studies, University of Girona, 17004 Girona, Spain
| | - Anna Ferrusola-Pastrana
- University School of Health and Sport, University of Girona, 17190 Girona, Spain; (R.F.-L.); (A.F.-P.)
- New Therapeutic Targets Group, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17071 Girona, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, 17190 Girona, Spain; (F.V.); (G.C.-B.); (A.L.-B.)
- Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Pediatric Endocrinology, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, 17190 Girona, Spain; (R.F.-L.); (A.F.-P.)
- Research Group of Clinical Anatomy, Embryology and Neuroscience, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
| |
Collapse
|
12
|
Karamti MH, Zouhal H, Bousselmi M, Darragi M, Khannous H, Ben Hmid A, Zamali I, Ben Ahmed M, Laher I, Granacher U, Moussa AZB. Changes in Physical Fitness, Muscle Damage and Cognitive Function in Elite Rugby Players over a Season. Sports (Basel) 2024; 12:223. [PMID: 39195599 PMCID: PMC11360730 DOI: 10.3390/sports12080223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
This study proposes to monitor the physical, immune and cognitive responses and adaptations of elite rugby players throughout the season based on the loads performed. Anthropometric measurements, physical fitness tests (e.g., muscle strength and power, linear and change-of-direction speed, cardiorespiratory fitness) and analyses of serum concentrations of markers of muscle damage (creatine kinase [CK] and lactate dehydrogenase [LDH]) and brain-derived neurotrophic factor (BDNF) were carried out over a sporting season (24 weeks) for 17 elite rugby players (10 forwards and 7 backs) aged 18.91 ± 0.76 years. The physical fitness test results show improvements in the performance of both forwards and backs over the season (p < 0.05), with an advantage for backs compared with forwards in most tests (p < 0.05). Muscle damage markers decreased at the end of the season compared with the baseline levels for forwards (p < 0.05). CK levels were unchanged for the backs, but there were increased LDH concentrations at the end of the season compared with baseline (p < 0.05). Serum BDNF levels decreased for the total group between the second and third sampling (p < 0.05). The muscular and physical capacities of rugby players differ according to their playing position. Immune responses and adaptations, as well as BDNF levels, vary throughout the season and depend on the physical load performed.
Collapse
Affiliation(s)
- Mohamed Houssem Karamti
- Higher Institute of Sport and Physical Education of SFAX, University of Sfax, Sfax 3027, Tunisia; (M.H.K.); (M.B.)
- Research Laboratory (LR23JS01) “Sport Performance, Health & Society”, Higher Institute of Sport and Physical Education of Ksar Said, Tunis 1000, Tunisia
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR APS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, CEDEX, 35044 Rennes, France
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| | - Mariem Bousselmi
- Higher Institute of Sport and Physical Education of SFAX, University of Sfax, Sfax 3027, Tunisia; (M.H.K.); (M.B.)
- Research Laboratory (LR23JS01) “Sport Performance, Health & Society”, Higher Institute of Sport and Physical Education of Ksar Said, Tunis 1000, Tunisia
| | - Manel Darragi
- Higher Institute of Sport and Physical Education of SFAX, University of Sfax, Sfax 3027, Tunisia; (M.H.K.); (M.B.)
- Research Laboratory (LR23JS01) “Sport Performance, Health & Society”, Higher Institute of Sport and Physical Education of Ksar Said, Tunis 1000, Tunisia
| | | | - Ahlem Ben Hmid
- Clinical Immunology Department, Pasteur Institute of Tunis, Tunis 1000, Tunisia; (A.B.H.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Pasteur Institute of Tunis, Tunis 1000, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1000, Tunisia
| | - Imen Zamali
- Clinical Immunology Department, Pasteur Institute of Tunis, Tunis 1000, Tunisia; (A.B.H.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Pasteur Institute of Tunis, Tunis 1000, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1000, Tunisia
| | - Mélika Ben Ahmed
- Clinical Immunology Department, Pasteur Institute of Tunis, Tunis 1000, Tunisia; (A.B.H.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Pasteur Institute of Tunis, Tunis 1000, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1000, Tunisia
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, 79102 Freiburg, Germany
| | - Amira Zouita Ben Moussa
- Research Laboratory (LR23JS01) “Sport Performance, Health & Society”, Higher Institute of Sport and Physical Education of Ksar Said, Tunis 1000, Tunisia
- Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Tunis 1000, Tunisia
| |
Collapse
|
13
|
Sivayokan B, King C, Mali I, Payne M, Strating H, Warnes E, Bossmann SH, Plakke B. Aerobic exercise improves cognitive flexibility and modulates regional volume changes in a rat model of autism. Behav Brain Res 2024; 471:115136. [PMID: 38971431 DOI: 10.1016/j.bbr.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Gestational exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD). Rodents exposed to VPA in utero display common features of ASD, including volumetric dysregulation in higher-order cognitive regions like the medial prefrontal cortex (mPFC), the anterior cingulate cortex (ACC), and the hippocampus. Exercise has been shown in elderly populations to boost cognition and to buffer against brain volume losses with age. This study employed an adolescent treadmill exercise intervention to facilitate cognitive flexibility and regional brain volume regulation in rats exposed to VPA during gestation. It was found that exercise improved performance on extra-dimensional shifts of attention on a set-shifting task, which is indicative of improved cognitive flexibility. Exercise decreased frontal cortex volume in females, whereas in males exercise increased the ventral hippocampus. These findings suggest that aerobic exercise may be an effective intervention to counteract the altered development of prefrontal and hippocampal regions often observed in ASD.
Collapse
Affiliation(s)
- Bhavana Sivayokan
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Cole King
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Ivina Mali
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Macy Payne
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Hunter Strating
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Ellie Warnes
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Stefan H Bossmann
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Bethany Plakke
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States.
| |
Collapse
|
14
|
Brouwer A, Carhart‐Harris RL, Raison CL. Psychotomimetic compensation versus sensitization. Pharmacol Res Perspect 2024; 12:e1217. [PMID: 38923845 PMCID: PMC11194300 DOI: 10.1002/prp2.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is a paradox that psychotomimetic drugs can relieve symptoms that increase risk of and cooccur with psychosis, such as attention and motivational deficits (e.g., amphetamines), pain (e.g., cannabis) and symptoms of depression (e.g., psychedelics, dissociatives). We introduce the ideas of psychotomimetic compensation and psychotomimetic sensitization to explain this paradox. Psychotomimetic compensation refers to a short-term stressor or drug-induced compensation against stress that is facilitated by engagement of neurotransmitter/modulator systems (endocannabinoid, serotonergic, glutamatergic and dopaminergic) that mediate the effects of common psychotomimetic drugs. Psychotomimetic sensitization occurs after repeated exposure to stress and/or drugs and is evidenced by the gradual intensification and increase of psychotic-like experiences over time. Theoretical and practical implications of this model are discussed.
Collapse
Affiliation(s)
- Ari Brouwer
- Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Robin L. Carhart‐Harris
- Department of Neurology and PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles L. Raison
- Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Vail Health Behavioral Health Innovation CenterVailColoradoUSA
- Center for the Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
- Department of Spiritual HealthEmory University Woodruff Health Sciences CenterAtlantaGeorgiaUSA
| |
Collapse
|
15
|
de Souza HCM, Pessoa MF, Clemente RDS, da Silva AV, Cardoso PRG, Fernandes J, Dornelas de Andrade A. Effects of 12 weeks of inspiratory muscle training and whole body vibration on the inflammatory profile, BDNF and muscular system in pre-frail elderly women: A randomized controlled trial. Arch Gerontol Geriatr 2024; 123:105421. [PMID: 38593699 DOI: 10.1016/j.archger.2024.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024]
Abstract
AIM to investigate the effects of the whole body vibration (WBV) and inspiratory muscle training (IMT) on the inflammatory profile and in muscle mass and strength in pre-frail older women. METHODS this study was a randomized double-blind trial. Forty two older women aged 60-80 years were randomly allocated to IMT + WBV (G1), IMTsham + WBV (G2) or Sham groups (G3). During 12 weeks G1 received both trainings, whereas G2 received WBV alone and G3 received IMT with a low fixed load and were positioned at the vibratory platform without therapeutic effect. Participants were evaluated before and after the intervention for the following outcomes: Brain-derived neurotrophic factor (BDNF) and inflammatory biomarkers (IB), respiratory (RT) and quadriceps thickness (QT) and diaphragmatic mobility (DM) using muscle ultrasound, body composition (BC) using a bioelectrical impedance scale and inspiratory muscle strength (IMS). RESULTS after the training, G1 (114.93 ± 21.29) improved IMS (p<0.005) compared with G2 (91.29 ± 23.10) and G3 (85.21 ± 27.02). There was also a significant improve on time of the DM (p<0.001) and RT (p=0.006) for G1 (8.59 ± 3.55 and 11.11 ± 12.66) compared with G2 (1.05 ± 3.09 and 1.10 ± 10.60) and G3 (0.40 ± 2.29 and -1.85 ± 7.45). BDNF, IB, QT and BC were similar between groups. CONCLUSIONS IMT associated with WBV is effective to improve in increasing IMS, RT and DM in pre-frail older women. However, these interventions do not modify BDNF, IB, QT or BC in this population.
Collapse
Affiliation(s)
- Helga Cecília Muniz de Souza
- Postgraduate Program of Biology Applied to Health, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Hospital das Clínicas de Pernambuco - Empresa Brasileira de Serviços Hospitalares (HCPE-EBSERH), Federal University of Pernambuco, Recife, Brazil; Laboratory of Cardiopulmonary Physiotherapy, Department of Physiotherapy, Federal University of Pernambuco, Recife, Brazil.
| | - Maíra Florentino Pessoa
- Postgraduate Program of Biology Applied to Health, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Laboratory of Cardiopulmonary Physiotherapy, Department of Physiotherapy, Federal University of Pernambuco, Recife, Brazil
| | - Rafaela Dos Santos Clemente
- Laboratory of Cardiopulmonary Physiotherapy, Department of Physiotherapy, Federal University of Pernambuco, Recife, Brazil
| | - Alanna Vasconcelos da Silva
- Laboratory of Cardiopulmonary Physiotherapy, Department of Physiotherapy, Federal University of Pernambuco, Recife, Brazil
| | | | - Juliana Fernandes
- Laboratory of Physiotherapy and Collective Health, Department of Physiotherapy, Federal University of Pernambuco, Recife, Brazil
| | - Arméle Dornelas de Andrade
- Postgraduate Program of Biology Applied to Health, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Laboratory of Cardiopulmonary Physiotherapy, Department of Physiotherapy, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
16
|
Poursalehi D, Lotfi K, Shahdadian F, Hajhashemy Z, Rouhani P, Saneei P. Dietary intake of methyl donor nutrients in relation to metabolic health status, serum levels of brain-derived neurotrophic factor and adropin. Clin Nutr 2024; 43:1353-1362. [PMID: 38677046 DOI: 10.1016/j.clnu.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND AND AIMS There is a lack of evidence on dietary intake of methyl donor nutrients with metabolic health status and related biomarkers. Thus, this study aimed to assess the relation between methyl donor nutrients intake and metabolic health status with regarding the interactive roles of brain-derived neurotrophic factor (BDNF) and adropin in Iranian adults. METHODS This cross-sectional survey was conducted among 527 Iranian adults (45.7% female) selected by multistage cluster random-sampling method. A validated food frequency questionnaire was used to evaluate participants' dietary intake. Metabolic unhealthy status was defined by Wildman criteria as having ≥ 2 of hyperglycemia, hypertriglyceridemia, hypo-HDL-cholesterolemia, hypertension, chronic inflammation, and insulin resistance. Concentrations of metabolic parameters, BDNF and adropin were determined using fasting blood samples. RESULTS An inverse association was found between methyl donor nutrients intake and metabolically unhealthy status in multivariable-adjusted model (ORT3 vs. T1 = 0.30; 95%CI: 0.12-0.75). This association was especially significant among overweight/obese adults and was stronger in women. Additionally, consumption of vitamin B6 and choline was separately related to reduced odds of metabolically unhealthy status. Methyl donor intake was not significantly related to low BDNF (ORT3 vs. T1 = 0.93; 95%CI: 0.60-1.44) and adropin (ORT3 vs. T1 = 0.71; 95%CI: 0.44-1.15). However, the interaction between high methyl donor nutrients intake and high BDNF was related to lower odds of metabolically unhealthy status in multivariable-adjusted model (ORMDNS∗BDNF = 0.27; 95%CI: 0.11-0.67). CONCLUSION Higher intake of methyl donor nutrients, alone and in interaction with BDNF levels, was associated with decreased odds of metabolically unhealthy status in Iranian adults.
Collapse
Affiliation(s)
- Donya Poursalehi
- Students' Scientific Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Shahdadian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Hajhashemy
- Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Rouhani
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Parvane Saneei
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Caruso MG, Nicolas S, Lucassen PJ, Mul JD, O’Leary OF, Nolan YM. Ageing, Cognitive Decline, and Effects of Physical Exercise: Complexities, and Considerations from Animal Models. Brain Plast 2024; 9:43-73. [PMID: 38993577 PMCID: PMC11234681 DOI: 10.3233/bpl-230157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
In our ageing global population, the cognitive decline associated with dementia and neurodegenerative diseases represents a major healthcare problem. To date, there are no effective treatments for age-related cognitive impairment, thus preventative strategies are urgently required. Physical exercise is gaining traction as a non-pharmacological approach to promote brain health. Adult hippocampal neurogenesis (AHN), a unique form of brain plasticity which is necessary for certain cognitive functions declines with age and is enhanced in response to exercise. Accumulating evidence from research in rodents suggests that physical exercise has beneficial effects on cognition through its proneurogenic capabilities. Given ethical and technical limitations in human studies, preclinical research in rodents is crucial for a better understanding of such exercise-induced brain and behavioural changes. In this review, exercise paradigms used in preclinical research are compared. We provide an overview of the effects of different exercise paradigms on age-related cognitive decline from middle-age until older-age. We discuss the relationship between the age-related decrease in AHN and the potential impact of exercise on mitigating this decline. We highlight the emerging literature on the impact of exercise on gut microbiota during ageing and consider the role of the gut-brain axis as a future possible strategy to optimize exercise-enhanced cognitive function. Finally, we propose a guideline for designing optimal exercise protocols in rodent studies, which would inform clinical research and contribute to developing preventative strategies for age-related cognitive decline.
Collapse
Affiliation(s)
- Maria Giovanna Caruso
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul J. Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Joram D. Mul
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivia F. O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
18
|
Gutiérrez-Reguero H, Buendía-Romero Á, Franco-López F, Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Ara I, Alcazar J, Pallarés JG. Effects of multicomponent training and HMB supplementation on disability, cognitive and physical function in institutionalized older adults aged over 70 years: a cluster-randomized controlled trial. J Nutr Health Aging 2024; 28:100208. [PMID: 38489992 DOI: 10.1016/j.jnha.2024.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVES To investigate the synergist effects of exercise and β-hydroxy β-methylbutyrate (HMB) supplementation on disability, cognitive and physical function, and muscle power in institutionalized older people. DESIGN Cluster-randomized controlled trial. PARTICIPANTS Seventy-two institutionalized older adults (age = 83 ± 10 years old; 63% women) were randomized in four groups: exercise plus placebo (EX), HMB supplementation, EX plus HMB supplementation (EX + HMB), and control (CT). INTERVENTION The exercising participants completed a 12-week tailored multicomponent exercise intervention (Vivifrail; 5 days/week of an individualized resistance, cardiovascular, balance and flexibility program), whereas the HMB groups received a drink containing 3 g/day of HMB. MEASUREMENTS Participants were assessed Pre and Post intervention for disability and cognitive function (validated questionnaires), physical function (short physical performance battery, SPPB), handgrip strength and sit-to-stand relative muscle power. Linear mixed-effect models were used to compare changes among groups. RESULTS Compared to baseline, both EX and EX + HMB improved cognitive function (+2.9 and +1.9 points; p < 0.001), SPPB score (+2.9 points and +2.4 points; p < 0.001) and relative muscle power (+0.64 and +0.48 W·kg-1; p < 0.001), while CT and HMB remained unchanged (p > 0.05). Significant between-group differences were noted between CT, EX and EX + HMB for cognitive function (p < 0.01), between CT and EX + HMB for physical function (p = 0.043), and between CT, EX and EX + HMB for relative muscle power (p < 0.001). CONCLUSION The Vivifrail exercise program was effective in improving cognitive and physical function, and muscle power in nursing home residents, while HMB supplementation did not provide additional benefits when combined with exercise. These results emphasize the importance of physical exercise interventions in very old people as an essential basis for improving their overall health and quality of life.
Collapse
Affiliation(s)
- Héctor Gutiérrez-Reguero
- GENUD Toledo Research Group, Faculty of Sports Sciences, University of Castilla-La Mancha, Toledo, Spain; CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Junta de Comunidades de Castilla-La Mancha (JCCM), Spain
| | - Ángel Buendía-Romero
- GENUD Toledo Research Group, Faculty of Sports Sciences, University of Castilla-La Mancha, Toledo, Spain; CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Junta de Comunidades de Castilla-La Mancha (JCCM), Spain
| | - Francisco Franco-López
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | - Alejandro Martínez-Cava
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | | | - Javier Courel-Ibáñez
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Faculty of Sports Sciences, University of Castilla-La Mancha, Toledo, Spain; CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Junta de Comunidades de Castilla-La Mancha (JCCM), Spain
| | - Julian Alcazar
- GENUD Toledo Research Group, Faculty of Sports Sciences, University of Castilla-La Mancha, Toledo, Spain; CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Junta de Comunidades de Castilla-La Mancha (JCCM), Spain
| | - Jesús G Pallarés
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain.
| |
Collapse
|
19
|
Montero-Almagro G, Bernal-Utrera C, Geribaldi-Doldán N, Nunez-Abades P, Castro C, Rodriguez-Blanco C. Influence of High-Intensity Interval Training on Neuroplasticity Markers in Post-Stroke Patients: Systematic Review. J Clin Med 2024; 13:1985. [PMID: 38610750 PMCID: PMC11012260 DOI: 10.3390/jcm13071985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Exercise has shown beneficial effects on neuronal neuroplasticity; therefore, we want to analyze the influence of high-intensity interval training (HIIT) on neuroplasticity markers in post-stroke patients. Methods: A systematic review of RCTs including studies with stroke participants was conducted using the following databases (PubMed, LILACS, ProQuest, PEDro, Web of Science). Searches lasted till (20/11/2023). Studies that used a HIIT protocol as the main treatment or as a coadjutant treatment whose outcomes were neural plasticity markers were used and compared with other exercise protocols, controls or other kinds of treatment. Studies that included other neurological illnesses, comorbidities that interfere with stroke or patients unable to complete a HIIT protocol were excluded. HIIT protocol, methods to assess intensity, neuroplasticity markers (plasmatic and neurophysiological) and other types of assessments such as cognitive scales were extracted to make a narrative synthesis. Jadad and PEDro scales were used to assess bias. Results: Eight articles were included, one included lacunar stroke (less than 3 weeks) and the rest had chronic stroke. The results found here indicate that HIIT facilitates neuronal recovery in response to an ischemic injury. This type of training increases the plasma concentrations of lactate, BDNF and VEGF, which are neurotrophic and growth factors involved in neuroplasticity. HIIT also positively regulates other neurophysiological measurements that are directly associated with a better outcome in motor learning tasks. Conclusions: We conclude that HIIT improves post-stroke recovery by increasing neuroplasticity markers. However, a limited number of studies have been found indicating that future studies are needed that assess this effect and include the analysis of the number of intervals and their duration in order to maximize this effect.
Collapse
Affiliation(s)
- Gines Montero-Almagro
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
| | - Carlos Bernal-Utrera
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
| | - Noelia Geribaldi-Doldán
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain;
| | - Pedro Nunez-Abades
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
- Department of Physiology, Faculty of Pharmacy, University of Seville, 41013 Seville, Spain
| | - Carmen Castro
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain; (P.N.-A.); (C.C.)
- Department of Biomedicine, Biotechnology and Public Health, Area of Physiology, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Cleofas Rodriguez-Blanco
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41013 Seville, Spain; (G.M.-A.); (C.R.-B.)
| |
Collapse
|
20
|
Yıldırım Ayaz E, Dincer B, Mete E, Kaygusuz Benli R, Cinbaz G, Karacan E, Cankül A, Mesci B. Evaluating the impact of aerobic and resistance green exercises on the fitness, aerobic and intrinsic capacity of older individuals. Arch Gerontol Geriatr 2024; 118:105281. [PMID: 38056100 DOI: 10.1016/j.archger.2023.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Our study determined the impact of 12-week aerobic exercise (AE) and aerobic + resistance exercises (AE + RE) within the green exercise concept, on senior fitness, aerobic capacity, and intrinsic capacity (IC). METHODS The study was a multicenter, randomized controlled study conducted at two senior living facilities with individuals aged 65 and above whose cardiorespiratory and musculoskeletal conditions are suitable for moderate exercise and who have normal cognition levels. Block randomization was applied to 96 participants in a ratio of 1:1:1 to be assigned to AE, AE + RE, and control (C) groups. Intervention groups received exercise sessions led by physiotherapists within the senior living facilitiy gardens, with a frequency of once a week for 50 min, for 12 weeks. Also, they were prescribed additional exercise sessions on two additional days of the week. At the commencement of the study and 12th week, shuttle walking test, senior fitness test (SFT), intrinsic capacity assessment (with Timed Up and Go test, Mini Mental State Examination, Geriatric Depression Scale-15, Mini Nutritional Assessment, handgrip strength test) was conducted of all participants. The primary outcome was the Z score of IC, secondary outcomes were VO2max and SFT subparameters. The study was registered in the Protocol Registry and Results System (Clinicaltrials.gov PRS) with the registration number NCT05958745. RESULTS 90 participants successfully completed the study, with 30 individuals in each of the AE, AE + RE, and C groups. By the end of the 12th week, the arm curl score was significantly higher in the AE + RE compared to the C (mean difference: 3.96, 95 % CI= 2.47 to 5.46, p = 0.01). There were significant differences in chair stand, two-minute step, 8-foot up-and-go, chair sit and reach, and back scratch tests in both AE and AE + RE compared to C. AE and AE + RE exhibited significantly higher shuttle test distances and VO2max values compared to the C (p < 0.0001). AE + RE achieved a significantly higher total IC score than the C (mean difference: 0.59, %95 CI= -0.07 to 1.26, p = 0.025). CONCLUSION In this study within the green exercise concept, both AE and AE + RE led to similar improvements in strength, flexibility, mobility, endurance, and aerobic capacity. Notably, AE + RE demonstrated an additional benefit by increasing the total IC, while AE alone did not exhibit the same effect.
Collapse
Affiliation(s)
- Elif Yıldırım Ayaz
- University of Health Sciences, Sultan 2. Abdülhamid Han Training and Research Hospital, Internal Medicine Clinic, Selimiye, Tıbbiye Cd, 34668 Üsküdar, İstanbul Turkey.
| | - Berna Dincer
- Istanbul Medeniyet University Faculty of Health Sciences, Department of Internal Medicine Nursing, Kartal Cevizli Yerleşkesi, Atalar Mh. Şehit Hakan Kurban Cd., 34862 Kartal, İstanbul, Turkey
| | - Emel Mete
- Istanbul Medeniyet University Faculty of Health Sciences, Department of Physiothetapy and Rehabilitation, Kartal Cevizli Yerleşkesi, Atalar Mh. Şehit Hakan Kurban Cd., 34862 Kartal, İstanbul, Turkey
| | - Reyhan Kaygusuz Benli
- Demiroglu Science University, Health Science Faculty, Department of Physiothetapy and Rehabilitation, Yazarlar St. No:17, 34394 Esentepe Şişli, İstanbul, Turkey
| | - Gülser Cinbaz
- Istanbul Medeniyet University Faculty of Health Sciences, Department of Physiothetapy and Rehabilitation, Kartal Cevizli Yerleşkesi, Atalar Mh. Şehit Hakan Kurban Cd., 34862 Kartal, İstanbul, Turkey
| | - Esra Karacan
- Yeditepe University, Health Science Faculty, Department of Physiothetapy and Rehabilitation, Kayışdağı, İnönü Mahallesi, Kayışdağı Cd., 34755 Ataşehir, İstanbul, Turkey
| | - Ayşegül Cankül
- Medipol University Hospital, Internal Medicine and Onkology Clinic, TEM Avrupa Otoyolu Göztepe Çıkışı No:1, 34214, Bağcılar, İstanbul, Turkey
| | - Banu Mesci
- Istanbul Medeniyet University Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Internal Medicine Clinic, Eğitim Mah. Fahrettin Kerim Gökay, Caddesi Kadıköy, İstanbul, Turkey
| |
Collapse
|
21
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
22
|
Paterno A, Polsinelli G, Federico B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: a systematic review of clinical studies in Parkinson's disease. Front Physiol 2024; 15:1352305. [PMID: 38444767 PMCID: PMC10912511 DOI: 10.3389/fphys.2024.1352305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background: Brain-Derived Neurotrophic Factor (BDNF) serum levels are reduced in patients with Parkinson's Disease (PD). Objectives: This study aimed to assess the effect of exercise intensity, volume and type on BDNF levels in patients with PD. Methods: We searched clinicaltrials.gov, CINAHL, Embase, PubMed, Scopus, Web of Science for both controlled and non-controlled studies in patients with PD, published between 2003 and 2022, which assessed Brain-Derived Neurotrophic Factor before and after different exercise protocols. Exercise intensity was estimated using a time-weighted average of Metabolic Equivalent of Task (MET), while exercise volume was estimated by multiplying MET for the duration of exercise. Exercise types were classified as aerobic, resistance, balance and others. We computed two distinct standardized measures of effects: Hedges' g to estimate differences between experimental and control group in pre-post intervention BDNF changes, and Cohen's d to measure pre-post intervention changes in BDNF values for each study arm. Meta-regression and linear regression were used to assess whether these effect measures were associated with intensity, volume and type. PROSPERO registration number: CRD42023418629. Results: Sixteen studies (8 two-arm trials and 8 single-arm trials) including 370 patients with PD were eligible for the systematic review. Selected studies had a large variability in terms of population and intervention characteristics. The meta-analysis showed a significant improvement in BDNF levels in the exercise group compared to the control group, Hedges' g = 0.70 (95% CI: 0.03, 1.38), with substantial heterogeneity (I2 = 76.0%). Between-group differences in intensity were positively associated with change in BDNF in a subset of 5 controlled studies. In the analysis which included non-controlled studies, intensity and total exercise volume were both positively associated with BDNF change. No difference was found according to exercise type. Conclusion: Exercises of greater intensity may increase BDNF levels in patients with PD, while the role of volume of exercise needs to be further explored.
Collapse
Affiliation(s)
- Andrea Paterno
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Italy
| | | | | |
Collapse
|
23
|
Arabshahi V, Khoddami M, Milajerdi M, Moabedi M, Milajerdi A. Association between dietary intake of vitamin D and risk of depression, anxiety, and sleep disorders among physically active adults: a cross-sectional study. Front Nutr 2024; 11:1339152. [PMID: 38389792 PMCID: PMC10881758 DOI: 10.3389/fnut.2024.1339152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Rare studies have been done to investigate the association between dietary intakes of vitamin D and the risk of mental health disorders among athletes. The current study aimed to investigate the association between this vitamin intake and the risk of depression, anxiety, and sleep disorders among a group of Iranian physically active adults. Methods This cross-sectional study was conducted among 690 healthy athletes (18-50 years, mean BMI between 20 and 30) in Kashan, Iran. The usual dietary intake of participants was assessed by a 147-item FFQ. Depression was assessed by the Beck Depression Inventory-II (21-item), anxiety by the Beck Anxiety Inventory (21-item), and sleep disorders by the Pittsburgh Sleep Quality Index questionnaires. Statistical analyses were done by using SPSS version 18. p values < 0.05 were considered significant. Results No significant association was found between vitamin D dietary intake and risk of depression in the full-adjusted model (OR: 0.96, 95% CI: 0.62, 1.51). In contrast, participants at the highest tertile of vitamin D consumption had a 49% lower risk of anxiety than those at the lowest tertile (OR: 0.51, 95%: 0.29, 0.87). Moreover, a significant 46% lower risk of sleep disorders was found among those with the highest intake of vitamin D in comparison to participants with the lowest intake (OR: 0.54, 95% CI: 0.37, 0.78). Conclusion We found a significant association between dietary vitamin D intake and reduced risk of anxiety and sleep disorders, but not with depression, in this study. Further prospective studies are recommended for future investigations.
Collapse
Affiliation(s)
- Vajiheh Arabshahi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrad Khoddami
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Milajerdi
- Department of Medical Sciences, Islamic Azad University, Kashan, Iran
| | - Mahdi Moabedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
Cho E, Granger J, Theall B, Lemoine N, Calvert D, Marucci J, Mullenix S, O'Neal H, Jacome T, Irving BA, Johannsen NM, Carmichael O, Spielmann G. Blood and MRI biomarkers of mild traumatic brain injury in non-concussed collegiate football players. Sci Rep 2024; 14:665. [PMID: 38182718 PMCID: PMC10770029 DOI: 10.1038/s41598-023-51067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Football has one of the highest incidence rates of mild traumatic brain injury (mTBI) among contact sports; however, the effects of repeated sub-concussive head impacts on brain structure and function remain under-studied. We assessed the association between biomarkers of mTBI and structural and functional MRI scans over an entire season among non-concussed NCAA Division I linemen and non-linemen. Concentrations of S100B, GFAP, BDNF, NFL, and NSE were assessed in 48 collegiate football players (32 linemen; 16 non-linemen) before the start of pre-season training (pre-camp), at the end of pre-season training (pre-season), and at the end of the competitive season (post-season). Changes in brain structure and function were assessed in a sub-sample of 11 linemen and 6 non-linemen using structural and functional MRI during the execution of Stroop and attention network tasks. S100B, GFAP and BDNF concentrations were increased at post-season compared to pre-camp in linemen. White matter hyperintensities increased in linemen during pre-season camp training compared to pre-camp. This study showed that the effects of repeated head impacts are detectable in the blood of elite level non-concussed collegiate football players exposed to low-moderate impacts to the heads, which correlated with some neurological outcomes without translating to clinically-relevant changes in brain anatomy or function.
Collapse
Affiliation(s)
- Eunhan Cho
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
| | - Joshua Granger
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
| | - Bailey Theall
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
| | | | | | | | | | - Hollis O'Neal
- Louisiana State University Health Sciences Center, Baton Rouge, LA, 70803, USA
- Our Lady of the Lake, Baton Rouge, LA, 70810, USA
| | - Tomas Jacome
- Our Lady of the Lake, Baton Rouge, LA, 70810, USA
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Neil M Johannsen
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Huey P. Long Fieldhouse, Baton Rouge, LA, 70803, USA.
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
25
|
Rodríguez-Gutiérrez E, Torres-Costoso A, Saz-Lara A, Bizzozero-Peroni B, Guzmán-Pavón MJ, Sánchez-López M, Martínez-Vizcaíno V. Effectiveness of high-intensity interval training on peripheral brain-derived neurotrophic factor in adults: A systematic review and network meta-analysis. Scand J Med Sci Sports 2024; 34:e14496. [PMID: 37728896 DOI: 10.1111/sms.14496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND High-intensity interval training (HIIT) has emerged as an alternative training method to increase brain-derived neurotrophic factor (BDNF) levels, a crucial molecule involved in plastic brain changes. Its effect compared to moderate-intensity continuous training (MICT) is controversial. We aimed to estimate, and to comparatively evaluate, the acute and chronic effects on peripheral BDNF levels after a HIIT, MICT intervention or a control condition in adults. METHODS The CINAHL, Cochrane, PubMed, PEDro, Scopus, SPORTDiscus, and Web of Science databases were searched for randomized controlled trials (RCTs) from inception to June 30, 2023. A network meta-analysis was performed to assess the acute and chronic effects of HIIT versus control condition, HIIT versus MICT and MICT versus control condition on BDNF levels. Pooled standardized mean differences (SMDs) and their 95% confidence intervals (95% CIs) were calculated for RCTs using a random-effects model. RESULTS A total of 22 RCTs were selected for the systematic review, with 656 participants (aged 20.4-79 years, 34.0% females) and 20 were selected for the network meta-analysis. Network SMD estimates were significant for HIIT versus control condition (1.49, 95% CI: 0.61, 2.38) and MICT versus control condition (1.08, 95% CI: 0.04, 2.12) for acutely BDNF increase. However, pairwise comparisons only resulted in a significant effect for HIIT versus control condition. CONCLUSIONS HIIT is the best training modality for acutely increasing peripheral BDNF levels in adults. HIIT may effectively increase BDNF levels in the long term.
Collapse
Affiliation(s)
| | - Ana Torres-Costoso
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Bruno Bizzozero-Peroni
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay
| | | | - Mairena Sánchez-López
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Educación, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
26
|
Dora K, Tsukamoto H, Suga T, Tomoo K, Suzuki A, Adachi Y, Takeshita M, Kato Y, Kawasaki M, Sato W, Imaizumi A, Karakawa S, Uchida H, Hashimoto T. Essential amino acid supplements ingestion has a positive effect on executive function after moderate-intensity aerobic exercise. Sci Rep 2023; 13:22644. [PMID: 38114553 PMCID: PMC10730626 DOI: 10.1038/s41598-023-49781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Aerobic exercise acutely improves cognitive function (e.g., executive function (EF); memory recognition (MR)) and increases circulating brain-derived neurotrophic factor (BDNF). In addition, branched-chain amino acids (BCAA) ingestion acutely shortens the choice reaction time and increases brain BDNF. We examined whether the ingestion of essential amino acid (EAA) supplements (mainly composed of BCAA) would positively impact on cognitive function and circulating BDNF after moderate-intensity aerobic exercise. Twenty-two healthy young men received either an EAA supplements or the placebo (PL) 30 min before undergoing aerobic exercise. The participants performed a cycling exercise at 60% of peak oxygen uptake for 30 min. EF after aerobic exercise was better after the EAA treatment than after the PL treatment (P = 0.02). MR (P = 0.38 for response accuracy; P = 0.15 for reaction time) and circulating BDNF (P = 0.59) were not altered by EAA supplements. EF improvement was correlated with increases in some amino acids (leucine, isoleucine, valine, lysine, phenylalanine; all Ps < 0.05) that are potential substrates for synthesizing neurotransmitters in the brain. These results suggest that EAA supplements ingestion had a positive effect on EF after moderate-intensity aerobic exercise, while MR and BDNF were not altered.
Collapse
Affiliation(s)
- Kento Dora
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Hayato Tsukamoto
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Keigo Tomoo
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Asuka Suzuki
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Adachi
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Masamichi Takeshita
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yumiko Kato
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Mika Kawasaki
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Wataru Sato
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Akira Imaizumi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Sachise Karakawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Hirohisa Uchida
- Sports Nutrition Department, Ajinomoto Co., Inc., Chuo-ku, Tokyo, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
27
|
Zhang M, Jia J, Yang Y, Zhang L, Wang X. Effects of exercise interventions on cognitive functions in healthy populations: A systematic review and meta-analysis. Ageing Res Rev 2023; 92:102116. [PMID: 37924980 DOI: 10.1016/j.arr.2023.102116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Chronic exercise intervention is a non-pharmacological therapy suggested to improve cognitive function in various populations. However, few meta-analyses have assessed the cognitive benefits associated with all FITT-VP variables (exercise frequency, intensity, bout duration time, type, volume or total intervention length, and progression) in healthy populations by age. Thus, this meta-analysis assessed the effects of each FITT-VP variable on cognitive function in healthy children, adults, and older adults. This study followed PRISMA guidelines. After searching PubMed and the Web of Science, we included 54 randomized controlled trials to examined the effects of FITT-VP variables on five cognitive domains: global cognition, executive function, memory, attention, and information processing. Moderation analyses assessed the effects by age and by each exercise variables. Exercise benefitted overall cognition and all subcognitive domains. Aerobic and resistance exercise showed the greatest benefits on global cognition and executive function respectively, whereas mind-body exercise benefitted memory. Among all populations, older adults showed the greatest benefits of exercise on global cognition, executive function, and memory compared with controls. Additional studies are needed to assess the effects of exercise on attention and information processing. This meta-analysis offers new insights on the relationships between cognition and FITT-VP exercise variables in healthy populations.
Collapse
Affiliation(s)
- Minggang Zhang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| | - Jiafeng Jia
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| | - Yang Yang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| | - Lepu Zhang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaochun Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
28
|
Rotondo R, Proietti S, Perluigi M, Padua E, Stocchi F, Fini M, Stocchi V, Volpe D, De Pandis MF. Physical activity and neurotrophic factors as potential drivers of neuroplasticity in Parkinson's Disease: A systematic review and meta-analysis. Ageing Res Rev 2023; 92:102089. [PMID: 37844764 DOI: 10.1016/j.arr.2023.102089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, characterized by motor and non-motor symptoms, that still lacks of a disease-modifying treatment. Consistent evidence proved the benefits of physical therapy on motor and non-motor symptoms in PD patients, leading the scientific community to propose physical activity as disease-modifying therapy for PD and suggesting the involvement of neurotrophic factors (NFs) as key mediators of neuroplasticity. However, the lack of standardized exercise training and methodological flaws of clinical trials have limited the evidence demonstrating the exercise-induced changes in serum and plasma neurotrophic factors concentration. A systematic search, covering 20 years of research in this field and including randomized and non-randomized controlled trials (RCTs and non-RCTs), which reported changes in serum and plasma NFs after a specific intervention, were reviewed. Pooled effect sizes (p-ESs) and 95% confidence intervals (95%CIs) were calculated using a random effects model with R software. A total of 18 articles, of which exercise programs of interventions were codified in terms of type, intensity and duration adopting a standardisation methodology, were included in the systematic review. Six papers, describing the effect of different training programs on BDNF and IGF-1 levels, were included and independently analysed in two meta-analyses. Quantitative analysis for BDNF indicated a statistically significant improvement in serum concentration of PD patients (MD: 5.99 ng/mL; 95%IC: 0.15 -11.83; I2 = 77%) performing physical activity compared with control conditions in RCTs. Preliminary evidence supported the hypothesis that a moderate intensity aerobic exercise (MIAE) would be necessary to induce the changes in NFs. However, sensitivity analysis of meta-analysis and the few studies included in subgroup analysis did not support these results. Alongside, meta-analysis followed by sensitivity analysis revealed a potential change in serum IGF-1 (MD: 33.47 ng/mL; 95%IC: 8.09-58.85) in PD patients performing physical activity with respect controls in RCT studies. Considering the limited evidence to support or refute the increase in NFs levels in PD patients performing physical activity, there is a need to develop a rigorous controlled randomized trial, with standardization for loading intensity of physical activity, greater sample size, and a correct stratification of PD patients to establish a well-defined correlation between physical activity and NFs levels.
Collapse
Affiliation(s)
| | - Stefania Proietti
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome
| | - Elvira Padua
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, Italy
| | - Fabrizio Stocchi
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, Italy; IRCCS San Raffaele Roma, Rome, Italy
| | | | - Vilberto Stocchi
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, Italy
| | - Daniele Volpe
- Fresco Parkinson Center Villa Margherita S. Stefano Riabilitazione, Vicenza, Italy
| | - Maria Francesca De Pandis
- San Raffaele Cassino, Cassino, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, Italy.
| |
Collapse
|
29
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
30
|
Bang-Kittilsen G, Egeland J, Ueland T, Andersen E, Bigseth TT, Holmen TL, Mordal J, Holst R, Engh JA. The relationship between the brain-derived neurotrophic factor and neurocognitive response to physical exercise in individuals with schizophrenia. Psychoneuroendocrinology 2023; 157:106356. [PMID: 37562099 DOI: 10.1016/j.psyneuen.2023.106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Physical exercise can improve neurocognition in individuals with schizophrenia, presumably by facilitating neuroplasticity. There is, however, large inter-individual variation in response. The brain-derived neurotrophic factor (BDNF) has been proposed to mediate these effects. The current aim was to investigate the sparsely studied relationship between peripheral resting BDNF and neurocognitive response to physical exercise in individuals with schizophrenia. METHOD The current study reports secondary analyses of data from a randomized controlled trial (RCT), ClinicalTrials.gov number 02205684, recently reported according to the CONSORT guidelines. Eighty-two individuals with schizophrenia (mean age 37 ± 14 years old, 61% men) were randomly allocated to high-intensity interval training (HIIT) or a comparison group performing low-intensity active video gaming (AVG). Both interventions consisted of 2 sessions/week for 12 weeks. In previously published primary RCT analyses, HIIT and AVG showed comparable small to moderate improvements in neurocognition. We now address the inter-individual variability in neurocognitive response. We apply mediation and moderation analyses for repeated measures designs (MEMORE) and mixed effects models. RESULTS Baseline neurocognition was not significantly correlated with baseline levels of mature BDNF (baseline-mBDNF) or the precursor proBDNF. Nonetheless, baseline-mBDNF, but not baseline proBDNF, moderated the effect of exercise on neurocognition (p = 0.025) and explained 7% of the variance. The neurocognitive improvement increased with increasing baseline-mBDNF values. The moderating effect of baseline-mBDNF remained significant in a more complex model adding the moderating effects of exercise mode, sex, age, duration of illness and baseline VO2max on the outcome (neurocognition). Mean baseline-mBDNF significantly decreased from baseline to post-intervention (p = 0.036), regardless of exercise mode, differing by sex and associated with improved VO2max but not with change in neurocognition. A mediating role of mBDNF on the effect of physical exercise on neurocognition was not supported. Values of proBDNF mainly remained stable from baseline to post-intervention. CONCLUSION We found that baseline-mBDNF moderated the effect of physical exercise on neurocognition in individuals with schizophrenia and explained a small part of the inter-individual variation in neurocognitive response. Mean mBDNF decreased from baseline to post-intervention, regardless of exercise mode. A mediating role of mBDNF on the effect of exercise on neurocognition was not supported. The inter-individual variation in neurocognitive response and the complex role of peripheral BDNF in physical exercise is still to be elucidated.
Collapse
Affiliation(s)
- Gry Bang-Kittilsen
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tonsberg, Norway.
| | - Jens Egeland
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tonsberg, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo Faculty of Health Sciences, Oslo, Norway; K.G. Jebsen TREC, University of Tromso, Tromso, Norway
| | - Eivind Andersen
- Faculty of Humanities, Sports and Educational Science, University of Southeast Norway, Horten, Norway
| | | | - Tom Langerud Holmen
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tonsberg, Norway
| | - Jon Mordal
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tonsberg, Norway
| | - René Holst
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Norway
| | - John Abel Engh
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tonsberg, Norway
| |
Collapse
|
31
|
Jaberi S, Fahnestock M. Mechanisms of the Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor Expression in Alzheimer's Disease. Biomolecules 2023; 13:1577. [PMID: 38002258 PMCID: PMC10669442 DOI: 10.3390/biom13111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule in promoting neurogenesis, dendritic and synaptic health, neuronal survival, plasticity, and excitability, all of which are disrupted in neurological and cognitive disorders such as Alzheimer's disease (AD). Extracellular aggregates of amyloid-β (Aβ) in the form of plaques and intracellular aggregates of hyperphosphorylated tau protein have been identified as major pathological insults in the AD brain, along with immune dysfunction, oxidative stress, and other toxic stressors. Although aggregated Aβ and tau lead to decreased brain BDNF expression, early losses in BDNF prior to plaque and tangle formation may be due to other insults such as oxidative stress and contribute to early synaptic dysfunction. Physical exercise, on the other hand, protects synaptic and neuronal structure and function, with increased BDNF as a major mediator of exercise-induced enhancements in cognitive function. Here, we review recent literature on the mechanisms behind exercise-induced BDNF upregulation and its effects on improving learning and memory and on Alzheimer's disease pathology. Exercise releases into the circulation a host of hormones and factors from a variety of peripheral tissues. Mechanisms of BDNF induction discussed here are osteocalcin, FNDC5/irisin, and lactate. The fundamental mechanisms of how exercise impacts BDNF and cognition are not yet fully understood but are a prerequisite to developing new biomarkers and therapies to delay or prevent cognitive decline.
Collapse
Affiliation(s)
- Sama Jaberi
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
32
|
Ranieri A, Mennitti C, Falcone N, La Monica I, Di Iorio MR, Tripodi L, Gentile A, Vitale M, Pero R, Pastore L, D’Argenio V, Scudiero O, Lombardo B. Positive effects of physical activity in autism spectrum disorder: how influences behavior, metabolic disorder and gut microbiota. Front Psychiatry 2023; 14:1238797. [PMID: 38025444 PMCID: PMC10681626 DOI: 10.3389/fpsyt.2023.1238797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by social interactions and communication skills impairments that include intellectual disabilities, communication delays and self-injurious behaviors; often are present systemic comorbidities such as gastrointestinal disorders, obesity and cardiovascular disease. Moreover, in recent years has emerged a link between alterations in the intestinal microbiota and neurobehavioral symptoms in children with autism spectrum disorder. Recently, physical activity and exercise interventions are known to be beneficial for improving communication and social interaction and the composition of microbiota. In our review we intend to highlight how different types of sports can help to improve communication and social behaviors in children with autism and also show positive effects on gut microbiota composition.
Collapse
Affiliation(s)
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Noemi Falcone
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Lorella Tripodi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Maria Vitale
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Raffaella Pero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Olga Scudiero
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| |
Collapse
|
33
|
Rafie F, Rajizadeh MA, Shahbazi M, Pourranjbar M, Nekouei AH, Sheibani V, Peterson D. Effects of voluntary, and forced exercises on neurotrophic factors and cognitive function in animal models of Parkinson's disease. Neuropeptides 2023; 101:102357. [PMID: 37393777 DOI: 10.1016/j.npep.2023.102357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly. Cognitive dysfunction represents a common and challenging non-motor symptom for people with Parkinson's disease. The number of neurotrophic proteins in the brain is critical in neurodegenerative diseases such as Parkinson's. This research aims to compare the effects of two types of exercise, forced and voluntary, on spatial memory and learning and neurochemical factors (CDNF and BDNF). METHODS In this research, 60 male rats were randomly divided into six groups (n = 10): the control (CTL) group without exercise, the Parkinson's groups without and with forced (FE) and voluntary (VE) exercises, and the sham groups (with voluntary and forced exercise). The animals in the forced exercise group were placed on the treadmill for four weeks (five days a week). At the same time, voluntary exercise training groups were placed in a special cage equipped with a rotating wheel. At the end of 4 weeks, learning and spatial memory were evaluated with the Morris water maze test. BDNF and CDNF protein levels in the hippocampus were measured by the ELISA method. RESULTS The results showed that although the PD group without exercise was at a significantly lower level than other groups in terms of cognitive function and neurochemical factors, both types of exercise, could improve these problems. CONCLUSION According to our results, 4 weeks of voluntary and forced exercises were all found to reverse the cognitive impairments of PD rats.
Collapse
Affiliation(s)
- Forouzan Rafie
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA; Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Shahbazi
- Department of Physical Education & Exercise Science, Tehran University, Tehran, Iran
| | - Mohammad Pourranjbar
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir H Nekouei
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Daniel Peterson
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA; Pheonix VA Medical Center. Phoenix, AZ, USA
| |
Collapse
|
34
|
White BA, Ivey JT, Velazquez-Cruz R, Oliverio R, Whitehead B, Pinti M, Hollander J, Ma L, Hu G, Weil ZM, Karelina K. Exercise intensity and sex alter neurometabolic, transcriptional, and functional recovery following traumatic brain injury. Exp Neurol 2023; 368:114483. [PMID: 37479019 PMCID: PMC10529465 DOI: 10.1016/j.expneurol.2023.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Physical exercise represents a potentially inexpensive, accessible, and optimizable rehabilitation approach to traumatic brain injury (TBI) recovery. However, little is known about the impact of post-injury exercise on the neurometabolic, transcriptional, and cognitive outcomes following a TBI. In the current study, we examined TBI outcomes in adolescent male and female mice following a controlled cortical impact (CCI) injury. Mice underwent a 10-day regimen of sedentary, low-, moderate-, or high-intensity treadmill exercise and were assessed for cognitive function, histopathology, mitochondrial function, and oxidative stress. Among male mice, low-moderate exercise improved cognitive recovery, and reduced cortical lesion volume and oxidative stress, whereas high-intensity exercise impaired both cognitive recovery and mitochondrial function. On the other hand, among female mice, exercise had an intermediate effect on cognitive recovery but significantly improved brain mitochondrial function. Moreover, single nuclei RNA sequencing of perilesional brain tissue revealed neuronal plasticity-related differential gene expression that was largely limited to the low-intensity exercise injured males. Taken together, these data build on previous reports of the neuroprotective capacity of exercise in a TBI model, and reveal that this rehabilitation strategy impacts neurometabolic, functional, and transcriptional outcome measures in an intensity- and sex-dependent manner.
Collapse
Affiliation(s)
- Brishti A White
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Julia T Ivey
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Ruth Velazquez-Cruz
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Robin Oliverio
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Bailey Whitehead
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Mark Pinti
- Department of Human Performance and Mitochondria, Metabolism, & Bioenergetics Working Group, West Virginia University, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - John Hollander
- Department of Human Performance and Mitochondria, Metabolism, & Bioenergetics Working Group, West Virginia University, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Li Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Gangquin Hu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Zachary M Weil
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | - Kate Karelina
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, BMRC, 1 Medical Center Dr., Morgantown, WV 26506, USA.
| |
Collapse
|
35
|
Assi MJ, Poursalehi D, Tirani SA, Shahdadian F, Hajhashemy Z, Mokhtari E, Mohammadi S, Saneei P. Legumes and nuts intake in relation to metabolic health status, serum brain derived neurotrophic factor and adropin levels in adults. Sci Rep 2023; 13:16455. [PMID: 37777675 PMCID: PMC10542386 DOI: 10.1038/s41598-023-43855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
There is controversial evidence about the relationship between consumption of legumes and nuts with metabolic disturbances. The present study was undertaken to explore the association of legumes and nuts intake with metabolic health status among Iranian adults. This cross-sectional study was conducted on 527 adults (45.7% female, aged 20-65 years) chosen through a multistage cluster random-sampling approach. Dietary intakes of individuals were assessed using a validated food frequency questionnaire. Fasting blood samples were gathered to evaluate biochemical parameters. Metabolic health status of subjects was determined according to the criteria defined by Wildman. Data of covariates were collected using pre-tested procedures. The overall prevalence of metabolic unhealthy (MU) phenotype was 42.5%. After controlling all confounders, participants with highest intake of legumes and nuts had lower odds of MU status, compared with the lowest intake (OR 0.35; 95% CI 0.18-0.71). This association was stronger in normal-weight rather than overweight/obese adults and also in women rather than men. Higher consumption of legumes and nuts was additionally related to decreased odds of hyperglycemia, hypertriglyceridemia, and hypertension. A marginally inverse association was observed between legumes and nuts intake with low brain-derived neurotrophic factor (BDNF) levels, in fully-adjusted model (ORT3 vs. T1 0.50; 95% CI 0.25-1.01). Each tertile increase in legumes and nuts intake was marginally related to higher adropin levels ([Formula: see text] = 4.06; P = 0.07). In conclusion, this study demonstrated that higher intake of legumes and nuts is associated with lower chance of MU both in normal weight and overweight/obese adults. The association may be facilitated through serum BDNF and adropin.
Collapse
Affiliation(s)
- Mohammad Javad Assi
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
| | - Donya Poursalehi
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
| | - Shahnaz Amani Tirani
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
| | - Farnaz Shahdadian
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Hajhashemy
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
| | - Elahe Mokhtari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
| | - Sobhan Mohammadi
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
| | - Parvane Saneei
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran.
| |
Collapse
|
36
|
Ng DQ, Cheng I, Wang C, Tan CJ, Toh YL, Koh YQ, Ke Y, Foo KM, Chan RJ, Ho HK, Chew L, Bin Harunal Rashid MF, Chan A. Brain-derived neurotrophic factor as a biomarker in cancer-related cognitive impairment among adolescent and young adult cancer patients. Sci Rep 2023; 13:16298. [PMID: 37770565 PMCID: PMC10539508 DOI: 10.1038/s41598-023-43581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) improves cognitive function by stimulating neurogenesis and neuroplasticity. We hypothesize that higher plasma BDNF levels are protective against cognitive toxicity among adolescent and young adult cancer patients (15-39 years old). In a prospective, longitudinal study, we recruited 74 newly diagnosed cancer and 118 age-matched non-cancer controls who completed the Cambridge Neuropsychological Test Automated Battery (CANTAB), Functional Assessment of Cancer Therapy-Cognitive Function questionnaire (FACT-Cog) and blood draws. Plasma BDNF was quantified using an enzyme-linked immunosorbent assay. Genomic DNA from buffy coat was genotyped for BDNF Val66Met. Most cancer participants were diagnosed with breast (24%) and head/neck (22%) cancers. After adjusting for sociodemographic variables (age, gender, race, marital status, education years), cancer participants had lower BDNF levels (ng/mL) at baseline (median: 10.7 vs 21.6, p < 0.001) and 6-months post-baseline (median: 8.2 vs 15.3, p = 0.001) compared to non-cancer controls. Through linear mixed modelling adjusted for sociodemographic variables, baseline cognition, fatigue, psychological distress, and time, we observed that among cancer participants, lower baseline BDNF levels were associated with worse attention (p = 0.029), memory (p = 0.018) and self-perceived cognitive abilities (p = 0.020) during cancer treatment. Met/Met was associated with enhanced executive function compared to Val/Val (p = 0.012). Plasma BDNF may serve as a predictive biomarker of cancer-related cognitive impairment.
Collapse
Affiliation(s)
- Ding Quan Ng
- Department of Clinical Pharmacy Practice, University of California Irvine, 802 W Peltason Dr, Irvine, CA, 92697-4625, USA
| | - Ivy Cheng
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Claire Wang
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Chia Jie Tan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Yi Long Toh
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Yong Qin Koh
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Yu Ke
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Koon Mian Foo
- Department of Pharmacy, KK Women and Children's Hospital, Singapore, Singapore
| | - Raymond J Chan
- Caring Futures Institutes, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Han Kiat Ho
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Lita Chew
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Department of Pharmacy, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Alexandre Chan
- Department of Clinical Pharmacy Practice, University of California Irvine, 802 W Peltason Dr, Irvine, CA, 92697-4625, USA.
- Department of Pharmacy, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
37
|
Huang YQ, Wu Z, Lin S, Chen XR. The benefits of rehabilitation exercise in improving chronic traumatic encephalopathy: recent advances and future perspectives. Mol Med 2023; 29:131. [PMID: 37740180 PMCID: PMC10517475 DOI: 10.1186/s10020-023-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Traumatic encephalopathy syndrome (TES) is used to describe the clinical manifestations of chronic traumatic encephalopathy (CTE). However, effective treatment and prevention strategies are lacking. Increasing evidence has shown that rehabilitation training could prevent cognitive decline, enhance brain plasticity, and effectively improve neurological function in neurodegenerative diseases. Therefore, the mechanisms involved in the effects of rehabilitation exercise therapy on the prognosis of CTE are worth exploring. The aim of this article is to review the pathogenesis of CTE and provide a potential clinical intervention strategy for CTE.
Collapse
Affiliation(s)
- Yin-Qiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhe Wu
- Department of Neuronal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiang-Rong Chen
- Department of Neuronal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
38
|
Chen YC, Li RH, Chen FT, Wu CH, Chen CY, Chang CC, Chang YK. Acute effect of combined exercise with aerobic and resistance exercises on executive function. PeerJ 2023; 11:e15768. [PMID: 37637165 PMCID: PMC10448877 DOI: 10.7717/peerj.15768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Recent studies indicate that acute exercise, whether aerobic exercise (AE) or resistance exercise (RE), improves cognitive function. However, the effects on cognitive function of combined exercise (CE), involving both AE and RE in an exercise session, remain unknown. The aim of this study was to investigate the effects of acute CE on cognitive function. Design Within-subject design with counterbalancing. Methods Fifteen healthy men with a sedentary lifestyle in the previous three months were recruited. The participants were assessed for muscular fitness after performing four upper body exercises for a 10-repetition maximum and underwent a submaximal aerobic fitness assessment for V̇O2peak and corresponding workload (watts). They were then assigned to a CE, RE, or sitting control (SC) session in counterbalanced order and were assessed with the Stroop Color and Word Test (SCWT) after each session. Results Acute CE led to a significantly shorter response time compared to SC (p < .05) in the SCWT, wherein there were no significant differences between acute CE and RE (p = 1.00). Additionally, no significant differences in the accuracy rate were observed across the different sessions (ps > .05). Conclusion A single session of moderate-intensity CE improved response time in the SCWT, comparable to RE. CE shows promise for enhancing cognitive function, warranting further research on its benefits and other exercise modalities.
Collapse
Affiliation(s)
- Ying-Chu Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Ruei-Hong Li
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Feng-Tzu Chen
- Department of Sports Medicine, China Medical University, Tai-Chung City, Taiwan
| | - Chih-Han Wu
- Office of Physical Education, National Central University, Taoyuan City, Taiwan
| | - Chung-Yu Chen
- University of Taipei, Department of Exercise and Health Sciences, Taipei City, Taiwan
| | - Che-Chien Chang
- Office of Physical Education, National Central University, Taoyuan City, Taiwan
| | - Yu-Kai Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| |
Collapse
|
39
|
Moreno I, Stojanovic-Pérez A, Bulduk B, Sánchez-Gistau V, Algora MJ, Ortega L, Muntané G, Vilella E, Labad J, Martorell L. High blood levels of brain-derived neurotrophic factor (BDNF) mRNA in early psychosis are associated with inflammatory markers. J Psychiatr Res 2023; 164:440-446. [PMID: 37429187 DOI: 10.1016/j.jpsychires.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) single nucleotide polymorphism (SNP) rs6265C > T, Val66Met, affects BDNF secretion and has been related to inflammatory processes. Both the rs6265 and BDNF protein levels have been widely investigated in neuropsychiatric disorders with conflicting results. In the present study we examined BDNF mRNA expression in blood considering the SNP rs6265 and its relationship with inflammatory markers in the early stages of psychosis. The rs6265 genotype and blood BDNF mRNA levels were measured in 34 at-risk mental states (ARMS) individuals, 37 patients with first-episode psychosis (FEP) and 42 healthy controls (HCs) by quantitative PCR and reverse transcription (RT)-qPCR using validated TaqMan assays. We also obtained measures of interleukin-6 (IL6) mRNA levels, fibrinogen, neutrophil-to-lymphocyte ratio (NLR) and high-sensitivity C-reactive protein. We identified that BDNF mRNA levels were associated with the rs6265 genotype in an allele-dose-dependent manner, with low expression levels associated with the T allele (Met substitution). Thus, we controlled for the rs6265 genotype in all analyses. Blood BDNF mRNA levels differed between diagnostic groups: patients with FEP exhibited higher blood BDNF mRNA levels than ARMS individuals, and the lowest levels were observed in HC. In addition, we observed significant correlations between BDNF mRNA levels and inflammatory markers (IL6 mRNA levels and NLR), controlled by the rs6265 genotype, in ARMS and FEP groups. This exploratory study suggests that the rs6265 genotype is associated with differential blood mRNA expression of BDNF that increases with illness progression and correlated with inflammation in the early stages of psychosis.
Collapse
Affiliation(s)
- Irene Moreno
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Bengisu Bulduk
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain
| | - Vanessa Sánchez-Gistau
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Algora
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Ortega
- Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Departament d'Infermeria, URV, Tarragona, Catalonia, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biologia Evolutiva, IBE, Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Labad
- Hospital de Mataró, Consorci Sanitari del Maresme, Fundació Parc Taulí, Mataró, Catalonia, Spain; Institut d'Innovació i Investigació Parc Taulí (I3PT), Translational Neuroscience Research Unit I3PT-Inc-UAB, Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA (IISPV-CERCA), Reus, Catalonia, Spain; Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Gibbons TD, Cotter JD, Ainslie PN, Abraham WC, Mockett BG, Campbell HA, Jones EMW, Jenkins EJ, Thomas KN. Fasting for 20 h does not affect exercise-induced increases in circulating BDNF in humans. J Physiol 2023; 601:2121-2137. [PMID: 36631068 DOI: 10.1113/jp283582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Intermittent fasting and exercise provide neuroprotection from age-related cognitive decline. A link between these two seemingly distinct stressors is their capability to steer the brain away from exclusively glucose metabolism. This cerebral substrate switch has been implicated in upregulating brain-derived neurotrophic factor (BDNF), a protein involved in neuroplasticity, learning and memory, and may underlie some of these neuroprotective effects. We examined the isolated and interactive effects of (1) 20-h fasting, (2) 90-min light exercise, and (3) high-intensity exercise on peripheral venous BDNF in 12 human volunteers. A follow-up study isolated the influence of cerebrovascular shear stress on circulating BDNF. Fasting for 20 h decreased glucose and increased ketones (P ≤ 0.0157) but had no effect on BDNF (P ≥ 0.4637). Light cycling at 25% of peak oxygen uptake (V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ ) increased serum BDNF by 6 ± 8% (independent of being fed or fasted) and was mediated by a 7 ± 6% increase in platelets (P < 0.0001). Plasma BDNF was increased from 336 pg l-1 [46,626] to 390 pg l-1 [127,653] by 90-min of light cycling (P = 0.0128). Six 40-s intervals at 100% ofV ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ increased plasma and serum BDNF, as well as the BDNF-per-platelet ratio 4- to 5-fold more than light exercise did (P ≤ 0.0044). Plasma BDNF was correlated with circulating lactate during the high-intensity intervals (r = 0.47, P = 0.0057), but not during light exercise (P = 0.7407). Changes in cerebral shear stress - whether occurring naturally during exercise or induced experimentally with inspired CO2 - did not correspond with changes in BDNF (P ≥ 0.2730). BDNF responses to low-intensity exercise are mediated by increased circulating platelets, and increasing either exercise duration or particularly intensity is required to liberate free BDNF. KEY POINTS: Intermittent fasting and exercise both have potent neuroprotective effects and an acute upregulation of brain-derived neurotrophic factor (BDNF) appears to be a common mechanistic link. Switching the brain's fuel source from glucose to either ketone bodies or lactate, i.e. a cerebral substrate switch, has been shown to promote BDNF production in the rodent brain. Fasting for 20 h caused a 9-fold increase in ketone body delivery to the brain but had no effect on any metric of BDNF in peripheral circulation at rest. Prolonged (90 min) light cycling exercise increased plasma- and serum-derived BDNF irrespective of being fed or fasted and seemed to be independent of changes in cerebral shear stress. Six minutes of high-intensity cycling intervals increased every metric of circulating BDNF by 4 to 5 times more than prolonged low-intensity cycling; the increase in plasma-derived BDNF was correlated with a 6-fold increase in circulating lactate irrespective of feeding or fasting. Compared to 1 day of fasting with or without prolonged light exercise, high-intensity exercise is a much more efficient means to increase BDNF in circulation.
Collapse
Affiliation(s)
- Travis D Gibbons
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - James D Cotter
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Emma M W Jones
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Elliott J Jenkins
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Kate N Thomas
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
41
|
Li H, Su W, Cai J, Zhao L, Li Y. Effects of exercise of different intensities on withdrawal symptoms among people with substance use disorder: a systematic review and meta-analysis. Front Physiol 2023; 14:1126777. [PMID: 37234417 PMCID: PMC10208401 DOI: 10.3389/fphys.2023.1126777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Exercise can effectively attenuate withdrawal symptoms and reduce relapse, but it is unknown whether exercise of different intensities produces different results. This study aimed to systematically review the effects of different exercise intensities on withdrawal symptoms among people with substance use disorder (SUD). Methods: Systematic searches for randomized controlled trials (RCTs) on exercise, SUD, and abstinence symptoms were conducted via electronic databases, including PubMed, up to June 2022. Study quality was evaluated using the Cochrane Risk of Bias tool (RoB 2.0) for assessment of risk of bias in randomized trials. The meta-analysis was performed by calculating the standard mean difference (SMD) in outcomes of interventions involving light-, moderate-, and high-intensity exercise for each individual study using Review Manager version 5.3 (RevMan 5.3). Results: In total, 22 RCTs (n = 1,537) were included. Overall, exercise interventions had significant effects on withdrawal symptoms, but the effect size varied with exercise intensity and by outcome measure (i.e., for different negative emotions). Light-, moderate-, and high-intensity exercise reduced cravings after the intervention [SMD = -0.71, 95% CI = (-0.90, -0.52)], and there were no statistical differences between the subgroups (p > 0.05). Light-, moderate-, and high-intensity exercise reduced depression after the intervention [light, SMD = -0.33, 95% CI = (-0.57, -0.09); moderate, SMD = -0.64, 95% CI = (-0.85, -0.42); high, SMD = -0.25, 95% CI = (-0.44, -0.05)], with moderate-intensity exercise producing the best effect (p < 0.05). Only light- and moderate-intensity exercise relieved anxiety after the intervention [light, SMD = -0.48, 95% CI = (-0.71, -0.26); moderate, SMD = -0.58, 95% CI = (-0.85, -0.31)]. Only high-intensity exercise worked in alleviating stress [SMD = -1.13, 95% CI = (-2.22, -0.04)]. Both irritability and restlessness could be improved by light- and moderate-intensity exercise [irritability, SMD = -0.74, 95% CI = (-0.98, -0.50); restless, SMD = -0.72, 95% CI = (-0.98, -0.47)], and there were no statistical differences between the subgroups (p > 0.05). Moderate- and high-intensity exercise decreased withdrawal syndrome after the intervention [moderate, SMD = -0.30, 95% CI = (-0.55, -0.05); high, SMD = -1.33, 95% CI = (-1.90, -0.76)], with high-intensity exercise producing the best effects (p < 0.01). Conclusion: Overall, exercise leads to improvements in withdrawal symptoms in individuals with SUD, but these effects vary significantly between the exercise of different intensities and according to the type of withdrawal symptoms. Moderate-intensity exercise has the greatest benefits in improving depression and anxiety; high-intensity exercise has the greatest benefits in improving withdrawal syndrome. Systematic Review Registration: www.crd.york.ac.uk/PROSPERO/, identifier, CRD42022343791.
Collapse
Affiliation(s)
- Hao Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Wantang Su
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jiajia Cai
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
42
|
Angiolillo A, Leccese D, Ciccotelli S, Di Cesare G, D'Elia K, Aurisano N, Matrone C, Dentizzi C, Di Costanzo A. Effects of Nordic walking in Alzheimer's disease: A single-blind randomized controlled clinical trial. Heliyon 2023; 9:e15865. [PMID: 37305510 PMCID: PMC10256925 DOI: 10.1016/j.heliyon.2023.e15865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Non-pharmacological approaches, including exercise programs, have been proposed to improve cognitive function and behavioral symptoms, such as depression, agitation, or aggression, in the management of patients with Alzheimer's disease (AD). Indeed, physical inactivity is one of the main modifiable risk factors in patients with AD, as well as in the development of cardiovascular diseases and related pathologies. Although Nordic Walking (NW), a particular type of aerobic exercise, is known to benefit the health of aging populations, there is little evidence that patients with AD may benefit from this non-pharmacological treatment. In this context, we performed a pilot study in 30 patients with mild/moderate AD to evaluate whether NW influences different cognitive domains, including executive functions, visual-spatial abilities, and verbal episodic memory. To this aim, 15 patients (Control group, CG) underwent reality orientation therapy, music therapy, motor, proprioceptive and postural rehabilitation, and 15 patients (experimental group, EG) in addition to the activities performed by the CG also had the NW with a frequency of twice a week. Neuropsychological assessments and evaluations of daily activities and quality of life were performed at baseline and after 24 weeks. Twenty-two patients, including 13 in the CG and nine in the EG completed the activity program after 24 weeks. The EG showed a significant improvement in the Frontal Assessment Battery, Rey's auditory Verbal Learning Test Delayed Recall, Raven's Colored Progressive Matrices, and completion time for the Stroop Word-Color Interference test, compared to the CG. NW was able to improve cognitive domains like visual-spatial reasoning abilities, verbal episodic memory, selective attention, and processing speed in AD patients. These results, if confirmed by further studies with a larger number of patients and a longer training period, may prospect NW as a safe and likely useful strategy to slow down cognitive impairment in mild/moderate AD.
Collapse
Affiliation(s)
- A. Angiolillo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100, Campobasso, Italy
| | - D. Leccese
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100, Campobasso, Italy
| | - S. Ciccotelli
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100, Campobasso, Italy
| | - G. Di Cesare
- Centre for Cognitive Disorders and Dementias-ASREM, 86100, Campobasso, Italy
| | - K. D'Elia
- Centre for Cognitive Disorders and Dementias-ASREM, 86100, Campobasso, Italy
| | - N. Aurisano
- Centre for Cognitive Disorders and Dementias-ASREM, 86100, Campobasso, Italy
| | - C. Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - C. Dentizzi
- Centre for Cognitive Disorders and Dementias-ASREM, 86100, Campobasso, Italy
| | - A. Di Costanzo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
43
|
Ceylan Hİ, Öztürk ME, Öztürk D, Silva AF, Albayrak M, Saygın Ö, Eken Ö, Clemente FM, Nobari H. Acute effect of moderate and high-intensity interval exercises on asprosin and BDNF levels in inactive normal weight and obese individuals. Sci Rep 2023; 13:7040. [PMID: 37120612 PMCID: PMC10148865 DOI: 10.1038/s41598-023-34278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
This study aimed to examine the acute effects of moderate-intensity aerobic and high-intensity interval exercise protocols on Asprosin and Brain-Derived Neurotrophic Factor (BDNF) levels in inactive normal weight and obese individuals. A total of 20 male individuals aged 18-65 years, ten normal weight (NW) (Body Mass Index (BMI): 18.5-24.99 kg/m2) and 10 obese (Ob) (BMI: 24.99-35.00 kg/m2) participated in this study, voluntarily. Moderate aerobic exercise (AE) (main circuit 30 min, between 40 and 59% of Heart Rate Reserve: HRR) and High-Intensity Interval exercise (HIIE) running protocols (main circuit 20 min, between 75 and 90% of the HRR for 1 min*10 times, and 1-min active rest at 30% of the HRR) was applied to the volunteer participants in the morning hours (08.00-10.00 a.m.), following the night fasting (at least 8-10 h) for at least 3 days between each other. Blood samples were collected from the participants before and immediately after each exercise protocol, and serum asprosin and BDNF hormone levels were determined by Enzyme-Linked Immunosorbent Assay" method. Basal serum asprosin was found to be significantly higher in the Ob group compared to the NW group (p < .001), while the basal serum BDNF hormone was found to be lower (p < 0.05). It was observed that the serum asprosin level of both groups decreased significantly after both AE and HIIE protocols (p < 0.05). In addition, there was a significantly higher decrease in serum asprosin level in the Ob group compared to the NW group after HIIE protocol. For the Ob group, serum BDNF level increased considerably after HIIE protocol compared to AE protocol (p < 0.05). Serum asprosin was found to be higher in the Ob group, while the serum BDNF was found to be lower. In addition, the acute exercises of different intensity significantly affected hormones that regulate appetite metabolism. In particular, it was observed that the HIIE protocol had a greater effect on the regulation of appetite (hunger-satiety) in the Ob group. This result can be taken into account when planning training programs for these individuals.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Mehmet Ertuğrul Öztürk
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Deniz Öztürk
- Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347, Viana do Castelo, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801, Vila Real, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320, Melgaço, Portugal
| | - Mevlüt Albayrak
- Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Özcan Saygın
- Coaching Science, Faculty of Sports Sciences, Mugla Sitki Kocman University, Muğla, Turkey
| | - Özgür Eken
- Department of Physical Education and Sport Teaching, Faculty of Sports Sciences, Inonu University, Malatya, Turkey
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347, Viana do Castelo, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001, Lisbon, Portugal
| | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
44
|
Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res Rev 2023; 86:101868. [PMID: 36736379 DOI: 10.1016/j.arr.2023.101868] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Physical activity is one of the modifiable factors of cognitive decline and dementia with the strongest evidence. Although many influential reviews have illustrated the neurobiological mechanisms of the cognitive benefits of physical activity, none of them have linked the neurobiological mechanisms to normal exercise physiology to help the readers gain a more advanced, comprehensive understanding of the phenomenon. In this review, we address this issue and provide a synthesis of the literature by focusing on five most studied neurobiological mechanisms. We show that the body's adaptations to enhance exercise performance also benefit the brain and contribute to improved cognition. Specifically, these adaptations include, 1), the release of growth factors that are essential for the development and growth of neurons and for neurogenesis and angiogenesis, 2), the production of lactate that provides energy to the brain and is involved in the synthesis of glutamate and the maintenance of long-term potentiation, 3), the release of anti-inflammatory cytokines that reduce neuroinflammation, 4), the increase in mitochondrial biogenesis and antioxidant enzyme activity that reduce oxidative stress, and 5), the release of neurotransmitters such as dopamine and 5-HT that regulate neurogenesis and modulate cognition. We also discussed several issues relevant for prescribing physical activity, including what intensity and mode of physical activity brings the most cognitive benefits, based on their influence on the above five neurobiological mechanisms. We hope this review helps readers gain a general understanding of the state-of-the-art knowledge on the neurobiological mechanisms of the cognitive benefits of physical activity and guide them in designing new studies to further advance the field.
Collapse
|
45
|
Cannavo A, Jun S, Rengo G, Marzano F, Agrimi J, Liccardo D, Elia A, Keceli G, Altobelli GG, Marcucci L, Megighian A, Gao E, Feng N, Kammers K, Ferrara N, Finos L, Koch WJ, Paolocci N. β3AR-Dependent Brain-Derived Neurotrophic Factor (BDNF) Generation Limits Chronic Postischemic Heart Failure. Circ Res 2023; 132:867-881. [PMID: 36884028 PMCID: PMC10281793 DOI: 10.1161/circresaha.122.321583] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, β-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the β-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, β3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the β3AR-agonist, BRL-37344, increased myocyte BDNF content, while β3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the β1AR blocker, metoprolol, via upregulated β3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac β3AR stimulation, or β-blockers (via upregulated β3AR), is another BDNF-based means to fend off chronic postischemic heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Seungho Jun
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, U.S.A
| | - Giuseppe Rengo
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Istituti Clinici Scientifici Maugeri - Scientific Institute of Telese Terme (BN), Italy
| | - Federica Marzano
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Jacopo Agrimi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Daniela Liccardo
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Andrea Elia
- Department of Translational Medical Science, University of Naples Federico II, Italy
| | - Gizem Keceli
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, U.S.A
| | - Giovanna G. Altobelli
- Istituti Clinici Scientifici Maugeri - Scientific Institute of Telese Terme (BN), Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Erhe Gao
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Ning Feng
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
| | - Kai Kammers
- Quantitative Sciences Division – Department of Oncology, Johns Hopkins University School of Medicine, Padova, Italy
| | - Nicola Ferrara
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Istituti Clinici Scientifici Maugeri - Scientific Institute of Telese Terme (BN), Italy
| | - Livio Finos
- Department of Statistical Science, University of Padova, Padova, Italy
| | - Walter J. Koch
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, U.S.A
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
46
|
Silveira-Rodrigues JG, Campos BT, de Lima AT, Ogando PHM, Gomes CB, Gomes PF, Aleixo IMS, Soares DD. Acute bouts of aerobic and resistance exercise similarly alter inhibitory control and response time while inversely modifying plasma BDNF concentrations in middle-aged and older adults with type 2 diabetes. Exp Brain Res 2023; 241:1173-1183. [PMID: 36912948 DOI: 10.1007/s00221-023-06588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Impairments in several domains of cognitive functions are observed in people with Type 2 Diabetes Mellitus (T2DM), often accompanied by low Brain-derived neurotrophic factor (BDNF) concentrations. Although aerobic and resistance exercise enhances cognitive functions and raises BDNF concentrations in several populations, it remained uncertain in T2DM subjects. This study compared the effects of a single bout of aerobic (AER, 40 min of treadmill walk at 90-95% of the maximum walk speed) or resistance (RES, 3 × 10 repetitions in eight exercises at 70% of 10-RM) exercise on specific cognitive domain performance and plasma BDNF concentrations of physically active T2DM subjects. Eleven T2DM subjects (9 women/2 men; 63 ± 7 years) performed two counterbalanced trials on non-consecutive days. Stroop Color and Word (SCW) task [assessing the attention (congruent condition) and inhibitory control (incongruent condition)], Visual response time (assessing the response time), and blood collection (for plasma BDNF concentrations) were performed pre and post-exercise sessions. With distinct magnitude, both AER and RES improved the incongruent-SCW (d = - 0.26 vs. - 0.43 in AER and RES, respectively; p < 0.05), RT(best) (d = - 0.31 vs. - 0.52, p < 0.05), and RT(1-5) (d = - 0.64 vs. - 0.21, p < 0.05). The congruent-SCW and RT(6-10) were not statistically different. Plasma BDNF concentrations were elevated 11% in AER (d = 0.30) but decreased by 15% in RES (d = - 0.43). A single session of aerobic or resistance exercise similarly improved the inhibitory control and response time of physically active T2DM subjects. Nevertheless, aerobic and resistance exercise sessions induced an opposite clinical effect in plasma BDNF concentrations.
Collapse
Affiliation(s)
- João G Silveira-Rodrigues
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Movement Laboratory, Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Bruno T Campos
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - André T de Lima
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Pedro H M Ogando
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Movement Laboratory, Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camila B Gomes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Patrícia F Gomes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ivana M S Aleixo
- Movement Laboratory, Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
47
|
Xiao Y, Yang T, Shang H. The Impact of Motor-Cognitive Dual-Task Training on Physical and Cognitive Functions in Parkinson’s Disease. Brain Sci 2023; 13:brainsci13030437. [PMID: 36979247 PMCID: PMC10046387 DOI: 10.3390/brainsci13030437] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Rehabilitation is a high-potential approach to improving physical and cognitive functions in Parkinson’s disease (PD). Dual-task training innovatively combines motor and cognitive rehabilitation in a comprehensive module. Patients perform motor and cognitive tasks at the same time in dual-task training. The previous studies of dual-task training in PD had high heterogeneity and achieved controversial results. In the current review, we aim to summarize the current evidence of the effect of dual-task training on motor and cognitive functions in PD patients to support the clinical practice of dual-task training. In addition, we also discuss the current opinions regarding the mechanism underlying the interaction between motor and cognitive training. In conclusion, dual-task training is suitable for PD patients with varied disease duration to improve their motor function. Dual-task training can improve motor symptoms, single-task gait speed, single-task steep length, balance, and objective experience of freezing of gait in PD. The improvement in cognitive function after dual-task training is mild.
Collapse
|
48
|
Crombie KM, Adams TG, Dunsmoor JE, Greenwood BN, Smits JA, Nemeroff CB, Cisler JM. Aerobic exercise in the treatment of PTSD: An examination of preclinical and clinical laboratory findings, potential mechanisms, clinical implications, and future directions. J Anxiety Disord 2023; 94:102680. [PMID: 36773486 PMCID: PMC10084922 DOI: 10.1016/j.janxdis.2023.102680] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with heightened emotional responding, avoidance of trauma related stimuli, and physical health concerns (e.g., metabolic syndrome, type 2 diabetes, cardiovascular disease). Existing treatments such as exposure-based therapies (e.g., prolonged exposure) aim to reduce anxiety symptoms triggered by trauma reminders, and are hypothesized to work via mechanisms of extinction learning. However, these conventional gold standard psychotherapies do not address physical health concerns frequently presented in PTSD. In addition to widely documented physical and mental health benefits of exercise, emerging preclinical and clinical evidence supports the hypothesis that precisely timed administration of aerobic exercise can enhance the consolidation and subsequent recall of fear extinction learning. These findings suggest that aerobic exercise may be a promising adjunctive strategy for simultaneously improving physical health while enhancing the effects of exposure therapies, which is desirable given the suboptimal efficacy and remission rates. Accordingly, this review 1) encompasses an overview of preclinical and clinical exercise and fear conditioning studies which form the basis for this claim; 2) discusses several plausible mechanisms for enhanced consolidation of fear extinction memories following exercise, and 3) provides suggestions for future research that could advance the understanding of the potential importance of incorporating exercise into the treatment of PTSD.
Collapse
Affiliation(s)
- Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America.
| | - Tom G Adams
- University of Kentucky, Department of Psychology, 105 Kastle Hill, Lexington, KY 40506-0044, United States of America; Yale School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, United States of America
| | - Joseph E Dunsmoor
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Benjamin N Greenwood
- University of Colorado Denver, Department of Psychology, Campus Box 173, PO Box 173364, Denver, CO 80217-3364, United States of America
| | - Jasper A Smits
- The University of Texas at Austin, Department of Psychology, 108 E Dean Keeton St., Austin, TX 78712, United States of America
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| |
Collapse
|
49
|
Goulet N, McCormick JJ, King KE, Notley SR, Goldfield GS, Fujii N, Amano T, Kenny GP. Elevations in serum brain-derived neurotrophic factor following occupational heat stress are not influenced by age or common chronic disease. Temperature (Austin) 2023; 10:454-464. [PMID: 38130657 PMCID: PMC10732602 DOI: 10.1080/23328940.2023.2176107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
With global warming, workers are increasingly exposed to strenuous occupations in hot environments. Given age- and disease-associated declines in thermoregulatory function, older workers are at an elevated risk of developing heat-related injuries. Brain-derived neurotrophic factor (BDNF) is thought to confer neuroprotection during acute exercise, however, the influence of environmental heat on BDNF responses during prolonged work remains unclear. Therefore, we evaluated serum BDNF concentrations before and after 180 min of moderate-intensity treadmill walking (200 W/m2) and after 60 min of post-exercise recovery in temperate (wet-bulb globe temperature (WBGT) 16°C) and hot (WBGT 32°C) environments in 13 healthy young men (mean [SD; 22 [3] years), 12 healthy older men (59 [4] years), 10 men with hypertension (HTN) (60 [4] years), and 9 men with type 2 diabetes (T2D) (60 [5] years). In the temperate condition, all but one participant (1 HTN) completed the 180 min of exercise. While exercise tolerance in the heat was lower in older men with HTN (117 min [45]) and T2D (123 min [42]) compared to healthy older men (159 min [31]) (both p ≤ 0.049), similar end-exercise rectal temperatures (38.9°C [0.4]) were observed across groups, paralleled by similar elevations in serum BDNF across groups at end-exercise (+1106 pg/mL [203]) and end-recovery (+938 pg/mL [146]; all p ≤ 0.01) in the heat. No changes in serum BDNF were observed in the temperate condition. Our findings indicate similar BDNF responses in individuals with HTN or T2D compared to their healthy counterparts, despite exhibiting reduced tolerance to heat.
Collapse
Affiliation(s)
- Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
| | - James J. McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
| | - Kelli E. King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
| | - Sean R. Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
| | - Gary S. Goldfield
- Healthy Active Living and Obesity Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ontario, Canada, Canada
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ontario, Canada, Canada
| |
Collapse
|
50
|
Korkmaz K, Düzova H, Çetin Taşlidere A, Koç A, Karaca Z, Durmuş K. Effect of high-intensity exercise on endoplasmic reticulum stress and proinflammatory cytokine levels. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|