1
|
Therapeutic Properties of Vanadium Complexes. INORGANICS 2022. [DOI: 10.3390/inorganics10120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vanadium is a hard, silver-grey transition metal found in at least 60 minerals and fossil fuel deposits. Its oxide and other vanadium salts are toxic to humans, but the toxic effects depend on the vanadium form, dose, exposure duration, and route of intoxication. Vanadium is used by some life forms as an active center in enzymes, such as the vanadium bromoperoxidase of ocean algae and nitrogenases of bacteria. The structure and biochemistry of vanadate resemble those of phosphate, hence vanadate can be regarded as a phosphate competitor in a variety of biochemical enzymes such as kinases and phosphatases. In this review, we describe the biochemical pathways regulated by vanadium compounds and their potential therapeutic benefits for a range of disorders including type 2 diabetes, cancer, cardiovascular disease, and microbial pathology.
Collapse
|
2
|
Huang HZ, Qiu M, Lin JZ, Li MQ, Ma XT, Ran F, Luo CH, Wei XC, Xu RC, Tan P, Fan SH, Yang M, Han L, Zhang DK. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: a systematic review of recent advances. Eur J Nutr 2021; 60:3525-3542. [PMID: 33439332 DOI: 10.1007/s00394-020-02471-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Phyllanthus emblica is a fruit widely consumed in subtropical areas, which is rich in polyphenols and other nutrients. There are increasing evidences that as a daily and nutritious fruit, it may have a positive role in controlling diabetic complications. According to the new study, its mechanisms include enhancing the functioning of insulin, reducing insulin resistance, activating the insulin-signaling pathway, protecting β-cells, scavenging free radicals, alleviating inflammatory reactions, and reducing the accumulation of advanced glycation end products. Owing to its few side effects, and low price, it should be easily accepted by patients and has potential for preventing diabetes. Taken together, Phyllanthus emblica may be an ideal fruit for controlling diabetic complications. This review highlights the latest findings of the role of Phyllanthus emblica in anti-diabetes and its complications, especially clarifies the molecular mechanism of the chemical components related to this effect, and prospects some existing problems and future research directions.
Collapse
Affiliation(s)
- Hao-Zhou Huang
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Min Qiu
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Jun-Zhi Lin
- Teaching Hospital of Chengdu University of TCM, Chengdu, 610072, China
| | - Meng-Qi Li
- Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Xi-Tao Ma
- Teaching Hospital of Chengdu University of TCM, Chengdu, 610072, China
| | - Fei Ran
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Chuan-Hong Luo
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Xi-Chuan Wei
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Run-Chun Xu
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Peng Tan
- State Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality, National Administration of TCM, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - San-Hu Fan
- Sanajon Pharmaceutical Group, Chengdu, 610000, China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Li Han
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China.
| | - Ding-Kun Zhang
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China.
| |
Collapse
|
3
|
Bis(maltolato)oxovanadium(IV) Induces Angiogenesis via Phosphorylation of VEGFR2. Int J Mol Sci 2020; 21:ijms21134643. [PMID: 32629855 PMCID: PMC7370103 DOI: 10.3390/ijms21134643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
VEGFR2 and VEGF-A play a pivotal role in the process of angiogenesis. VEGFR2 activation is regulated by protein tyrosine phosphatases (PTPs), enzymes that dephosphorylate the receptor and reduce angiogenesis. We aim to study the effect of PTPs blockade using bis(maltolato)oxovanadium(IV) (BMOV) on in vivo wound healing and in vitro angiogenesis. BMOV significantly improves in vivo wound closure by 45% in C57BL/6JRj mice. We found that upon VEGFR2 phosphorylation induced by endogenously produced VEGF-A, the addition of BMOV results in increased cell migration (45%), proliferation (40%) and tube formation (27%) in HUVECs compared to control. In a mouse ex vivo, aortic ring assay BMOV increased the number of sprouts by 3 folds when compared to control. However, BMOV coadministered with exogenous VEGF-A increased ECs migration, proliferation and tube formation by only 41%, 18% and 12% respectively and aortic ring sprouting by only 1-fold. We also found that BMOV enhances VEGFR2 Y951 and p38MAPK phosphorylation, but not ERK1/2. The level of phosphorylation of these residues was the same in the groups treated with BMOV supplemented with exogenous VEGF-A and exogenous VEGF-A only. Our study demonstrates that BMOV is able to enhance wound closure in vivo. Moreover, in the presence of endogenous VEGF-A, BMOV is able to stimulate in vitro angiogenesis by increasing the phosphorylation of VEGFR2 and its downstream proangiogenic enzymes. Importantly, BMOV had a stronger proangiogenic effect compared to its effect in coadministration with exogenous VEGF-A.
Collapse
|
4
|
Prasad KS, Ramachandrappa SU. Potential Medicinal Applications of Vanadium and its Coordination Compounds in Current Research Prospects: A Review. CURRENT BIOACTIVE COMPOUNDS 2020; 16:201-209. [DOI: 10.2174/1573407214666181115111357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/02/2024]
Abstract
Background:The variety of biological applications of vanadium impressed researchers to develop vanadium based drugs. The most well-known fact of vanadium is that it is necessary for human beings as an insulin-enhancing agent and herein, we mainly provide an overview of vanadium-based drugs and their applications in the medicinal field for the treatment of diseases such as diabetes and cancer. The first part of this review is focused on mechanistic studies involved in the anti-diabetic activity. The latter part explains the use of vanadium and its related coordination compounds in the treatment of cancer.Methods:This review is purely based on literature search available in the database. We focused on the reports available on the recent advancements in the vanadium chemistry and its biological properties, mainly anti-diabetic and anticancer activities of vanadium based compounds.Results:The study of clinical trials of vanadium and its drug molecules imposed more demand due to their remarkable activity with less toxicity.Conclusion:A brief literature survey was made pertaining to the applications of vanadium compounds/ complexes. Particularly, special attention was paid to explaining mechanistic studies of vanadium based compounds in the treatment of diabetes and cancer.
Collapse
Affiliation(s)
- Kollur S. Prasad
- Department of Sciences, Amrita School of Arts and Sciences, Mysuru, Amrita Vishwa Vidyapeetham, Karnataka-570 026, India
| | - Shwetha U. Ramachandrappa
- Department of Chemistry, Bapuji Institute of Engineering and Technology, Davanagere - 577 004, Karnataka, India
| |
Collapse
|
5
|
Xu L, Li Y, Duan M, Li Y, Han M, Wu J, Wang Y, Dong K, You Z. Syntheses, crystal structures and insulin mimetic activity of maltolato- and ethylmaltolato-coordinated oxidovanadium(V) complexes with N′-(3-ethoxy-2-hydroxybenzylidene)-3-methylbenzohydrazide. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Treviño S, González-Vergara E. Metformin-decavanadate treatment ameliorates hyperglycemia and redox balance of the liver and muscle in a rat model of alloxan-induced diabetes. NEW J CHEM 2019; 43:17850-17862. [DOI: 10.1039/c9nj02460c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2024]
Abstract
MetfDeca treatment ameliorate glucose and insulin levels, and reduce the levels of oxidized glutathione, reactive oxygen species, malondialdehyde, and 4-hydroxyalkenal; the superoxide and catalase activities, and glutathione levels were regulated.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla
- Puebla
- Mexico
| | - Enrique González-Vergara
- Laboratorio de Bioinorgánica Aplicada
- Centro de Química ICUAP
- Benemérita Universidad Autónoma de Puebla
- Puebla
- Mexico
| |
Collapse
|
7
|
Guo S, Sun N, Ding Y, Li A, Jiang Y, Zhai W, Li Z, Qu D, You Z. Syntheses, Characterization, and Crystal Structures of two Oxovanadium(V) Complexes with Insulin-like Activity. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sihan Guo
- Department of Chemistry and Chemical Engineering; Liaoning Normal University; 116029 Dalian P. R. China
| | - Nan Sun
- College of Chemistry, Chemical Engineering and Material Science; Shandong Normal University; 250014 Jinan P. R. China
| | - Yanwei Ding
- Department of Chemistry and Chemical Engineering; Liaoning Normal University; 116029 Dalian P. R. China
| | - Ang Li
- Department of Chemistry and Chemical Engineering; Liaoning Normal University; 116029 Dalian P. R. China
| | - Yumin Jiang
- Department of Chemistry and Chemical Engineering; Liaoning Normal University; 116029 Dalian P. R. China
| | - Wenqi Zhai
- Department of Chemistry and Chemical Engineering; Liaoning Normal University; 116029 Dalian P. R. China
| | - Zhiwen Li
- Department of Chemistry and Chemical Engineering; Liaoning Normal University; 116029 Dalian P. R. China
| | - Dan Qu
- Department of Chemistry and Chemical Engineering; Liaoning Normal University; 116029 Dalian P. R. China
| | - Zhonglu You
- Department of Chemistry and Chemical Engineering; Liaoning Normal University; 116029 Dalian P. R. China
| |
Collapse
|
8
|
Cong XQ, Piao MH, Li Y, Xie L, Liu Y. Bis(maltolato)oxovanadium(IV) (BMOV) Attenuates Apoptosis in High Glucose-Treated Cardiac Cells and Diabetic Rat Hearts by Regulating the Unfolded Protein Responses (UPRs). Biol Trace Elem Res 2016; 173:390-8. [PMID: 26983714 DOI: 10.1007/s12011-016-0668-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/06/2016] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) and the subsequent cell deaths are essential steps in the pathogenesis of diabetic cardiomyopathy (DCM), a main cause of diabetics' morbidity and mortalities. The bis(maltolato)oxovanadium(IV) (BMOV), a potent oral vanadium complex with anti-diabetic properties and insulin-mimicking effects, was shown to improve cardiac dysfunctions in diabetic models. Here, we examined the effects of BMOV on UPR pathway protein expression and apoptotic cell deaths in both high glucose-treated cardiac H9C2 cells and in the hearts of diabetic rats. We show that in both the high glucose-treated cardiac cells and in the hearts of streptozotocin (STZ) diabetic rats, there was an overall activation of the UPR signaling, including both apoptotic (e.g., the cascades of PERK/EIf2α/ATF4/CHOP and of IRE1/caspase 12/caspase 3) and pro-survival (GRP78 and XBP1) signaling. A high amount of apoptotic cell deaths was also detected in both diabetic conditions. The administration of BMOV suppressed both the apoptotic and pro-survival UPR signaling and significantly attenuated apoptotic cell deaths in both conditions. The overall suppression of UPR signaling by BMOV suggests that the drug protects diabetic cardiomyopathy by counteracting reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Our findings lend support to promote the use of BMOV in the treatment of diabetic heart diseases.
Collapse
Affiliation(s)
- Xiao-Qiang Cong
- Department of Cardiology, Bethune First Hospital of Jilin University, 71 Xinmin St., Chaoyang District, ChangChun, 130021, China.
| | - Mei-Hua Piao
- Department of Anesthesiology, Bethune First Hospital of Jilin University, 71 Xinmin St., Chaoyang District, Changchun, Jilin, 130021, China
| | - Ying Li
- The People's Hospital of Jilin Province, Changchun, 130021, China
| | - Lin Xie
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Ya Liu
- School of Public Health, Jilin University, Changchun, 130021, China
| |
Collapse
|
9
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
10
|
Ozturk N, Olgar Y, Ozdemir S. Trace elements in diabetic cardiomyopathy: An electrophysiological overview. World J Diabetes 2013; 4:92-100. [PMID: 23961319 PMCID: PMC3746091 DOI: 10.4239/wjd.v4.i4.92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 02/05/2023] Open
Abstract
There is a growing body of evidence that Diabetes Mellitus leads to a specific cardiomyopathy apart from vascular disease and bring about high morbidity and mortality throughout the world. Recent clinical and experimental studies have extensively demonstrated that this cardiomyopathy causes impaired cardiac performance manifested by early diastolic and late systolic dysfunction. This impaired cardiac performance most probably have emerged upon the expression and activity of regulatory proteins such as Na+/Ca2+ exchanger, sarcoplasmic reticulum Ca2+-ATPase, ryanodine receptor and phospholamban. Over years many therapeutic strategies have been recommended for treatment of diabetic cardiomyopathy. Lately, inorganic elements have been suggested to have anti-diabetic effects due to their suggested ability to regulate glucose homeostasis, reduce oxidative stress or suppress phosphatases. Recent findings have shown that trace elements exert many biological effects including insulin-mimetic or antioxidant activity and in this manner they have been recommended as potential candidates for treatment of diabetes-induced cardiac complications, an effect based on their modes of action. Some of these trace elements are known to play an essential role as component of enzymes and thus modulate the organ function in physiological and pathological conditions. Besides, they can also manipulate redox state of the channels via antioxidant properties and thus contribute to the regulation of [Ca2+]i homeostasis and cardiac ion channels. On account of little information about some trace elements, we discussed the effect of vanadium, selenium, zinc and tungstate on diabetic heart complications.
Collapse
|
11
|
Abakumova O, Podobed O, Belayeva N, Tochilkin A. Anticancer activity of oxovanadium compounds. ACTA ACUST UNITED AC 2013; 59:305-20. [DOI: 10.18097/pbmc20135903305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytotoxic and antitumor activity of the biligand vanadyl derivative of L-malic acid (bis(L-malato)oxovanadium(IV) (VO(mal) ) was investigated in comparison with inorganic vanadium(IV) compound - vanadyl sulfate (VOSO ) and also with oxovanadium monocomplex with L-malic acid (VO(mal)) and vanadyl biscomplex with acetylacetonate. In this purpose the effect of vanadyl compounds on growth of normal human skin fibroblasts and tumor cells of different lines: mouse fibrosarcoma (L929), rat pheochromocytome (PC12), human liver carcinoma (HepG2), virus transformated mouse fibroblast (NIN 3T3), virus transformated cells of human kidney (293) were investigated. The results showed that VO(mal) was not toxic for normal human skin fibroblasts but considerably inhibited growth of cancer cells in culture. Cytotoxic antitumor effect of vanadium complexes was found to be dependent оn incubation time and concentration and on type of cells and nature of ligands of the central group of the complex (VO2+). These studies provide evidence that VO(mal) may be considered as a potential antitumor agent due to its low toxicity in non-tumor cells and significant anticancer activity.
Collapse
|
12
|
Abakumova OY, Podobed OV, Belayeva NF, Tochilkin AI. Anticancer activity of oxovanadium compounds. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2012. [DOI: 10.1134/s1990750812020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Clark TA, Heyliger CE, Kopilas M, Edel AL, Junaid A, Aguilar F, Smyth DD, Thliveris JA, Merchant M, Kim HK, Pierce GN. A tea/vanadate decoction delivered orally over 14 months to diabetic rats induces long-term glycemic stability without organ toxicity. Metabolism 2012; 61:742-53. [PMID: 22146096 DOI: 10.1016/j.metabol.2011.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/20/2011] [Accepted: 10/13/2011] [Indexed: 01/28/2023]
Abstract
Vanadium can induce potent hypoglycemic effects in type 1 and type 2 diabetes mellitus animals, but toxic adverse effects have inhibited the translation of these findings. Administration of vanadate in a black tea decoction has shown impressive hypoglycemic effects without evidence of toxicity in short-term studies. The purpose of this study was to investigate the hypoglycemic action and the toxic adverse effects of a tea/vanadate (T/V) decoction in diabetic rats over a 14-month treatment period. Streptozotocin-induced type 1 diabetes mellitus rats were orally gavaged with 40 mg sodium vanadate in a black tea decoction only when blood glucose levels were greater than 10 mmol/L. Glycemic status and liver and kidney function were monitored over 14 months. All of the diabetic rats in this treatment group (n = 25) required treatment with the T/V decoction at the start of the study to reduce blood glucose levels to less than 10 mmol/L. Diarrhea was uncommon among the T/V-treated animals during the first week of T/V treatment and was absent thereafter. There was no evidence of liver or kidney dysfunction or injury. From 2 to 6 months, fewer animals required the T/V treatment to maintain their blood glucose levels. After 9 months of treatment, none of the diabetic animals required any T/V to maintain their blood glucose levels at less than 10 mmol/L. Oral administration of a T/V decoction provides safe, long-acting hypoglycemic effects in type 1 diabetes mellitus rats. The typical glycemic signs of diabetes were absent for the last 5 months of the study.
Collapse
Affiliation(s)
- Tod A Clark
- Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E OW3
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Srivastava AK. Section Review—Oncologic, Endocrine & Metabolic: Potential Use of Vanadium Compounds in the Treatment of Diabetes Mellitus. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Burgess J, Rangel M. Hydroxypyranones, hydroxypyridinones, and their complexes. ADVANCES IN INORGANIC CHEMISTRY 2008. [DOI: 10.1016/s0898-8838(08)00005-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Synthesis, characterization and biological analysis of the complex [VO(Hdhp)2] (H2dhp = 2,3-dihydroxypyridine). TRANSIT METAL CHEM 2007. [DOI: 10.1007/s11243-007-9003-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Guo Z, Xia Z, Yuen VG, McNeill JH. Cardiac expression of adiponectin and its receptors in streptozotocin-induced diabetic rats. Metabolism 2007; 56:1363-71. [PMID: 17884446 DOI: 10.1016/j.metabol.2007.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 05/14/2007] [Indexed: 01/07/2023]
Abstract
Adiponectin can improve both glucose metabolism and insulin resistance via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Activated AMPK phosphorylates a variety of intracellular proteins, including acetyl coenzyme A carboxylase (ACC) that is involved in fatty acid oxidation. Adenosine monophosphate-activated protein kinase increases glucose transport by stimulating the translocation of glucose transporter 4 (GLUT4) to the sarcolemma in the heart. Adiponectin exerts its effect through adiponectin receptors, which are predominantly expressed in the liver and skeletal muscle. It is unknown whether the cardiac expression of adiponectin and its receptors is changed in diabetic rats. In the present study, we investigated the protein expression of adiponectin and its receptors in streptozotocin (STZ)-induced diabetic rat hearts. We also explored whether the levels of AMPK, ACC, and GLUT4 will be altered with the changed adiponectin and its receptors in STZ diabetic rat hearts. Plasma and cardiac adiponectin levels were measured by radioimmunoassay. Plasma and cardiac interleukin 6 and plasma tumor necrosis factor alpha (TNF-alpha) were assayed by enzyme-linked immunosorbent assay. Cardiac adiponectin receptors, AMPK-alpha, ACC, GLUT4, and TNF-alpha were analyzed by Western blot in control and STZ diabetic rats. The plasma adiponectin level was decreased, but the cardiac protein expression of adiponectin receptor 1 was increased in diabetic rats. There was no difference in the cardiac adiponectin level and the cardiac adiponectin receptor 2 protein expression between control and diabetic rats. The phosphorylation of AMPK-alpha and protein expression of GLUT4 were decreased, but the phosphorylation of ACC was unchanged in diabetic rat hearts. Plasma and cardiac levels of interleukin 6 and TNF-alpha were increased in diabetic rats. In conclusion, STZ-induced diabetes up-regulates adiponectin receptors in the heart. Despite an increase in cardiac adiponectin receptor 1 expression, there is an increased cardiac inflammatory response and a decreased GLUT4 protein expression associated with a reduction in circulating adiponectin.
Collapse
Affiliation(s)
- Zhixin Guo
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
18
|
Zhang SQ, Chen GH, Lu WL, Zhang Q. Effects on the bones of vanadyl acetylacetonate by oral administration: a comparison study in diabetic rats. J Bone Miner Metab 2007; 25:293-301. [PMID: 17704994 DOI: 10.1007/s00774-007-0759-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 03/19/2007] [Indexed: 12/13/2022]
Abstract
Oral delivery, rather than parenteral administration, would be beneficial for treating diabetic mellitus owing to the need for a long-term regimen. The objectives of this study were to evaluate oral delivery tolerance and the effects on the bone of accumulated vanadium following the long-term administration of vanadyl acetylacetonate (VAC). Normal and diabetic rats were intragastrically administered VAC at a dose of 3 mg vanadium/kg body weight once daily for 35 consecutive days. VAC did not cause any obvious signs of diarrhea, any changes in kidney or liver, or deaths in any group. The phosphate levels in the bone were slightly increased, and the calcium levels in the bone were not obviously changed as compared with those of the rat group not receiving VAC. After administration of VAC, the decreased ultimate strength, trabecular thickness, mineral apposition rate, and plasma osteocalcin in diabetic rats were either improved or normalized, but reduced bone mineral density (BMD) in diabetic rats was not improved. None of the parameters evaluated in normal rats were altered. The results indicate that the oral VAC is tolerated and benefits the diabetic osteopathy of rats, but seems not to influence the bone of normal rats. They also suggest that VAC improves diabetes-related bone disorders, primarily by improving the diabetic state.
Collapse
Affiliation(s)
- Shuang-Qing Zhang
- School of Pharmaceutical Sciences and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | | | | | | |
Collapse
|
19
|
Jelikić-Stankov M, Uskoković-Marković S, Holclajtner-Antunović I, Todorović M, Djurdjević P. Compounds of Mo, V and W in biochemistry and their biomedical activity. J Trace Elem Med Biol 2007; 21:8-16. [PMID: 17317520 DOI: 10.1016/j.jtemb.2006.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Molybdenum, vanadium and tungsten compounds are widely applied as analytical reagents for determination of numerous pharmacologically active substances and different biochemical parameters. Recent data from the available literature pointed to a very potent biomedical activity of compounds containing these trace elements. The present paper represents a survey on the structure and chemical properties of these compounds, as well as on their biological activity, mostly based on their interaction with cations of biomolecules, such as phospholipids and proteins. Besides, their potent inhibitory effects on cellular targets, bacterial and viral DNA and RNA polymerases will be discussed, as well. Numerous authors clearly demonstrated the antiviral (especially anti-HIV), anticoagulant and antineoplastic properties of the compounds containing the above trace elements. It has been also shown that these compounds act on some cellular enzymatic systems leading to the normalisation of blood pressure, blood glucose and serum lipid levels. Also, compounds of these trace elements represent potent antiobesity agents and express hepatoprotective and antioxidative stress activity.
Collapse
|
20
|
Saha TK, Yoshikawa Y, Yasui H, Sakurai H. Oxovanadium(IV)–Porphyrin Complex as a Potent Insulin-Mimetic. Treatment of Experimental Type 1 Diabetic Mice by the Complex [meso-Tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV)(4−). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2006. [DOI: 10.1246/bcsj.79.1191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
|
22
|
Edel AL, Kopilas M, Clark TA, Aguilar F, Ganguly PK, Heyliger CE, Pierce GN. Short-term bioaccumulation of vanadium when ingested with a tea decoction in streptozotocin-induced diabetic rats. Metabolism 2006; 55:263-70. [PMID: 16423636 DOI: 10.1016/j.metabol.2005.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/30/2005] [Indexed: 11/27/2022]
Abstract
Sodium orthovanadate suspended in a lichee black tea decoction effectively regulates blood glucose levels in rats with insulin-dependent, streptozotocin (STZ)-induced diabetes. The primary advantage of vanadate delivery with the tea decoction over conventional systems that use water suspensions of vanadate is a significant reduction in the toxic side effects of vanadate. It is unknown if the tea alters the bioavailability of vanadate. Male Sprague-Dawley rats were administered an intravenous injection of STZ to induce diabetes. Four days later, the diabetic rats were treated by oral gavage with 40 mg of Na-orthovanadate suspended in double-distilled, deionized water (V/H2O), tea/vanadate (TV) decoction, or were treated with the tea decoction alone. Vanadium concentrations were measured in blood and various tissues at 1 to 24 hours posttreatment using graphite furnace atomic absorption spectrophotometry. With the exception of bone, maximal vanadium concentration in plasma and tissue samples were observed 2 hours after ingestion, but steadily decreased after that. Plasma vanadium levels continued to decrease until 16 hours. In contrast, vanadium steadily accumulated in bone over the 24-hour period. Overall, rats treated with V/H2O contained similar or significantly higher concentrations of vanadium in all tissues compared with TV treatment. The pattern of vanadium accumulation was also similar over time in both treatment groups. Vanadium levels were highest in bone > kidney > liver > pancreas > lung > heart > muscle > brain in both TV- and V/H2O-treated animals. This study demonstrates that the accumulation of vanadium in diabetic rats is reduced when coadministered with a black tea decoction in comparison to administration of vanadium in water. However, this effect is unlikely to be of a magnitude to explain the full capacity of TV to reduce the toxic side effects of vanadate.
Collapse
Affiliation(s)
- Andrea L Edel
- National Centre for Agri-food Research in Medicine, St Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | | | | | |
Collapse
|
23
|
Broderick TL, Bailey J, Gagnon KJ, Lord SJ, Vogels CM, Westcott SA. Effect of a Novel Molybdenum Ascorbate Complex on Ex Vivo Myocardial Performance in Chemical??Diabetes Mellitus. Drugs R D 2006; 7:119-25. [PMID: 16542058 DOI: 10.2165/00126839-200607020-00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND The insulin-like action of metal complexes on target tissues, including the heart, has been reported in experimental diabetes mellitus. Since streptozotocin-induced diabetes is associated with insulin deficiency and left ventricular dysfunction, this study was designed to determine whether the novel metal complex molybdenum ascorbate [MoO(2)(aa)(2)] would improve cardiac function in this model of diabetes. METHODS Diabetes was induced in Sprague-Dawley rats (n = 6) following an intravenous injection of streptozotocin (60 mg/kg). After 8 weeks of diabetes, cardiac function was determined in isolated working hearts perfused with 11 mmol/L glucose, 1.2 mmol/L palmitate and 3% albumin. MoO(2)(aa)(2 )was added directly into the perfusate of working hearts at a concentration of 200 micromol/L for a period of 30 minutes. Age-matched control rats served as controls (n = 6). RESULTS Cardiac function, expressed as heart rate (HR) and aortic flow, was significantly decreased in diabetic hearts compared with control hearts. The diabetic state was associated with 23% and 60% reductions in HR and aortic flow, respectively. Short-term addition of MoO(2)(aa)(2) was beneficial and partially prevented the attenuation in diabetic rat heart function. MoO(2)(aa)(2 )increased HR by 15%, while aortic flow was increased by 85%. In control hearts, MoO(2)(aa)(2) had no effect on HR and increased aortic flow by 12%. CONCLUSION This study extends previous observations on the benefit of metal complexes in experimental diabetes. Our results indicate that short-term treatment with MoO(2)(aa)(2) partially reversed the left ventricular dysfunction associated with the streptozotocin model of diabetes.
Collapse
Affiliation(s)
- Tom L Broderick
- Department of Physiology, Midwestern University, Glendale, Arizona 85308, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Soares SS, Martins H, Aureliano M. Vanadium distribution following decavanadate administration. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:60-4. [PMID: 16151690 DOI: 10.1007/s00244-004-0246-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 03/27/2005] [Indexed: 02/07/2023]
Abstract
An acute exposure of two vanadate solutions-metavanadate and decavanadate-containing different vanadate oligomers, induces different patterns of subcellular vanadium distribution in blood plasma, red blood cells (RBC), and cardiac muscle subcellular fractions of the fish Sparus aurata (gilthead seabream). The highest amount of vanadium was found in blood plasma 1 h after (5 mM) intravenous vanadate administration (295 +/- 64 and 383 +/- 104 microg V/g dry tissue, for metavanadate and decavanadate solutions, respectively), being 80-fold higher than in RBC. After 12 h of administration, the amount of vanadium in plasma, as well as in cardiac cytosol, decreased about 50%, for both vanadate solutions. During the period between 1 and 12 h, the ratio of vanadium in plasma/vanadium in RBC increased from 27 to 128 for metavanadate, whereas it remains constant (77) for decavanadate. Both vanadium solutions were primarily accumulated in the mitochondrial fraction (138 +/- 0 and 195 +/- 34 ng V/g dry tissue for metavanadate and decavanadate solutions, respectively, after 12 h exposure), rather than in cytosol. The amount of vanadium in cardiac mitochondria was twofold higher than in cytosol, earlier for metavanadate (6 h) than for decavanadate (12 h). It is concluded that, in fish cardiac muscle, the vanadium distribution is dependent on the administration of decameric vanadate, with vanadium being mainly distributed in plasma, before being accumulated into the mitochondrial fraction.
Collapse
Affiliation(s)
- S S Soares
- Group of Comparative Cardiovascular Physiopathology, CCMar, Faculty of Marine and Environmental Science, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | | | | |
Collapse
|
25
|
MacDonald K, Bailey J, MacRory C, Friis C, Vogels CM, Broderick T, Westcott SA. A Newly Synthesised Molybdenum/Ascorbic Acid Complex Alleviates Some Effects of Cardiomyopathy in Streptozocin-Induced Diabetic Rats. Drugs R D 2006; 7:33-42. [PMID: 16620135 DOI: 10.2165/00126839-200607010-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Exogenous insulin does not prevent cardiac failure in patients with type 1 diabetes mellitus and a cardioprotective insulin mimic is greatly needed. Certain transition metals are known to act as insulin mimics and may be cardio- protective. In this study, the ability of a newly synthesised molybdenum/ascorbic acid complex to strengthen cardiac function was investigated. METHODS AND DESIGN Male CD rats were assigned to one of five groups: non-diabetic control, non-diabetic control treated with molybdenum/ascorbic acid complex, diabetic treated with sodium ascorbate, diabetic treated with molybdenum/ascorbic acid complex and untreated diabetics. Type 1 diabetes was induced by streptozocin injection. Once diabetes was confirmed, treatment was initiated by adding either the molybdenum/ascorbic acid complex or sodium ascorbate to the drinking water and continued for 6 weeks. Following the treatment period, the animals were terminated, and their hearts were excised and mounted in a working heart perfusion apparatus. Blood samples were taken for plasma glucose and plasma lipid level determination. Cardiac function was evaluated using 1 hour of low-flow ischaemic stress followed by 30 minutes of reperfusion. RESULTS Hearts from the animals treated with the molybdenum/ascorbic acid complex displayed the best aerobic performance of all the diabetic animals. Blood glucose levels and blood lipid levels were significantly lower in animals treated with the complex than in other diabetic animals. The group treated with the complex also had a lower drinking rate than the other diabetic groups. Furthermore, hearts from animals treated with the molybdenum/ascorbic acid complex showed a greater degree of recovery from low-flow ischaemia than any other group. CONCLUSIONS The molybdenum/ascorbic acid complex showed some significant insulin-mimic and cardioprotective effects. Further development of this complex could provide a drug useful for alleviating some of the cardiovascular problems associated with diabetes mellitus.
Collapse
Affiliation(s)
- K MacDonald
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Nagareddy PR, Vasudevan H, McNeill JH. Oral administration of sodium tungstate improves cardiac performance in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2005; 83:405-11. [PMID: 15897922 DOI: 10.1139/y05-026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Normalization of hyperglycemia and hyperlipidemia is an important objective in preventing diabetes-induced cardiac dysfunction. Our study investigated the effects of sodium tungstate on cardiac performance in streptozotocin-induced (STZ) diabetic rats based on its potential antidiabetic and antioxidant activity. Male Wistar rats were made STZ-diabetic and then treated with tungstate in their drinking water for 9 weeks. Body mass, food and fluid intake, plasma glucose, insulin, triglyceride, and free fatty acids levels were measured. At the termination of the study period, an oral glucose tolerance test (OGTT) was performed, and cardiac performance was evaluated using an isolated working heart apparatus. Tungstate-treated STZ-diabetic rats showed a significant reduction in fluid and food intake, plasma glucose, triglycerides, and free fatty acid levels, and improved tolerance to glucose in OGTT, owing to tungstate-mediated enhancement of insulin activity rather than increased insulin levels. Left ventricular pressure development, the rate of contraction (+dP/dT), and the rate of relaxation (-dP/dT) were significantly improved in tungstate-treated diabetic rats. Apart from a decreased rate of body mass gain, no other signs of toxicity or hypoglycemic episodes were observed in tungstate-treated rats. This study extends previous observations on the antidiabetic activities of tungstate, and also reports for the first time the salutary effects in preventing diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Prabhakara Reddy Nagareddy
- Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | |
Collapse
|
27
|
Mehdi MZ, Srivastava AK. Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: mechanism of insulinomimesis. Arch Biochem Biophys 2005; 440:158-64. [PMID: 16055077 DOI: 10.1016/j.abb.2005.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 06/14/2005] [Indexed: 11/21/2022]
Abstract
Organo-vanadium compounds (OVC) have been shown to be more effective than inorganic vanadium compounds in ameliorating glucose homeostasis and insulin resistance in rodent models of diabetes mellitus. However, the precise molecular mechanism of OVC efficiency remains poorly defined. Since inorganic vanadium compounds have been found to activate several key components of the insulin signaling cascade, such as protein kinase B (PKB), the objective of the present study was to investigate if stimulation of PKB and its downstream target glycogen synthase kinase-3 (GSK-3), are responsible for the more potent insulinomimetic effects of OVC. Among several vanadium compounds tested, vanadium (IV) oxo bis (acetylacetonate) and vanadium (IV) oxo bis(maltolato) markedly induced the phosphorylation of PKB as well as GSK-3beta compared to vanadyl sulfate (VS), an inorganic vanadium salts in Chinese hamster ovary cells overexpressing the insulin receptor (IR). Furthermore, the OVC were stronger inhibitors of protein tyrosine phosphatase (PTPase) activity than VS. The higher PTPase inhibitory potential of the OVC was associated with more robust tyrosine phosphorylation of several cellular proteins, including the IRbeta subunit and insulin receptor substrate-1 (IRS-1). In addition, greater IRS-1/p85alpha interaction was elicited by the OVC than by VS. These data indicate that the higher PTPase inhibitory potential of OVC translates into greater phosphorylation of PKB and GSK-3beta, which, in turn, may contribute to a more potent effect of OVC on glucose homeostasis.
Collapse
Affiliation(s)
- Mohamad Z Mehdi
- Laboratory of Cell Signaling, Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Canada
| | | |
Collapse
|
28
|
Ou H, Yan L, Mustafi D, Makinen MW, Brady MJ. The vanadyl (VO2+) chelate bis(acetylacetonato)oxovanadium(IV) potentiates tyrosine phosphorylation of the insulin receptor. J Biol Inorg Chem 2005; 10:874-86. [PMID: 16235045 DOI: 10.1007/s00775-005-0037-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
We have compared the insulin-like activity of bis(acetylacetonato)oxovanadium(IV) [VO(acac)2], bis(maltolato)oxovanadium(IV) [VO(malto)2], and bis(1-N-oxide-pyridine-2-thiolato)oxovanadium(IV) [VO(OPT)2] in differentiated 3T3-L1 adipocytes. The insulin-like influence of VO(malto)2 and VO(OPT)2 was decreased compared with that of VO(acac)2. Also, serum albumin enhanced the insulin-like activity of all three chelates more than serum transferrin. Each of the three VO2+ chelates increased the tyrosine phosphorylation of proteins in response to insulin, including the beta-subunit of the insulin receptor (IRbeta) and the insulin receptor substrate-1 (IRS1). However, VO(acac)2 exhibited the greatest synergism with insulin and was therefore further investigated. Treatment of 3T3-L1 adipocytes with 0.25 mM VO(acac)2 in the presence of 0.25 mM serum albumin synergistically increased glycogen accumulation stimulated by 0.1 and 1 nM insulin, and increased the phosphorylation of IRbeta, IRS1, protein kinase B, and glycogen synthase kinase-3beta. Wortmannin suppressed all of these classical insulin-signaling activities exerted by VO(acac)2 or insulin, except for tyrosine phosphorylation of IRbeta and IRS1. Additionally, VO(acac)2 enhanced insulin signaling and metabolic action in insulin-resistant 3T3-L1 adipocytes. Cumulatively, these results provide evidence that VO(acac)2 exerts its insulin-enhancing properties by directly potentiating the tyrosine phosphorylation of the insulin receptor, resulting in the initiation of insulin metabolic signaling cascades in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Hesheng Ou
- Department of Medicine and Committee on Molecular Metabolism and Nutrition, The University of Chicago, MC1027, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
29
|
Clark TA, Edel AL, Heyliger CE, Pierce GN. Effective control of glycemic status and toxicity in Zucker diabetic fatty rats with an orally administered vanadate compound. Can J Physiol Pharmacol 2005; 82:888-94. [PMID: 15573149 DOI: 10.1139/y04-109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel black tea decoction containing vanadate has successfully replaced insulin in a rat model of insulin-dependent diabetes but is untested in non-insulin-dependent diabetic animals. A tea-vanadate decoction (TV) containing 30 or 40 mg sodium orthovanadate was administered by oral gavage to two groups of Zucker diabetic fatty rats and a conventional water vehicle containing 30 or 40 mg of sodium orthovanadate to two others. In the latter group receiving the 30-mg dose, vanadate induced diarrhea in 50% of the rats and death in 10%. In contrast, TV-treated rats had no incidence of diarrhea and no deaths. Symptoms were more severe in both groups with higher vanadate doses, so these were discontinued. After approximately 16 weeks, the level of vanadium in plasma and tissue extracts was negligible in a further group of untreated rats but highly elevated after vanadate treatment. Vanadium levels were not significantly different between the TV-treated diabetic rats and the diabetic rats given vanadate in a water vehicle. Over the 115 days of the study, blood glucose levels increased from approximately 17 to 25 mmol/L in untreated diabetic rats. This was effectively lowered (to <10 mmol/L) by TV treatment. Fasting blood glucose levels were 5, 7, and 20 mmol/L in control (nondiabetic, untreated), TV-treated and untreated diabetic rats, respectively. Rats required treatment with TV for only approximately 50% of the days in the study. Increase in body mass during the study was significantly lower in untreated diabetic rats (despite higher food intake) than the other groups. Body mass gain and food intake were normal in TV-treated rats. Water intake was 28 mL/rat daily in control rats, 130 mL/rat daily in untreated diabetic rats, and 52 mL/rat daily in TV-treated diabetic rats. Plasma creatinine and aspartate aminotransferase levels were significantly depressed in untreated diabetic rats, and TV treatment normalized this. Our results demonstrate that a novel oral therapy containing black tea and vanadate possesses a striking capacity to regulate glucose and attenuates complications in a rat model of type II diabetes.
Collapse
Affiliation(s)
- Tod A Clark
- The National Centre for Agri-food Research in Medicine, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
30
|
Kordowiak AM, Goc A, Drozdowska E, Turyna B, Dabros W. Sodium orthovanadate exerts influence on liver Golgi complexes from control and streptozotocin-diabetic rats. J Inorg Biochem 2005; 99:1083-9. [PMID: 15833331 DOI: 10.1016/j.jinorgbio.2005.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 01/21/2005] [Accepted: 01/28/2005] [Indexed: 11/23/2022]
Abstract
The paper presents the effect of one-week 3mM sodium orthovanadate (Na3VO4) oral treatment of control and streptozotocin[STZ]-diabetic rats. The body weight decreased as compared with untreated control (C group) in both vanadate treated groups (C + V and D + V) and in diabetic untreated rats (D group)--in all cases p < 0.01. A similar tendency was demonstrated by the weight of the livers, which was statistically significant lower than in the controls (p < 0.01). The fluid and food intake were lower in comparison with control vanadium treated groups, in D + V as compared with D it was limited, however, not achieved control level. A high mortality rate, approx. 67%, after the administration of streptozotocin and vanadate (D + V group) was noted; such result had never been previously found within all study groups of rats. But the surviving rats show very good decreased (60%) free blood sugar levels, however euglycaemia was not achieved. The activity of galactosyltransferase, the Golgi complex marker enzyme in group D, was statistically lower than the controls (p < 0.001). Treatment of STZ-diabetic rats with orthovanadate did not increase the enzyme activity toward control level, in both diabetic groups (treated and untreated with Na3VO4) similar dispersion of individual results was found. Morphological study demonstrated, for the first time, no larger cellular lesion in C + V group. The Golgi complex was well developed; showed several cisterns at the trans side, which were grossly distended and contained electron-lucid floccular material. In D + V group typical, cylindrical forms of Golgi complexes predominated. These structures consisted of 3-4 almost practically non-distended cisterns. Also in this case, large, electron-dense vesicles were noted in the vicinity. In this group, small in size, myelin-like structures were also found. These structures might indicate a relatively small, but nevertheless clear damage of the internal membrane system. The external cistern of the cylindrical forms of Golgi complexes, which corresponded the trans side, was often markedly distended and formed a vacuole-like structure filled with electron lucent material; the structure itself sometimes looked empty. Multi-vesicular structures were observed also in this case, but they were seen much more rarely.
Collapse
Affiliation(s)
- Anna M Kordowiak
- Department of General Biochemistry, Faculty of Biotechnology, Jagiellonian University, 16 Grzegorzecka St., 31-531 Cracow, Poland.
| | | | | | | | | |
Collapse
|
31
|
Saatchi K, Thompson KH, Patrick BO, Pink M, Yuen VG, McNeill JH, Orvig C. Coordination Chemistry and Insulin-Enhancing Behavior of Vanadium Complexes with Maltol C6H6O3 Structural Isomers. Inorg Chem 2005; 44:2689-97. [PMID: 15819554 DOI: 10.1021/ic048186g] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Syntheses of vanadium complexes using the naturally occurring ligands isomaltol (Hima) and allomaltol (Hama), as well as a newly synthesized, potentially tetradentate diaminodipyrone [H(2)(en(ama)(2)], are reported. Complete characterization of the resulting compounds [trans-VO(ima)(2)(H(2)O), VO(ama)(2), V(ima)(3), V(ama)(3) and VO(en(ama)(2))], including X-ray crystallography analyses for trans-VO(ima)(2)(H(2)O) and V(ima)(3), are presented herein. Potentiometric titrations (25 degrees C, I = 0.16 M NaCl) were used to measure stability constants in the V(IV)-Hima system; these data were compared to previous data collected on the V(IV)-L (L = Hma, Hama) systems. The in vivo efficacy of these compounds to lower the blood glucose levels of STZ-diabetic rats was tested; all but VO(en(ama)(2)) produced significant decreases in plasma glucose levels. The results were compared to those of the benchmark compound BMOV [VO(ma)(2), bis(maltolato)oxovanadium(IV)], a known insulin-enhancing agent.
Collapse
Affiliation(s)
- Katayoun Saatchi
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Compounds of the trace element vanadium exert various insulin-like effects in in vitro and in vivo systems. These include their ability to improve glucose homeostasis and insulin resistance in animal models of Type 1 and Type 2 diabetes mellitus. In addition to animal studies, several reports have documented improvements in liver and muscle insulin sensitivity in a limited number of patients with Type 2 diabetes. These effects are, however, not as dramatic as those observed in animal experiments, probably because lower doses of vanadium were used and the duration of therapy was short in human studies as compared with animal work. The ability of these compounds to stimulate glucose uptake, glycogen and lipid synthesis in muscle, adipose and hepatic tissues and to inhibit gluconeogenesis, and the activities of the gluconeogenic enzymes: phosphoenol pyruvate carboxykinase and glucose-6-phosphatase in the liver and kidney as well as lipolysis in fat cells contributes as potential mechanisms to their anti-diabetic insulin-like effects. At the cellular level, vanadium activates several key elements of the insulin signal transduction pathway, such as the tyrosine phosphorylation of insulin receptor substrate-1, and extracellular signal-regulated kinase 1 and 2, phosphatidylinositol 3-kinase and protein kinase B activation. These pathways are believed to mediate the metabolic actions of insulin. Because protein tyrosine phosphatases (PTPases) are considered to be negative regulators of the insulin-signalling pathway, it is suggested that vanadium can enhance insulin signalling and action by virtue of its capacity to inhibit PTPase activity and increase tyrosine phosphorylation of substrate proteins. There are some concerns about the potential toxicity of available inorganic vanadium salts at higher doses and during long-term therapy. Therefore, new organo-vanadium compounds with higher potency and less toxicity need to be evaluated for their efficacy as potential treatment of human diabetes.
Collapse
Affiliation(s)
- A K Srivastava
- Laboratory of Cell Signalling, Research Centre, Centre hospitalier de l'Université de Montréal, Hôtel-Dieu and Department of Medicine, Quebec, Canada.
| | | |
Collapse
|
33
|
Majithiya JB, Balaraman R, Giridhar R, Yadav MR. Effect of bis[curcumino]oxovanadium complex on non-diabetic and streptozotocin-induced diabetic rats. J Trace Elem Med Biol 2005; 18:211-7. [PMID: 15966569 DOI: 10.1016/j.jtemb.2004.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of the vanadium complex bis[curcumino]oxovanadium (BCOV) on blood glucose level, serum lipid levels, blood pressure and vascular reactivity were studied in non-diabetic and streptozotocin-induced diabetic (STZ-diabetic) rats and compared to that of vanadyl sulfate. Blood glucose level, serum lipid levels, and blood pressure were significantly increased in STZ-diabetic rats. Vascular reactivity to various agonists such as noradrenaline and acetylcholine were significantly increased in STZ-diabetic rats. Blood glucose and serum lipid levels were restored to normal in STZ-diabetic animals treated with vanadyl sulfate at a concentration of 0.5 mmol/kg/day (p.o.). However, vanadyl sulfate at a concentration of 0.2 mmol/kg/day (p.o.) did not produce any significant change in blood glucose and lipid levels. There was no significant effect of vanadyl sulfate (0.2 or 0.5 mmol/kg/day) treatment on blood pressure and vascular reactivity in STZ-diabetic rats. Vanadyl sulfate significantly reduced the body weight of non-diabetic and STZ-diabetic rats. Moreover, it also caused severe diarrhea in both groups of animals. Treatment with BCOV (0.05, 0.1 and 0.2mmol/kg/day, p.o.) significantly decreased blood glucose level and serum lipids in STZ-diabetic rats. Furthermore, administration of BCOV to STZ-diabetic rats restored the blood pressure and vascular reactivity to agonists to normal. There was no significant change in the body weight of BCOV treated non-diabetic and STZ-diabetic rats. Diarrhea was not observed in both BCOV treated groups. In conclusion, the present study shows that the vanadium complex BCOV has antidiabetic and hypolipedimic effects. In addition, it improves the cardiovascular complications associated with diabetes.
Collapse
Affiliation(s)
- Jayesh B Majithiya
- Pharmacy Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Baroda-390001, Gujarat, India.
| | | | | | | |
Collapse
|
34
|
Abstract
Inorganic and organic compounds of vanadium have been shown to exhibit a large range of insulinomimetic effects in the cardiovascular system, including stimulation of glucose transporter 4 (GLUT-4) translocation and glucose transport in adult cardiomyocytes. Furthermore, administration of vanadium compounds improves cardiac performance and smooth muscle contractility, and modulates blood pressure in various models of hypertension and insulin resistance. Vanadium compounds are potent inhibitors of protein tyrosine phosphatases. As a result, they promote an increase in protein tyrosine phosphorylation of several key components of the insulin signaling pathway, leading to the upregulation of phosphatidylinositol 3-kinase and protein kinase B, two enzymes involved in mediating GLUT-4 trans location and glucose transport. In addition, vanadium has also been shown to activate p38 mitogen-activated protein kinase and increase Ca2+levels in several cell types. The ability of vanadium compounds to activate these signaling events may be responsible for their ability to modulate cardiovascular functions.Key words: vanadium compounds, glucose transport, smooth muscle contractility, insulin signaling pathway.
Collapse
Affiliation(s)
- Lise Coderre
- Research Center, Centre hospitalier de l'Université de Montréal, Hôtel-Dieu, Department of Medicine, Université de Montréal, QC, Canada
| | | |
Collapse
|
35
|
Clark TA, Heyliger CE, Edel AL, Goel DP, Pierce GN. Codelivery of a tea extract prevents morbidity and mortality associated with oral vanadate therapy in streptozotocin-induced diabetic rats. Metabolism 2004; 53:1145-51. [PMID: 15334376 DOI: 10.1016/j.metabol.2004.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oral administration of vanadate has a strong hypoglycemic effect but results in toxic side effects like life-threatening diarrhea. Tea is known to have potent antidiarrhea effects. We investigated the potential of suspending the vanadate in a tea decoction to reduce the diarrheatic action of vanadate. A concentrated extract of Lichee black tea was, therefore, added to sodium orthovanadate. Streptozotocin (STZ)-induced diabetic rats were orally gavaged with vanadate suspended in water or in the tea decoction, or with the tea extract alone. Blood glucose levels were assessed daily over 11 weeks with levels greater than 10 mmol/L warranting therapeutic intervention. Both the vanadate/water and vanadate/tea solutions acutely reduced blood glucose. The tea extract alone had no effect. The majority of vanadate/water-treated rats developed diarrhea and mortality rates approached 40%. Vanadate/tea-treated diabetic rats experienced no diarrhea or mortality and liver and kidney analyses (plasma ALT and creatinine, blood urea nitrogen [BUN], and urine-specific gravity) were normal. Animals treated with vanadate/tea retained blood glucose levels less than 10 mmol/L for an average of 24 consecutive days without subsequent treatments. Cataract formation was completely prevented. The mechanism of action of vanadate may have involved beta-cell stimulation because vanadate/tea-treated diabetic rats exhibited normal plasma insulin levels. In summary, because of its long-lasting effects, oral administration, and lack of side effects, vanadate/tea represents a potentially important alternative therapy for an insulin-deficient diabetic state.
Collapse
Affiliation(s)
- Tod A Clark
- The National Centre for Agrifood Research in Medicine, University of Mannitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
36
|
Castro MC, Avecilla F, Geraldes CF, de Castro B, Rangel M. Study of the oxidation products of the VO(dmpp)2 complex in aqueous solution under aerobic conditions: comparison with the vanadate–dmpp system. Inorganica Chim Acta 2003. [DOI: 10.1016/s0020-1693(03)00473-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Abstract
In the 21st century, patients suffering from diabetes mellitus (DM), a lifestyle-related disease, will increase more than in the 20th century. DM is threatening because of the development of many severe secondary complications, including atherosclerosis, microangiopathy, renal dysfunction and failure, cardiac abnormalities, diabetic retinopathy, and ocular disorders. Generally, DM is classified as either insulin-dependent type 1 or noninsulin-dependent type 2 DM. Type 1 DM is treated only by daily insulin injections; type 2 DM is treated by several types of synthetic therapeutic substances together with a controlled diet and physical exercise. Even with these measures, the daily necessity for several insulin injections can be painful both physically and mentally, whereas the synthetic therapeutic substances used over the long term often have side effects. For those reasons, the creation and development of a new class of pharmaceuticals for treatment of DM in the 21st century would be extremely desirable. In the last half of the 20th century, investigations of the relationships among diseases and micronutrients, such as iron, copper, zinc, and selenium, have been numerous. Research into the development of metallopharmaceuticals involving the platinum-containing anticancer drug, cisplatin, and the gold-containing rheumatoid arthritis drug, auranofin, has also been widespread. Such important findings prompted us to develop therapeutic reagents based on a new concept to replace either insulin injections or the use of synthetic drugs. After many trials, we noticed that vanadium might be very useful in the treatment of DM. Before the discovery of insulin by Banting and Best in 1921 and its clinical trial for treating DM, the findings in 1899, in which orally administered sodium vanadate (NaVO(3)) was reported to improve human DM, gave us the idea to use vanadium to treat DM. However, it has taken a long time to obtain a scientific explanation as to why the metal ion exhibits insulin-mimetic or blood-glucose lowering effects in in vitro and in vivo experiments. After investigations from many perspectives involving biochemistry and bioinorganic chemistry, vanadyl sulfate (VOSO(4)) and its complexes with several types of ligands have been proposed as useful for treating DM in experimental diabetic animals. On the basis of a mechanistic study, this article reports on recent progress regarding the development of antidiabetic vanadyl complexes, emphasizing that the vanadyl ion and its complexes are effective not only in treating or relieving both types of DM but also in preventing the onset of DM.
Collapse
Affiliation(s)
- Hiromu Sakurai
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
38
|
Tardif A, Julien N, Chiasson JL, Coderre L. Stimulation of glucose uptake by chronic vanadate pretreatment in cardiomyocytes requires PI 3-kinase and p38 MAPK activation. Am J Physiol Endocrinol Metab 2003; 284:E1055-64. [PMID: 12569083 DOI: 10.1152/ajpendo.00134.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vanadate, an inhibitor of tyrosine phosphatases, has insulin-mimetic properties. It has been shown that acute vanadate administration enhances glucose uptake independently of phosphatidylinositol (PI) 3-kinase and p38 MAPK. However, therapeutic vanadate use requires chronic administration, and this could potentially involve a different signaling pathway(s). Thus, we examined the mechanisms by which chronic vanadate exposure (16 h) stimulates glucose uptake in primary cultures of adult cardiomyocytes. The effect of vanadate on the activation of insulin-signaling molecules was evaluated 60 min after its withdrawal and in the absence of insulin. We therefore evaluated the persistent effect of vanadate on the insulin-signaling cascade. Our results demonstrate that preincubation with low vanadate concentrations (25-75 microM) induces a dose-dependent increase in glucose uptake. The augmentation of this process was not due to alterations in GLUT1 or GLUT4 protein levels, transcription, or de novo protein synthesis. Chronic vanadate exposure was associated with activation of the insulin receptor, insulin receptor substrate-1 (IRS-1), PKB/Akt, and p38 MAPK. Furthermore, inhibition of PI 3-kinase or p38 MAPK by wortmannin and PD-169316, respectively, significantly inhibited vanadate-mediated glucose uptake in cardiomyocytes. Thus, over time, different (albeit overlapping) signaling cascades may be activated by vanadate.
Collapse
Affiliation(s)
- Annie Tardif
- Research Center, Centre hospitalier de l'Université de Montréal (CHUM), and Department of Medicine, University of Montreal, Montreal, Canada H2W 1T7
| | | | | | | |
Collapse
|
39
|
Katoh A, Taguchi K, Saito R, Fujisawa Y, Takino T, Sakurai H. Oxovanadium Complexes of N-Substituted 3-Hydroxy-2-methyl-4(1H)-pyridinones: Synthesis, Spectroscopic Characterization, and the Insulin-mimetic Activity. HETEROCYCLES 2003. [DOI: 10.3987/com-03-9719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Yasui H, Tamura A, Takino T, Sakurai H. Structure-dependent metallokinetics of antidiabetic vanadyl-picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics. J Inorg Biochem 2002; 91:327-38. [PMID: 12121792 DOI: 10.1016/s0162-0134(02)00443-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The insulinomimetic effect of vanadium is the most remarkable and important among its several biological actions. Vanadyl ion (+4 oxidation state of vanadium) and its complexes have been found to normalize the blood glucose levels of both type 1 and 2 diabetic animals. We have developed insulinomimetic vanadyl complexes having different coordination modes, emphasizing the possible usefulness of vanadyl-picolinate [VO(pa)(2)] and its related complexes with the VO(N(2)O(2)) coordination mode. In order to apply these complexes clinically in the future, the relationship between the chemical structure, insulinomimetic action, organ distribution of vanadium, and blood disposition of vanadyl species must be closely investigated. In the present investigation, we studied the blood disposition of the vanadyl-picolinate complexes in healthy rats, and tried to understand comprehensively the relationship between the structures, insulinomimetic activity, and metallokinetic parameters of the complexes, which had been recently prepared and specifically synthesized for the present study, by using an in vivo blood circulation monitoring -- electron spin resonance (BCM-ESR) method for analyzing ESR signals due to paramagnetic metal ions and complexes in the blood in real time. Metallokinetic parameters were estimated based on the blood clearance curves in terms of a two-compartment pharmacokinetic model, and vanadyl species were indicated to be distributed in peripheral tissues and gradually eliminated from the circulating blood, depending on their chemical structures. Vanadyl concentrations in the blood of rats given bis(5-iodopicolinato)oxovanadium(IV) [VO(5ipa)(2)] and bis(3-methylpicolinato)oxovanadium(IV) [VO(3mpa)(2)] with electron-withdrawing and donating groups, respectively, remained significantly higher and longer, due to their slower clearance rates from the blood, than in rats given other complexes, suggesting that the high exposure and long residence of vanadyl species bring about the high normoglyceric effect in diabetic animals. We then examined the relationship between insulinomimetic activity and metallokinetic parameters in the family of VO(pa)(2) for further development of insulinomimetic vanadyl complexes. IC(50), the 50% inhibitory concentration of the complexes on the free fatty acid release from isolated rat adipocytes treated with epinephrine, was found to be sufficiently correlated with metallokinetic parameters such as area under the concentration curve, mean residence time, total clearance, and distribution volume at steady-state. Furthermore, the in vivo antidiabetic activity of the complexes was enhanced with increasing exposure and residence of vanadyl species in the blood of animals. On the basis of these results, we concluded that in vitro insulinomimetic activity, metallokinetic character, and in vivo antidiabetic action of vanadyl-picolinate complexes are closely related to their chemical structures.
Collapse
Affiliation(s)
- Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|
41
|
Song B, Aebischer N, Orvig C. Reduction of [VO2(ma)2]- and [VO2(ema)2]- by ascorbic acid and glutathione: kinetic studies of pro-drugs for the enhancement of insulin action. Inorg Chem 2002; 41:1357-64. [PMID: 11896702 DOI: 10.1021/ic0111684] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To shed light on the role of V(V) complexes as pro-drugs for their V(IV) analogues, the kinetics of the reduction reactions of [VO2(ma)2]- or [VO2(ema)2]- (Hma = maltol, Hema = ethylmaltol), with ascorbic acid or glutathione, have been studied in aqueous solution by spectrophotometric and magnetic resonance methods. EPR and 51V NMR studies suggested that the vanadium(V) in each complex was reduced to vanadium(IV) during the reactions. All the reactions studied showed first-order kinetics when the concentration of ascorbic acid or glutathione was in large excess and the observed first-order rate constants have a linear relationship with the concentrations of reductant (ascorbic acid or glutathione). Potentiometric results revealed that the most important species in the neutral pH range is [VO2(L)2]- for the V(V) system where L is either ma- or ema-. An acid dependence mechanism was proposed from kinetic studies with varying pH and varying maltol concentration. The good fits of the second order rate constant versus pH or the total concentration of maltol, and the good agreement of the constants obtained between fittings, strongly supported the mechanism. Under the same conditions, the reaction rate of [VO2(ma)2]- with glutathione is about 2000 times slower than that of [VO2(ma)2]- with ascorbic acid, but an acid dependence mechanism can also be used to explain the results for the reduction with glutathione. Replacing the methyl group in maltol with an ethyl group has little influence on the reduction rate with ascorbic acid, and the kinetics are the same no matter whether [VO2(ma)2]- or [VO2(ema)2]- is reduced.
Collapse
Affiliation(s)
- Bin Song
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | |
Collapse
|
42
|
|
43
|
Dabroś W, Dziga D, Gryboś R, Kordowiak AM. Biochemical and morphological alterations in rat liver Golgi complexes after treatment with bis(maltolato)oxovanadium(IV) [BMOV] or maltol alone. Pathol Res Pract 2001; 196:561-8. [PMID: 10982019 DOI: 10.1016/s0344-0338(00)80028-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Oral treatment with maltol or bis(maltolato)oxovanadium(IV) [BMOV] alters the biochemical activity of the rat liver Golgi marker enzyme, i.e., galactosyltransferase (GalT), and the organelle morphology in a relatively short time. Four groups of rats were investigated: control (C), treated with BMOV for 2 days (pVC), treated with BMOV for 7 days (C+V), and treated with maltol alone for 7 days (C+M). All drugs were administered as drinking solutions. These conditions were used, because normalization of galactosyltransferase activity (GalT) and morphology of rat liver Golgi complexes were previously found by us in streptozotocin-induced diabetes. In this paper, we present the influence of BMOV or maltol alone (as a vanadium ligand in BMOV compound) on rat liver Golgi complexes. The lowest statistically significant enzyme activity, in comparison with three other groups of rats (p < 0.01), was found in rats treated with BMOV solution for two days (pVC). Liver Golgi complexes in these rats showed relatively slight changes as compared with controls. The activity of GalT was similar to controls of the C+V and C+M groups. Morphological examinations of the Golgi apparatus in rats treated with vanadium salts revealed a slightly increased secretory activity. In response to various agents used in experiments, the Golgi complexes were generally reduced in size, except for the (C+M) group. Not only cisternae, but also vacuoles and associated vesicles on both sides of stacks were reduced in almost all Golgi structures. Ultrastructural findings were generally in agreement (except for pVC group) with biochemical results (yields of liver Golgi-rich fractions, activity of galactosyltransferase) obtained in the same rats.
Collapse
Affiliation(s)
- W Dabroś
- Department of Clinical and Experimental Pathomorphology, Faculty of Medicine, Jagiellonian University, Cracow, Poland
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- J H McNeill
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
45
|
Abstract
Compounds of the trace element vanadium have been shown to mimic insulin in in vitro and in vivo systems. These compounds have been found to exert anti-diabetic effects in rodent models of type 1 and type 2 diabetes mellitus as well as in a limited number of studies in human diabetic subjects. Thus, vanadium compounds have emerged as agents for potential use in diabetes therapy. However, treatment of diabetic animals with inorganic vanadium salts has also been associated with some toxic side-effects such as gastrointestinal discomfort and decreased body weight gain. In addition, vanadium salts have been reported to exert toxic effects on the liver and kidney. More recently, it was shown that organic vanadium compounds were much safer than inorganic vanadium salts and did not cause any gastrointestinal discomfort, hepatic or renal toxicity. This review briefly summarizes the anti-diabetic and toxic effects of vanadium compounds.
Collapse
Affiliation(s)
- A K Srivastava
- Research Center, Centre hospitalier de l'Université de Montreal (CHUM), Hôtel-Dieu and Department of Medicine, University of Montreal, Québec, Canada
| |
Collapse
|
46
|
Affiliation(s)
- K H Thompson
- Medicinal Inorganic Chemistry Group, Chemistry Department, and Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | |
Collapse
|
47
|
Lord SJ, Epstein NA, Paddock RL, Vogels CM, Hennigar TL, Zaworotko MJ, Taylor NJ, Driedzic WR, Broderick TL, Westcott SA. Synthesis, characterization, and biological relevance of hydroxypyrone and hydroxypyridinone complexes of molybdenum. CAN J CHEM 1999. [DOI: 10.1139/v99-111] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have prepared a number of complexes of the type cis-MoO2L2 where L represents a hydroxypyronato or hydroxypyridinonato ligand. Both the maltol (3-hydroxy-2-methyl-4-pyrone, Hma) and kojic acid (5-hydroxy-2-hydroxymethyl-4-pyrone, Hka) complexes, cis-MoO2(ma)2 (1) and cis-MoO2(ka)2 (2), have been characterized by X-ray diffraction studies. The pyrone ligands are bound to molybdenum in a cis bidentate fashion via the deprotonated hydroxyl groups and the ketone moieties. Crystals of 1 are orthorhombic, a = 12.107 (1), b = 8.6169 (8), c = 16.472 (1) Å, Z = 4, space group Pca21, and those of 2 are monoclinic, a = 8.4591 (5), b = 16.3453 (10), c = 10.2954 (7) Å, β = 103.0320 (10)°, Z = 4, space group P21/c. Hydroxypyridinone molybdenum complexes have been prepared for both maltol and kojic acid derivatives with the substituents Me, n-Pr, CH2Ph, Ph at the ring nitrogen. Crystals of the 3-hydroxy-2-methyl-1-phenyl-4-pyridinone (Hppp) derivative, MoO2(ppp)2 (9), are monoclinic, a = 10.9476 (6), b = 13.5353 (9), c = 17.4877 (10) Å, β = 93.465 (4)°, Z = 4, space group P21/n. Initial investigations into the effects molybdenum compounds have on diabetic hearts are presented. Both Na2MoO4 (used as a control) and 1 were effective in lowering blood glucose and free fatty acid levels. Diabetic rats treated with molybdate showed significant improvements in postischemic cardiac function.Key words: molybdenum, hydroxypyrones, hydroxypyridinones, heart function.
Collapse
|
48
|
Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM. Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Br J Pharmacol 1999; 126:467-77. [PMID: 10077240 PMCID: PMC1565819 DOI: 10.1038/sj.bjp.0702311] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Vanadium compounds can mimic actions of insulin through alternative signalling pathways. The effects of three organic vanadium compounds were studied in non-ketotic, streptozotocin-diabetic rats: vanadyl acetylacetonate (VAc), vanadyl 3-ethylacetylacetonate (VEt), and bis(maltolato)oxovanadium (VM). A simple inorganic vanadium salt, vanadyl sulphate (VS) was also studied. 2. Oral administration of the three organic vanadium compounds (125 mg vanadium element 1(-1) in drinking fluids) for up to 3 months induced a faster and larger fall in glycemia (VAc being the most potent) than VS. Glucosuria and tolerance to a glucose load were improved accordingly. 3. Activities and mRNA levels of key glycolytic enzymes (glucokinase and L-type pyruvate kinase) which are suppressed in the diabetic liver, were restored by vanadium treatment. The organic forms showed greater efficacy than VS, especially VAc. 4. VAc rats exhibited the highest levels of plasma or tissue vanadium, most likely due to a greater intestinal absorption. However, VAc retained its potency when given as a single i.p. injection to diabetic rats. Moreover, there was no relationship between plasma or tissue vanadium levels and any parameters of glucose homeostasis and hepatic glucose metabolism. Thus, these data suggest that differences in potency between compounds are due to differences in their insulin-like properties. 5. There was no marked toxicity observed on hepatic or renal function. However, diarrhoea occurred in 50% of rats chronically treated with VS, but not in those receiving the organic compounds. 6. In conclusion, organic vanadium compounds, in particular VAc, correct the hyperglycemia and impaired hepatic glycolysis of diabetic rats more safely and potently than VS. This is not simply due to improved intestinal absorption, indicating more potent insulin-like properties.
Collapse
Affiliation(s)
- B A Reul
- Endocrinology and Metabolism Unit, UCL 5530 AV Hippocrate 55, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Setyawati IA, Thompson KH, Yuen VG, Sun Y, Battell M, Lyster DM, Vo C, Ruth TJ, Zeisler S, McNeill JH, Orvig C. Kinetic analysis and comparison of uptake, distribution, and excretion of 48V-labeled compounds in rats. J Appl Physiol (1985) 1998; 84:569-75. [PMID: 9475867 DOI: 10.1152/jappl.1998.84.2.569] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vanadium has been found to be orally active in lowering plasma glucose levels; thus it provides a potential treatment for diabetes mellitus. Bis(maltolato)oxovanadium(IV) (BMOV) is a well-characterized organovanadium compound that has been shown in preliminary studies to have a potentially useful absorption profile. Tissue distributions of BMOV compared with those of vanadyl sulfate (VS) were studied in Wistar rats by using 48V as a tracer. In this study, the compounds were administered in carrier-added forms by either oral gavage or intraperitoneal injection. Data analyzed by a compartmental model, by using simulation, analysis, and modeling (i.e., SAAM II) software, showed a pattern of increased tissue uptake with use of 48V-BMOV compared with 48VS. The highest 48V concentrations at 24 h after gavage were in bone, followed by kidney and liver. Most ingested 48V was eliminated unabsorbed by fecal excretion. On average, 48V concentrations in bone, kidney, and liver 24 h after oral administration of 48V-BMOV were two to three times higher than those of 48VS, which is consistent with the increased glucose-lowering potency of BMOV in acute glucose lowering compared with VS.
Collapse
Affiliation(s)
- I A Setyawati
- Chemsitry Department, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yuen VG, Caravan P, Gelmini L, Glover N, McNeill JH, Setyawati IA, Zhou Y, Orvig C. Glucose-lowering properties of vanadium compounds: comparison of coordination complexes with maltol or kojic acid as ligands. J Inorg Biochem 1997; 68:109-16. [PMID: 9336969 DOI: 10.1016/s0162-0134(97)00082-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bis(kojato)oxovanadium(IV) [abbreviated VO(ka)2], a close chemical analog of the insulin-mimetic lead compound bis(maltolato)oxovanadium(IV)--abbreviated BMOV or VO(ma)2--is reported and its reaction chemistry and insulin-mimetic properties are presented. VO(ka)2 [log K1 = 7.61(10), log K2 = 6.89(6), log beta 2 = 14.50(16)] has a reaction chemistry which directly parallels that of VO(ma)2. In aqueous solution it is more slowly oxidized by molecular oxygen to [VO2(ka)2]- than is VO(ma)2 to [VO2(ma)2]-. Variable pH electrochemistry and variable pH 51V NMR of solutions of VO(ka)2 are presented and contrasted with the corresponding results for VO(ma)2. Time course studies (24 hr) in STZ-diabetic rats following the oral or i.p. administration of VO(ka)2, VO(ma)2, VO2+ (vanadyl) as vanadyl sulfate (VOSO4), and [VO2(ma)2]- as its [NH4]+ salt have been performed, as have chronic oral studies comparing VO(ka)2 and VO(ma)2 over a six week period. In all studies, the most potent form of vanadium was the neutrally charged, water soluble, complex VO(ma)2.
Collapse
Affiliation(s)
- V G Yuen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|