1
|
Clifton B, Ghezzehei TA, Viers JH. Carbon stock quantification in a floodplain restoration chronosequence along a Mediterranean-montane riparian corridor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173829. [PMID: 38857806 DOI: 10.1016/j.scitotenv.2024.173829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Uncertainty in the global carbon (C) budget has been reduced for most stocks, though it remains incomplete by not considering aquatic and transitional zone carbon stocks. A key issue preventing such complete accounting is a lack of available C data within these aquatic and aquatic-terrestrial transitional ecosystems. Concurrently, quantifiable results produced by restoration practices that explicitly target C stock accumulation and sequestration remain inconsistent or undocumented. To support a more complete carbon budget and identify impacts on C stock accumulation from restoration treatment actions, we investigated C stock values in a Mediterranean-montane riparian floodplain system in California, USA. We quantified the C stock in aboveground biomass, large wood, and litter in addition to the C and total nitrogen in the upper soil profile (5 cm) across 23 unique restoration treatments and remnant old-growth forests. Treatments span 40 years of restoration actions along seven river kilometers of the Cosumnes River, and include process-based (limited intervention), assisted (horticultural planting and other intensive restoration activities), hybrid (a combination of process and assisted actions), and remnant (old-growth forests that were not created with restoration actions) sites. Total C values measured up to 1100 Mg ha-1 and averaged 129 Mg ha-1 with biomass contributing the most to individual plot measurements. From 2012 to 2020, biomass C stock measurements showed an average 32 Mg ha-1 increase across all treatments, though treatment specific values varied. While remnant forest plots held the highest average C values across all stocks (336 Mg ha-1), C values of different stocks varied across treatment type. Process-based restoration treatments held more average biomass C (120 Mg ha-1) than hybrid (23 Mg ha-1) or assisted restoration treatments (50 Mg ha-1), while assisted restoration treatments held more average total C in soil and litter (58 Mg ha-1) than hybrid (35 Mg ha-1) and process-based restoration treatments (37 Mg ha-1). Regardless of treatment type, time was a significant factor for all C stock values. These findings support a more inclusive global carbon budget and provide valuable insight into restoration treatment actions that support C stock accumulation.
Collapse
Affiliation(s)
- Britne Clifton
- Environmental Systems, UC Merced, 5200 Lake Rd Merced, CA 95343.
| | - Teamrat A Ghezzehei
- Environmental Systems, UC Merced, 5200 Lake Rd Merced, CA 95343; School of Natural Sciences, UC Merced, 5200 Lake Rd Merced, CA 95343
| | - Joshua H Viers
- Environmental Systems, UC Merced, 5200 Lake Rd Merced, CA 95343; School of Engineering, UC Merced, 5200 Lake Rd Merced, CA 95343
| |
Collapse
|
2
|
Ma XG, Ren YB, Sun H. Introgression and incomplete lineage sorting blurred phylogenetic relationships across the genomes of sclerophyllous oaks from southwest China. Cladistics 2024; 40:357-373. [PMID: 38197450 DOI: 10.1111/cla.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024] Open
Abstract
Resolving evolutionary relationships among closely related species with interspecific gene flow is challenging. Genome-scale data provide opportunities to clarify complex evolutionary relationships in closely related species and to observe variations in species relationships across the genomes of such species. The Himalayan-Hengduan subalpine oaks have a nearly completely sympatric distribution in southwest China and probably constitute a syngameon. In this study, we mapped resequencing data from different species in this group to the Quercus aquifolioides reference genome to obtain a high-quality filtered single nucleotide polymorphism (SNP) dataset. We also assembled their plastomes. We reconstructed their phylogenetic relationships, explored the level and pattern of introgression among these species and investigated gene tree variation in the genomes of these species using sliding windows. The same or closely related plastomes were found to be shared extensively among different species within a specific geographical area. Phylogenomic analyses of genome-wide SNP data found that most oaks in the Himalayan-Hengduan subalpine clade showed genetic coherence, but several species were found to be connected by introgression. The gene trees obtained using sliding windows showed that the phylogenetic relationships in the genomes of oaks are highly heterogeneous and therefore highly obscured. Our study found that all the oaks of the Himalayan-Hengduan subalpine clade from southwest China form a syngameon. The obscured phylogenetic relationships observed empirically across the genome are best explained by interspecific gene flow in conjunction with incomplete lineage sorting.
Collapse
Affiliation(s)
- Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yue-Bo Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
3
|
Morales-Saldaña S, Hipp AL, Valencia-Ávalos S, Hahn M, González-Elizondo MS, Gernandt DS, Pham KK, Oyama K, González-Rodríguez A. Divergence and reticulation in the Mexican white oaks: ecological and phylogenomic evidence on species limits and phylogenetic networks in the Quercus laeta complex (Fagaceae). ANNALS OF BOTANY 2024; 133:1007-1024. [PMID: 38428030 PMCID: PMC11089265 DOI: 10.1093/aob/mcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL 60532-1293, USA
- The Field Museum, Chicago, IL 60605, USA
| | - Susana Valencia-Ávalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | | | | | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex‐Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| |
Collapse
|
4
|
Denk T, Grimm GW, Hipp AL, Bouchal JM, Schulze ED, Simeone MC. Niche evolution in a northern temperate tree lineage: biogeographical legacies in cork oaks (Quercus section Cerris). ANNALS OF BOTANY 2023; 131:769-787. [PMID: 36805162 PMCID: PMC10184457 DOI: 10.1093/aob/mcad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Cork oaks (Quercus section Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects might explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. METHODS We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction site-associated DNA sequencing (RAD-seq), and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. KEY RESULTS East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form and texture was correlated, in part, with multiple transitions from ancestral humid temperate climates to mediterranean, arid and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. CONCLUSIONS Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (section Ilex) also originated in temperate biomes but migrated southwards and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographical histories and deep-time phylogenetic legacies (in cold and drought tolerance, nutrient storage and fire resistance) thus account for the modern species mosaic of Western Eurasian oak communities, which are composed of oaks belonging to four sections.
Collapse
Affiliation(s)
- Thomas Denk
- Department of Palaeobiology, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | | | | | - Johannes M Bouchal
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | | | - Marco C Simeone
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Zhou W, Jenny Xiang QY. Phylogenomics and Biogeography of Castanea (Chestnut) and Hamamelis (Witch-hazel) - Choosing between RAD-seq and Hyb-Seq Approaches. Mol Phylogenet Evol 2022; 176:107592. [DOI: 10.1016/j.ympev.2022.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 10/31/2022]
|
6
|
Tonione MA, Bi K, Dunn RR, Lucky A, Portik DM, Tsutsui ND. Phylogeography and population genetics of a widespread cold-adapted ant, Prenolepis imparis. Mol Ecol 2022; 31:4884-4899. [PMID: 35866574 DOI: 10.1111/mec.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
As species arise, evolve, and diverge, they are shaped by forces that unfold across short and long time scales and at both local and vast geographic scales. It is rare, however, to be able document this history across broad sweeps of time and space in a single species. Here, we report the results of a continental-scale phylogenomic analysis across the entire range of a widespread species. We analyzed sequences of 1,402 orthologous Ultraconserved Element (UCE) loci from 75 individuals to identify population genetic structure and historical demographic patterns across the continent-wide range of a cold-adapted ant, the winter ant, Prenolepis imparis. We recovered five well-supported, genetically isolated clades representing lineages that diverged from 8.2-2.2 million years ago. These include: 1) an early diverging lineage located in Florida, 2) a lineage that spans the southern United States, 3) populations that extend across the midwestern and northeastern United States, 4) populations from the western United States, and 5) populations in southwestern Arizona and Mexico. Population genetic analyses revealed little or no gene flow among these lineages, but patterns consistent with more recent gene flow among populations within lineages, and localized structure with migration in the western United States. High support for five major geographic lineages and lack of evidence of contemporary gene flow indicate in situ diversification across the species' range, producing relatively ancient lineages that persisted through subsequent climate change and glaciation during the Quaternary.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California-, 94720-3114, Berkeley, CA, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA.,Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, David Clark Labs, Box 7617, Raleigh, NC 27695, USA
| | - Andrea Lucky
- Entomology and Nematology Department, University of Florida, 32608, Gainesville, FL, USA
| | - Daniel M Portik
- California Academy of Sciences, 94118, San Francisco, CA, USA
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California-, 94720-3114, Berkeley, CA, USA
| |
Collapse
|
7
|
Otero A, Vargas P, Fernández-Mazuecos M, Jiménez-Mejías P, Valcárcel V, Villa-Machío I, Hipp AL. A snapshot of progenitor-derivative speciation in Iberodes (Boraginaceae). Mol Ecol 2022; 31:3192-3209. [PMID: 35390211 DOI: 10.1111/mec.16459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Traditional classification of speciation modes has focused on physical barriers to gene flow. Allopatric speciation with complete reproductive isolation is viewed as the most common mechanism of speciation. Parapatry and sympatry, by contrast, entail speciation in the face of ongoing gene flow, making them more difficult to detect. The genus Iberodes (Boraginaceae, NW Europe) comprises five species with contrasting morphological traits, habitats, and species distributions. Based on the predominance of narrow and geographically distant endemic species, we hypothesized that geographic barriers were responsible for most speciation events in Iberodes. We undertook an integrative study including: (i) phylogenomics through restriction-site associated DNA sequencing, (ii) genetic structure analyses, (iii) demographic modeling, (iv) morphometrics, and (v) climatic niche modeling and niche overlap analysis. Results revealed a history of recurrent progenitor-derivative speciation manifested by a paraphyletic pattern of nested species differentiation. Budding speciation mediated by ecological differentiation is suggested for the coastal lineage, deriving from the inland widespread I. linifolia during Late Pliocene. Meanwhile, geographic isolation followed by niche shifts are suggested for the more recent differentiation of the coastland taxa. Our work provides a model for distinguishing speciation via ecological differentiation of peripheral, narrowly endemic I. kuzinskyanae and I. littoralis from a widespread extant ancestor, I. linifolia. Ultimately, our results illustrate a case of Pliocene speciation in the probable absence of geographic barriers and get away from the traditional cladistic perspective of speciation as producing two species from an extinct ancestor, thus reminding us that phylogenetic trees tell only part of the story.
Collapse
Affiliation(s)
- Ana Otero
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, 1400 S. DuSable Lake Shore Dr, 60605, Chicago, Illinois, USA.,Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC). Pza. de Murillo, 28014, Madrid, Spain
| | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC). Pza. de Murillo, 28014, Madrid, Spain
| | - Mario Fernández-Mazuecos
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC). Pza. de Murillo, 28014, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Departamento de Biología (Botánica), Universidad Autónoma de Madrid, C/ Darwin, 2, 28049, Madrid, Spain
| | - Pedro Jiménez-Mejías
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Departamento de Biología (Botánica), Universidad Autónoma de Madrid, C/ Darwin, 2, 28049, Madrid, Spain
| | - Virginia Valcárcel
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Departamento de Biología (Botánica), Universidad Autónoma de Madrid, C/ Darwin, 2, 28049, Madrid, Spain
| | - Irene Villa-Machío
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC). Pza. de Murillo, 28014, Madrid, Spain
| | - Andrew L Hipp
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, 1400 S. DuSable Lake Shore Dr, 60605, Chicago, Illinois, USA.,The Morton Arboretum, 4100 Illinois Route 53, 60532, Lisle, Illinois, USA
| |
Collapse
|
8
|
Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, Chen XY, An QQ, Kang M, Manos PS, Wang B. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nat Commun 2022; 13:1320. [PMID: 35288565 PMCID: PMC8921187 DOI: 10.1038/s41467-022-28917-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.
Collapse
Affiliation(s)
- Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
9
|
Li Y, Zhang X, Wang L, Sork VL, Mao L, Fang Y. Influence of Pliocene and Pleistocene climates on hybridization patterns between two closely related oak species in China. ANNALS OF BOTANY 2022; 129:231-245. [PMID: 34893791 PMCID: PMC8796672 DOI: 10.1093/aob/mcab140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Contemporary patterns of genetic admixture reflect imprints of both ancient and recent gene flow, which can provide us with valuable information on hybridization history in response to palaeoclimate change. Here, we examine the relationships between present admixture patterns and past climatic niche suitability of two East Asian Cerris oaks (Quercus acutissima and Q. chenii) to test the hypothesis that the mid-Pliocene warm climate promoted while the Pleistocene cool climate limited hybridization among local closely related taxa. METHODS We analyse genetic variation at seven nuclear microsatellites (1111 individuals) and three chloroplast intergenic spacers (576 individuals) to determine the present admixture pattern and ancient hybridization history. We apply an information-theoretic model selection approach to explore the associations of genetic admixture degree with past climatic niche suitability at multiple spatial scales. KEY RESULTS More than 70 % of the hybrids determined by Bayesian clustering analysis and more than 90 % of the individuals with locally shared chloroplast haplotypes are concentrated within a mid-Pliocene contact zone between ~30°N and 35°N. Climatic niche suitabilities for Q. chenii during the mid-Pliocene Warm Period [mPWP, ~3.264-3.025 million years ago (mya)] and during the Last Glacial Maximum (LGM, ~0.022 mya) best explain the admixture patterns across all Q. acutissima populations and across those within the ancient contact zone, respectively. CONCLUSIONS Our results highlight that palaeoclimate change shapes present admixture patterns by influencing the extent of historical range overlap. Specifically, the mid-Pliocene warm climate promoted ancient contact, allowing widespread hybridization throughout central China. In contrast, the Pleistocene cool climate caused the local extinction of Q. chenii, reducing the probability of interspecific gene flow in most areas except those sites having a high level of ecological stability.
Collapse
Affiliation(s)
- Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Laboratory of Biodiversity and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xingwang Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7239, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095-1496, USA
| | - Lingfeng Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Laboratory of Biodiversity and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
10
|
An Updated Infrageneric Classification of the North American Oaks (Quercus Subgenus Quercus): Review of the Contribution of Phylogenomic Data to Biogeography and Species Diversity. FORESTS 2021. [DOI: 10.3390/f12060786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oak flora of North America north of Mexico is both phylogenetically diverse and species-rich, including 92 species placed in five sections of subgenus Quercus, the oak clade centered on the Americas. Despite phylogenetic and taxonomic progress on the genus over the past 45 years, classification of species at the subsectional level remains unchanged since the early treatments by WL Trelease, AA Camus, and CH Muller. In recent work, we used a RAD-seq based phylogeny including 250 species sampled from throughout the Americas and Eurasia to reconstruct the timing and biogeography of the North American oak radiation. This work demonstrates that the North American oak flora comprises mostly regional species radiations with limited phylogenetic affinities to Mexican clades, and two sister group connections to Eurasia. Using this framework, we describe the regional patterns of oak diversity within North America and formally classify 62 species into nine major North American subsections within sections Lobatae (the red oaks) and Quercus (the white oaks), the two largest sections of subgenus Quercus. We also distill emerging evolutionary and biogeographic patterns based on the impact of phylogenomic data on the systematics of multiple species complexes and instances of hybridization.
Collapse
|
11
|
Wei G, Li X, Fang Y. Sympatric genome size variation and hybridization of four oak species as determined by flow cytometry genome size variation and hybridization. Ecol Evol 2021; 11:1729-1740. [PMID: 33614000 PMCID: PMC7882991 DOI: 10.1002/ece3.7163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
The Quercus species serve as a powerful model for studying introgression in relation to species boundaries and adaptive processes. Coexistence of distant relatives, or lack of coexistence of closely relative oak species, introgression may play a role. In the current study, four closely related oak species were found in Zijinshan, China. We generated a comprehensive genome size (GS) database for 120 individuals of four species using flow cytometry-based approaches. We examined GS variability within and among the species and hybridization events among the four species. The mean GSs of Q. acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata were estimated to be 1.87, 1.92, 1.97, and 1.97 pg, respectively. The intraspecific and interspecific variations of GS observed among the four oak species indicated adaptation to the environment. Hybridization occurred both within and between the sections. A hybrid offspring was produced from Q. fabri and Q. variabilis, which belonged to different sections. The GS evolutionary pattern for hybrid species was expansion. Hybridization between the sections may be affected by habitat disturbance. This study increases our understanding of the evolution of GS in Quercus and will help establish guidelines for the ecological protection of oak trees.
Collapse
Affiliation(s)
- GaoMing Wei
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
- School of Physics, and Electronics Henan UniversityKaifengChina
| | - Xuan Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - YanMing Fang
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
12
|
Uckele KA, Adams RP, Schwarzbach AE, Parchman TL. Genome-wide RAD sequencing resolves the evolutionary history of serrate leaf Juniperus and reveals discordance with chloroplast phylogeny. Mol Phylogenet Evol 2020; 156:107022. [PMID: 33242585 DOI: 10.1016/j.ympev.2020.107022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
Juniper (Juniperus) is an ecologically important conifer genus of the Northern Hemisphere, the members of which are often foundational tree species of arid regions. The serrate leaf margin clade is native to topologically variable regions in North America, where hybridization has likely played a prominent role in their diversification. Here we use a reduced-representation sequencing approach (ddRADseq) to generate a phylogenomic data set for 68 accessions representing all 22 species in the serrate leaf margin clade, as well as a number of close and distant relatives, to improve understanding of diversification in this group. Phylogenetic analyses using three methods (SVDquartets, maximum likelihood, and Bayesian) yielded highly congruent and well-resolved topologies. These phylogenies provided improved resolution relative to past analyses based on Sanger sequencing of nuclear and chloroplast DNA, and were largely consistent with taxonomic expectations based on geography and morphology. Calibration of a Bayesian phylogeny with fossil evidence produced divergence time estimates for the clade consistent with a late Oligocene origin in North America, followed by a period of elevated diversification between 12 and 5 Mya. Comparison of the ddRADseq phylogenies with a phylogeny based on Sanger-sequenced chloroplast DNA revealed five instances of pronounced discordance, illustrating the potential for chloroplast introgression, chloroplast transfer, or incomplete lineage sorting to influence organellar phylogeny. Our results improve understanding of the pattern and tempo of diversification in Juniperus, and highlight the utility of reduced-representation sequencing for resolving phylogenetic relationships in non-model organisms with reticulation and recent divergence.
Collapse
Affiliation(s)
- Kathryn A Uckele
- Department of Biology, MS 314, University of Nevada, Reno, Max Fleischmann Agriculture Building, 1664 N Virginia St., Reno, NV 89557, USA.
| | - Robert P Adams
- Baylor University, Utah Lab, 201 N 5500 W, Hurricane, UT 84790, USA.
| | - Andrea E Schwarzbach
- Department of Health and Biomedical Sciences, University of Texas - Rio Grande Valley, 1 W University Drive, Brownsville, TX 78520, USA.
| | - Thomas L Parchman
- Department of Biology, MS 314, University of Nevada, Reno, Max Fleischmann Agriculture Building, 1664 N Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
13
|
Piredda R, Grimm GW, Schulze ED, Denk T, Simeone MC. High-throughput sequencing of 5S-IGS in oaks: Exploring intragenomic variation and algorithms to recognize target species in pure and mixed samples. Mol Ecol Resour 2020; 21:495-510. [PMID: 32997899 DOI: 10.1111/1755-0998.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Measuring biological diversity is a crucial but difficult undertaking, as exemplified in oaks where complex patterns of morphological, ecological, biogeographical and genetic differentiation collide with traditional taxonomy, which measures biodiversity in number of species (or higher taxa). In this pilot study, we generated high-throughput sequencing amplicon data of the intergenic spacer of the 5S nuclear ribosomal DNA cistron (5S-IGS) in oaks, using six mock samples that differ in geographical origin, species composition and pool complexity. The potential of the marker for automated genotaxonomy applications was assessed using a reference data set of 1,770 5S-IGS cloned sequences, covering the entire taxonomic breadth and distribution range of western Eurasian Quercus, and applying similarity (blast) and evolutionary approaches (maximum-likelihood trees and Evolutionary Placement Algorithm). Both methods performed equally well, allowing correct identification of species in sections Ilex and Cerris in the pure and mixed samples, and main lineages shared by species of sect. Quercus. Application of different cut-off thresholds revealed that medium- to high-abundance (>10 or 25) sequences suffice for a net species identification of samples containing one or a few individuals. Lower thresholds identify phylogenetic correspondence with all target species in highly mixed samples (analogous to environmental bulk samples) and include rare variants pointing towards reticulation, incomplete lineage sorting, pseudogenic 5S units and in situ (natural) contamination. Our pipeline is highly promising for future assessments of intraspecific and interpopulation diversity, and of the genetic resources of natural ecosystems, which are fundamental to empower fast and solid biodiversity conservation programmes worldwide.
Collapse
Affiliation(s)
| | - Guido W Grimm
- Orléans, France.,Department of Palaeontology, University of Vienna, Vienna, Austria
| | | | - Thomas Denk
- Swedish Museum of Natural History, Stockholm, Sweden
| | - Marco Cosimo Simeone
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli studi della Tuscia, Viterbo, Italy
| |
Collapse
|
14
|
Rose JP, Toledo CAP, Lemmon EM, Lemmon AR, Sytsma KJ. Out of Sight, Out of Mind: Widespread Nuclear and Plastid-Nuclear Discordance in the Flowering Plant Genus Polemonium (Polemoniaceae) Suggests Widespread Historical Gene Flow Despite Limited Nuclear Signal. Syst Biol 2020; 70:162-180. [PMID: 32617587 DOI: 10.1093/sysbio/syaa049] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Phylogenomic data from a rapidly increasing number of studies provide new evidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought. [Cyto-nuclear discordance, genomic discordance, phylogenetic networks, plastid capture, Polemoniaceae, Polemonium, reticulations.].
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Cassio A P Toledo
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biolgia, Universidade Estadual de Campinas-UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP. CEP: 13083-862, Brazil
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
15
|
Kremer A, Hipp AL. Oaks: an evolutionary success story. THE NEW PHYTOLOGIST 2020; 226:987-1011. [PMID: 31630400 PMCID: PMC7166131 DOI: 10.1111/nph.16274] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/13/2019] [Indexed: 05/10/2023]
Abstract
The genus Quercus is among the most widespread and species-rich tree genera in the northern hemisphere. The extraordinary species diversity in America and Asia together with the continuous continental distribution of a limited number of European species raise questions about how macro- and microevolutionary processes made the genus Quercus an evolutionary success. Synthesizing conclusions reached during the past three decades by complementary approaches in phylogenetics, phylogeography, genomics, ecology, paleobotany, population biology and quantitative genetics, this review aims to illuminate evolutionary processes leading to the radiation and expansion of oaks. From opposing scales of time and geography, we converge on four overarching explanations of evolutionary success in oaks: accumulation of large reservoirs of diversity within populations and species; ability for rapid migration contributing to ecological priority effects on lineage diversification; high rates of evolutionary divergence within clades combined with convergent solutions to ecological problems across clades; and propensity for hybridization, contributing to adaptive introgression and facilitating migration. Finally, we explore potential future research avenues, emphasizing the integration of microevolutionary and macroevolutionary perspectives.
Collapse
Affiliation(s)
- Antoine Kremer
- BIOGECO, INRA, Université de Bordeaux, 69 Route
d'Arcachon, 33612 Cestas, France
| | - Andrew L. Hipp
- The Morton Arboretum, Lisle IL 60532-1293, USA
- The Field Museum, Chicago IL 60605, USA
| |
Collapse
|
16
|
Crowl AA, Manos PS, McVay JD, Lemmon AR, Lemmon EM, Hipp AL. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). THE NEW PHYTOLOGIST 2020; 226:1158-1170. [PMID: 30963585 DOI: 10.1111/nph.15842] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/29/2019] [Indexed: 05/10/2023]
Abstract
Botanists have long recognised interspecific gene flow as a common occurrence within white oaks (Quercus section Quercus). Historical allele exchange, however, has not been fully characterised and the complex genomic signals resulting from the combination of vertical and horizontal gene transmission may confound phylogenetic inference and obscure our ability to accurately infer the deep evolutionary history of oaks. Using anchored enrichment, we obtained a phylogenomic dataset consisting of hundreds of single-copy nuclear loci. Concatenation, species-tree and network analyses were carried out in an attempt to uncover the genomic signal of ancient introgression and infer the divergent phylogenetic topology for the white oak clade. Locus and site-level likelihood comparisons were then conducted to further explore the introgressed signal within our dataset. Historical, intersectional gene flow is suggested to have occurred between an ancestor of the Eurasian Roburoid lineage and Quercus pontica and North American Dumosae and Prinoideae lineages. Despite extensive time past, our approach proved successful in detecting the genomic signature of ancient introgression. Our results, however, highlight the importance of sampling and the use of a plurality of analytical tools and methods to sufficiently explore genomic datasets, uncover this signal, and accurately infer evolutionary history.
Collapse
Affiliation(s)
- Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - John D McVay
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, 32317, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 89 Chieftan Way, Tallahassee, FL, 32317, USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
17
|
Hipp AL, Manos PS, Hahn M, Avishai M, Bodénès C, Cavender-Bares J, Crowl AA, Deng M, Denk T, Fitz-Gibbon S, Gailing O, González-Elizondo MS, González-Rodríguez A, Grimm GW, Jiang XL, Kremer A, Lesur I, McVay JD, Plomion C, Rodríguez-Correa H, Schulze ED, Simeone MC, Sork VL, Valencia-Avalos S. Genomic landscape of the global oak phylogeny. THE NEW PHYTOLOGIST 2020; 226:1198-1212. [PMID: 31609470 DOI: 10.1111/nph.16162] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 05/10/2023]
Abstract
The tree of life is highly reticulate, with the history of population divergence emerging from populations of gene phylogenies that reflect histories of introgression, lineage sorting and divergence. In this study, we investigate global patterns of oak diversity and test the hypothesis that there are regions of the oak genome that are broadly informative about phylogeny. We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632 individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct shifts in lineage diversification rates, accounting for among-clade sampling biases. We then map the > 20 000 RAD-seq loci back to an annotated oak genome and investigate genomic distribution of introgression and phylogenetic support across the phylogeny. Oak lineages have diversified among geographic regions, followed by ecological divergence within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four clades that experienced increases in net diversification, probably in response to climatic transitions or ecological opportunity. The strong support for the phylogeny contrasts with high genomic heterogeneity in phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in fact depend on the gene flow that shapes the oak genome.
Collapse
Affiliation(s)
- Andrew L Hipp
- The Morton Arboretum, Lisle, IL, 60532-1293, USA
- The Field Museum, Chicago, IL, 60605, USA
| | | | - Marlene Hahn
- The Morton Arboretum, Lisle, IL, 60532-1293, USA
| | - Michael Avishai
- Previously of, The Hebrew University of Jerusalem, Botanical Garden, Zalman Shne'ur St. 1, Jerusalem, Israel
| | | | | | | | - Min Deng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Thomas Denk
- Swedish Museum of Natural History, Stockholm, 10405, Sweden
| | | | - Oliver Gailing
- Büsgen-Institute, Georg-August-University Göttingen, Göttingen, D-37077, Germany
| | | | - Antonio González-Rodríguez
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, 58190, México
| | | | - Xiao-Long Jiang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China
| | | | | | | | | | - Hernando Rodríguez-Correa
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, 58190, México
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Hans-Knoell-Str. 10, Jena, 07745, Germany
| | | | - Victoria L Sork
- University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Susana Valencia-Avalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior, s.n., Ciudad Universitaria, Coyoacán, México City, CP 04510, México
| |
Collapse
|
18
|
Tynkevich YO, Volkov RA. 5S Ribosomal DNA of Distantly Related Quercus Species: Molecular Organization and Taxonomic Application. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Burge DO, Parker VT, Mulligan M, Sork VL. Influence of a climatic gradient on genetic exchange between two oak species. AMERICAN JOURNAL OF BOTANY 2019; 106:864-878. [PMID: 31216071 DOI: 10.1002/ajb2.1315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
PREMISE In plant groups with limited intrinsic barriers to gene flow, it is thought that environmental conditions can modulate interspecific genetic exchange. Oaks are known for limited barriers to gene flow among closely related species. Here, we use Quercus as a living laboratory in which to pursue a fundamental question in plant evolution: Do environmental gradients restrict or promote genetic exchange between species? METHODS We focused on two North American oaks, the rare Quercus dumosa and the widespread Q. berberidifolia. We sampled intensively along a contact zone in California, USA. We sequenced restriction site-associated DNA markers and measured vegetative phenotype. We tested for genetic exchange, the association with climate, and the effect on phenotype. RESULTS There is evidence for genetic exchange between the species. Admixed plants are found in areas of intermediate climate, while less admixed plants are found at the extremes of the climatic gradient. Genetic and phenotypic patterns are out of phase in the contact zone; some plants display the phenotype of one species but are genetically associated with another. CONCLUSIONS Our results support the hypothesis that a strong climatic gradient can promote genetic exchange between species. The overall weak correlation between genotype and phenotype in the contact zone between the species suggests that genetic exchange can lead to the breakdown of trait combinations used to define species. This incongruency predicts ongoing problems for conservation of Q. dumosa, with implications for conservation of other oaks.
Collapse
Affiliation(s)
- Dylan O Burge
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, California, 90095-7239, USA
- 554 Vallombrosa Avenue, P.O. Box 418, Chico, California, 95927, USA
| | - V Thomas Parker
- San Francisco State University, 1600 Holloway Avenue, San Francisco, California, 94132, USA
| | - Margaret Mulligan
- San Diego Natural History Museum, Balboa Park, 1788 El Prado, San Diego, California, 92101, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, California, 90095-7239, USA
| |
Collapse
|
20
|
Target sequence capture in the Brazil nut family (Lecythidaceae): Marker selection and in silico capture from genome skimming data. Mol Phylogenet Evol 2019; 135:98-104. [DOI: 10.1016/j.ympev.2019.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/20/2022]
|
21
|
Tang K, Ren J, Cronn R, Erickson DL, Milligan BG, Parker-Forney M, Spouge JL, Sun F. Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA. BMC Genomics 2018; 19:896. [PMID: 30526482 PMCID: PMC6288960 DOI: 10.1186/s12864-018-5253-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 01/14/2023] Open
Abstract
Background The application of genomic data and bioinformatics for the identification of restricted or illegally-sourced natural products is urgently needed. The taxonomic identity and geographic provenance of raw and processed materials have implications in sustainable-use commercial practices, and relevance to the enforcement of laws that regulate or restrict illegally harvested materials, such as timber. Improvements in genomics make it possible to capture and sequence partial-to-complete genomes from challenging tissues, such as wood and wood products. Results In this paper, we report the success of an alignment-free genome comparison method, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {d}_2^{\ast }, $$\end{document}d2∗, that differentiates different geographic sources of white oak (Quercus) species with a high level of accuracy with very small amount of genomic data. The method is robust to sequencing errors, different sequencing laboratories and sequencing platforms. Conclusions This method offers an approach based on genome-scale data, rather than panels of pre-selected markers for specific taxa. The method provides a generalizable platform for the identification and sourcing of materials using a unified next generation sequencing and analysis framework. Electronic supplementary material The online version of this article (10.1186/s12864-018-5253-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kujin Tang
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jie Ren
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA.
| | - David L Erickson
- DNA4 Technologies LLC, bwtech@UMBC Research & Technology Park, Baltimore, MD, 21227, USA
| | - Brook G Milligan
- Conservation Genomics Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - John L Spouge
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Fengzhu Sun
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA, 90089, USA. .,Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
22
|
Kim BY, Wei X, Fitz-Gibbon S, Lohmueller KE, Ortego J, Gugger PF, Sork VL. RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species (Quercussect.Quercus: Fagaceae). Mol Ecol 2018; 27:4556-4571. [DOI: 10.1111/mec.14869] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/25/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Bernard Y. Kim
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
| | - Xinzeng Wei
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Key Laboratory of Aquatic Botany and Watershed Ecology; Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan Hubei China
| | - Sorel Fitz-Gibbon
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Department of Human Genetics; David Geffen School of Medicine; University of California; Los Angeles California
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana, EBD-CSIC; Seville Spain
| | - Paul F. Gugger
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Appalachian Laboratory; University of Maryland Center for Environmental Science; Frostburg Maryland
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Institute of the Environment and Sustainability; University of California; Los Angeles California
| |
Collapse
|
23
|
Fitzek E, Delcamp A, Guichoux E, Hahn M, Lobdell M, Hipp AL. A nuclear DNA barcode for eastern North American oaks and application to a study of hybridization in an Arboretum setting. Ecol Evol 2018; 8:5837-5851. [PMID: 29938097 PMCID: PMC6010771 DOI: 10.1002/ece3.4122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
DNA barcoding has proved difficult in a number of woody plant genera, including the ecologically important oak genus Quercus. In this study, we utilized restrictionsite-associated DNA sequencing (RAD-seq) to develop an economical single nucleotide polymorphism (SNP) DNA barcoding system that suffices to distinguish eight common, sympatric eastern North American white oak species. Two de novo clustering pipelines, PyRAD and Stacks, were used in combination with postclustering bioinformatic tools to generate a list of 291 potential SNPs, 80 of which were included in a barcoding toolkit that is easily implemented using MassARRAY mass spectrometry technology. As a proof-of-concept, we used the genotyping toolkit to infer potential hybridization between North American white oaks transplanted outside of their native range (Q. michauxii, Q. montana, Q muehlenbergii/Q. prinoides, and Q. stellata) into a horticultural collection surrounded by natural forests of locally native trees (Q. alba and Q. macrocarpa) in the living collection at The Morton Arboretum (Lisle, IL, USA). Phylogenetic and clustering analyses suggested low rates of hybridization between cultivated and native species, with the exception of one Q. michauxii mother tree, the acorns of which exhibited high admixture from either Q. alba or Q. stellata and Q. macrocarpa, and a hybrid between Q. stellata that appears to have backcrossed almost exclusively to Q. alba. Together, RAD-seq and MassARRAY technologies allow for efficient development and implementation of a multispecies barcode for one of the more challenging forest tree genera.
Collapse
Affiliation(s)
- Elisabeth Fitzek
- HerbariumThe Morton ArboretumLisleIllinois
- Present address:
Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinois
| | - Adline Delcamp
- Site de Pierroton, Platforme Genome TranscriptomeINRACESTASFrance
- UMR1202 Biodiversité Gènes and CommunautésUniversity of BordeauxCESTASFrance
| | - Erwan Guichoux
- Site de Pierroton, Platforme Genome TranscriptomeINRACESTASFrance
- UMR1202 Biodiversité Gènes and CommunautésUniversity of BordeauxCESTASFrance
| | | | | | - Andrew L. Hipp
- HerbariumThe Morton ArboretumLisleIllinois
- Department of BotanyThe Field MuseumChicagoIllinois
| |
Collapse
|
24
|
Cavender-Bares J, Kothari S, Meireles JE, Kaproth MA, Manos PS, Hipp AL. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. AMERICAN JOURNAL OF BOTANY 2018; 105:565-586. [PMID: 29689630 DOI: 10.1002/ajb2.1049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Evolutionary and biogeographic history, including past environmental change and diversification processes, are likely to have influenced the expansion, migration, and extinction of populations, creating evolutionary legacy effects that influence regional species pools and the composition of communities. We consider the consequences of the diversification process in shaping trait evolution and assembly of oak-dominated communities throughout the continental United States (U.S.). METHODS Within the U.S. oaks, we tested for phylogenetic and functional trait patterns at different spatial scales, taking advantage of a dated phylogenomic analysis of American oaks and the U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA). KEY RESULTS We find (1) phylogenetic overdispersion at small grain sizes throughout the U.S. across all spatial extents and (2) a shift from overdispersion to clustering with increasing grain sizes. Leaf traits have evolved in a convergent manner, and these traits are clustered in communities at all spatial scales, except in the far west, where species with contrasting leaf types co-occur. CONCLUSIONS Our results support the hypotheses that (1) interspecific interactions were important in parallel adaptive radiation of the genus into a range of habitats across the continent and (2) that the diversification process is a critical driver of community assembly. Functional convergence of complementary species from distinct clades adapted to the same local habitats is a likely mechanism that allows distantly related species to coexist. Our findings contribute to an explanation of the long-term maintenance of high oak diversity and the dominance of the oak genus in North America.
Collapse
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shan Kothari
- Department of Plant Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN, 55108, USA
| | - José Eduardo Meireles
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Matthew A Kaproth
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
- Department of Biological Sciences, Minnesota State University, Mankato, MN, 56001, USA
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
25
|
Folk RA, Soltis PS, Soltis DE, Guralnick R. New prospects in the detection and comparative analysis of hybridization in the tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:364-375. [PMID: 29683488 DOI: 10.1002/ajb2.1018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 05/03/2023]
Abstract
Assessing the relative importance of the various pathways to diversification is a central goal of biodiversity researchers. For plant biologists, and increasingly across the spectrum of biological sciences, among these pathways of interest is hybridization. New methodological developments are moving the field away from questions of whether natural hybridization occurs or hybrids can persist and toward more direct assessments of the long-term impact of hybridization on diversification and genome organization. Advances in theory and new data, especially phylogenomic data, have changed the face of this field, revealing extensive occurrences of hybridization at both shallow and deep levels, but lacking is a synthesis of these advancements. Here we provide an overview of methods that have been proposed for detecting hybridization with molecular data and advocate a time-extended, comparative view of reticulate evolution. In particular, we pose three overarching questions, newly placed within reach, that are critical for advancing our understanding of hybridization pattern and process: (1) How often is introgression biased toward certain genomes and loci, and is this bias selectively neutral? (2) What are the relative rates of formation of hybrid species and introgressants, and how does this compare to their subsequent fates? (3) Has the frequency of hybridization increased under historical periods of greater dynamism in climate and geographic range, such as the Pleistocene?
Collapse
Affiliation(s)
- Ryan A Folk
- Florida Museum of Natural History, 1659 Museum Road, Gainesville, Florida, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, 1659 Museum Road, Gainesville, Florida, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, Florida, 32611, USA
- Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, Florida, 32611, USA
| | - Robert Guralnick
- Florida Museum of Natural History, 1659 Museum Road, Gainesville, Florida, 32611, USA
| |
Collapse
|
26
|
Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol Phylogenet Evol 2018; 119:170-181. [DOI: 10.1016/j.ympev.2017.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022]
|
27
|
McVay JD, Hipp AL, Manos PS. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc Biol Sci 2018; 284:rspb.2017.0300. [PMID: 28515204 DOI: 10.1098/rspb.2017.0300] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 11/12/2022] Open
Abstract
Oaks (Quercus L.) have long been suspected to hybridize in nature, and widespread genetic exchange between morphologically defined species is well documented in two- to six-species systems, but the phylogenetic consequences of hybridization in oaks have never been demonstrated in a phylogenetically diverse sample. Here, we present phylogenomic analyses of a ca 30 Myr clade that strongly support morphologically defined species and the resolution of novel clades of white oaks; however, historical hybridization across clade boundaries is detectable and, undiagnosed, would obscure the imprint of biogeographic history in the phylogeny. Phylogenetic estimation from restriction-site-associated DNA sequencing data for 156 individuals representing 81 species supports two successive intercontinental disjunctions of white oaks: an early vicariance between the Eurasian and American white oaks, and a second, independent radiation represented by two relictual species. A suite of subsampled and partitioned analyses, however, supports a more recent divergence of the Eurasian white oaks from within the American white oaks and suggests that historic introgression between the Eurasian white oaks and a now-relictual lineage biases concatenated phylogenetic estimates. We demonstrate how divergence and reticulation both influence our understanding of the timing and nature of diversification and global colonization in these ecologically and economically important taxa.
Collapse
Affiliation(s)
- John D McVay
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 IL-53, Lisle, IL 60532, USA
| | - Paul S Manos
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
28
|
Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, Avalos SV, Cavender-Bares J. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. THE NEW PHYTOLOGIST 2018; 217:439-452. [PMID: 28921530 DOI: 10.1111/nph.14773] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 05/21/2023]
Abstract
Oaks (Quercus, Fagaceae) are the dominant tree genus of North America in species number and biomass, and Mexico is a global center of oak diversity. Understanding the origins of oak diversity is key to understanding biodiversity of northern temperate forests. A phylogenetic study of biogeography, niche evolution and diversification patterns in Quercus was performed using 300 samples, 146 species. Next-generation sequencing data were generated using the restriction-site associated DNA (RAD-seq) method. A time-calibrated maximum likelihood phylogeny was inferred and analyzed with bioclimatic, soils, and leaf habit data to reconstruct the biogeographic and evolutionary history of the American oaks. Our highly resolved phylogeny demonstrates sympatric parallel diversification in climatic niche, leaf habit, and diversification rates. The two major American oak clades arose in what is now the boreal zone and radiated, in parallel, from eastern North America into Mexico and Central America. Oaks adapted rapidly to niche transitions. The Mexican oaks are particularly numerous, not because Mexico is a center of origin, but because of high rates of lineage diversification associated with high rates of evolution along moisture gradients and between the evergreen and deciduous leaf habits. Sympatric parallel diversification in the oaks has shaped the diversity of North American forests.
Collapse
Affiliation(s)
- Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| | | | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de Sán José de la Huerta, Morelia, Michoacán, 58190, México
| | - Marlene Hahn
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
| | - Matthew Kaproth
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
- Department of Biological Sciences, Minnesota State University, Mankato, MN 56001, USA
| | | | - Susana Valencia Avalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior, s.n., Ciudad Universitaria, Coyoacán, CP, 04510, México City, México
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
29
|
Hauser DA, Keuter A, McVay JD, Hipp AL, Manos PS. The evolution and diversification of the red oaks of the California Floristic Province (Quercus section Lobatae, series Agrifoliae). AMERICAN JOURNAL OF BOTANY 2017; 104:1581-1595. [PMID: 29885216 DOI: 10.3732/ajb.1700291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The California Floristic Province (CA-FP) is a unique and diverse region of floral endemism, yet the timing and nature of divergence and diversification of many lineages remain underexplored. We seek to elucidate the evolutionary history of the red oaks of the CA-FP, the Agrifoliae. METHODS We collected PstI-associated RAD-seq data as well as morphometrics from individuals of the four species across their ranges, including varieties and hybrids. Phylogeny and divergence times were estimated. We analyzed morphological differentiation in over 70 plants using PCA and assessed species delimitation and admixture using genotype clustering analysis in over 40 plants. KEY RESULTS We find that the Agrifoliae are monophyletic and sister to all other red oak species. Within the Agrifoliae, all species are supported, with Quercus kelloggii sister to a clade of subevergreen taxa: (Quercus agrifolia - (Q. parvula + Q. wislizeni)). Molecular and morphometric analyses are equivocal for named varieties. Notably, Q. parvula var. tamalpaisensis appears to be part of a hybrid swarm between Q. parvula and Q. wislizeni. Dating estimates were concordant with previous hypotheses and geological evidence, with diversification occurring between 10 and 20 million years ago. CONCLUSIONS The Agrifoliae represent a geographically discrete, early-diverging red oak lineage that diversified during the period of drying and warming associated with Sierran uplift during the middle Miocene. Molecular differentiation within the clade supports the current taxonomy, including an east-west species level pattern (Q. parvula and Q. wislizeni) and north-south intraspecific patterns to some degree, although the latter require additional study.
Collapse
Affiliation(s)
- Duncan A Hauser
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708 USA
| | - Al Keuter
- Kenneth S. Norris Center for Natural History, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064 USA
| | - John D McVay
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708 USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, Illinois 60532-1293 USA
| | - Paul S Manos
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708 USA
| |
Collapse
|
30
|
Pham KK, Hipp AL, Manos PS, Cronn RC. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome 2017; 60:720-732. [DOI: 10.1139/gen-2016-0191] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Owing to high rates of introgressive hybridization, the plastid genome is poorly suited to fine-scale DNA barcoding and phylogenetic studies of the oak genus (Quercus, Fagaceae). At the tips of the oak plastome phylogeny, recent gene migration and reticulation generally cause topology to reflect geographic structure, while deeper branches reflect lineage divergence. In this study, we quantify the simple and partial effects of geographic proximity and nucleome-inferred phylogenetic history on oak plastome phylogeny at different evolutionary scales. Our study compares pairwise phylogenetic distances based on complete plastome sequences, pairwise phylogenetic distances from nuclear restriction site-associated DNA sequences (RADseq), and pairwise geographic distances for 34 individuals of the white oak clade representing 24 North American and Eurasian species. Within the North American white oak clade alone, phylogenetic history has essentially no effect on plastome variation, while geography explains 11%–21% of plastome phylogenetic variance. However, across multiple continents and clades, phylogeny predicts 30%–41% of plastome variation, geography 3%–41%. Tipwise attenuation of phylogenetic informativeness in the plastome means that in practical terms, plastome data has little use in solving phylogenetic questions, but can still be a useful barcoding or phylogenetic marker for resolving questions among major clades.
Collapse
Affiliation(s)
- Kasey K. Pham
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532-1293, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | - Andrew L. Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532-1293, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Paul S. Manos
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Richard C. Cronn
- Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331-4401, USA
| |
Collapse
|