1
|
Silva AM, Campa F, Sardinha LB. The usefulness of total body protein mass models for adolescent athletes. Front Nutr 2024; 11:1439208. [PMID: 39040929 PMCID: PMC11262245 DOI: 10.3389/fnut.2024.1439208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The present study aimed to assess the utility of a less laborious technique for estimating total body protein (TBPro) in young athletes, using a multicomponent model as the criterion method. A total of 88 (49 boys and 39 girls) adolescent athletes (age: 15.2 ± 1.5 years; body mass index: 21.2 ± 2.7 kg/m2) participated. A 6-compartment model was used as the reference method (TBProReference) involving air displacement plethysmography for body volume, dual-energy X-ray absorptiometry (DXA) for bone mineral content, and deuterium dilution for total body water (TBW). Alternatively, DXA TBPro models were used as TBPro = lean-soft mass (LSM) - HFFFM × fat-free mass (FFM) - Ms. - G, where LSM and FFM were assessed using DXA, HFFFM is the hydration fraction of the FFM using measured TBW or assumed TBW (adult fraction of 0.732; Lohman's constants or mean observed HFFFM), Ms. is soft tissue minerals (Ms = 0.0129 × HFFFM × FFM), and G is glycogen calculated as 0.044 × (LSM - HFFFM × FFM - Ms). The maturation level was determined by self-assessment. TBPro obtained from DXA using the assumed HFFFM explained 73% to 77% of the variance compared to TBProReference. Meanwhile, using the mean values of measured HFFFM, the DXA model explained 53 and 36% for boys and girls, respectively. Larger bias (8.6% for boys and 25.8% for girls) and limits of agreement were found for the DXA model using measured HFFFM (boys for 66.9% and girls for 70%) compared to an assumed HFFFM (bias ranged from 1.5% to 22.5% and limits of agreement ranged from 31.3% to 35.3%). Less complex and demanding TBPro DXA models with the assumed HFFFM are valid alternatives for assessing this relevant FFM component in groups of adolescent athletes but are less accurate for individual results. Though future studies should be conducted to test the usefulness of these models in longitudinal and experimental designs, their potential to provide an estimation of protein mass after exercise and diet interventions in young athletes is anticipated.
Collapse
Affiliation(s)
- Analiza M. Silva
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Francesco Campa
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Luís B. Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Armstrong R, Baltzopoulos V, Langan-Evans C, Clark D, Jarvis J, Stewart C, O’Brien T. An investigation of movement dynamics and muscle activity during traditional and accentuated-eccentric squatting. PLoS One 2022; 17:e0276096. [PMID: 36318527 PMCID: PMC9624406 DOI: 10.1371/journal.pone.0276096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Accentuated-eccentric loading (AEL) takes advantage of the high force producing potential of eccentric muscle contractions, potentially maximising mechanical tension within the muscle. However, evidence is lacking on how AEL squatting may load the involved musculature, limiting scientifically justified programming recommendations. The purpose of this study was to investigate the effects of concentric and eccentric loads on joint loading and muscle activity of the lower limbs. Methods Resistance trained males performed traditional squatting (20–100% of concentric one-repetition maximum [1RM]) and AEL squatting with eccentric loads (110–150% of 1RM) provided by a novel motorised isotonic resistance machine (Kineo). Kinetics and kinematics of the hip, knee, and ankle joints were collected, with electromyography from the gluteus maximus, vastus lateralis, biceps femoris, and gastrocnemius medialis. A secondary cohort underwent a kinematic and electromyography analysis of squatting technique to compare Kineo and back and front barbell squatting. Results Knee joint peak eccentric moments occurred at 120% 1RM (P = 0.045), with no further increase thereafter. As eccentric load increased, the time course of moment development occurred earlier in the eccentric phase. This resulted in a 37% increase in eccentric knee extensor work from the 80% 1RM trial to the 120% 1RM trial (P<0.001). Neither hip nor ankle joints displayed further change in kinetics as eccentric load increased above 100% 1RM. Electromyographic activity during traditional squatting was ~15–30% lower in all eccentric trials than in concentric trials for all muscles. EMG plateaued between a load of 80–100% 1RM during the eccentric trials and did not increase with AEL. No significant differences in kinematics were found between Kineo and barbell squatting. Conclusions The knee extensors appear to be preferentially loaded during AEL squatting. The greater work performed during the eccentric phase of the squat as eccentric load increased suggests greater total mechanical tension could be the cause of adaptations from AEL. Our data suggest that AEL should be programmed with a load of 120% of 1RM. Further studies are needed to confirm the longer-term training effects of AEL.
Collapse
Affiliation(s)
- Richard Armstrong
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail:
| | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Carl Langan-Evans
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dave Clark
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jonathan Jarvis
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Claire Stewart
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas O’Brien
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
3
|
Selected Methods of Resistance Training for Prevention and Treatment of Sarcopenia. Cells 2022; 11:cells11091389. [PMID: 35563694 PMCID: PMC9102413 DOI: 10.3390/cells11091389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Resistance training is an extremely beneficial intervention to prevent and treat sarcopenia. In general, traditional high-load resistance training improves skeletal muscle morphology and strength, but this method is impractical and may even reduce arterial compliance by about 20% in aged adults. Thus, the progression of resistance training methods for improving the strength and morphology of muscles without applying a high load is essential. Over the past two decades, various resistance training methods that can improve skeletal muscle mass and muscle function without using high loads have attracted attention, and their training effects, molecular mechanisms, and safety have been reported. The present study focuses on the relationship between exercise load/intensity, training effects, and physiological mechanisms as well as the safety of various types of resistance training that have attracted attention as a measure against sarcopenia. At present, there is much research evidence that blood-flow-restricted low-load resistance training (20–30% of one repetition maximum (1RM)) has been reported as a sarcopenia countermeasure in older adults. Therefore, this training method may be particularly effective in preventing sarcopenia.
Collapse
|
4
|
Osburn SC, Vann CG, Church DD, Ferrando AA, Roberts MD. Proteasome- and Calpain-Mediated Proteolysis, but Not Autophagy, Is Required for Leucine-Induced Protein Synthesis in C2C12 Myotubes. PHYSIOLOGIA 2021; 1:22-33. [PMID: 34927140 PMCID: PMC8681867 DOI: 10.3390/physiologia1010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscle protein synthesis and proteolysis are tightly coupled processes. Given that muscle growth is promoted by increases in net protein balance, it stands to reason that bolstering protein synthesis through amino acids while reducing or inhibiting proteolysis could be a synergistic strategy in enhancing anabolism. However, there is contradictory evidence suggesting that the proper functioning of proteolytic systems in muscle is required for homeostasis. To add clarity to this issue, we sought to determine if inhibiting different proteolytic systems in C2C12 myotubes in conjunction with acute and chronic leucine treatments affected markers of anabolism. In Experiment 1, myotubes underwent 1-h, 6-h, and 24-h treatments with serum and leucine-free DMEM containing the following compounds (n = 6 wells per treatment): (i) DMSO vehicle (CTL), (ii) 2 mM leucine + vehicle (Leu-only), (iii) 2 mM leucine + 40 μM MG132 (20S proteasome inhibitor) (Leu + MG132), (iv) 2 mM leucine + 50 μM calpeptin (calpain inhibitor) (Leu + CALP), and (v) 2 mM leucine + 1 μM 3-methyladenine (autophagy inhibitor) (Leu + 3MA). Protein synthesis levels significantly increased (p < 0.05) in the Leu-only and Leu + 3MA 6-h treatments compared to CTL, and levels were significantly lower in Leu + MG132 and Leu + CALP versus Leu-only and CTL. With 24-h treatments, total protein yield was significantly lower in Leu + MG132 cells versus other treatments. Additionally, the intracellular essential amino acid (EAA) pool was significantly greater in 24-h Leu + MG132 treatments versus other treatments. In a follow-up experiment, myotubes were treated for 48 h with CTL, Leu-only, and Leu + MG132 for morphological assessments. Results indicated Leu + MG132 yielded significantly smaller myotubes compared to CTL and Leu-only. Our data are limited in scope due to the utilization of select proteolysis inhibitors. However, this is the first evidence to suggest proteasome and calpain inhibition with MG132 and CALP, respectively, abrogate leucine-induced protein synthesis in myotubes. Additionally, longer-term Leu + MG132 treatments translated to an atrophy phenotype. Whether or not proteasome inhibition in vivo reduces leucine- or EAA-induced anabolism remains to be determined.
Collapse
Affiliation(s)
| | - Christopher G. Vann
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC 27708, USA
| | - David D. Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Arny A. Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
5
|
Gillis C, Phillips SM. Protein for the Pre-Surgical Cancer Patient: a Narrative Review. CURRENT ANESTHESIOLOGY REPORTS 2021. [DOI: 10.1007/s40140-021-00494-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Abou Sawan S, Hodson N, Tinline-Goodfellow C, West DWD, Malowany JM, Kumbhare D, Moore DR. Incorporation of Dietary Amino Acids Into Myofibrillar and Sarcoplasmic Proteins in Free-Living Adults Is Influenced by Sex, Resistance Exercise, and Training Status. J Nutr 2021; 151:3350-3360. [PMID: 34486662 DOI: 10.1093/jn/nxab261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute exercise increases the incorporation of dietary amino acids into de novo myofibrillar proteins after a single meal in controlled laboratory studies in males. It is unclear whether this extends to free-living settings or is influenced by training or sex. OBJECTIVES We determined the effects of exercise, training status, and sex on 24-hour free-living dietary phenylalanine incorporation into skeletal muscle proteins. METHODS In a parallel group design, recreationally active males (mean ± SD age, 23 ± 3 years; BMI. 23.4 ± 2.9 kg/m2; n = 10) and females (age 24 ± 5 years; BMI, 23.1 ± 3.9 kg/m2; n = 9) underwent 8 weeks of whole-body resistance exercise 3 times a week. Controlled diets containing 1.6 g/kg-1/d-1 (amino acids modelled after egg), enriched to 10% with [13C6] or [2H5]phenylalanine, were consumed before and after an acute bout of resistance exercise. Fasted muscle biopsies were obtained before [untrained, pre-exercise condition (REST ] and 24 hours after an acute bout of resistance exercise in untrained (UT) and trained (T) states to determine dietary phenylalanine incorporation into myofibrillar (ΔMyo) and sarcoplasmic (ΔSarc) proteins, intracellular mechanistic target of rapamycin (mTOR) colocalization with ulex europaeus agglutinin-1 (UEA-1; capillary marker; immunofluorescence), and amino acid transporter expression (Western blotting). RESULTS The ΔMyo values were ∼62% greater (P < 0.01) in females than males at REST. The ΔMyo values increased above REST by ∼51% during UT and ∼30% in T (both P < 0.01) in males, remained unchanged in females during UT, and were ∼33% lower at T when compared to UT (P = 0.013). Irrespective of sex, ΔMyo and ΔSarc were decreased at T compared to UT (P ≤ 0.026). Resistance training increased mTOR colocalization with UEA-1 (P = 0.004), while L amino acid transporter 1, which was greater in males (P < 0.01), and sodium-coupled neutral amino acid transporter 2 protein expression were not affected by acute exercise (P ≥ 0.33) or training (P ≥ 0.45). CONCLUSIONS The exercise-induced incorporation of dietary phenylalanine into myofibrillar and sarcoplasmic proteins is attenuated after training regardless of sex, suggesting a reduced reliance on dietary amino acids for postexercise skeletal muscle remodeling in the T state.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, Toronto, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Nutritional Practice and Nitrogen Balance in Elite Japanese Swimmers during a Training Camp. Sports (Basel) 2021; 9:sports9020017. [PMID: 33494249 PMCID: PMC7909811 DOI: 10.3390/sports9020017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
The protein requirement in athletes increases as a result of exercise-induced changes in protein metabolism. In addition, the frequency, quantity, and quality (i.e., leucine content) of the protein intake modulates the protein metabolism. Thus, this study aimed to investigate whether nutritional practice (particularly, protein and amino acid intake at each eating occasion) meets the protein needs required to achieve zero nitrogen balance in elite swimmers during a training camp. Eight elite swimmers (age 21.9 ± 2.3 years, body weight 64.2 ± 7.1 kg, sex M:2 F:6) participated in a four-day study. The nitrogen balance was calculated from the dietary nitrogen intake and urinary nitrogen excretion. The amino acid intake was divided over six eating occasions. The nitrogen balance was found to be positive (6.7 ± 3.1 g N/day, p < 0.05) with protein intake of 2.96 ± 0.74 g/kg/day. The frequency and quantity of leucine and the protein intake were met within the recommended range established by the International Society of Sports Nutrition. Thus, a protein intake of 2.96 g/kg/day with a well-designated pattern (i.e., frequency throughout the day, as well as quantity and quality) of protein and amino acid intake may satisfy the increased need for protein in an elite swimmer.
Collapse
|
8
|
Hinde KL, O'Leary TJ, Greeves JP, Wardle SL. Measuring Protein Turnover in the Field: Implications for Military Research. Adv Nutr 2020; 12:887-896. [PMID: 33079983 PMCID: PMC8166569 DOI: 10.1093/advances/nmaa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/15/2022] Open
Abstract
Protein turnover reflects the continual synthesis and breakdown of body proteins, and can be measured at a whole-body (i.e. aggregated across all body proteins) or tissue (e.g. skeletal muscle only) level using stable isotope methods. Evaluating protein turnover in free-living environments, such as military training, can help inform protein requirements. We undertook a narrative review of published literature with the aim of reviewing the suitability of, and advancements in, stable isotope methods for measuring protein turnover in field research. The 2 primary approaches for measuring protein turnover are based on precursor- and end-product methods. The precursor method is the gold-standard for measuring acute (over several hours) skeletal muscle protein turnover, whereas the end-product method measures chronic (over several weeks) skeletal muscle protein turnover and provides the opportunity to monitor free-living activities. Both methods require invasive procedures such as the infusion of amino acid tracers and muscle biopsies to assess the uptake of the tracer into tissue. However, the end-product method can also be used to measure acute (over 9-24 h) whole-body protein turnover noninvasively by ingesting 15N-glycine, or equivalent isotope tracers, and collecting urine samples. The end-product method using 15N-glycine is a practical method for measuring whole-body protein turnover in the field over short (24 h) time frames and has been used effectively in recent military field research. Application of this method may improve our understanding of protein kinetics during conditions of high physiological stress in free-living environments such as military training.
Collapse
Affiliation(s)
- Katrina L Hinde
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom,Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom,Division of Surgery & Interventional Science, University College London, London, United Kingdom,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
9
|
Tinline-Goodfellow CT, West DWD, Malowany JM, Gillen JB, Moore DR. An Acute Reduction in Habitual Protein Intake Attenuates Post Exercise Anabolism and May Bias Oxidation-Derived Protein Requirements in Resistance Trained Men. Front Nutr 2020; 7:55. [PMID: 32391374 PMCID: PMC7188927 DOI: 10.3389/fnut.2020.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Protein recommendations for resistance-trained athletes are generally lower than their habitual intakes. Excess protein consumption increases the capacity to oxidize amino acids, which can attenuate post-exercise anabolism and may impact protein requirements determined by stable isotope techniques predicated on amino acid tracer oxidation. We aimed to determine the impact of an acute (5d) reduction in dietary protein intake on post-exercise anabolism in high habitual consumers using the indicator amino acid oxidation (IAAO) technique. Resistance trained men [n = 5; 25 ± 7 y; 73.0 ± 5.7 kg; 9.9 ± 2.9% body fat; 2.69 ± 0.38 g·kg−1·d−1 habitual protein intake) consumed a high (H; 2.2 g·kg−1·d−1) and moderate (M; 1.2 g·kg−1·d−1) protein diet while training every other day. During the High protein phase, participants consumed a 2d controlled diet prior to determining whole body phenylalanine turnover, net balance (NB), and 13CO2 excretion (F13CO2) after exercise via oral [13C]phenylalanine. During the Moderate phase, participants consumed 2.2 g protein·kg−1·d−1 for 2d prior to consuming 1.2 g protein·kg−1·d−1 for 5d. Phenylalanine metabolism was measured on days 1, 3, and 5 (M1, M3, and M5, respectively) of the moderate intake. F13CO2, the primary outcome for IAAO, was ~72 and ~55% greater on the 1st day (M1, P < 0.05) and the third day of the moderate protein diet (M3, P = 0.07), respectively, compared to the High protein trial. Compared to the High protein trial, NB was ~25% lower on the 1st day (M1, P < 0.01) and 15% lower on the third day of the moderate protein diet (M3, P = 0.09). High habitual protein consumption may bias protein requirements determined by traditional IAAO methods that use only a 2d pre-trial controlled diet. Post-exercise whole body anabolism is attenuated following a reduction in protein intake in resistance trained men and may require ~3–5d to adapt. This trial is registered at clinicaltrials.gov as NCT03845569.
Collapse
Affiliation(s)
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Mazzulla M, Abou Sawan S, Williamson E, Hannaian SJ, Volterman KA, West DWD, Moore DR. Protein Intake to Maximize Whole-Body Anabolism during Postexercise Recovery in Resistance-Trained Men with High Habitual Intakes is Severalfold Greater than the Current Recommended Dietary Allowance. J Nutr 2020; 150:505-511. [PMID: 31618421 DOI: 10.1093/jn/nxz249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 09/13/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Dietary protein supports resistance exercise-induced anabolism primarily via the stimulation of protein synthesis rates. The indicator amino acid oxidation (IAAO) technique provides a noninvasive estimate of the protein intake that maximizes whole-body protein synthesis rates and net protein balance. OBJECTIVE We utilized IAAO to determine the maximal anabolic response to postexercise protein ingestion in resistance-trained men. METHODS Seven resistance-trained men (mean ± SD age 24 ± 3 y; weight 80 ± 9 kg; 11 ± 5% body fat; habitual protein intake 2.3 ± 0.6 g·kg-1·d-1) performed a bout of whole-body resistance exercise prior to ingesting hourly mixed meals, which provided a variable amount of protein (0.20-3.00 g·kg-1·d-1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled with oral l-[1-13C]-phenylalanine. Breath and urine samples were taken at isotopic steady state to determine phenylalanine flux (PheRa), phenylalanine excretion (F13CO2; reciprocal of protein synthesis), and net balance (protein synthesis - PheRa). Total amino acid oxidation was estimated from the ratio of urinary urea and creatinine. RESULTS Mixed model biphasic linear regression revealed a plateau in F13CO2 (mean: 2.00; 95% CI: 1.62, 2.38 g protein·kg-1·d-1) (r2 = 0.64; P ˂ 0.01) and in net balance (mean: 2.01; 95% CI: 1.44, 2.57 g protein·kg-1·d-1) (r2 = 0.63; P ˂ 0.01). Ratios of urinary urea and creatinine concentrations increased linearly (r = 0.84; P ˂ 0.01) across the range of protein intakes. CONCLUSIONS A breakpoint protein intake of ∼2.0 g·kg-1·d-1, which maximized whole-body anabolism in resistance-trained men after exercise, is greater than previous IAAO-derived estimates for nonexercising men and is at the upper range of current general protein recommendations for athletes. The capacity to enhance whole-body net balance may be greater than previously suggested to maximize muscle protein synthesis in resistance-trained athletes accustomed to a high habitual protein intake. This trial was registered at clinicaltrials.gov as NCT03696264.
Collapse
Affiliation(s)
- Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Sarkis J Hannaian
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly A Volterman
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Malowany JM, West DWD, Williamson E, Volterman KA, Abou Sawan S, Mazzulla M, Moore DR. Protein to Maximize Whole-Body Anabolism in Resistance-trained Females after Exercise. Med Sci Sports Exerc 2019; 51:798-804. [PMID: 30395050 DOI: 10.1249/mss.0000000000001832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Current athlete-specific protein recommendations are based almost exclusively on research in males. PURPOSE Using the minimally invasive indicator amino acid oxidation technique, we determined the daily protein intake that maximizes whole-body protein synthesis (PS) and net protein balance (NB) after exercise in strength-trained females. METHODS Eight resistance-trained females (23 ± 3.5 yr, 67.0 ± 7.7 kg, 163.3 ± 3.7 cm, 24.4% ± 6.9% body fat; mean ± SD) completed a 2-d controlled diet during the luteal phase before performing an acute bout of whole-body resistance exercise. During recovery, participants consumed eight hourly meals providing a randomized test protein intake (0.2-2.9 g·kg·d) as crystalline amino acids modeled after egg protein, with constant phenylalanine (30.5 mg·kg·d) and excess tyrosine (40.0 mg·kg·d) intakes. Steady-state whole-body phenylalanine rate of appearance (Ra), oxidation (Ox; the reciprocal of PS), and NB (PS - Ra) were determined from oral [C] phenylalanine ingestion. Total protein oxidation was estimated from the urinary urea-creatinine ratio (U/Cr). RESULTS A mixed model biphase linear regression revealed a break point (i.e., estimated average requirement) of 1.49 ± 0.44 g·kg·d (mean ± 95% confidence interval) in Ox (r = 0.64) and 1.53 ± 0.32 g·kg·d in NB (r = 0.65), indicating a saturation in whole-body anabolism. U/Cr increased linearly with protein intake (r = 0.56, P < 0.01). CONCLUSIONS Findings from this investigation indicate that the safe protein intake (upper 95% confidence interval) to maximize anabolism and minimize protein oxidation for strength-trained females during the early ~8-h postexercise recovery period is at the upper end of the recommendations of the American College of Sports Medicine for athletes (i.e., 1.2-2.0 g·kg·d).
Collapse
Affiliation(s)
- Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, CANADA
| | | | | | | | | | | | | |
Collapse
|
12
|
Farries G, Gough KF, Parnell AC, McGivney BA, McGivney CL, McGettigan PA, MacHugh DE, Katz LM, Hill EW. Analysis of genetic variation contributing to measured speed in Thoroughbreds identifies genomic regions involved in the transcriptional response to exercise. Anim Genet 2019; 50:670-685. [PMID: 31508842 DOI: 10.1111/age.12848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
Abstract
Despite strong selection for athletic traits in Thoroughbred horses, there is marked variation in speed and aptitude for racing performance within the breed. Using global positioning system monitoring during exercise training, we measured speed variables and temporal changes in speed with age to derive phenotypes for GWAS. The aim of the study was to test the hypothesis that genetic variation contributes to variation in end-point physiological traits, in this case galloping speed measured during field exercise tests. Standardisation of field-measured phenotypes was attempted by assessing horses exercised on the same gallop track and managed under similar conditions by a single trainer. PCA of six key speed indices captured 73.9% of the variation with principal component 1 (PC1). Verifying the utility of the phenotype, we observed that PC1 (median) in 2-year-old horses was significantly different among elite, non-elite and unraced horses (P < 0.001) and the temporal change with age in PC1 varied among horses with different myostatin (MSTN) g.66493737C>T SNP genotypes. A GWAS for PC1 in 2-year-old horses (n = 122) identified four SNPs reaching the suggestive threshold for association (P < 4.80 × 10-5 ), defining a 1.09 Mb candidate region on ECA8 containing the myosin XVIIIB (MYO18B) gene. In a GWAS for temporal change in PC1 with age (n = 168), five SNPs reached the suggestive threshold for association and defined candidate regions on ECA2 and ECA11. Both regions contained genes that are significantly differentially expressed in equine skeletal muscle in response to acute exercise and training stimuli, including MYO18A. As MYO18A plays a regulatory role in the skeletal muscle response to exercise, the identified genomic variation proximal to the myosin family genes may be important for the regulation of the response to exercise and training.
Collapse
Affiliation(s)
- G Farries
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - K F Gough
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - A C Parnell
- Insight Centre for Data Analytics, Hamilton Institute, Maynooth University, Kildare, W23 F2H6, Ireland
| | - B A McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,Plusvital Ltd, Dun Laoghaire Industrial Estate, Pottery Road, Dublin, A96 KW29, Ireland
| | - C L McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - P A McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - D E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - L M Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - E W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,Plusvital Ltd, Dun Laoghaire Industrial Estate, Pottery Road, Dublin, A96 KW29, Ireland
| |
Collapse
|
13
|
Abstract
Focusing on daily nutrition is important for athletes to perform and adapt optimally to exercise training. The major roles of an athlete's daily diet are to supply the substrates needed to cover the energy demands for exercise, to ensure quick recovery between exercise bouts, to optimize adaptations to exercise training, and to stay healthy. The major energy substrates for exercising skeletal muscles are carbohydrate and fat stores. Optimizing the timing and type of energy intake and the amount of dietary macronutrients is essential to ensure peak training and competition performance, and these strategies play important roles in modulating skeletal muscle adaptations to endurance and resistance training. In this review, recent advances in nutritional strategies designed to optimize exercise-induced adaptations in skeletal muscle are discussed, with an emphasis on mechanistic approaches, by describing the physiological mechanisms that provide the basis for different nutrition regimens.
Collapse
Affiliation(s)
- Andreas Mæchel Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark; , ,
| |
Collapse
|
14
|
Abstract
Understanding how exercise and dietary protein alter the turnover and synthesis of body proteins in youth can provide guidelines for the optimal development of lean mass. This review hypothesizes that active youth obtain similar anabolic benefits from exercise and dietary protein as adults, but the requirement for amino acids to support growth renders them more sensitive to these nutrients.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, Espregueira-Mendes J. Aging Hallmarks: The Benefits of Physical Exercise. Front Endocrinol (Lausanne) 2018; 9:258. [PMID: 29887832 PMCID: PMC5980968 DOI: 10.3389/fendo.2018.00258] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
World population has been continuously increasing and progressively aging. Aging is characterized by a complex and intraindividual process associated with nine major cellular and molecular hallmarks, namely, genomic instability, telomere attrition, epigenetic alterations, a loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. This review exposes the positive antiaging impact of physical exercise at the cellular level, highlighting its specific role in attenuating the aging effects of each hallmark. Exercise should be seen as a polypill, which improves the health-related quality of life and functional capabilities while mitigating physiological changes and comorbidities associated with aging. To achieve a framework of effective physical exercise interventions on aging, further research on its benefits and the most effective strategies is encouraged.
Collapse
Affiliation(s)
- Alexandre Rebelo-Marques
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
| | - Adriana De Sousa Lages
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Endocrinology, Diabetes and Metabolism Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Faculty of Sports, University of Porto, Porto, Portugal
| | | | | | - Francisco Carrilho
- Endocrinology, Diabetes and Metabolism Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Guimarães, Braga, Portugal
- Orthopaedics Department of Minho University, Minho, Portugal
| |
Collapse
|
16
|
Margolis LM, Ceglia L, Rivas DA, Dawson-Hughes B, Fielding RA. Pilot Study Examining the Influence of Potassium Bicarbonate Supplementation on Nitrogen Balance and Whole-Body Ammonia and Urea Turnover Following Short-Term Energy Restriction in Older Men. Nutrients 2018; 10:nu10050624. [PMID: 29772642 PMCID: PMC5986503 DOI: 10.3390/nu10050624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 01/07/2023] Open
Abstract
With aging there is a chronic low-grade metabolic-acidosis that may exacerbate negative protein balance during weight loss. The objective of this randomized pilot study was to assess the impact of 90 mmol∙day−1 potassium bicarbonate (KHCO3) versus a placebo (PLA) on 24-h urinary net acid excretion (NAE), nitrogen balance (NBAL), and whole-body ammonia and urea turnover following short-term diet-induced weight loss. Sixteen (KHCO3; n = 8, PLA; n = 8) older (64 ± 4 years) overweight (BMI: 28.5 ± 2.1 kg∙day−1) men completed a 35-day controlled feeding study, with a 7-day weight-maintenance phase followed by a 28-day 30% energy-restriction phase. KHCO3 or PLA supplementation began during energy restriction. NAE, NBAL, and whole-body ammonia and urea turnover (15N-glycine) were measured at the end of the weight-maintenance and energy-restriction phases. Following energy restriction, NAE was −9.8 ± 27.8 mmol∙day−1 in KHCO3 and 43.9 ± 27.8 mmol∙day−1 in PLA (p < 0.05). No significant group or time differences were observed in NBAL or ammonia and urea turnover. Ammonia synthesis and breakdown tended (p = 0.09) to be higher in KHCO3 vs. PLA following energy restriction, and NAE was inversely associated (r = −0.522; p < 0.05) with urea synthesis in all subjects. This pilot study suggests some benefit may exist with KHCO3 supplementation following energy restriction as lower NAE indicated higher urea synthesis.
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Lisa Ceglia
- Bone Metabolism Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, MA 02111, USA.
| | - Donato A Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Roger A Fielding
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
17
|
Vliet SV, Beals JW, Martinez IG, Skinner SK, Burd NA. Achieving Optimal Post-Exercise Muscle Protein Remodeling in Physically Active Adults through Whole Food Consumption. Nutrients 2018; 10:nu10020224. [PMID: 29462924 PMCID: PMC5852800 DOI: 10.3390/nu10020224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022] Open
Abstract
Dietary protein ingestion is critical to maintaining the quality and quantity of skeletal muscle mass throughout adult life. The performance of acute exercise enhances muscle protein remodeling by stimulating protein synthesis rates for several hours after each bout, which can be optimized by consuming protein during the post-exercise recovery period. To date, the majority of the evidence regarding protein intake to optimize post-exercise muscle protein synthesis rates is limited to isolated protein sources. However, it is more common to ingest whole food sources of protein within a normal eating pattern. Emerging evidence demonstrates a promising role for the ingestion of whole foods as an effective nutritional strategy to support muscle protein remodeling and recovery after exercise. This review aims to evaluate the efficacy of the ingestion of nutrient-rich and protein-dense whole foods to support post-exercise muscle protein remodeling and recovery with pertinence towards physically active people.
Collapse
Affiliation(s)
- Stephan van Vliet
- Center for Human Nutrition, School of Medicine, Washington University, St. Louis, MO 63110, USA.
| | - Joseph W Beals
- Division of Nutritional Sciences, University of Illinois at Urbana-Campaign, Illinois, Urbana, IL 61801 USA.
| | - Isabel G Martinez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Illinois, Urbana, IL 61801, USA.
| | - Sarah K Skinner
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Illinois, Urbana, IL 61801, USA.
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana-Campaign, Illinois, Urbana, IL 61801 USA.
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients 2018; 10:nu10020180. [PMID: 29414855 PMCID: PMC5852756 DOI: 10.3390/nu10020180] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle supports locomotion and serves as the largest site of postprandial glucose disposal; thus it is a critical organ for physical and metabolic health. Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS) and muscle protein breakdown (MPB), both of which are sensitive to external loading and aminoacidemia. Hyperaminoacidemia results in a robust but transient increase in rates of MPS and a mild suppression of MPB. Resistance exercise potentiates the aminoacidemia-induced rise in MPS that, when repeated over time, results in gradual radial growth of skeletal muscle (i.e., hypertrophy). Factors that affect MPS include both quantity and composition of the amino acid source. Specifically, MPS is stimulated in a dose-responsive manner and the primary amino acid agonist of this process is leucine. MPB also appears to be regulated in part by protein intake, which can exert a suppressive effect on MPB. At high protein doses the suppression of MPB may interfere with skeletal muscle adaptation following resistance exercise. In this review, we examine recent advancements in our understanding of how protein ingestion impacts skeletal muscle growth following resistance exercise in young adults during energy balance and energy restriction. We also provide practical recommendations for exercisers who wish to maximize the hypertrophic response of skeletal muscle during resistance exercise training.
Collapse
|
19
|
The preliminary analysis of protein catabolism and nitrogen balance in young gymnasts. Sci Sports 2018. [DOI: 10.1016/j.scispo.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
HOLLOWAY TANYAM, SNIJDERS TIM, VAN KRANENBURG JANNEAU, VAN LOON LUCJC, VERDIJK LEXB. Temporal Response of Angiogenesis and Hypertrophy to Resistance Training in Young Men. Med Sci Sports Exerc 2018; 50:36-45. [DOI: 10.1249/mss.0000000000001409] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Rogerson D. Vegan diets: practical advice for athletes and exercisers. J Int Soc Sports Nutr 2017; 14:36. [PMID: 28924423 PMCID: PMC5598028 DOI: 10.1186/s12970-017-0192-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023] Open
Abstract
With the growth of social media as a platform to share information, veganism is becoming more visible, and could be becoming more accepted in sports and in the health and fitness industry. However, to date, there appears to be a lack of literature that discusses how to manage vegan diets for athletic purposes. This article attempted to review literature in order to provide recommendations for how to construct a vegan diet for athletes and exercisers. While little data could be found in the sports nutrition literature specifically, it was revealed elsewhere that veganism creates challenges that need to be accounted for when designing a nutritious diet. This included the sufficiency of energy and protein; the adequacy of vitamin B12, iron, zinc, calcium, iodine and vitamin D; and the lack of the long-chain n-3 fatty acids EPA and DHA in most plant-based sources. However, via the strategic management of food and appropriate supplementation, it is the contention of this article that a nutritive vegan diet can be designed to achieve the dietary needs of most athletes satisfactorily. Further, it was suggested here that creatine and β-alanine supplementation might be of particular use to vegan athletes, owing to vegetarian diets promoting lower muscle creatine and lower muscle carnosine levels in consumers. Empirical research is needed to examine the effects of vegan diets in athletic populations however, especially if this movement grows in popularity, to ensure that the health and performance of athletic vegans is optimised in accordance with developments in sports nutrition knowledge.
Collapse
Affiliation(s)
- David Rogerson
- Academy of Sport and Physical Activity, Sheffield Hallam University, S10 2BP, Sheffield, UK
| |
Collapse
|
22
|
West DWD, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients 2017; 9:E735. [PMID: 28696380 PMCID: PMC5537849 DOI: 10.3390/nu9070735] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036) but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP), maximal strength (MVC), peak and mean power, and countermovement jump performance (CMJ) at 0 h (all P < 0.05 vs. Pre). At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56), mean power (ES = 0.49), and CMJ variables (ES: 0.27-0.49) in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.
Collapse
Affiliation(s)
- Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Daniel R Moore
- Kinesiology and Physical Education University of Toronto 100 Devonshire Place, Toronto, ON M5S 2C9, Canada.
| |
Collapse
|
23
|
Margolis LM, Rivas DA, Pasiakos SM, McClung JP, Ceglia L, Fielding RA. Upregulation of circulating myomiR following short-term energy restriction is inversely associated with whole body protein synthesis. Am J Physiol Regul Integr Comp Physiol 2017; 313:R298-R304. [PMID: 28659285 DOI: 10.1152/ajpregu.00054.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
The objective of the present investigation was to determine whether energy restriction (ER) influences expression of skeletal muscle-specific microRNA (miRNA) in circulation (c-myomiR) and whether changes in c-myomiR are associated with rates of whole body protein synthesis. Sixteen older (64 ± 2 yr) overweight (28.5 ± 1.2 kg/m2) men enrolled in this 35-day controlled feeding trial. A 7-day weight maintenance (WM) period was followed by 28 days of 30% ER. Whole body protein turnover was determined from [15N]glycine enrichments in 24-h urine collections, and c-myomiR (miR-1-3p, miR-133a-3p, miR-133b, and miR-206) expression was assessed from serum samples by RT-quantitative PCR upon completion of the WM and ER periods. Participants lost 4.4 ± 0.3 kg body mass during ER (P < 0.05). After 28 days of ER, miR-133a and miR-133b expression was upregulated (P < 0.05) compared with WM. When all four c-myomiR were grouped as c-myomiR score (sum of the median fold change of all myomiR), overall expression of c-myomiR was higher (P < 0.05) at ER than WM. Backward linear regression analysis of whole body protein synthesis and breakdown and carbohydrate, fat, and protein oxidation determined protein synthesis to be the strongest predictor of c-myomiR score. An inverse association (P < 0.05) was observed with ER c-myomiR score and whole body protein synthesis (r = -0.729, r2 = -0.530). Findings from the present investigation provide evidence that upregulation of c-myomiR expression profiles in response to short-term ER is associated with lower rates of whole body protein synthesis.
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Donato A Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - James P McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lisa Ceglia
- Bone Metabolism Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and.,Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts;
| |
Collapse
|
24
|
Protein Supplementation to Augment the Effects of High Intensity Resistance Training in Untrained Middle-Aged Males: The Randomized Controlled PUSH Trial. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3619398. [PMID: 28656141 PMCID: PMC5471590 DOI: 10.1155/2017/3619398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
High intensity (resistance exercise) training (HIT) defined as a "single set resistance exercise to muscular failure" is an efficient exercise method that allows people with low time budgets to realize an adequate training stimulus. Although there is an ongoing discussion, recent meta-analysis suggests the significant superiority of multiple set (MST) methods for body composition and strength parameters. The aim of this study is to determine whether additional protein supplementation may increase the effect of a HIT-protocol on body composition and strength to an equal MST-level. One hundred and twenty untrained males 30-50 years old were randomly allocated to three groups: (a) HIT, (b) HIT and protein supplementation (HIT&P), and (c) waiting-control (CG) and (after cross-over) high volume/high-intensity-training (HVHIT). HIT was defined as "single set to failure protocol" while HVHIT consistently applied two equal sets. Protein supplementation provided an overall intake of 1.5-1.7 g/kg/d/body mass. Primary study endpoint was lean body mass (LBM). LBM significantly improved in all exercise groups (p ≤ 0.043); however only HIT&P and HVHIT differ significantly from control (p ≤ 0.002). HIT diverges significantly from HIT&P (p = 0.017) and nonsignificantly from HVHIT (p = 0.059), while no differences were observed for HIT&P versus HVHIT (p = 0.691). In conclusion, moderate to high protein supplementation significantly increases the effects of a HIT-protocol on LBM in middle-aged untrained males.
Collapse
|
25
|
MARGOLIS LEEM, MURPHY NANCYE, MARTINI SVEIN, GUNDERSEN YNGVAR, CASTELLANI JOHNW, KARL JPHILIP, CARRIGAN CHRISTOPHERT, TEIEN HILDEKRISTIN, MADSLIEN ELISABETHHENIE, MONTAIN SCOTTJ, PASIAKOS STEFANM. Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training. Med Sci Sports Exerc 2016; 48:1604-12. [DOI: 10.1249/mss.0000000000000944] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Reidy PT, Rasmussen BB. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J Nutr 2016; 146:155-83. [PMID: 26764320 PMCID: PMC4725426 DOI: 10.3945/jn.114.203208] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/03/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on this effect during long-term exercise interventions. There were no differences in strength or mass/muscle mass on RET outcomes between protein types when a leucine threshold (>2 g/dose) was reached. Future research with larger sample sizes and more homogeneity in design is necessary to understand the underlying adaptations and to better evaluate the individual variability in the muscle-adaptive response to protein/AA supplementation during RET.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
27
|
Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, Emanuele E, Joyner MJ, Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2016; 18:57-89. [PMID: 25431878 DOI: 10.1089/rej.2014.1623] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process, more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of exercise and to implement effective exercise interventions for elderly people.
Collapse
Affiliation(s)
- Nuria Garatachea
- 1 Faculty of Health and Sport Science, University of Zaragoza , Huesca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boone CH, Stout JR, Beyer KS, Fukuda DH, Hoffman JR. Muscle strength and hypertrophy occur independently of protein supplementation during short-term resistance training in untrained men. Appl Physiol Nutr Metab 2015; 40:797-802. [DOI: 10.1139/apnm-2015-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term resistance training has consistently demonstrated gains in muscular strength, but not hypertrophy. Post-resistance training protein ingestion is posited to augment the acute anabolic stimulus, thus potentially accelerating changes in muscle size and strength. The purpose of this investigation was to examine the effects of 4 weeks of resistance training with protein supplementation on strength and muscle morphology changes in untrained men. Participants (mean ± SD; N = 18; age, 22.0 ± 2.5 years; body mass index, 25.1 ± 5.4 kg·m−2) were randomly assigned to a resistance training + protein group (n = 9; whey (17 g) + colostrum (3 g) + leucine (2 g)) or a resistance training + placebo group (n = 9). One-repetition maximum (1RM) strength in the leg press (LP) and leg extension (LE) exercises, maximal isometric knee extensor strength (MVIC), and muscle morphology (thickness (MT), cross-sectional area (CSA), pennation angle) of the dominant rectus femoris (RF) and vastus lateralis (VL) was assessed before and after training. Participants performed LP and LE exercises (3 × 8–10; at 80% 1RM) 3 days/week for 4 weeks. Data were analyzed using 2-way ANOVA with repeated measures. Four weeks of resistance training resulted in significant increases in LP (p < 0.001), LE (p < 0.001), MVIC (p < 0.001), RF MT (p < 0.001), RF CSA (p < 0.001), VL MT (p < 0.001), and VL CSA (p < 0.001). No between-group differences were observed. Although nutrition can significantly affect training adaptations, these results suggest that short-term resistance training augments muscle strength and size in previously untrained men with no additive benefit from postexercise protein supplementation.
Collapse
Affiliation(s)
- Carleigh H. Boone
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - Jeffrey R. Stout
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - Kyle S. Beyer
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - David H. Fukuda
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - Jay R. Hoffman
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| |
Collapse
|
29
|
Margolis LM, Murphy NE, Martini S, Spitz MG, Thrane I, McGraw SM, Blatny JM, Castellani JW, Rood JC, Young AJ, Montain SJ, Gundersen Y, Pasiakos SM. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance. Appl Physiol Nutr Metab 2014; 39:1395-401. [DOI: 10.1139/apnm-2014-0212] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D218O) and intake were measured daily, and postabsorptive whole-body protein turnover ([15N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day−1) increased (P < 0.01) from (mean ± SD (95% confidence interval)) 3098 ± 236 (2985, 3212) during MTT to 3461 ± 586 (3178, 3743) during SKI, while protein (g·kg−1·day−1) intake remained constant (MTT, 1.59 ± 0.33 (1.51, 1.66); and SKI, 1.71 ± 0.55 (1.58, 1.85)). Energy expenditure increased (P < 0.05) during SKI (6851 ± 562 (6580, 7122)) compared with MTT (5480 ± 389 (5293, 5668)) and exceeded energy intake. Protein flux, synthesis, and breakdown were all increased (P < 0.05) 24%, 18%, and 27%, respectively, during SKI compared with baseline and MTT. Whole-body protein balance was lower (P < 0.05) during SKI (–1.41 ± 1.11 (–1.98, –0.84) g·kg−1·10 h) than MTT and baseline. Muscle damage and soreness increased and performance decreased progressively (P < 0.05). The physiological consequences observed during short-term winter military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits.
Collapse
Affiliation(s)
- Lee M. Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Nancy E. Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Svein Martini
- Norwegian Defence Research Establishment, Instituttvn 20, N-2007 Kjeller, Norway
| | - Marissa G. Spitz
- Thermal Mountain and Medicine Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Ingjerd Thrane
- Norwegian Defence Research Establishment, Instituttvn 20, N-2007 Kjeller, Norway
| | - Susan M. McGraw
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Janet-Martha Blatny
- Norwegian Defence Research Establishment, Instituttvn 20, N-2007 Kjeller, Norway
| | - John W. Castellani
- Thermal Mountain and Medicine Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Jennifer C. Rood
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd., Baton Rouge, LA 70808, USA
| | - Andrew J. Young
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Scott J. Montain
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| | - Yngvar Gundersen
- Norwegian Defence Research Establishment, Instituttvn 20, N-2007 Kjeller, Norway
| | - Stefan M. Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Bldg. 42, Natick, MA 01760, USA
| |
Collapse
|
30
|
Graham-Thiers P, Bowen LK. Effect of a 12-Week Conditioning Period on Nitrogen Balance in Horses. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, Klochak AL, Lonac MC, Paris HLR, Szallar SE, Wood LM, Peelor FF, Holmes WE, Hellerstein MK, Bell C, Hamilton KL, Miller BF. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J 2014; 28:2705-14. [DOI: 10.1096/fj.13-246595] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rebecca L. Scalzo
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Garrett L. Peltonen
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Scott E. Binns
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | | | - Gregory R. Giordano
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Dylan A. Hartley
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Anna L. Klochak
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Mark C. Lonac
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Hunter L. R. Paris
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Steve E. Szallar
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Lacey M. Wood
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Frederick F. Peelor
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | | | - Marc K. Hellerstein
- KineMed, Inc.EmeryvilleCaliforniaUSA
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Christopher Bell
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Karyn L. Hamilton
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Benjamin F. Miller
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
32
|
Pedersen AN, Kondrup J, Børsheim E. Health effects of protein intake in healthy adults: a systematic literature review. Food Nutr Res 2013; 57:21245. [PMID: 23908602 PMCID: PMC3730112 DOI: 10.3402/fnr.v57i0.21245] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 01/20/2023] Open
Abstract
The purpose of this systematic review is to assess the evidence behind the dietary requirement of protein and to assess the health effects of varying protein intake in healthy adults. The literature search covered the years 2000-2011. Prospective cohort, case-control, and intervention studies were included. Out of a total of 5,718 abstracts, 412 full papers were identified as potentially relevant, and after careful scrutiny, 64 papers were quality graded as A (highest), B, or C. The grade of evidence was classified as convincing, probable, suggestive or inconclusive. The evidence is assessed as: probable for an estimated average requirement of 0.66 g good-quality protein/kg body weight (BW)/day based on nitrogen balance studies, suggestive for a relationship between increased all-cause mortality risk and long-term low-carbohydrate-high-protein (LCHP) diets; but inconclusive for a relationship between all-cause mortality risk and protein intake per se; suggestive for an inverse relationship between cardiovascular mortality and vegetable protein intake; inconclusive for relationships between cancer mortality and cancer diseases, respectively, and protein intake; inconclusive for a relationship between cardiovascular diseases and total protein intake; suggestive for an inverse relationship between blood pressure (BP) and vegetable protein; probable to convincing for an inverse relationship between soya protein intake and LDL cholesterol; inconclusive for a relationship between protein intake and bone health, energy intake, BW control, body composition, renal function, and risk of kidney stones, respectively; suggestive for a relationship between increased risk of type 2 diabetes (T2D) and long-term LCHP-high-fat diets; inconclusive for impact of physical training on protein requirement; and suggestive for effect of physical training on whole-body protein retention. In conclusion, the evidence is assessed as probable regarding the estimated requirement based on nitrogen balance studies, and suggestive to inconclusive for protein intake and mortality and morbidity. Vegetable protein intake was associated with decreased risk in many studies. Potentially adverse effects of a protein intake exceeding 20-23 E% remain to be investigated.
Collapse
|
33
|
Hormonal responses to acute and chronic resistance exercise in middle-age versus young men. SPORT SCIENCES FOR HEALTH 2012. [DOI: 10.1007/s11332-012-0131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males. Nutr Metab (Lond) 2012; 9:91. [PMID: 23067428 PMCID: PMC3514209 DOI: 10.1186/1743-7075-9-91] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/14/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. METHODS Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength). Whole-body protein turnover (Q), synthesis (S), breakdown (B), and net balance (NB) were measured throughout 12h of recovery by a bolus ingestion of [15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. RESULTS PULSE Q rates were greater than BOLUS (~19%, P<0.05) with a trend towards being greater than INT (~9%, P=0.08). Rates of S were 32% and 19% greater and rates of B were 51% and 57% greater for PULSE as compared to INT and BOLUS, respectively (P<0.05), with no difference between INT and BOLUS. There were no statistical differences in NB between groups (P=0.23); however, magnitude-based inferential statistics revealed likely small (mean effect±90%CI; 0.59±0.87) and moderate (0.80±0.91) increases in NB for PULSE and INT compared to BOLUS and possible small increase (0.42±1.00) for INT vs. PULSE. CONCLUSION We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (~20g) at regular intervals (~3h) throughout the day.
Collapse
|
35
|
Szedlak C, Robins A. Protein Requirements for Strength Training. Strength Cond J 2012. [DOI: 10.1519/ssc.0b013e31826dc3c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
|
37
|
Abstract
Dietary guidelines from a variety of sources are generally congruent that an adequate dietary protein intake for persons over the age of 19 is between 0·8–0·9 g protein/kg body weight/d. According to the US/Canadian Dietary Reference Intakes, the RDA for protein of 0·8 g protein/kg/d is “…the average daily intake level that is sufficient to meet the nutrient requirement of nearly all [~98 %]… healthy individuals…” The panel also states that “…no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise.” These recommendations are in contrast to recommendations from the US and Canadian Dietetic Association: “Protein recommendations for endurance and strength trained athletes range from 1·2 to 1·7 g/kg/d.” The disparity between those setting dietary protein requirements and those who might be considered to be making practical recommendations for athletes is substantial. This may reflect a situation where an adaptive advantage of protein intakes higher than recommended protein requirements exists. That population protein requirements are still based on nitrogen balance may also be a point of contention since achieving balanced nitrogen intake and excretion likely means little to an athlete who has the primary goal of exercise performance. The goal of the present review is to critically analyse evidence from both acute and chronic dietary protein-based studies in which athletic performance, or correlates thereof, have been measured. An attempt will be made to distinguish between protein requirements set by data from nitrogen balance studies, and a potential adaptive ‘advantage’ for athletes of dietary protein in excess of the RDA.
Collapse
|
38
|
Abstract
Muscle strength and fatigue resistance increases with resistance training. Resistance training adaptations can be enhanced with single-ingredient or dual-ingredient supplementation but less is known about resistance training adaptations by multi-ingredient supplementation. We examined the effects of a commercial multi-ingredient supplement on resistance training adaptations for training-specific and non-training-specific tasks in young males. Male participants (n = 16, age 21±2 years, body mass 74.5±5.9 kg, body height 177±5 cm) had at least 1 year experience with resistance training exercises. Training (7 muscle groups, 4 sessions/week, weekly adjustments) consisted of two 6 weeks blocks with 4 weeks between blocks. During training, participants consumed placebo (i.e. maltodextrin, n = 7) or the sports nutritional supplement Cyclone (Maximuscle Ltd, UK, n = 9) (main ingredients creatine monohydrate, whey protein, glutamine and HMB) twice daily with one intake <15 min following a training session. Unpaired Student’s t-test was used for placebo and Cyclone group comparison of percentage changes with p < 0.05. Effect sizes (Cohen’s d) were calculated for the Cyclone group. Cyclone did not enhance maximal voluntary isometric force (MVIF) (p = 0.56), time to fatigue at 70% MVIF (p = 0.41) and peak concentric strength (60°·s−1) (p = 0.66) of m.quadriceps femoris (i.e. the non-specific training tasks). For the specific-training tasks, Cyclone did not enhance one-repetition maximum (1-RM) of lateral pull (p = 0.48) but there was a trend and large effect size for 1-RM of bench press (p = 0.07, d = 0.98) and 45° leg press (p = 0.07, d = 1.41). Cyclone resulted in an increase in number of repetitions for 80% pre-training 1-RM for lateral pull (p = 0.02, d = 1.30), bench press (p = 0.03, d = 1.20) with a trend for 45° leg press (p = 0.08, d = 0.96). Cyclone during resistance training enhanced the performance of 1-RM and number of repetitions at 80% of pre-training 1RM of some training-specific tasks, all with large effect sizes. Our observations suggest that Cyclone during resistance training substantially improves the ability to perform training-related tasks.
Collapse
|
39
|
Phillips SM, Van Loon LJC. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci 2012; 29 Suppl 1:S29-38. [PMID: 22150425 DOI: 10.1080/02640414.2011.619204] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Opinion on the role of protein in promoting athletic performance is divided along the lines of how much aerobic-based versus resistance-based activity the athlete undertakes. Athletes seeking to gain muscle mass and strength are likely to consume higher amounts of dietary protein than their endurance-trained counterparts. The main belief behind the large quantities of dietary protein consumption in resistance-trained athletes is that it is needed to generate more muscle protein. Athletes may require protein for more than just alleviation of the risk for deficiency, inherent in the dietary guidelines, but also to aid in an elevated level of functioning and possibly adaptation to the exercise stimulus. It does appear, however, that there is a good rationale for recommending to athletes protein intakes that are higher than the RDA. Our consensus opinion is that leucine, and possibly the other branched-chain amino acids, occupy a position of prominence in stimulating muscle protein synthesis; that protein intakes in the range of 1.3-1.8 g · kg(-1) · day(-1) consumed as 3-4 isonitrogenous meals will maximize muscle protein synthesis. These recommendations may also be dependent on training status: experienced athletes would require less, while more protein should be consumed during periods of high frequency/intensity training. Elevated protein consumption, as high as 1.8-2.0 g · kg(-1) · day(-1) depending on the caloric deficit, may be advantageous in preventing lean mass losses during periods of energy restriction to promote fat loss.
Collapse
Affiliation(s)
- Stuart M Phillips
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
40
|
Abstract
Muscle protein synthesis (MPS) is the driving force behind adaptive responses to exercise and represents a widely adopted proxy for gauging chronic efficacy of acute interventions, (i.e. exercise/nutrition). Recent findings in this arena have been progressive. Nutrient-driven increases in MPS are of finite duration (∼1.5 h), switching off thereafter despite sustained amino acid availability and intramuscular anabolic signalling. Intriguingly, this 'muscle-full set-point' is delayed by resistance exercise (RE) (i.e. the feeding × exercise combination is 'more anabolic' than nutrition alone) even 24 h beyond a single exercise bout, casting doubt on the importance of nutrient timing vs. sufficiency per se. Studies manipulating exercise intensity/workload have shown that increases in MPS are negligible with RE at 20-40% but maximal at 70-90% of one-repetition maximum when workload is matched (according to load × repetition number). However, low-intensity exercise performed to failure equalises this response. Analysing distinct subcellular fractions (e.g. myofibrillar, sarcoplasmic, mitochondrial) may provide a readout of chronic exercise efficacy in addition to effect size in MPS per se, i.e. while 'mixed' MPS increases similarly with endurance and RE, increases in myofibrillar MPS are specific to RE, prophetic of adaptation (i.e. hypertrophy). Finally, the molecular regulation of MPS by exercise and its regulation via 'anabolic' hormones (e.g. IGF-1) has been questioned, leading to discovery of alternative mechanosensing-signalling to MPS.
Collapse
Affiliation(s)
- P J Atherton
- School of Graduate Entry Medicine and Health, Division of Metabolic Physiology, University of Nottingham, Derby Royal Hospital, Uttoxeter Road, Derby DE22 3DT, UK.
| | | |
Collapse
|
41
|
Kim H, Lee S, Choue R. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise. J Int Soc Sports Nutr 2011; 8:10. [PMID: 21722409 PMCID: PMC3142197 DOI: 10.1186/1550-2783-8-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/04/2011] [Indexed: 12/19/2022] Open
Abstract
Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day) and calories (5,621.7 ± 1,354.7 kcal/day), as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl) and potassium (5.9 ± 0.8 mmol/L), and urinary urea nitrogen (24.7 ± 9.5 mg/dl) and creatinine (2.3 ± 0.7 mg/dl) were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl), and phosphorus (1.3 ± 0.4 mg/dl) were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity of exercise and the level of mineral intakes, especially potassium and calcium, which have a role to maintain acid-base homeostasis, on protein metabolism in large population of bodybuilders.
Collapse
Affiliation(s)
- Hyerang Kim
- Department of Medical Nutrition, Graduate School of East-West Medicine Science, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, 130-701, Seoul, Korea.
| | | | | |
Collapse
|
42
|
Slater G, Phillips SM. Nutrition guidelines for strength sports: sprinting, weightlifting, throwing events, and bodybuilding. J Sports Sci 2011; 29 Suppl 1:S67-77. [PMID: 21660839 DOI: 10.1080/02640414.2011.574722] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Strength and power athletes are primarily interested in enhancing power relative to body weight and thus almost all undertake some form of resistance training. While athletes may periodically attempt to promote skeletal muscle hypertrophy, key nutritional issues are broader than those pertinent to hypertrophy and include an appreciation of the sports supplement industry, the strategic timing of nutrient intake to maximize fuelling and recovery objectives, plus achievement of pre-competition body mass requirements. Total energy and macronutrient intakes of strength-power athletes are generally high but intakes tend to be unremarkable when expressed relative to body mass. Greater insight into optimization of dietary intake to achieve nutrition-related goals would be achieved from assessment of nutrient distribution over the day, especially intake before, during, and after exercise. This information is not readily available on strength-power athletes and research is warranted. There is a general void of scientific investigation relating specifically to this unique group of athletes. Until this is resolved, sports nutrition recommendations for strength-power athletes should be directed at the individual athlete, focusing on their specific nutrition-related goals, with an emphasis on the nutritional support of training.
Collapse
Affiliation(s)
- Gary Slater
- Faculty of Science, Health and Education, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia.
| | | |
Collapse
|
43
|
Abstract
Athletes and exercisers have utilised high-protein diets for centuries. The objective of this review is to examine the evidence for the efficacy and potential dangers of high-protein diets. One important factor to consider is the definition of a ‘high-protein diet’. There are several ways to consider protein content of a diet. The composition of the diet can be determined as the absolute amount of the protein (or other nutrient of interest), the % of total energy (calories) as protein and the amount of protein ingested per kg of body weight. Many athletes consume very high amounts of protein. High-protein diets most often are associated with muscle hypertrophy and strength, but now also are advocated for weight loss and recovery from intense exercise or injuries. Prolonged intake of a large amount of protein has been associated with potential dangers, such as bone mineral loss and kidney damage. In otherwise healthy individuals, there is little evidence that high protein intake is dangerous. However, kidney damage may be an issue for individuals with already existing kidney dysfunction. Increased protein intake necessarily means that overall energy intake must increase or consumption of either carbohydrate or fat must decrease. In conclusion, high protein intake may be appropriate for some athletes, but there are potential negative consequences that must be carefully considered before adopting such a diet. In particular, care must be taken to ensure that there is sufficient intake of other nutrients to support the training load.
Collapse
|
44
|
McGivney BA, McGettigan PA, Browne JA, Evans ACO, Fonseca RG, Loftus BJ, Lohan A, MacHugh DE, Murphy BA, Katz LM, Hill EW. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 2010; 11:398. [PMID: 20573200 PMCID: PMC2900271 DOI: 10.1186/1471-2164-11-398] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022] Open
Abstract
Background Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old) and T2 - trained (20 ± 0.7 months old). Results The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease. Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and cytoskeleton. Conclusion Exercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.
Collapse
Affiliation(s)
- Beatrice A McGivney
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vieillevoye S, Poortmans JR, Duchateau J, Carpentier A. Effects of a combined essential amino acids/carbohydrate supplementation on muscle mass, architecture and maximal strength following heavy-load training. Eur J Appl Physiol 2010; 110:479-88. [DOI: 10.1007/s00421-010-1520-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
46
|
Onambélé-Pearson GL, Breen L, Stewart CE. Influence of exercise intensity in older persons with unchanged habitual nutritional intake: skeletal muscle and endocrine adaptations. AGE (DORDRECHT, NETHERLANDS) 2010; 32:139-53. [PMID: 20407838 PMCID: PMC2861746 DOI: 10.1007/s11357-010-9141-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/24/2010] [Indexed: 04/17/2023]
Abstract
Long-term adherence to training programmes is difficult to attain. Yet, the benefits of exercise to general health and well-being are undeniable. Any measure to demonstrate the minimum required exercise for maximal benefit to a person is a promising avenue towards increasing the uptake and adherence to physical activity for the general public. The purpose of this study was to compare the effects of two different intensities of resistance training in healthy older adults. We hypothesised that compared to high-intensity resistance exercise, relatively low training intensity could also improve in vivo markers of healthy physiologic and endocrine functions in previously sedentary older individuals. Thirty (out of a possible 34 recruited) older adults were randomly assigned to low (LowR, i.e. approximately 40% one repetition maximum (1RM)) versus high-resistance training (HighR, i.e. approximately 80% 1RM) for 12 weeks. Neither intervention significantly impacted upon body composition markers including: body mass index (BMI), waist/hip ratio and bioelectric impedance. Muscle strength data showed an advantage for the HighR protocol with 51 +/- 4% and 22.4 +/- 10.2% (P < 0.05) improvements in 1RM strength and bilateral knee extension torque, respectively, compared with 17 +/- 1% and 10.3 +/- 4.7% (P < 0.05) increments in 1RM strength and bilateral torque in the LowR group. Unilateral torque did not change significantly in either group. Quadriceps muscle thickness data also showed a significantly greater benefit of the HighR protocol (5.8 +/- 2.6% increase) compared with the LowR protocol (no change). Functional ability tests, including Get-up-and-go (GUG), Standing from lying and the 6-min walk, showed changes of -11.6 +/- 4.8%, -15.6% and 8.5 +/- 1.7% (P < 0.05), respectively, in HighR compared with only one significant improvement in the LowR, namely a -10.8 +/- 3% (P < 0.05) improvement in the GUG test. Overnight fasting serum levels of IGFBP-3 increased, NPY decreased and TNF-alpha decreased significantly in the LowR group. Serum levels of glucose increased and NPY decreased significantly in HighR. Circulating levels of I, IL-6 and IGF-1 did not change with either intervention. In vivo physiologic changes show functional advantages for older persons carrying out high-resistance training. At the endocrine level, such an advantage is not clear. In fact, in terms of changes in sera levels of fasting glucose, IGFBP-3 and TNF-alpha, there appears to be an advantage to carrying out the lower intensity exercises for the aged populations where endocrine adaptations are key.
Collapse
|
47
|
Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, Dhanani S, Volpi E, Rasmussen BB. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985) 2010; 108:1199-209. [PMID: 20150565 PMCID: PMC2867530 DOI: 10.1152/japplphysiol.01266.2009] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/09/2010] [Indexed: 01/07/2023] Open
Abstract
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.
Collapse
Affiliation(s)
- Christopher S Fry
- University of Texas Medical Branch, Sealy Center on Aging, Department of Physical Therapy, Division of Rehabilitation Sciences, 301 Univ. Blvd., Galveston, TX 77555-1144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Genton L, Melzer K, Pichard C. Energy and macronutrient requirements for physical fitness in exercising subjects. Clin Nutr 2010; 29:413-23. [PMID: 20189694 DOI: 10.1016/j.clnu.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 01/04/2010] [Accepted: 02/01/2010] [Indexed: 01/22/2023]
Abstract
Optimal nutritional intakes are critical for health- and skill-related physical fitness. This review details the effect of energy restriction and supplementation on physical fitness, discusses the optimal chronic macronutrient intakes for physical fitness in exercising subjects and finally overviews the impact of short-term intakes of carbohydrate and protein, before, during and after exercise, on physical fitness of athletes. The present standings highlight that it is essential that health care givers personalize nutritional advice to meet the specific needs of exercising individuals while applying the described recommendations. It reminds the difficulty of providing straight nutritional recommendations for physical fitness on the basis of evidence-based medicine.
Collapse
Affiliation(s)
- Laurence Genton
- Clinical Nutrition, Geneva University Hospital, Rue Gabrielle Perret-Gentil 24, 1211 Geneva 14, Switzerland
| | | | | |
Collapse
|
49
|
Thalacker-Mercer AE, Petrella JK, Bamman MM. Does habitual dietary intake influence myofiber hypertrophy in response to resistance training? A cluster analysis. Appl Physiol Nutr Metab 2009; 34:632-9. [PMID: 19767798 DOI: 10.1139/h09-038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although resistance exercise training (RT) is a common intervention to stimulate muscle protein synthesis and increase skeletal muscle mass, the optimal daily protein and total energy intakes sufficient to support RT-mediated muscle growth are as yet unclear. Further, the efficacy of RT varies widely among adults of all ages and whether this is attributable to interindividual differences in nutrition is not known. To determine if self-selected daily intake of macronutrients and specific components of dietary protein and fat are predictive of the magnitude of RT-mediated muscle growth, detailed 4-day dietary records were analyzed on 60 subjects previously clustered (K-means cluster analysis) as non-, modest, and extreme responders (non, n = 16; mod, n = 29; xtr, n = 15), based on the magnitudes of change in vastus lateralis myofiber cross-sectional area following a 16-week, 3-day-per-week, high-intensity RT. Despite the marked contrast between 60% myofiber hypertrophy in xtr and zero growth in non, we found no differences among response clusters in daily intakes of energy (mean +/- SEM: non 102 +/- 8; mod 111 +/- 6; xtr 109 +/- 5 kJ.kg-1.day-1), protein (non 0.97 +/- 0.08; mod 1.07 +/- 0.07; xtr 1.05 +/- 0.06 g.kg-1.day-1), carbohydrate (non 3.02 +/- 0.24; mod 3.18 +/- 0.20; xtr 3.14 +/- 0.17 g.kg-1.day-1), and fat (non 0.95 +/- 0.09; mod 1.05 +/- 0.08; xtr 1.03 +/- 0.08 g.kg-1.day-1), which generally met or exceeded dietary recommendations. There were no cluster differences in intakes of branched chain amino acids known to stimulate muscle protein synthesis. Using the novel K-means clustering approach, we conclude from this preliminary study that protein and energy intakes were sufficient to facilitate modest and extreme muscle growth during RT and intrinsic or extrinsic factors other than nutrient ingestion apparently impaired the anabolic response in nonresponders.
Collapse
|
50
|
Al-Majid S, Waters H. The biological mechanisms of cancer-related skeletal muscle wasting: the role of progressive resistance exercise. Biol Res Nurs 2008; 10:7-20. [PMID: 18705151 DOI: 10.1177/1099800408317345] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer results in perturbations in skeletal muscle protein metabolism leading to muscle wasting. Although severe wasting is seen primarily in persons with advanced malignancies, a number of cancer patients show some degree of wasting at presentation. Although cancer-related skeletal muscle wasting is attributable, in part, to decreased muscle protein synthesis, its primary cause appears to be increased muscle protein degradation. Although several proteolytic systems may be involved, compelling evidence suggests that the major system responsible for skeletal muscle protein degradation in cancer is the ATP-dependent ubiquitin- proteasome system. Other contributing factors include proinflammatory cytokines and the tumor-released proteolysis-inducing factor. Decreased physical activity and decreased nutritional intake may also play a role. Cancer-related skeletal muscle wasting is clinically significant because of its profound effects on functional outcomes and quality of life. Nevertheless, no specific interventions have proved to be effective in preventing or reversing the problem. Interventions such as nutritional supplementation and appetite stimulants are only partially helpful. A nonpharmacologic intervention that may attenuate cancer-related skeletal muscle wasting is progressive resistance exercise training (PRT). PRT is a potent stimulus of growth in muscle mass and strength. PRT may attenuate cancer-related skeletal muscle wasting by downregulating the activity of proinflammatory cytokines and by increasing the phosphorylation of intramuscular amino acid-signaling molecules. This article discusses several cancer-related skeletal muscle wasting mechanisms and proposes how PRT might attenuate muscle wasting by counteracting some of these mechanisms.
Collapse
Affiliation(s)
- Sadeeka Al-Majid
- Adult Health Department, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|