1
|
Li L, Ren L, Li B, Liu C. Therapeutic effects of exercise on depression: The role of microglia. Brain Res 2025; 1846:149279. [PMID: 39406315 DOI: 10.1016/j.brainres.2024.149279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorderadversely affects mental health. Traditional therapeutic approaches, including medication, psychological intervention, and physical therapy, exert beneficial effects on depression. However, these approaches are associated with some limitations, such as high cost, adverse reactions, recurrent episodes, and low patient adherence. Previous studies have demonstrated that exercise therapy can effectively mitigate depressive symptoms, although the underlying mechanism has not been elucidated. Recent studies have suggested that depression is a microglial disease. Microglia regulate the inflammatory response, synaptic plasticity, neurogenesis, kynurenine pathway and the activation of hypothalamic-pituitary-adrenal axis, all of which affect depression. Exercise therapy is reported to shift the balance of microglial M1/M2 polarization in the hippocampus, frontal lobe, and striatum, suppressing the release of pro-inflammatory factors and consequently alleviating behavioral deficits in animal models of depression. Further studies are needed to examine the specific effects of different exercise regimens on microglia to identify the exercise regimen with the best therapeutic effect.
Collapse
Affiliation(s)
- Li Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, China; Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, China; The Sixth Clinical Medical College of Hebei University, Baoding, China.
| | - Chaomeng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zhang YJ, Chen LY, Lin F, Zhang X, Xiang HF, Rao Q. ROS responsive nanozyme loaded with STING silencing for the treatment of sepsis-induced acute lung injury. Toxicol Appl Pharmacol 2024; 493:117155. [PMID: 39537108 DOI: 10.1016/j.taap.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Acute lung injury (ALI) is a common complication of sepsis and a leading cause of mortality in septic patients. Studies indicate that STING may play a crucial role in the pathogenesis of sepsis-induced ALI by interacting with the PARP-1/NLRP3 pathway. Therefore, targeting STING inhibition has potential as a novel therapeutic strategy for ALI. However, effective inhibition remains challenging due to the widespread expression of STING across various tissues. In this study, we developed a nanozyme-based drug delivery system, DSPE-TK-mPEG-MnO2@siSTING (abbreviated as DTmM@siSTING), using DSPE-TK-mPEG-MnO2 as the carrier, and characterized it via scanning electron microscopy, dynamic light scattering, nanoparticle size analysis, and gel electrophoresis. To evaluate the therapeutic effects of DTmM@siSTING, an in vitro ALI cell model and an in vivo ALI mouse model were established, assessing the nanozyme's impact on ROS levels, inflammatory responses, and the PARP-1/NLRP3 pathway in sepsis-induced ALI. Results demonstrated that DTmM@siSTING exhibited good physiological stability. In vitro, DTmM@siSTING significantly reduced ROS levels, myeloperoxidase activity, and expression of inflammatory cytokines, while also inhibiting PARP-1/NLRP3 pathway activation. In vivo experiments further revealed that DTmM@siSTING effectively delivered siSTING to the lungs, mitigating sepsis-induced ALI and associated inflammatory responses. Additionally, DTmM@siSTING displayed excellent biocompatibility. In summary, our findings suggest that DTmM@siSTING significantly enhances the therapeutic efficacy of siSTING, alleviating ALI by inhibiting ROS production, inflammatory responses, and activation of the PARP-1/NLRP3 pathway. This novel approach presents a promising therapeutic avenue for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yin-Jin Zhang
- Blood Purification Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Ling-Yang Chen
- Blood Purification Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Feng Lin
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Xia Zhang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Hai-Fei Xiang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China.
| | - Qing Rao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China.
| |
Collapse
|
3
|
Knoke LR, Herrera SA, Heinrich S, Peeters FML, Lupilov N, Bandow JE, Pomorski TG. HOCl forms lipid N-chloramines in cell membranes of bacteria and immune cells. Free Radic Biol Med 2024; 224:588-599. [PMID: 39270945 DOI: 10.1016/j.freeradbiomed.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils orchestrate a coordinated attack on bacteria, combining phagocytosis with a potent cocktail of oxidants, including the highly toxic hypochlorous acid (HOCl), renowned for its deleterious effects on proteins. Here, we examined the occurrence of lipid N-chloramines in vivo, their biological activity, and their neutralization. Using a chemical probe for N-chloramines, we demonstrate their formation in the membranes of bacteria and monocytic cells exposed to physiologically relevant concentrations of HOCl. N-chlorinated model membranes composed of phosphatidylethanolamine, the major membrane lipid in Escherichia coli and an important component of eukaryotic membranes, exhibited oxidative activity towards the redox-sensitive protein roGFP2, suggesting a role for lipid N-chloramines in protein oxidation. Conversely, glutathione a cellular antioxidant neutralized lipid N-chloramines by removing the chlorine moiety. In line with that, N-chloramine stability was drastically decreased in bacterial cells compared to model membranes. We propose that lipid N-chloramines, like protein N-chloramines, are involved in inflammation and accelerate the host immune response.
Collapse
Affiliation(s)
- Lisa R Knoke
- Faculty of Medicine, Department of Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Sara Abad Herrera
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sascha Heinrich
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Frank M L Peeters
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Natalie Lupilov
- Faculty of Medicine, Department of Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Zhao C, Zhang T, Xue ST, Zhang P, Wang F, Li Y, Liu Y, Zhao L, Wu J, Yan Y, Mao X, Chen Y, Yuan J, Li Z, Li K. Adipocyte-derived glutathione promotes obesity-related breast cancer by regulating the SCARB2-ARF1-mTORC1 complex. Cell Metab 2024:S1550-4131(24)00395-4. [PMID: 39442522 DOI: 10.1016/j.cmet.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Obesity is a major risk factor for poor breast cancer outcomes, but the impact of obesity-induced tumor microenvironment (TME) metabolites on breast cancer growth and metastasis remains unclear. Here, we performed TME metabolomic analysis in high-fat diet (HFD) mouse models and found that glutathione (GSH) levels were elevated in the TME of obesity-accelerated breast cancer. The deletion of glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in GSH biosynthesis, in adipocytes but not tumor cells reduced obesity-related tumor progression. Mechanistically, we identified that GSH entered tumor cells and directly bound to lysosomal integral membrane protein-2 (scavenger receptor class B, member 2 [SCARB2]), interfering with the interaction between its N and C termini. This, in turn, recruited mTORC1 to lysosomes through ARF1, leading to the activation of mTOR signaling. Overall, we demonstrated that GSH links obesity and breast cancer progression by acting as an activator of mTOR signaling. Targeting the GSH/SCARB2/mTOR axis could benefit breast cancer patients with obesity.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Si-Tu Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peitao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunxuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yechao Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - Yuping Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Cancer Center, Tongji University School of Medicine, Shanghai 200331, China
| | - Jian Yuan
- Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Cancer Center, Tongji University School of Medicine, Shanghai 200331, China
| | - Zhuorong Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ke Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Xu T, Chen G. MPV17 Prevents Myocardial Ferroptosis and Ischemic Cardiac Injury through Maintaining SLC25A10-Mediated Mitochondrial Glutathione Import. Int J Mol Sci 2024; 25:10832. [PMID: 39409161 PMCID: PMC11476822 DOI: 10.3390/ijms251910832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Ferroptosis is a recently identified iron-dependent programmed cell death with lipid peroxide accumulation and condensation and compaction of mitochondria. A recent study indicated that ferroptosis plays a pivotal role in ischemic cardiac injury with the mechanisms remain largely unknown. This study demonstrates that when an iron overload occurs in the ischemia/reperfusion cardiac tissues, which initiates myocardial ferroptosis, the expression levels of mitochondrial inner membrane protein MPV17 are reduced. Overexpression of MPV17 delivered via adenovirus significantly reduced ferroptosis in both cardiomyocytes with high levels of iron and cardiac I/R tissues. Mitochondrial glutathione (mtGSH), crucial for reactive oxygen species scavenging and mitochondrial homeostasis maintenance, is depleted in myocardial ferroptosis caused by iron overload. This mechanistic study shows that MPV17 can increase mitochondrial glutathione levels through maintaining the protein homeostasis of SLC25A10, which is a mitochondrial inner-membrane glutathione transporter. The absence of MPV17 in iron overload resulted in the ubiquitination-dependent degradation of SLC25A10, leading to impaired mitochondrial glutathione import. Moreover, we found that MPV17 was the targeted gene of Nrf2, which plays a pivotal role in preventing lipid peroxide accumulation and ferroptosis. The decreased expression levels of Nrf2 led to the inactivation of MPV17 in iron overload-induced myocardial ferroptosis. In summary, this study demonstrates the critical role of MPV17 in protecting cardiomyocytes from ferroptosis and elucidates the Nrf2-MPV17-SLC25A10/mitochondrial glutathione signaling pathway in the regulation of myocardial ferroptosis.
Collapse
Affiliation(s)
| | - Guilan Chen
- Instrumental Analysis Center, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
6
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
7
|
Auger M, Sorroza-Martinez L, Brahiti N, Huppé CA, Faucher-Giguère L, Arbi I, Hervault M, Cheng X, Gaillet B, Couture F, Guay D, Soultan AH. Enhancing peptide and PMO delivery to mouse airway epithelia by chemical conjugation with the amphiphilic peptide S10. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102290. [PMID: 39233851 PMCID: PMC11372590 DOI: 10.1016/j.omtn.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Delivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys. Herein, we demonstrate that covalently attaching S10 to a fluorescently labeled peptide or a functional splice-switching phosphorodiamidate morpholino oligomer improves their intracellular delivery to airway epithelia in mice after a single intranasal instillation. Data reveal a homogeneous delivery from the trachea to the distal region of the lungs, specifically into the cells lining the airway. Quantitative measurements further highlight that conjugation via a disulfide bond through a pegylated (PEG) linker was the most beneficial strategy compared with direct conjugation (without the PEG linker) or conjugation via a permanent thiol-maleimide bond. We believe that S10-based conjugation provides a great strategy to achieve intracellular delivery of peptides and ASOs with therapeutic properties in lungs.
Collapse
Affiliation(s)
- Maud Auger
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Luis Sorroza-Martinez
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Nadine Brahiti
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Carole-Ann Huppé
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | | | - Imen Arbi
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Maxime Hervault
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Xue Cheng
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Bruno Gaillet
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Frédéric Couture
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | - David Guay
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Al-Halifa Soultan
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| |
Collapse
|
8
|
Du B, Haensch R, Alfarraj S, Rennenberg H. Strategies of plants to overcome abiotic and biotic stresses. Biol Rev Camb Philos Soc 2024; 99:1524-1536. [PMID: 38561998 DOI: 10.1111/brv.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
In their environment, plants are exposed to a multitude of abiotic and biotic stresses that differ in intensity, duration and severity. As sessile organisms, they cannot escape these stresses, but instead have developed strategies to overcome them or to compensate for the consequences of stress exposure. Defence can take place at different levels and the mechanisms involved are thought to differ in efficiency across these levels. To minimise metabolic constraints and to reduce the costs of stress defence, plants prioritise first-line defence strategies in the apoplastic space, involving ascorbate, defensins and small peptides, as well as secondary metabolites, before cellular processes are affected. In addition, a large number of different symplastic mechanisms also provide efficient stress defence, including chemical antioxidants, antioxidative enzymes, secondary metabolites, defensins and other peptides as well as proteins. At both the symplastic and the apoplastic level of stress defence and compensation, a number of specialised transporters are thought to be involved in exchange across membranes that still have not been identified, and information on the regeneration of different defence compounds remains ambiguous. In addition, strategies to overcome and compensate for stress exposure operate not only at the cellular, but also at the organ and whole-plant levels, including stomatal regulation, and hypersensitive and systemic responses to prevent or reduce the spread of stress impacts within the plant. Defence can also take place at the ecosystem level by root exudation of signalling molecules and the emission of volatile organic compounds, either directly or indirectly into the rhizosphere and/or the aboveground atmosphere. The mechanisms by which plants control the production of these compounds and that mediate perception of stressful conditions are still not fully understood. Here we summarise plant defence strategies from the cellular to ecosystem level, discuss their advantages and disadvantages for plant growth and development, elucidate the current state of research on the transport and regeneration capacity of defence metabolites, and outline insufficiently explored questions for further investigation.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang, 621000, PR China
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
| | - Robert Haensch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstr. 1, Braunschweig, D-38106, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, PR China
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, PR China
| |
Collapse
|
9
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Refaie MMM, Mohammed HH, Abdel-Hakeem EA, Bayoumi AMA, Mohamed ZH, Shehata S. Cardioprotective role of diacerein in diabetic cardiomyopathy via modulation of inflammasome/caspase1/interleukin1β pathway in juvenile rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5079-5091. [PMID: 38224346 PMCID: PMC11166746 DOI: 10.1007/s00210-023-02921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Diabetes mellitus is a common metabolic disorder affecting different body organs; one of its serious complications is diabetic cardiomyopathy (DCM). Thus, finding more cardiopreserving agents to protect the heart against such illness is a critical task. For the first time, we planned to study the suspected role of diacerein (DIA) in ameliorating DCM in juvenile rats and explore different mechanisms mediating its effect including inflammasome/caspase1/interleukin1β pathway. Four-week-aged juvenile rats were randomly divided into groups; the control group, diacerein group, diabetic group, and diabetic-treated group. Streptozotocin (45 mg/kg) single intraperitoneal (i.p.) dose was administered for induction of type 1 diabetes on the 1st day which was confirmed by detecting blood glucose level. DIA was given in a dose of 50 mg/kg/day for 6 weeks to diabetic and non-diabetic rats, then we evaluated different inflammatory, apoptotic, and oxidative stress parameters. Induction of DCM succeeded as there were significant increases in cardiac enzymes, heart weights, fasting blood glucose level (FBG), and glycosylated hemoglobin (HbA1c) associated with elevated blood pressure (BP), histopathological changes, and increased caspase 3 immunoexpression. Furthermore, there was an increase of malondialdehyde (MDA), inflammasome, caspase1, angiotensin II, nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNFα), and interleukin 1β (IL1β). However, antioxidant parameters such as reduced glutathione (GSH) and total antioxidant capacity (TAC) significantly declined. Fortunately, DIA reversed the diabetic cardiomyopathy changes mostly due to the observed anti-inflammatory, antioxidant, and anti-apoptotic properties with regulation of blood glucose level.DIA has an ability to regulate DCM-associated biochemical and histopathological disturbances.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Hanaa Hassanein Mohammed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Elshymaa A Abdel-Hakeem
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt.
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt
| | - Zamzam Hassan Mohamed
- Department of Pediatric, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| |
Collapse
|
11
|
Arnér ESJ, Schmidt EE. Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis. Adv Cancer Res 2024; 162:1-44. [PMID: 39069366 DOI: 10.1016/bs.acr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cysteine is required for synthesis of glutathione (GSH), coenzyme A, other sulfur-containing metabolites, and most proteins. In most cells, cysteine comes from extracellular disulfide sources including cystine, glutathione-disulfide, and peptides. The thioredoxin reductase-1 (TrxR1)- or glutathione-disulfide reductase (GSR)-driven enzymatic systems can fuel cystine reduction via thioredoxins, glutaredoxins, or other thioredoxin-fold proteins. Free cystine enters cells thorough the cystine-glutamate antiporter, xCT, but systemically, plasma glutathione-disulfide might predominate as a cystine source. Erastin, inhibiting both xCT and voltage-dependent anion channels, induces ferroptotic cell death, so named because this type of cell death is antagonized by iron-chelators. Many cancer cells seem to be predisposed to ferroptosis, which has been proposed as a targetable cancer liability. Ferroptosis is associated with lipid peroxidation and loss of either glutathione peroxidase-4 (GPX4) or ferroptosis suppressor protein-1 (FSP1), which each prevent accumulation of lipid peroxides. It has been suggested that an xCT inhibition-induced cellular cysteine-deficiency lowers GSH levels, starving GPX4 for reducing power and allowing membrane lipid peroxides to accumulate, thereby causing ferroptosis. Aspects of ferroptosis are however not fully understood and need to be further scrutinized, for example that neither disruption of GSH synthesis, loss of GSH, nor disruption of glutathione disulfide reductase (GSR), triggers ferroptosis in animal models. Here we reevaluate the relationships between Erastin, xCT, GPX4, cellular cysteine and GSH, RSL3 or ML162, and ferroptosis. We conclude that, whereas both Cys and ferroptosis are potential liabilities in cancer, their relationship to each other remains insufficiently understood.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institutes of Oncology, Budapest, Hungary
| | - Edward E Schmidt
- Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary; Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
12
|
Drozdowska M, Piasna-Słupecka E, Such A, Dziadek K, Krzyściak P, Kruk T, Duraczyńska D, Morawska-Tota M, Jamróz E. Design and In Vitro Activity of Furcellaran/Chitosan Multilayer Microcapsules for the Delivery of Glutathione and Empty Model Multilayer Microcapsules Based on Polysaccharides. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2047. [PMID: 38730854 PMCID: PMC11084246 DOI: 10.3390/ma17092047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
In this study, multilayer microcapsules (two-layer and four-layer) based on furcellaran (FUR) and chitosan (CHIT) were produced, enclosing a tripeptide with an antioxidant effect-glutathione-in different concentrations. In addition, for the first time, an empty, four-layer microcapsule based on CHIT and FUR (ECAPS) was obtained, which can be used to contain sensitive, active substances of a hydrophobic nature. Layering was monitored using zeta potential, and the presence of the resulting capsules was confirmed by SEM imaging. In the current study, we also investigated whether the studied capsules had any effect on the Hep G2 cancer cell line. An attempt was also made to identify the possible molecular mechanism(s) by which the examined capsules suppressed the growth of Hep G2 cells. In this report, we demonstrate that the capsules suppressed the growth of cancer cells. This mechanism was linked to the modulation of the AKT/PI3K signaling pathway and the induction of the G2/M arrest cell cycle. Furthermore, the results indicate that the tested multilayer microcapsules induced cell death through an apoptotic pathway.
Collapse
Affiliation(s)
- Mariola Drozdowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland; (A.S.); (K.D.)
| | - Ewelina Piasna-Słupecka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland; (A.S.); (K.D.)
| | - Aleksandra Such
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland; (A.S.); (K.D.)
| | - Kinga Dziadek
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland; (A.S.); (K.D.)
| | - Paweł Krzyściak
- Department of Mycology, Collegium Medicum, Jagiellonian University, Czysta 18, 31-121 Kraków, Poland;
| | - Tomasz Kruk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.K.); (D.D.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.K.); (D.D.)
| | - Małgorzata Morawska-Tota
- Department of Sports Medicine & Human Nutrition, Faculty of Physical Education and Sport, University of Physical Education, Jana Pawła II 78, 31-571 Kraków, Poland;
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, 30-149 Kraków, Poland;
- Department of Product Packaging, Cracow University of Economics, Rakowicka 27, 31-510 Kraków, Poland
| |
Collapse
|
13
|
Zhang LC, Li N, Chen JL, Sun J, Xu M, Liu WQ, Zuo ZF, Shi LL, Wang TH, Luo XY. Molecular network mechanism in cerebral ischemia-reperfusion rats treated with human urine stem cells. Heliyon 2024; 10:e27508. [PMID: 38560254 PMCID: PMC10979071 DOI: 10.1016/j.heliyon.2024.e27508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To explore the effect of human urine-derived stem cells (husc) in improving the neurological function of rats with cerebral ischemia-reperfusion (CIR), and report new molecular network by bioinformatics, combined with experiment validation. Methods After CIR model was established, and husc were transplanted into the lateral ventricle of rats,neurological severe score (NSS) andgene network analysis were performed. Firstly, we input the keywords "Cerebral reperfusion" and "human urine stem cells" into Genecard database and merged data with findings from PubMed so as to get their targets genes, and downloaded them to make Venny intersection plot. Then, Gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and protein-protein interaction (PPI) were performed to construct molecular network of core genes. Lastly, the expressional level of core genes was validated via quantitative real-time polymerase chain reaction (qRT-PCR), and localized by immunofluorescence. Results Compared with the Sham group, the neurological function of CIR rats was significantly improved after the injection of husc into the lateral ventricle; at 14 days, P = 0.028, which was statistically significant. There were 258 overlapping genes between CIR and husc, and integrated with 252 genes screened from PubMed and CNKI. GO enrichment analysis were mainly involved neutrophil degranulation, neutrophil activation in immune response and platelet positive regulation of degranulation, Hemostasis, blood coagulation, coagulation, etc. KEGG pathway analysis was mainly involved in complement and coagulation cascades, ECM-receptor. Hub genes screened by Cytoscape consist ofCD44, ACTB, FN1, ITGB1, PLG, CASP3, ALB, HSP90AA1, EGF, GAPDH. Lastly, qRT-PCR results showed statistic significance (P < 0.05) in ALB, CD44 and EGF before and after treatment, and EGF immunostaining was localized in neuron of cortex. Conclusion husc transplantation showed a positive effect in improving neural function of CIR rats, and underlying mechanism is involved in CD44, ALB, and EGF network.
Collapse
Affiliation(s)
- Lang-Chun Zhang
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Na Li
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Ji-Lin Chen
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Jie Sun
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Min Xu
- Animal Canter Department of Anatomy, Kunming Medical University, Kunming, 650500, China
| | - Wen-Qiang Liu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Jinzhou Medical University, Jinzhou, China
| | - Lan-Lan Shi
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| | - Ting-Hua Wang
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| | - Xiang-Yin Luo
- Department of Neurosurgery, Xiang Ya Hospital of Central South University, Changsha, 410078, China
| |
Collapse
|
14
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
15
|
Tandon R, Tandon A. Unraveling the Multifaceted Role of Glutathione in Sepsis: A Comprehensive Review. Cureus 2024; 16:e56896. [PMID: 38659506 PMCID: PMC11042744 DOI: 10.7759/cureus.56896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Sepsis remains a formidable challenge in healthcare, characterized by a dysregulated host response to infection, leading to organ dysfunction and high mortality rates. Glutathione, a critical antioxidant and regulator of cellular redox balance, has emerged as a key player in the pathophysiology of sepsis. This comprehensive review explores the multifaceted role of glutathione in sepsis, focusing on its involvement in oxidative stress, immune modulation, and organ dysfunction. Glutathione depletion exacerbates oxidative damage and inflammatory responses, thereby contributing to the progression of sepsis. Understanding the intricate mechanisms underlying glutathione dysregulation in sepsis offers potential therapeutic avenues, with strategies targeting glutathione pathways showing promise in mitigating septic complications. However, further research is needed to optimize therapeutic approaches and identify biomarkers for patient stratification. Overall, this review underscores the importance of elucidating glutathione's role in sepsis management to improve clinical outcomes and reduce the global burden of this life-threatening condition.
Collapse
Affiliation(s)
- Ratan Tandon
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Tandon
- Pulmonology, Hari Daya Super Speciality Centre, Prayagraj, IND
| |
Collapse
|
16
|
Geissel F, Lang L, Husemann B, Morgan B, Deponte M. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction. Nat Commun 2024; 15:1733. [PMID: 38409212 PMCID: PMC10897161 DOI: 10.1038/s41467-024-45808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.
Collapse
Affiliation(s)
- Fabian Geissel
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
17
|
Chen TH, Wang HC, Chang CJ, Lee SY. Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. Int J Mol Sci 2024; 25:1314. [PMID: 38279310 PMCID: PMC10816320 DOI: 10.3390/ijms25021314] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Mitochondria are critical for providing energy to maintain cell viability. Oxidative phosphorylation involves the transfer of electrons from energy substrates to oxygen to produce adenosine triphosphate. Mitochondria also regulate cell proliferation, metastasis, and deterioration. The flow of electrons in the mitochondrial respiratory chain generates reactive oxygen species (ROS), which are harmful to cells at high levels. Oxidative stress caused by ROS accumulation has been associated with an increased risk of cancer, and cardiovascular and liver diseases. Glutathione (GSH) is an abundant cellular antioxidant that is primarily synthesized in the cytoplasm and delivered to the mitochondria. Mitochondrial glutathione (mGSH) metabolizes hydrogen peroxide within the mitochondria. A long-term imbalance in the ratio of mitochondrial ROS to mGSH can cause cell dysfunction, apoptosis, necroptosis, and ferroptosis, which may lead to disease. This study aimed to review the physiological functions, anabolism, variations in organ tissue accumulation, and delivery of GSH to the mitochondria and the relationships between mGSH levels, the GSH/GSH disulfide (GSSG) ratio, programmed cell death, and ferroptosis. We also discuss diseases caused by mGSH deficiency and related therapeutics.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Shih-Yu Lee
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
18
|
Serafimov K, Aydin Y, Lämmerhofer M. Quantitative analysis of the glutathione pathway cellular metabolites by targeted liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2300780. [PMID: 37898873 DOI: 10.1002/jssc.202300780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Glutathione, its biosynthesis intermediates, and other thiol metabolites are of central relevance for the redox homeostasis of cells. Their analysis is critical due to the facile interconversion of redox pairs during sampling, sample preparation, and data acquisition, in particular in the electrospray ionization interface. In this work, we propose a fast-targeted liquid chromatography-tandem mass spectrometry method to accurately analyze 14 metabolites from the glutathione pathway. N-Ethylmaleimide reagent is added with the extraction solvent and instantly stabilizes the thiol-redox state by derivatization. Liquid chromatographic separation of the analytes was performed on a sub-2 μm superficially porous hydrophilic interaction liquid chromatography column with sulfobetaine chemistry. Tandem mass spectrometry with triple-quadrupole mass spectrometry in multiple-reaction monitoring acquisition mode allowed sensitive detection of the targeted metabolites with limits of quantification in the range of 5-25 nM. Run times of 3 min enable a high throughput analysis of cellular samples. For calibration, a 13 C-labelled cell extract was used as an internal standard. The method was validated and the concentrations of glutathione and its biosynthesis intermediates were determined in HeLa cells.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Yüsra Aydin
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Yasukawa T, Iwama R, Yamasaki Y, Masuo N, Noda Y. Yeast Rim11 kinase responds to glutathione-induced stress by regulating the transcription of phospholipid biosynthetic genes. Mol Biol Cell 2024; 35:ar8. [PMID: 37938929 PMCID: PMC10881166 DOI: 10.1091/mbc.e23-03-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Glutathione (GSH), a tripeptide composed of glycine, cysteine, and glutamic acid, is an abundant thiol found in a wide variety of cells, ranging from bacterial to mammalian cells. Adequate levels of GSH are essential for maintaining iron homeostasis. The ratio of oxidized/reduced GSH is strictly regulated in each organelle to maintain the cellular redox potential. Cellular redox imbalances cause defects in physiological activities, which can lead to various diseases. Although there are many reports regarding the cellular response to GSH depletion, studies on stress response to high levels of GSH are limited. Here, we performed genome-scale screening in the yeast Saccharomyces cerevisiae and identified RIM11, BMH1, and WHI2 as multicopy suppressors of the growth defect caused by GSH stress. The deletion strains of each gene were sensitive to GSH. We found that Rim11, a kinase important in the regulation of meiosis, was activated via autophosphorylation upon GSH stress in a glucose-rich medium. Furthermore, RNA-seq revealed that transcription of phospholipid biosynthetic genes was downregulated under GSH stress, and introduction of multiple copies of RIM11 counteracted this effect. These results demonstrate that S. cerevisiae copes with GSH stress via multiple stress-responsive pathways, including a part of the adaptive pathway to glucose limitation.
Collapse
Affiliation(s)
- Taishi Yasukawa
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Ryo Iwama
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuriko Yamasaki
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Xuan C, Li J, Liu RH, Guo JJ, Zhao C, Zhou TT, Wang Y, He GW, Lun LM. Association between serum gamma-glutamyltransferase and early-onset coronary artery disease: a retrospective case-control study. Ann Med 2023; 55:2289606. [PMID: 38061693 PMCID: PMC10836269 DOI: 10.1080/07853890.2023.2289606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Serum gamma-glutamyltransferase (GGT) activity has been proposed as a promising predictor of atherosclerosis-related complications and a prognostic marker for cardiovascular diseases. The objective of this study was to investigate the potential correlation between serum levels of GGT and early-onset coronary artery disease (EOCAD). METHODS A retrospective, hospital-based case-control study was conducted, which included 860 patients with EOCAD and gender- and age-matched controls. Serum levels of GGT were measured using the reference measurement procedure on an automatic biochemistry analyser. RESULTS The serum GGT levels of patients with EOCAD (34.90 ± 31.44 U/L) were significantly higher than those of the control group (21.57 ± 16.44 U/L, p < .001). Elevated serum levels of GGT were found to be an independent risk factor for EOCAD, with an odds ratio (OR) of 1.021 (95% confidence interval (CI): 1.014-1.029). Additionally, for every quartile increase in serum GGT levels, the risk of developing EOCAD increased by 1.6-fold. Moreover, serum GGT levels were significantly associated with disease severity, with lower GGT levels observed in patients without significant vascular disease (31.74 ± 24.06 U/L) compared to those with two-vessel disease (33.06 ± 25.00 U/L, p = .002) and three-vessel disease (37.75 ± 36.76 U/L, p = .001). CONCLUSIONS The results of this study suggest that elevated serum GGT levels are associated with the development of EOCAD, and GGT may be implicated in the pathogenesis of the disease. Further large-scale prospective studies are needed to explore the potential relationship between serum GGT levels and the dynamic development of EOCAD.
Collapse
Affiliation(s)
- Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Hua Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cong Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting-Ting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Health Management Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Li-Min Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Wang H, Meng L, Mi L. Effects of Leymus chinensis hay and alfalfa hay on growth performance, rumen microbiota, and untargeted metabolomics of meat in lambs. Front Vet Sci 2023; 10:1256903. [PMID: 38033638 PMCID: PMC10687458 DOI: 10.3389/fvets.2023.1256903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Objective The objective of this study was to compare the effects of Leymus chinensis hay and alfalfa hay as the roughage on the rumen bacterial and the meat metabolomics in lambs. Methods Fourteen male lambs were randomly assigned to two dietary treatments (one group was fed with concentrate and Leymus chinensis hay; another was fed with concentrate and alfalfa hay) with seven replicates per treatment. The feeding experiment lasted for 60 days. Lambs were slaughtered at the end of the feeding experiment. Growth performance, carcass performance, and weights of various viscera were determined. The longissimus dorsi and rumen contents were collected for untargeted metabolomics and 16S rDNA amplicon sequencing analysis, respectively. Results The lambs fed with alfalfa hay showed a significantly increased in average daily gain, carcass weight, dressing percentage, loin-eye area, and kidney weight. Feeding Leymus chinensis hay and alfalfa hay diets resulted in different meat metabolite deposition and rumen bacterial communities in the lambs. The relative abundance of phyla Fibrobacteres, Bacteroidetes, and Spirochaetes were greater in the Leymus Chinensis hay group, while, the relative abundance of Firmicutes, Proteobacteria, Fusobacteria, and Verrucomicrobia were greater in the alfalfa hay group. Based on untargeted metabolomics, the main altered metabolic pathways included alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, nitrogen metabolism, and tyrosine metabolism. Several bacteria genera including BF31, Alistipes, Faecalibacterium, Eggerthella, and Anaeroplasma were significantly correlated with growth performance and meat metabolites. Conclusion Alfalfa hay improved growth performance and carcass characteristics in lambs. Leymus chinensis hay and alfalfa hay caused different meat metabolite deposition by modifying the rumen bacterial community. These findings will be beneficial to future forage utilization for sheep growth, carcass performance, and meat quality improvement.
Collapse
Affiliation(s)
| | | | - Lan Mi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
22
|
Ni X, Lu Y, Li M, Liu Y, Zhang M, Sun F, Dong S, Zhao L. Application of Se-Met to CdTe QDs significantly reduces toxicity by modulating redox balance and inhibiting apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115614. [PMID: 37890249 DOI: 10.1016/j.ecoenv.2023.115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Cadmium tellurium quantum dots (CdTe QDs) as one of the most widely used QDs have been reported the toxicity and biosafety in recent years, little work has been done to reduce their toxicity however. Based on the mechanisms of toxicity of CdTe QDs on liver target organs such as oxidative stress and apoptosis previously reported by other researchers, we investigated the mechanism of action of trace element selenium (Se) to mitigate the hepatotoxicity of CdTe QDs. The experimental results showed that Se-Met at 40-140 μg L-1 could enhance the function of intracellular antioxidant defense system and the molecular structure of related antioxidant enzymes by reduce the production of ROS by 45%, protecting the activity of antioxidants and up-regulating the expression of selenoproteins with antioxidant functions, Gpx1 increase 225% and Gpx4 upregulated 47%. In addition, Se-Met could alleviate CdTe QDs-induced apoptosis by regulating two apoptosis-inducing factors, as intracellular caspase 3/9 expression levels were reduced by 70% and 87%, decreased Ca2+ concentration, and increased mitochondrial membrane potential measurements. Overall, this study indicates that Se-Met has a significant protective effect on the hepatotoxicity of CdTe QDs. Se-Met can be applied to the preparation of CdTe QDs to inhibit its toxicity and break the application limitation.
Collapse
Affiliation(s)
- Xinyu Ni
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Yudie Lu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Meiyu Li
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Yue Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Miao Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Fuqiang Sun
- Physical and Chemical Laboratory, Baoding Center for Disease Control and Prevention, Baoding, Hebei 071000, PR China
| | - Sijun Dong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| | - Lining Zhao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| |
Collapse
|
23
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Silva AR, Vilarinho BG, Francisco T, Azevedo JE. Glutathione and peroxisome redox homeostasis. Redox Biol 2023; 67:102917. [PMID: 37804696 PMCID: PMC10565873 DOI: 10.1016/j.redox.2023.102917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Despite intensive research on peroxisome biochemistry, the role of glutathione in peroxisomal redox homeostasis has remained a matter of speculation for many years, and only recently has this issue started to be experimentally addressed. Here, we summarize and compare data from several organisms on the peroxisome-glutathione topic. It is clear from this comparison that the repertoire of glutathione-utilizing enzymes in peroxisomes of different organisms varies widely. In addition, the available data suggest that the kinetic connectivity between the cytosolic and peroxisomal pools of glutathione may also be different in different organisms, with some possessing a peroxisomal membrane that is promptly permeable to glutathione whereas in others this may not be the case. However, regardless of the differences, the picture that emerges from all these data is that glutathione is a crucial component of the antioxidative system that operates inside peroxisomes in all organisms.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana R Silva
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Beatriz G Vilarinho
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
24
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
25
|
Yang F, Yang M, Si D, Sun J, Liu F, Qi Y, He S, Guo Y. UHPLC/MS-Based Untargeted Metabolomics Reveals Metabolic Characteristics of Clinical Strain of Mycoplasma bovis. Microorganisms 2023; 11:2602. [PMID: 37894260 PMCID: PMC10608813 DOI: 10.3390/microorganisms11102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Mycoplasma bovis is a global concern for the cattle industry owing to its high rates of infection and resulting morbidity, but its pathogenesis remains poorly understood. Metabolic pathways and characteristics of M. bovis clinical strain were elucidated by comparing the differential expression of metabolites between M. bovis clinical strain NX114 and M. bovis international reference strain PG45. Metabolites of M. bovis in the logarithmic stage were analyzed based on the non-targeted metabolomic technology of ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). We found 596 metabolites with variable expression, of which, 190 had substantial differences. Differential metabolite analysis of M. bovis NX114 showed organic acids and their derivatives, nucleosides, and nucleotide analogs as important components. We found O-Phospho-L-serine (SEP) as a potential signature metabolite and indicator of pathogenicity. The difference in nucleic acid metabolites reflects the difference in growth phenotypes between both strains of M. bovis. According to KEGG enrichment analysis, the ABC transporter synthesis route had the most differential metabolites of the first 15 differential enrichment pathways. This study reflects the species-specific differences between two strains of M. bovis and further enriches our understanding of its metabolism, paving the way for further research into its pathogenesis.
Collapse
Affiliation(s)
- Fei Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Mengmeng Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Duoduo Si
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Jialin Sun
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Fan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Yanrong Qi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Shenghu He
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Yanan Guo
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
26
|
Di Giacomo C, Malfa GA, Tomasello B, Bianchi S, Acquaviva R. Natural Compounds and Glutathione: Beyond Mere Antioxidants. Antioxidants (Basel) 2023; 12:1445. [PMID: 37507985 PMCID: PMC10376414 DOI: 10.3390/antiox12071445] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The tripeptide glutathione plays important roles in many cell processes, including differentiation, proliferation, and apoptosis; in fact, disorders in glutathione homeostasis are involved both in the etiology and in the progression of several human diseases, including cancer. Natural compounds have been found to modulate glutathione levels and function beyond their role as mere antioxidants. For example, certain compounds can upregulate the expression of glutathione-related enzymes, increase the availability of cysteine, the limiting amino acid for glutathione synthesis, or directly interact with glutathione and modulate its function. These compounds may have therapeutic potential in a variety of disease states where glutathione dysregulation is a contributing factor. On the other hand, flavonoids' potential to deplete glutathione levels could be significant for cancer treatment. Overall, while natural compounds may have potential therapeutic and/or preventive properties and may be able to increase glutathione levels, more research is needed to fully understand their mechanisms of action and their potential benefits for the prevention and treatment of several diseases. In this review, particular emphasis will be placed on phytochemical compounds belonging to the class of polyphenols, terpenoids, and glucosinolates that have an impact on glutathione-related processes, both in physiological and pathological conditions. These classes of secondary metabolites represent the most food-derived bioactive compounds that have been intensively explored and studied in the last few decades.
Collapse
Affiliation(s)
- Claudia Di Giacomo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
27
|
Orlowska K, Fling RR, Nault R, Schilmiller AL, Zacharewski TR. Cystine/Glutamate Xc - Antiporter Induction Compensates for Transsulfuration Pathway Repression by 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) to Ensure Cysteine for Hepatic Glutathione Biosynthesis. Chem Res Toxicol 2023; 36:900-915. [PMID: 37184393 PMCID: PMC10284067 DOI: 10.1021/acs.chemrestox.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 05/16/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Russ R. Fling
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rance Nault
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anthony L. Schilmiller
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy R. Zacharewski
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Ito T, Ohkama-Ohtsu N. Degradation of glutathione and glutathione conjugates in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3313-3327. [PMID: 36651789 DOI: 10.1093/jxb/erad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/12/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) is a ubiquitous, abundant, and indispensable thiol for plants that participates in various biological processes, such as scavenging reactive oxygen species, redox signaling, storage and transport of sulfur, detoxification of harmful substances, and metabolism of several compounds. Therefore knowledge of GSH metabolism is essential for plant science. Nevertheless, GSH degradation has been insufficiently elucidated, and this has hampered our understanding of plant life. Over the last five decades, the γ-glutamyl cycle has been dominant in GSH studies, and the exoenzyme γ-glutamyl transpeptidase has been regarded as the major GSH degradation enzyme. However, recent studies have shown that GSH is degraded in cells by cytosolic enzymes such as γ-glutamyl cyclotransferase or γ-glutamyl peptidase. Meanwhile, a portion of GSH is degraded after conjugation with other molecules, which has also been found to be carried out by vacuolar γ-glutamyl transpeptidase, γ-glutamyl peptidase, or phytochelatin synthase. These findings highlight the need to re-assess previous assumptions concerning the γ-glutamyl cycle, and a novel overview of the plant GSH degradation pathway is essential. This review aims to build a foundation for future studies by summarizing current understanding of GSH/glutathione conjugate degradation.
Collapse
Affiliation(s)
- Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
29
|
Zhou N, Wang Y, Zhang Z, Feng W, Liu T, Cao Y, Zhang J, Zhang B, Zheng X, Li K. Characterizing the specific mechanism of series processed Coptidis Rhizoma by multi-organ metabolomics combined with network pharmacology and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154804. [PMID: 37031638 DOI: 10.1016/j.phymed.2023.154804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND After being processed with different excipients, the clinical application of Coptidis Rhizoma (CR) is differentially investigated. However, the underlying mechanism and material basis are not clear, and there is a lack of attention to the collaborative working mode of herbal medicine during exploration. PURPOSE To characterize the specific mechanism of wine/zingiberis rhizoma recens/euodiae fructus processed CR (wCR/zCR/eCR) and to investigate the role of excipients during processing. METHODS The multi-organ metabolomics approach was employed to explore the target organs of wCR/zCR/eCR and multiple pathways being triggered in each organ. The tissue distribution of CR and wCR/zCR/eCR components was compared to indicate the material basis of efficacy change after processing. Further, the network pharmacology study coupled with experimental validation was conducted to support metabolomic research and predicted active ingredients and core targets, and the molecular docking coupled with binding test was performed to identify the binding between active ingredient and core target. RESULTS The multi-organ metabolomics and network pharmacology study elucidated the intervening effect of wCR on heart/lung, zCR on stomach/colon, and eCR on liver/colon/stomach. Combined with molecular docking, binding test and tissue distribution studies, the specific mechanism was as follows: the wine made iso-quinoline alkaloids in CR more likely to accumulate in heart/lung, thus triggering the core targets of PTGS2, NOS2, ESR1 and SLC6A4 in heart/lung, and thereby highlighting the detoxifying and cardiopulmonary protective effect of wCR. The zingiberis rhizoma recens and euodiae fructus made organic acids in CR more likely to accumulate in stomach/colon and liver/colon/stomach respectively, thus triggering the core targets of ACTB, TNF and PRKCA in stomach/colon, the core targets of ACTB, TNF, PRKCA and GPT in stomach/colon/liver, and thereby highlighting the improving effect of zCR/eCR on digestive function. CONCLUSION Iso-quinoline alkaloids were the material basis of CR for anti-inflammation, and organic acids were mainly responsible for regulating gastrointestinal function. Due to the influence of excipients on the accumulation tendency of CR components, the differentially highlighted application of wCR/zCR/eCR was achieved. These findings propose a novel strategy for processing mechanism research.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, People's Republic of China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, People's Republic of China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, People's Republic of China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, People's Republic of China
| | - Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Yumin Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Jinying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, People's Republic of China
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| |
Collapse
|
30
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
31
|
Cho GH, Bae HC, Cho WY, Jeong EM, Park HJ, Yang HR, Wang SY, Kim YJ, Shin DM, Chung HM, Kim IG, Han HS. High-glutathione mesenchymal stem cells isolated using the FreSHtracer probe enhance cartilage regeneration in a rabbit chondral defect model. Biomater Res 2023; 27:54. [PMID: 37259149 PMCID: PMC10233867 DOI: 10.1186/s40824-023-00398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a promising cell source for cartilage regeneration. However, the function of MSC can vary according to cell culture conditions, donor age, and heterogeneity of the MSC population, resulting in unregulated MSC quality control. To overcome these limitations, we previously developed a fluorescent real-time thiol tracer (FreSHtracer) that monitors cellular levels of glutathione (GSH), which are known to be closely associated with stem cell function. In this study, we investigated whether using FreSHtracer could selectively separate high-functioning MSCs based on GSH levels and evaluated the chondrogenic potential of MSCs with high GSH levels to repair cartilage defects in vivo. METHODS Flow cytometry was conducted on FreSHtracer-loaded MSCs to select cells according to their GSH levels. To determine the function of FreSHtracer-isolated MSCs, mRNA expression, migration, and CFU assays were conducted. The MSCs underwent chondrogenic differentiation, followed by analysis of chondrogenic-related gene expression. For in vivo assessment, MSCs with different cellular GSH levels or cell culture densities were injected in a rabbit chondral defect model, followed by histological analysis of cartilage-regenerated defect sites. RESULTS FreSHtracer successfully isolated MSCs according to GSH levels. MSCs with high cellular GSH levels showed enhanced MSC function, including stem cell marker mRNA expression, migration, CFU, and oxidant resistance. Regardless of the stem cell tissue source, FreSHtracer selectively isolated MSCs with high GSH levels and high functionality. The in vitro chondrogenic potential was the highest in pellets generated by MSCs with high GSH levels, with increased ECM formation and chondrogenic marker expression. Furthermore, the MSCs' function was dependent on cell culture conditions, with relatively higher cell culture densities resulting in higher GSH levels. In vivo, improved cartilage repair was achieved by articular injection of MSCs with high levels of cellular GSH and MSCs cultured under high-density conditions, as confirmed by Collagen type 2 IHC, Safranin-O staining and O'Driscoll scores showing that more hyaline cartilage was formed on the defects. CONCLUSION FreSHtracer selectively isolates highly functional MSCs that have enhanced in vitro chondrogenesis and in vivo hyaline cartilage regeneration, which can ultimately overcome the current limitations of MSC therapy.
Collapse
Affiliation(s)
- Gun Hee Cho
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Hyun Cheol Bae
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Won Young Cho
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju Special Self-Governing Province, Jeju-do, Republic of Korea
| | - Hee Jung Park
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Ha Ru Yang
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Sun Young Wang
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - You Jung Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Dong Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olymic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - In Gyu Kim
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc, Seoul, 03127, Republic of Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
32
|
Pappalardo C, Cosci I, Moro G, Stortini AM, Sandon A, De Angelis C, Galdiero G, Trifuoggi M, Pivonello R, Pedrucci F, Di Nisio A, Foresta C, Ferlin A, De Toni L. Seminal cadmium affects human sperm motility through stable binding to the cell membrane. Front Cell Dev Biol 2023; 11:1134304. [PMID: 37274747 PMCID: PMC10232869 DOI: 10.3389/fcell.2023.1134304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 06/06/2023] Open
Abstract
Environmental pollutants are claimed to be major factors involved in the progressive decline of the fertility rate worldwide. Exposure to the heavy metal Cadmium (Cd) has been associated with reproductive toxicity due to its ionic mimicry. However, the possible direct accumulation of Cd in human sperm cells has been poorly investigated. In this study, we aimed to clarify the possible direct effect of Cd exposure on sperm function through the analysis of its cell accumulation. Semen samples from 30 male subjects residing in high environmental impact areas and adhering to the "Exposoma e Plurifocalità nella Prevenzione Oncologica" campaign for testis cancer prevention were compared with semen samples from 15 males residing in low exposure areas. Semen levels and cell Cd content were quantified by inductively coupled plasma (ICP) spectroscopy. Cell Cd distribution was assessed by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The impact of Cd on sperm function was evaluated by the in vitro exposure to the heavy metal, whilst possible scavenging approaches/agents were assessed. In addition to higher values of semen Cd, exposed subjects showed a reduction in total motile sperm fraction compared to not-exposed controls (59.6% ± 13.6% vs. 66.3% ± 7.3%, p = 0.037). Semen Cd levels were also significantly correlated with SEM-EDS signals of Cd detected on the head and neck of sperm (respectively p = 0.738, p < 0.001 and ρ = 0.465, p < 0.001). A total of 2 h of in vitro exposure to 0.5 μM Cd was associated with a significant reduction of sperm progressive motility. Scavenging approaches with either hypo-osmotic swelling or 10 μM reduced glutathione were ineffective in blunting cell Cd and restoring motility. The reduction of exposure levels appears to be the main approach to reducing the reproductive issues associated with Cd.
Collapse
Affiliation(s)
- Claudia Pappalardo
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Ilaria Cosci
- Veneto Institute of Oncology IOV—IRCCS, Padova, Italy
| | - Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venezia, Venezia, Italy
| | - Angela Maria Stortini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venezia, Venezia, Italy
| | - Annalisa Sandon
- Department of Civil, Environmental and Architectural Engineering—ICEA—Laboratories, University of Padova, Padova, Italy
| | - Cristina De Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Giacomo Galdiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Marco Trifuoggi
- Dipartimento di Scienze Chimiche, Università Federico II di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
- Staff of Unesco Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Federica Pedrucci
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
33
|
Zhou P, Zhang S, Wang M, Zhou J. The Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis in Inflammatory Bowel Disease, Colorectal Cancer, and Intestinal Injury. Biomolecules 2023; 13:biom13050820. [PMID: 37238692 DOI: 10.3390/biom13050820] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cell death includes programmed and nonprogrammed cell death. The former mainly includes ferroptosis, necroptosis, pyroptosis, autophagy, and apoptosis, while the latter refers to necrosis. Accumulating evidence shows that ferroptosis, necroptosis, and pyroptosis play essential regulatory roles in the development of intestinal diseases. In recent years, the incidence of inflammatory bowel disease (IBD), colorectal cancer (CRC), and intestinal injury induced by intestinal ischemia-reperfusion (I/R), sepsis, and radiation have gradually increased, posing a significant threat to human health. The advancement in targeted therapies for intestinal diseases based on ferroptosis, necroptosis, and pyroptosis provides new strategies for treating intestinal diseases. Herein, we review ferroptosis, necroptosis, and pyroptosis with respect to intestinal disease regulation and highlight the underlying molecular mechanisms for potential therapeutic applications.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Shun Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
34
|
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO 2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 2023; 163:114833. [PMID: 37150035 DOI: 10.1016/j.biopha.2023.114833] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023] Open
Abstract
Manganese dioxide (MnO2) nanoenzymes/nanozymes (MnO2-NEs) are 1-100 nm nanomaterials that mimic catalytic, oxidative, peroxidase, and superoxide dismutase activities. The oxidative-like activity of MnO2-NEs makes them suitable for developing effective and low-cost colorimetric detection assays of biomolecules. Interestingly, MnO2-NEs also demonstrate scavenging properties against reactive oxygen species (ROS) in various pathological conditions. In addition, due to the decomposition of MnO2-NEs in the tumor microenvironment (TME) and the production of Mn2+, they can act as a contrast agent for improving clinical imaging diagnostics. MnO2-NEs also can use as an in situ oxygen production system in TME, thereby overcoming hypoxic conditions and their consequences in the progression of cancer. Furthermore, MnO2-NEs as a shell and coating make the nanosystems smart and, therefore, in combination with other nanomaterials, the MnO2-NEs can be used as an intelligent nanocarrier for delivering drugs, photosensitizers, and sonosensitizers in vivo. Moreover, these capabilities make MnO2-NEs a promising candidate for the detection and treatment of different human diseases such as cancer, metabolic, infectious, and inflammatory pathological conditions. MnO2-NEs also have ROS-scavenging and anti-bacterial properties against Gram-positive and Gram-negative bacterial strains, which make them suitable for wound healing applications. Given the importance of nanomaterials and their potential applications in biomedicine, this review aimed to discuss the biochemical properties and the theranostic roles of MnO2-NEs and recent advances in their use in colorimetric detection assays of biomolecules, diagnostic imaging, drug delivery, and combinatorial therapy applications. Finally, the challenges of MnO2-NEs applications in biomedicine will be discussed.
Collapse
Affiliation(s)
| | - Matin Rahimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
35
|
Davies BM, Katayama JK, Monsivais JE, Adams JR, Dilts ME, Eberting AL, Hansen JM. Real-time analysis of dynamic compartmentalized GSH redox shifts and H 2O 2 availability in undifferentiated and differentiated cells. Biochim Biophys Acta Gen Subj 2023; 1867:130321. [PMID: 36870547 DOI: 10.1016/j.bbagen.2023.130321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Glutathione (GSH) is the most abundant, small biothiol antioxidant. GSH redox state (Eh) supports developmental processes, yet with disrupted GSH Eh, poor developmental outcomes may occur. The role of subcellular, compartmentalized redox environments in the context of redox regulation of differentiation is not well understood. Here, using the P19 neurogenesis model of cellular differentiation, kinetics of subcellular H2O2 availability and GSH Eh were evaluated following oxidant exposure. METHODS Stably transfected P19 cell lines expressing H2O2 availability or GSH Eh sensors, Orp1-roGFP or Grx1-roGFP, respectively, targeted to the cytosol, mitochondria, or nucleus were used. Dynamic, compartmentalized changes in H2O2 availability and GSH Eh were measured via spectrophotometric and confocal microscopy over 120 min following treatment with H2O2 (100 μM) in both differentiated and undifferentiated cells. RESULTS Generally, treated undifferentiated cells showed a greater degree and duration of both H2O2 availability and GSH Eh disruption than differentiated neurons. In treated undifferentiated cells, H2O2 availability was similar in all compartments. Interestingly, in treated undifferentiated cells, mitochondrial GSH Eh was most affected in both the initial oxidation and the rebound kinetics compared to other compartments. Pretreatment with an Nrf2 inducer prevented H2O2-induced effects in all compartments of undifferentiated cells. CONCLUSIONS Disruption of redox-sensitive developmental pathways is likely stage specific, where cells that are less differentiated and/or are actively differentiating are most affected. GENERAL SIGNIFICANCE Undifferentiated cells are more susceptible to oxidant-induced redox dysregulation but are protected by chemicals that induce Nrf2. This may preserve developmental programs and diminish the potential for poor developmental outcomes.
Collapse
Affiliation(s)
- Brandon M Davies
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jenna K Katayama
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua E Monsivais
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - James R Adams
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Miriam E Dilts
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Arielle L Eberting
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jason M Hansen
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
36
|
Acikel-Elmas M, Algilani SA, Sahin B, Bingol Ozakpinar O, Gecim M, Koroglu K, Arbak S. Apocynin Ameliorates Monosodium Glutamate Induced Testis Damage by Impaired Blood-Testis Barrier and Oxidative Stress Parameters. Life (Basel) 2023; 13:life13030822. [PMID: 36983977 PMCID: PMC10052003 DOI: 10.3390/life13030822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND the aim of this study was to investigate the effects of apocynin (APO) on hormone levels, the blood-testis barrier, and oxidative biomarkers in monosodium glutamate (MSG) induced testicular degeneration. METHODS Sprague Dawley male rats (150-200 g; n = 32) were randomly distributed into four groups: control, APO, MSG, and MSG + APO. MSG and MSG + APO groups were administered MSG (120 mg/kg) for 28 days. Moreover, the APO and MSG + APO groups received APO (25 mg/kg) during the last five days of the experiment. All administrations were via oral gavage. Finally, biochemical analyses were performed based on the determination of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), as well as light and transmission electron microscopic examinations, assessment of sperm parameters, ZO-1, occludin, NOX-2, and TUNEL immunohistochemistry were evaluated. RESULTS MSG increased both the oxidative stress level and apoptosis, decreased cell proliferation, and caused degeneration in testis morphology including in the blood-testis barrier. Administration of apocynin reversed all the deteriorated morphological and biochemical parameters in the MSG + APO group. CONCLUSIONS apocynin is considered to prevent testicular degeneration by maintaining the integrity of the blood-testis barrier with balanced hormone and oxidant/antioxidant levels.
Collapse
Affiliation(s)
- Merve Acikel-Elmas
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Salva Asma Algilani
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Begum Sahin
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| | - Ozlem Bingol Ozakpinar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Basibuyuk Yolu, 4/A, Basibuyuk, Istanbul 34854, Turkey
| | - Mert Gecim
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Basibuyuk Yolu, 4/A, Basibuyuk, Istanbul 34854, Turkey
| | - Kutay Koroglu
- Department of Histology and Embryology, School of Medicine, Marmara University, Basibuyuk Yolu No. 9 D:2, Maltepe, Istanbul 34854, Turkey
| | - Serap Arbak
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Icerenkoy Mah., Kayisdagi Cad. No. 32, Atasehir, Istanbul 34752, Turkey
| |
Collapse
|
37
|
Abbas G, Cui M, Wang D, Li M, Zhang XE. Construction of Genetically Encoded Biosensors to Monitor Subcellular Compartment-Specific Glutathione Response to Chemotherapeutic Drugs in Acute Myeloid Leukemia Cells. Anal Chem 2023; 95:2838-2847. [PMID: 36701391 PMCID: PMC9909732 DOI: 10.1021/acs.analchem.2c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Glutathione (GSH), the constituent of the redox buffer system, is a scavenger of reactive oxygen species (ROS), and its ratio to oxidized glutathione (GSSG) is a key indicator of oxidative stress in the cell. Acute myeloid leukemia (AML) is a highly aggressive hematopoietic malignancy characterized by aberrant levels of reduced and oxidized GSH due to oxidative stress. Therefore, the real-time, dynamic, and highly sensitive detection of GSH/GSSG in AML cells is of great interest for the clinical diagnosis and treatment of leukemia. The application of genetically encoded sensors to monitor GSH/GSSG levels in AML cells is not explored, and the underlying mechanism of how the drugs affect GSH/GSSG dynamics remains unclear. In this study, we developed subcellular compartment-specific sensors to monitor GSH/GSSG combined with high-resolution fluorescence microscopy that provides insights into basal GSH/GSSG levels in the cytosol, mitochondria, nucleus, and endoplasmic reticulum of AML cells, in a decreasing order, revealing substantial heterogeneity of GSH/GSSG level dynamics in different subcellular compartments. Further, we investigated the response of GSH/GSSG ratio in AML cells caused by Prussian blue and Fe3O4 nanoparticles, separately and in combination with cytarabine, pointing to steep gradients. Moreover, cytarabine and doxorubicin downregulated the GSH/GSSG levels in different subcellular compartments. Similarly, live-cell imaging showed a compartment-specific decrease in response to various drugs, such as CB-839, parthenolide (PTL), and piperlongumine (PLM). The enzymatic activity assay revealed the mechanism underlying fluctuations in GSH/GSSG levels in different subcellular compartments mediated by these drugs in the GSH metabolic pathway, suggesting some potential therapeutic targets in AML cells.
Collapse
Affiliation(s)
- Ghulam Abbas
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Cui
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dianbing Wang
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National
Laboratory of Biomacromolecules, Institute
of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Haag M, Kehrer J, Sanchez CP, Deponte M, Lanzer M. Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biol 2022; 58:102536. [DOI: 10.1016/j.redox.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
39
|
Li Y, Guo Z, Xu T, Zhang Y, Zeng L, Huang X, Liu Q. Extracellular vesicles, a novel model linking bacteria to ferroptosis in the future? Appl Microbiol Biotechnol 2022; 106:7377-7386. [PMID: 36216901 DOI: 10.1007/s00253-022-12228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a recently discovered modulated cell death mechanism caused by the accumulation of iron-dependent lipid peroxides to toxic levels and plays an important role in tumor immunology and neurology. Recent studies have shown that ferroptosis may play a crucial role in bacterial infection pathogenesis, which may be useful in anti-infection therapies. However, how bacteria enter cells to induce ferroptosis after invading the host immune system remains largely unknown. In addition, the current studies only focus on the relationship between a single bacterial species or genus and host cell ferroptosis, and there is no systematic summary of its regulatory mechanism. Therefore, our review firstly sums up the role of ferroptosis in bacterial infection and its regulatory mechanism, and innovatively speculates on the function and potential mechanism of extracellular vesicles (EVs) in bacterial-induced ferroptosis, in order to provide possible novel directions and ideas for future anti-infection research. KEY POINTS: • Ferroptosis presents a novel mechanism for bacterial host interaction • EVs provide the potential mechanism for bacterial-induced ferroptosis • The relationship of EVs with ferroptosis provides possible directions for future treatment of bacterial infection.
Collapse
Affiliation(s)
- Yi Li
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.,The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
| | - Zhicheng Guo
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.,The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yejia Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lingbing Zeng
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.,The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
40
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
41
|
Qi W, Tian Y, Lu D, Chen B. Detection of glutathione in dairy products based on surface-enhanced infrared absorption spectroscopy of silver nanoparticles. Front Nutr 2022; 9:982228. [PMID: 36046139 PMCID: PMC9421297 DOI: 10.3389/fnut.2022.982228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, silver nanoparticles (AgNPs) were prepared as enhanced substrates for the detection of glutathione in dairy products by polyol reduction of silver nitrate. The infrared spectra were collected and analyzed by surface-enhanced infrared absorption spectroscopy (SEIRA) method of transmission mode using a cell of calcium fluoride window sheet immobilization solution for the study. The disappearance of the thiol (-SH) absorption peak in the infrared spectrum, and the shift of its characteristic absorption peak when glutathione was bound to AgNPs solvate indicated the Ag-S bond interaction and the aggregation of AgNPS. AgNPs accumulate to form "hot spots", resulting in enhanced electromagnetic fields and thus enhanced infrared signals of glutathione. The intensity of the characteristic absorption peak at 1,654 cm-1 (carbonyl C=O bond stretching) was used for the quantitative analysis of glutathione. After optimizing the conditions, glutathione content in pretreated pure milk and pure ewe's milk was determined using AgNPs in combination with SEIRA. Good linearity was obtained in the range of 0.02-0.12 mg/mL with correlation coefficients (R 2) of 0.9879 and 0.9833, respectively, and LOD of 0.02 mg/mL with average spiked recoveries of 101.3 and 92.5%, respectively. The results show that the method can be used for accurate determination of glutathione content in common dairy products.
Collapse
Affiliation(s)
- Wenliang Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yanlong Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Beijing Jingyi Group Co., Ltd., Beijing, China.,Beijing Beifen-Ruili Analytical Instrument (Group) Co., Ltd., Beijing Engineering Research Center of Material Composition Analytical Instrument, Beijing Enterprise Technology Center, Beijing, China
| | - Daoli Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
42
|
Patra SK, Szyf M. Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166527. [PMID: 36002132 PMCID: PMC9393109 DOI: 10.1016/j.bbadis.2022.166527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
COVID-19 has caused numerous deaths as well as imposed social isolation and upheaval world-wide. Although, the genome and the composition of the virus, the entry process and replication mechanisms are well investigated from by several laboratories across the world, there are many unknown remaining questions. For example, what are the functions of membrane lipids during entry, packaging and exit of virus particles? Also, the metabolic aspects of the infected tissue cells are poorly understood. In the course of virus replication and formation of virus particles within the host cell, the enhanced metabolic activities of the host is directly proportional to viral loads. The epigenetic landscape of the host cells is also altered, particularly the expression/repression of genes associated with cellular metabolism as well as cellular processes that are antagonistic to the virus. Metabolic pathways are enzyme driven processes and the expression profile and mechanism of regulations of the respective genes encoding those enzymes during the course of pathogen invasion might be highly informative on the course of the disease. Recently, the metabolic profile of the patients' sera have been analysed from few patients. In view of this, and to gain further insights into the roles that epigenetic mechanisms might play in this scenario in regulation of metabolic pathways during the progression of COVID-19 are discussed and summarised in this contribution for ensuring best therapy.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
43
|
Falcone E, Ritacca AG, Hager S, Schueffl H, Vileno B, El Khoury Y, Hellwig P, Kowol CR, Heffeter P, Sicilia E, Faller P. Copper-Catalyzed Glutathione Oxidation is Accelerated by the Anticancer Thiosemicarbazone Dp44mT and Further Boosted at Lower pH. J Am Chem Soc 2022; 144:14758-14768. [PMID: 35929814 PMCID: PMC9389589 DOI: 10.1021/jacs.2c05355] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Glutathione (GSH) is the most abundant thiol in mammalian
cells
and plays a crucial role in maintaining redox cellular homeostasis.
The thiols of two GSH molecules can be oxidized to the disulfide GSSG.
The cytosolic GSH/GSSG ratio is very high (>100), and its reduction
can lead to apoptosis or necrosis, which are of interest in cancer
research. CuII ions are very efficient oxidants of thiols,
but with an excess of GSH, CuIn(GS)m clusters are formed, in which CuI is very slowly reoxidized by O2 at pH 7.4 and
even more slowly at lower pH. Here, the aerobic oxidation of GSH by
CuII was investigated at different pH values in the presence
of the anticancer thiosemicarbazone Dp44mT, which accumulates in lysosomes
and induces lysosomal membrane permeabilization in a Cu-dependent
manner. The results showed that CuII-Dp44mT catalyzes GSH
oxidation faster than CuII alone at pH 7.4 and hence accelerates
the production of very reactive hydroxyl radicals. Moreover, GSH oxidation
and hydroxyl radical production by CuII-Dp44mT were accelerated
at the acidic pH found in lysosomes. To decipher this unusually faster
thiol oxidation at lower pH, density functional theory (DFT) calculations,
electrochemical and spectroscopic studies were performed. The results
suggest that the acceleration is due to the protonation of CuII-Dp44mT on the hydrazinic nitrogen, which favors the rate-limiting
reduction step without subsequent dissociation of the CuI intermediate. Furthermore, preliminary biological studies in cell
culture using the proton pump inhibitor bafilomycin A1 indicated that
the lysosomal pH plays a role in the activity of CuII-Dp44mT.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Sonja Hager
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Youssef El Khoury
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
44
|
Ni X, Zhang M, Zhang J, Zhang Z, Dong S, Zhao L. Molecular mechanism of two functional protein structure changes under 2,3-butanedione-induced oxidative stress and apoptosis effects in the hepatocytes. Int J Biol Macromol 2022; 218:969-980. [PMID: 35907461 DOI: 10.1016/j.ijbiomac.2022.07.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Food security has become closely watched with the occurrence of a series of food safety incidents in recent years. The widespread adoption of 2,3-butanedione (BUT), as a food additive, is an unpreventable significant risk factor to food security. Based on this, mouse hepatocyte AML-12 cells and two functional proteins (bovine serum albumin and lysozyme) were utilized as targeted receptors to study the adverse effects of BUT at the cellular and molecular levels. Results suggested that BUT could disrupt the redox balance of AML-12 cells, reducing glutathione (GSH) activity fell to 87.18 %, which cannot offset the production of reactive oxygen species (ROS). Meanwhile, the increasement of lipid peroxidation and malondialdehyde (MDA) levels were observed. The mitochondrial membrane function was also abnormal due to the excessive accumulation of ROS and eventually leads to cell apoptosis and death. At the molecular level, the exposure of BUT could alter the skeleton and secondary structure of bovine serum albumin (BSA) and lysozyme (LYZ), and it could statically quench the intrinsic fluorescence of proteins. The combined experiments confirmed proved the potentially toxic effects of BUT accumulation on the detoxification organ, providing theoretical support for the liver diseases caused by BUT exposure, and a reference for the risk assessment of occupational exposure of BUT.
Collapse
Affiliation(s)
- Xinyu Ni
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Miao Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Jing Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Zhen Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Sijun Dong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| | - Lining Zhao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| |
Collapse
|
45
|
Mercury-Induced Oxidative Stress Response in Benthic Foraminifera: An In Vivo Experiment on Amphistegina lessonii. BIOLOGY 2022; 11:biology11070960. [PMID: 36101341 PMCID: PMC9312061 DOI: 10.3390/biology11070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The evaluation of the effects of pollution (e.g., Hg pollution) is a difficult task and relies mostly on biomonitoring based on bioindicators. The application of biomarkers may represent a complementary or alternative approach in environmental biomonitoring. Mercury is known to pose a significant health hazard due to its ability to cross cellular membranes, bioaccumulate, and biomagnify. In the present research, the effects of short-term (i.e., 24 h) Hg exposure in the symbiont-bearing benthic foraminiferal species Amphistegina lessonii are evaluated using several biomarkers (i.e., proteins and enzymes). Mercury leads to significant changes in the biochemistry of cells. Its effects are mainly associated with oxidative stress (i.e., production of reactive oxygen species: ROS), depletion of glutathione (GSH), and alteration of protein synthesis. Specifically, our findings reveal that exposure to Hg leads to the consumption of GSH by GPx and GST for the scavenging of ROS and the activation of antioxidant-related enzymes, including SOD and GSH-enzymes (GST, GSR, GPx, and Se-GPx), that are directly related to a defense mechanism against ROS. The Hg exposure also activates the MAPK (e.g., p-p38) and HSP (e.g., HSP 70) pathways. The observed biochemical alterations associated with Hg exposure may represent effective and reliable proxies (i.e., biomarkers) for the evaluation of stress in A. lessonii and lead to a possible application for the detection of early warning signs of environmental stress in biomonitoring.
Collapse
|
46
|
Abalenikhina YV, Erokhina PD, Mylnikov PY, Shchulkin AV, Yakusheva EN. Functioning of the P-glycoprotein Membrane Transport Protein under Conditions of the Inhibition of Glutathione Synthesis. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Binati RL, Larini I, Salvetti E, Torriani S. Glutathione production by non-Saccharomyces yeasts and its impact on winemaking: A review. Food Res Int 2022; 156:111333. [DOI: 10.1016/j.foodres.2022.111333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/22/2022]
|
48
|
Iron-Oxide-Nanoparticles-Doped Polyaniline Composite Thin Films. Polymers (Basel) 2022; 14:polym14091821. [PMID: 35566991 PMCID: PMC9100357 DOI: 10.3390/polym14091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Iron-oxide-doped polyaniline (PANI-IO) thin films were obtained by the polymerization of aniline monomers and iron oxide solutions in direct current glow discharge plasma in the absence of a buffer gas for the first time. The PANI-IO thin films were deposited on optical polished Si wafers in order to study surface morphology and evaluate their in vitro biocompatibility. The characterization of the coatings was accomplished using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), metallographic microscopy (MM), and X-ray photoelectron spectroscopy (XPS). In vitro biocompatibility assessments were also conducted on the PANI-IO thin films. It was observed that a uniform distribution of iron oxide particles inside the PANI layers was obtained. The constituent elements of the coatings were uniformly distributed. The Fe-O bonds were associated with magnetite in the XPS studies. The surface morphology of the PANI-IO thin films was assessed by atomic force microscopy (AFM). The AFM topographies revealed that PANI-IO exhibited the morphology of a uniformly distributed and continuous layer. The viability of Caco-2 cells cultured on the Si substrate and PANI-IO coating was not significantly modified compared to control cells. Moreover, after 24 h of incubation, we observed no increase in LDH activity in media in comparison to the control. In addition, our results revealed that the NO levels for the Si substrate and PANI-IO coating were similar to those found in the control sample.
Collapse
|
49
|
Arancibia-Hernández YL, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J. Antioxidant/anti-inflammatory effect of Mg 2+ in coronavirus disease 2019 (COVID-19). Rev Med Virol 2022; 32:e2348. [PMID: 35357063 PMCID: PMC9111052 DOI: 10.1002/rmv.2348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), characterised by high levels of inflammation and oxidative stress (OS). Oxidative stress induces oxidative damage to lipids, proteins, and DNA, causing tissue damage. Both inflammation and OS contribute to multi-organ failure in severe cases. Magnesium (Mg2+ ) regulates many processes, including antioxidant and anti-inflammatory responses, as well as the proper functioning of other micronutrients such as vitamin D. In addition, Mg2+ participates as a second signalling messenger in the activation of T cells. Therefore, Mg2+ deficiency can cause immunodeficiency, exaggerated acute inflammatory response, decreased antioxidant response, and OS. Supplementation with Mg2+ has an anti-inflammatory response by reducing the levels of nuclear factor kappa B (NF-κB), interleukin (IL) -6, and tumor necrosis factor alpha. Furthermore, Mg2+ supplementation improves mitochondrial function and increases the antioxidant glutathione (GSH) content, reducing OS. Therefore, Mg2+ supplementation is a potential way to reduce inflammation and OS, strengthening the immune system to manage COVID-19. This narrative review will address Mg2+ deficiency associated with a worse disease prognosis, Mg2+ supplementation as a potent antioxidant and anti-inflammatory therapy during and after COVID-19 disease, and suggest that randomised controlled trials are indicated.
Collapse
Affiliation(s)
| | - Ana Karina Aranda-Rivera
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
50
|
Ning Z, Lan J, Jiang X, Zhong G, Zhang H, Wan F, Wu S, Tang Z, Bilal RM, Hu L, Huang R. Arsenic trioxide-induced autophagy affected the antioxidant capacity and apoptosis rate of chicken hepatocytes. Chem Biol Interact 2022; 354:109821. [PMID: 35051378 DOI: 10.1016/j.cbi.2022.109821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Arsenic has recently received widespread attention due to its high toxicological effects on multiple animals; however, the mechanism underlying this toxicity is unclear. We investigated the damaging effects of arsenic trioxide (ATO) on hepatocytes and the effects of regulating autophagy on the hepatocyte damage induced by ATO exposure. First, we investigated the effects of ATO exposure (0, 0.6, 1.2, 2.4, and 4.8 μM) on the biochemical function and autophagy of chicken hepatocytes. The findings showed that as the concentration of ATO increased, the lactate dehydrogenase (LDH) concentration increased, more autophagosomes were observed via transmission electron microscopy (TEM), and the gene and protein expression levels of P62, LC3Ⅱ, and Beclin1 increased. Adding N-acetyl-l-cystine (NAC, 1 mM) attenuated autophagy and the hepatocyte damage induced by ATO. Then, we used rapamycin (Rapa) and 3-methylpurine (3-MA) to regulate the autophagy induced by exposure to 4.8 μM ATO and observed changes in the antioxidant capacity and apoptosis rate of chicken hepatocytes. Induction of autophagy reduced ATO-induced hepatocyte apoptosis but caused no significant effect on oxidative stress in chicken hepatocytes. Inhibition of autophagy exacerbated ATO-induced hepatocyte oxidative stress and apoptosis. These findings demonstrate that autophagy plays an important role in ATO-induced cell damage.
Collapse
Affiliation(s)
- Zhijun Ning
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Juan Lan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Rana Muhammad Bilal
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|