1
|
Street ME, Casadei F, Di Bari ER, Ferraboschi F, Montani AG, Shulhai AM, Esposito S. The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity-Part 1: Metabolic Changes. Nutrients 2025; 17:1630. [PMID: 40431370 PMCID: PMC12113821 DOI: 10.3390/nu17101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Childhood obesity is a growing global health issue. Its rising prevalence is linked to genetic, environmental, and lifestyle factors. Obesity in children could lead to different comorbidities and complications with an increased risk of metabolic disorders, such as insulin resistance, dyslipidemia, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). First-line treatment involves dietary modifications and lifestyle changes; however, adherence is often poor and remains a significant challenge. Pharmacotherapy, while a potential option, has limitations in availability and can cause side effects, leading to growing interest in alternative treatments, such as nutraceutical compounds. Derived from natural sources, these compounds have different anti-inflammatory, antiallergic, antioxidant, antibacterial, antifungal, neuroprotective, antiaging, antitumor, insulin-sensitizing, glucose, and lipid-lowering effects. This review describes commonly used nutraceutical compounds, such as omega-3 fatty acids, vitamin D, polyphenols (such as resveratrol and curcumin), berberine, white mulberry leaves and others, and pre- and probiotics in the management of obesity, evaluating the evidence on their mechanisms of action and efficacy in metabolic comorbidities. The evidence suggests that the integration of nutraceuticals into the diet may positively influence body mass index, glucose metabolism, lipid profiles, and gut microbiota composition and reduce inflammation in obese individuals. These effects may provide future practical guidance for clinical practice, contribute to metabolic health improvement, and potentially prevent obesity-related complications. In this first part, we discuss the effects of nutraceutical compounds on insulin sensitivity and insulin resistance, T2DM, dyslipidemia, and MASLD in addition to diet and lifestyle interventions.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
- Unit of Paediatrics, P. Barilla Children’s Hospital, University Hospital of Parma, 43126 Parma, Italy
| | - Federica Casadei
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Erika Rita Di Bari
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Francesca Ferraboschi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Anna Giuseppina Montani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
- Unit of Paediatrics, P. Barilla Children’s Hospital, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
2
|
Li Q, Yang Z, Lu H, Liu F, Zhou D, Zou Y. Astragalin Exerted Hypoglycemic Effect by Both Inhibiting α-Glucosidase and Modulating AMPK Signaling Pathway. Nutrients 2025; 17:406. [PMID: 39940264 PMCID: PMC11820219 DOI: 10.3390/nu17030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The hypoglycemic activity of mulberry leaf polyphenols has been widely studied, while its mechanism of action needs further elucidation. METHODS The inhibitory activity mechanism of astragalin on α-glucosidase was investigated with a combination of multispectroscopic techniques and molecular docking. The hypoglycemic pathway was further revealed with a high-glucose human hepatocellular carcinomas (HepG2) cell model. RESULTS The results indicated that astragalin inhibited α-glucosidase with IC50 of 154.5 µM, which was the highest in potency among the main polyphenols from mulberry leaves. Astragalin could bind to α-glucosidase with a single inhibition site and quench its endofluorescence with a static quenching mechanism. Astragalin changed the secondary structure of α-glucosidase, and the decreased α-helix content, representing the un-folding conformation, resulted in the decreased activity. The molecular docking further indicated that two sustainable hydrogen bonds were generated between astragalin and α-glucosidase residue Ser-88 and Tyr-133. The main driving forces to form the astragalin-α-glucosidase complex were the van der Waals force and hydrogen bond. Astragalin at a concentration of 80 µg/mL obtained the best hypoglycemic effect by activating the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. CONCLUSIONS This study provides new insights into the potential utilization of astragalin-rich foods in the improvement of diabetes mellitus.
Collapse
Affiliation(s)
- Qian Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (Z.Y.); (F.L.); (D.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Zhangchang Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (Z.Y.); (F.L.); (D.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huijie Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Fan Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (Z.Y.); (F.L.); (D.Z.)
| | - Donglai Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (Z.Y.); (F.L.); (D.Z.)
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (Z.Y.); (F.L.); (D.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Bati K, Baeti PB, Gaobotse G, Kwape TE. Leaf extracts of
Euclea natalensis
A.D.C ameliorate biochemical abnormalities in high-fat-low streptozotocin-induced diabetic rats through modulation of the AMPK-GLUT4 pathway. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 11:232-252. [DOI: 10.1080/2314808x.2024.2326748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Keagile Bati
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Biomedical Sciences, School of Medicine, University of Botswana, Gaborone, Botswana
| | - Phazha Bushe Baeti
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Tebogo Elvis Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
4
|
Zhang Y, Miao R, Ma K, Zhang Y, Fang X, Wei J, Yin R, Zhao J, Tian J. Effects and Mechanistic Role of Mulberry Leaves in Treating Diabetes and its Complications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1711-1749. [PMID: 37646143 DOI: 10.1142/s0192415x23500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jingxue Zhao
- Development Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
5
|
Omale S, Amagon KI, Johnson TO, Bremner SK, Gould GW. A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials. PeerJ 2023; 11:e14639. [PMID: 36627919 PMCID: PMC9826616 DOI: 10.7717/peerj.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Diabetes is one of the fastest-growing health emergencies of the 21st century, placing a severe economic burden on many countries. Current management approaches have improved diabetic care, but several limitations still exist, such as decreased efficacy, adverse effects, and the high cost of treatment, particularly for developing nations. There is, therefore, a need for more cost-effective therapies for diabetes management. The evidence-based application of phytochemicals from plants in the management of diseases is gaining traction. Methodology Various plants and plant parts have been investigated as antidiabetic agents. This review sought to collate and discuss published data on the cellular and molecular effects of medicinal plants and phytochemicals on insulin signaling pathways to better understand the current trend in using plant products in the management of diabetes. Furthermore, we explored available information on medicinal plants that consistently produced hypoglycemic effects from isolated cells to animal studies and clinical trials. Results There is substantial literature describing the effects of a range of plant extracts on insulin action and insulin signaling, revealing a depth in knowledge of molecular detail. Our exploration also reveals effective antidiabetic actions in animal studies, and clear translational potential evidenced by clinical trials. Conclusion We suggest that this area of research should be further exploited in the search for novel therapeutics for diabetes.
Collapse
Affiliation(s)
- Simeon Omale
- African Centre for Excellence in Phytomedicine, University of Jos, Jos, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Kennedy I. Amagon
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Titilayo O. Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Shaun Kennedy Bremner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
6
|
Validation of Antidiabetic and Antihyperlipidemic Effects of 80% Methanolic Extract of the Lonchocarpus laxiflorus Leaves in Streptozotocin-Induced Diabetic Swiss Albino Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8411851. [PMID: 36619200 PMCID: PMC9812600 DOI: 10.1155/2022/8411851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Introduction Diabetes mellitus (DM) is a chronic endocrine disorder that requires long-term treatment. In Ethiopian traditional medicine practice, plants have been provided with a vital role in fighting human and animal diseases since ancient times. The aqueous extract of Lonchocarpus laxiflorus (L. laxiflorus) leaves has been consumed for treating diabetes mellitus without confirming its safety and efficacy scientifically. This experiment aimed to evaluate the safety and antidiabetic efficacy of the leaf extract of L. laxiflorus in mice models. Methods The crude extraction was conducted using a cold maceration technique and 80% methanol solvent. Normoglycemic, oral glucose-loaded, and streptozotocin-induced (STZ) diabetic models were employed. Male Swiss albino mice were randomly grouped into five categories( with six mice per group during normoglycemic, oral glucose-loadingtest as a negative control, positive control, and three treatment groups. In STZ-induced diabetic models, the groups include normal and diabetic negative control, diabetic positive control, and three diabetic treatment groups. The negative control groups received vehicles, the positive control received 5 mg/kg glibenclamide, and the treatment groups received the crude extract at 100, 200, and 400 mg/kg doses, respectively. Results Up to 2000 mg/kg crude extract, neither signs of toxicity nor death were observed. In normoglycemic mice, there was a significant blood glucose reduction at 200 and 400 mg/kg doses starting from the 2nd h post-administration. The oral glucose load showed a significant antihyperglycemic effect at 200 and 400 mg/kg of the crude extract and glibenclamide. In STZ-induced diabetic models, the 200, 400 mg/kg crude extract, and glibenclamide showed a significant antidiabetic activity and enhancement of a good serum lipid profile. Conclusion This study confirmed that the leaf of L. laxiflorus was safe and possesses antidiabetic and antidyslipidemic activities.
Collapse
|
7
|
Park JE, Han JS. A bioactive component of Portulaca Oleracea L., HM-chromanone, improves palmitate-induced insulin resistance by inhibiting mTOR/S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells. Toxicol Res (Camb) 2022; 11:774-783. [PMID: 36337245 PMCID: PMC9618117 DOI: 10.1093/toxres/tfac055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 08/28/2023] Open
Abstract
Increased free fatty acid levels in the blood are common in obesity and cause insulin resistance associated with type 2 diabetes in the muscles. Previous studies have confirmed the antidiabetic and anti-obesity potential of (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone). However, it is unknown how HM-chromanone alleviates obesity-related insulin resistance in L6 skeletal muscle cells. Palmitate induced insulin resistance and reduced glucose uptake, whereas HM-chromanone significantly increased glucose uptake. In palmitate-treated L6 skeletal muscle cells, HM-chromanone stimulated liver kinase B1 (LKB1) and 5'-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. The AMPK inhibitor compound C, and the LKB1 inhibitor radicicol blocked the effects of HM-chromanone. Furthermore, HM-chromanone significantly inhibited mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1) activation, but there was no change in protein kinase C θ (PKC θ) expression. When pAMPK was inhibited with compound C, the effect of HM-chromanone on the inhibition of mTOR and S6K1 was significantly diminished. This indicates that HM-chromanone inhibits mTOR and S6K1 activation through pAMPK activation. Inhibition of mTOR and S6K1 by HM-chromanone significantly reduced IRS-1Ser307 and IRS-1Ser632 phosphorylation, leading to insulin resistance. This resulted in an increase in PM-GLUT4 (glucose transporter 4) expression, thereby stimulating glucose uptake in insulin-resistant muscle cells. HM-chromanone can improve palmitate-induced insulin resistance by inhibiting mTOR and S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells. These results show the therapeutic potential of HM-chromanone for improving insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumgeong-gu, Busan 46241, Republic of South Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumgeong-gu, Busan 46241, Republic of South Korea
| |
Collapse
|
8
|
Improvement of Glycemic Control by a Functional Food Mixture Containing Maltodextrin, White Kidney Bean Extract, Mulberry Leaf Extract, and Niacin-Bound Chromium Complex in Obese Diabetic db/db Mice. Metabolites 2022; 12:metabo12080693. [PMID: 35893259 PMCID: PMC9394435 DOI: 10.3390/metabo12080693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Steady-fiber granule (SFG) is a mixture containing maltodextrin, white kidney bean extract, mulberry leaf extract, and niacin-bound chromium complex. These active ingredients have been shown to be associated with improving either hyperglycemia or hyperlipidemia. This study was undertaken to evaluate the potential of SFG in the regulation of blood glucose homeostasis under obese diabetic conditions. Accordingly, db/db mice (8 weeks old) were administered with SFG at doses of 1.025, 2.05, or 5.125 g/kg BW daily via oral gavage for 4 weeks. No body weight loss was observed after SFG supplementation at all three doses during the experimental period. Supplementation of SFG at 2.05 g/kg BW decreased fasting blood glucose, blood fructosamine, and HbA1c levels in db/db mice. Insulin sensitivity was also improved, as indicated by HOMA-IR assessment and oral glucose tolerance test, although the fasting insulin levels were no different in db/db mice with or without SFG supplementation. Meanwhile, the plasma levels of triglyceride were reduced by SFG at all three doses. These findings suggest that SFG improves glycemic control and insulin sensitivity in db/db mice and can be available as an option for functional foods to aid in management of type 2 diabetes mellitus in daily life.
Collapse
|
9
|
Morales-Ferra DL, Zavala-Sánchez MÁ, Jiménez-Ferrer E, González-Cortazar M, Zamilpa A. Effect of Tecoma stans (L.) Juss. ex Kunth in a Murine Model of Metabolic Syndrome. PLANTS 2022; 11:plants11141794. [PMID: 35890428 PMCID: PMC9324241 DOI: 10.3390/plants11141794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Metabolic syndrome is a constellation of abnormalities related to insulin resistance with an unfortunately high prevalence worldwide. Tecoma stans (L.) Juss. Ex Kunth. is a well-known medicinal plant that has been studied in several biological models related to diabetes mellitus. The aim of this study was to evaluate the effects of T. stans on a hypercaloric diet-induced metabolic syndrome model. An organic fraction obtained using liquid–liquid separation from the hydroalcoholic extract of T. stans and four subfractions of this organic fraction were administered for ten weeks to C57BL6J male mice previously fed with a hypercaloric diet. The hypercaloric diet caused changes in glucose levels (from 65.3 to 221.5 mg/dL), body weight (31.3 to 42.2 g), triglycerides (91.4 to 177.7 mg/dL), systolic (89.9 to 110.3 mmHg) and diastolic (61.6 to 73.7 mg/dL) blood pressure, and insulin resistance (4.47 to 5.16). Treatment with T. stans resulted in improvements in triglycerides (83.4–125.0 mg/dL), systolic blood pressure (75.1–91.8 mmHg), and insulin resistance (4.72–4.93). However, the organic fraction and hydroalcoholic extract produced a better response in diastolic blood pressure (52.8–56.4 mmHg). Luteolin, apigenin, and chrysoeriol were the major constituents in the most active subfractions. Treatment with T. stans, particularly a luteolin-rich organic fraction, achieved an improvement in metabolic syndrome alterations.
Collapse
Affiliation(s)
- Dulce Lourdes Morales-Ferra
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), México City 04960, Mexico;
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Miguel Ángel Zavala-Sánchez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), México City 04960, Mexico
- Correspondence: (M.Á.Z.-S.); (A.Z.); Tel.: +52-551-320-7614 (M.Á.Z.-S.); +52-777-361-2155 (A.Z.)
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Centro, Xochitepec CP 62790, Mexico; (E.J.-F.); (M.G.-C.)
- Correspondence: (M.Á.Z.-S.); (A.Z.); Tel.: +52-551-320-7614 (M.Á.Z.-S.); +52-777-361-2155 (A.Z.)
| |
Collapse
|
10
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
11
|
Memete AR, Timar AV, Vuscan AN, Miere (Groza) F, Venter AC, Vicas SI. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020152. [PMID: 35050040 PMCID: PMC8777750 DOI: 10.3390/plants11020152] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
In recent years, mulberry has acquired a special importance due to its phytochemical composition and its beneficial effects on human health, including antioxidant, anticancer, antidiabetic and immunomodulatory effects. Botanical parts of Morus sp. (fruits, leaves, twigs, roots) are considered a rich source of secondary metabolites. The aim of our study was to highlight the phytochemical profile of each of the botanical parts of Morus tree, their health benefits and applications in food industry with an updated review of literature. Black and white mulberries are characterized in terms of predominant phenolic compounds in correlation with their medical applications. In addition to anthocyanins (mainly cyanidin-3-O-glucoside), black mulberry fruits also contain flavonols and phenolic acids. The leaves are a rich source of flavonols, including quercetin and kaempferol in the glycosylated forms and chlorogenic acid as predominant phenolic acids. Mulberry bark roots and twigs are a source of prenylated flavonoids, predominantly morusin. In this context, the exploitation of mulberry in food industry is reviewed in this paper, in terms of developing novel, functional food with multiple health-promoting effects.
Collapse
Affiliation(s)
- Adriana Ramona Memete
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Adrian Vasile Timar
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
| | - Adrian Nicolae Vuscan
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
| | - Florina Miere (Groza)
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.); (A.C.V.)
| | - Alina Cristiana Venter
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.); (A.C.V.)
| | - Simona Ioana Vicas
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
- Correspondence:
| |
Collapse
|
12
|
Yang C, Tang X, Duan Y, Tang J, Tang Q, Yang H, Bin D, Liu J. Effect of Mulberry Leaf powder on reproductive performance, serum indexes and milk amino acid composition in lactating sows. J Anim Physiol Anim Nutr (Berl) 2021; 106:1258-1267. [PMID: 34927293 DOI: 10.1111/jpn.13668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Abstract
Experiment was conducted to study the effects of Mulberry Leaf (ML) powder on reproductive performance, serum and milk amino acid composition in sows. Fifty sows (D 85 at gestation) with parity 3 or 4 were randomly divided into 5 groups: C, M100, M200, M300 and M400, receiving 0, 100, 200, 300 and 400 g ML powder per sow per day. Blood and milk of sows at Days 1 and 21 of lactation were collected. Results showed that average daily feed intake (ADFI) during lactation was higher in groups supplemented ML compared with control group (p < 0.01). Litter weight gain during lactation was higher in M400 than in groups M200 and C (p < 0.05), with no significant difference compared with M100 and M300. Serum glucose concentration in groups M400 and M300 was higher than those in the other groups (p < 0.01). Serum HDL-C concentration in group M400 was significantly greater than those in groups M100 and M200 (p < 0.05), with no significant difference between group M400 and groups M300, control. Milk amino acid concentrations such as isoleucine, leucine, lysine and valine were all lower in group M400 than in control (p < 0.01). Serum methionine (Met) concentration was higher in M300 than in other groups (p < 0.01). Milk Met concentration in group C was higher than those of the sows in the group M400, with no significant difference compared with groups M100, M200 and M300 (p < 0.05). Serum Lys and Met concentrations were lower in M400 than in control group (p < 0.05). In summary, our results have revealed the ML supplementation at a high dose such as 300 g/day during later gestation and lactation showed benefit in regulating lipid and amino acid metabolism in sows and then improved growth performance of their offspring.
Collapse
Affiliation(s)
- Can Yang
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in Nanyue Mountain Area, Hengyang Normal University, Hengyang, Hunan, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, Hunan, China
| | - XiaoWu Tang
- Hunan Vocational Technical College of Environment and Biology, Hengyang, Hunan, China
| | - YangYang Duan
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in Nanyue Mountain Area, Hengyang Normal University, Hengyang, Hunan, China
| | - JiaoYu Tang
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in Nanyue Mountain Area, Hengyang Normal University, Hengyang, Hunan, China
| | - QingHai Tang
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in Nanyue Mountain Area, Hengyang Normal University, Hengyang, Hunan, China
| | - Hai Yang
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in Nanyue Mountain Area, Hengyang Normal University, Hengyang, Hunan, China
| | - DongMei Bin
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in Nanyue Mountain Area, Hengyang Normal University, Hengyang, Hunan, China
| | - Jian Liu
- Xiangcun High-technology Agricultural Co. LTD, Loudi, Hunan, China
| |
Collapse
|
13
|
Zhang R, Zhang Q, Zhu S, Liu B, Liu F, Xu Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol Res 2021; 175:106029. [PMID: 34896248 DOI: 10.1016/j.phrs.2021.106029] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
The leaves of Morus alba L. (called Sangye in Chinese, ML), which belong to the genus Morus., are highly valuable edible plants in nutrients and nutraceuticals. In Asian countries including China, Japan and Korea, ML are widely used as functional foods including beverages, noodles and herbal tea because of its biological and nutritional value. Meanwhile, ML-derived products in the form of powders, extracts and capsules are widely consumed as dietary supplements for controlling blood glucose and sugar. Clinical studies showed that ML play an important role in the treatment of metabolic diseases including the diabetes, dyslipidemia, obesity, atherosclerosis and hypertension. People broadly use ML due to their nutritiousness, deliciousness, safety, and abundant active benefits. However, the systematic pharmacological mechanisms of ML on metabolic diseases have not been fully revealed. Therefore, in order to fully utilize and scale relevant products about ML, this review summarizes the up-to-date information about the ML and its constituents effecting on metabolic disease.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Qian Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Shun Zhu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Biyang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China.
| | - Yao Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China.
| |
Collapse
|
14
|
Lim WXJ, Gammon CS, von Hurst P, Chepulis L, Page RA. A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups. Nutrients 2021; 13:nu13113733. [PMID: 34835989 PMCID: PMC8624625 DOI: 10.3390/nu13113733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Phenolic-rich plant extracts have been demonstrated to improve glycemic control in individuals with prediabetes. However, there is increasing evidence that people with prediabetes are not a homogeneous group but exhibit different glycemic profiles leading to the existence of prediabetes subgroups. Prediabetes subgroups have been identified as: isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT), and combined impaired fasting glucose and glucose intolerance (IFG/IGT). The present review investigates human clinical trials examining the hypoglycemic potential of phenolic-rich plant extracts in prediabetes and prediabetes subgroups. Artemisia princeps Pampanini, soy (Glycine max (L.) Merrill) leaf and Citrus junos Tanaka peel have been demonstrated to improve fasting glycemia and thus may be more useful for individuals with IFG with increasing hepatic insulin resistance. In contrast, white mulberry (Morus alba Linn.) leaf, persimmon (Diospyros kaki) leaf and Acacia. Mearnsii bark were shown to improve postprandial glycemia and hence may be preferably beneficial for individuals with IGT with increasing muscle insulin resistance. Elaeis guineensis leaf was observed to improve both fasting and postprandial glycemic measures depending on the dose. Current evidence remains scarce regarding the impact of the plant extracts on glycemic control in prediabetes subgroups and therefore warrants further study.
Collapse
Affiliation(s)
- Wen Xin Janice Lim
- School of Health Sciences, Massey University, Auckland 0632, New Zealand; (W.X.J.L.); (C.S.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Cheryl S. Gammon
- School of Health Sciences, Massey University, Auckland 0632, New Zealand; (W.X.J.L.); (C.S.G.)
| | - Pamela von Hurst
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0632, New Zealand;
| | - Lynne Chepulis
- Waikato Medical Research Centre, Te Huataki Waiora School of Health, University of Waikato, Hamilton 3216, New Zealand;
| | - Rachel A. Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0632, New Zealand
- Correspondence: ; Tel.: +64-4-801-5799 (ext. 63462)
| |
Collapse
|
15
|
Momeni H, Salehi A, Absalan A, Akbari M. Hydro-alcoholic extract of Morus nigra reduces fasting blood glucose and HbA1c% in diabetic patients, probably via competitive and allosteric interaction with alpha-glucosidase enzyme; a clinical trial and in silico analysis. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:763-769. [PMID: 33946137 DOI: 10.1515/jcim-2021-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/07/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES 1-Deoxynojirimycin (1-DNJ), the main active component found in Morus nigra (black mulberry) is reported to be effective in controlling diabetes. We have evaluated the effect of hydro-alcoholic extract of M. nigra leaves on the fasting blood glucose (FBS) and hemoglobin A1c% (HbA1c%) in diabetic patients. Furthermore, we compared the interaction of 1-DNJ and glucose molecules with the alpha-glucosidase enzyme, which has a critical role in the lysis of glucose-based polymers in human cells. METHODS 4% hydro-alcoholic extract was prepared from black mulberry leaves. Patients in treatment (n=50) and control (n=50) groups received 3 mL extract or placebo in water, respectively, and three times a day. Fasting blood glucose and HbA1c% were evaluated before and after three months of evaluation. Potential binding sites of 1-DNJ or glucose on the enzyme glucosidase found by docking study. Docking scores were obtained using an energy minimization method by Molegro Virtual Docker software. The Mean ± SD of each variable was compared between groups at the 95% significant level. RESULTS Age mean ± SD was equal to 54.79 ± 9.203 (38-69) years. There was no significant difference between intervention and placebo groups considering FBS (p=0.633) but was for HbA1c% (p=0.0011), before treatment. After three months, both FBS and HbA1c% were significantly reduced in patients under mulberry leaves extract-treatment. FBS changed was from 182.23 ± 38.65 to 161.23 ± 22.14 mg/dL in treatment group (p<0.001) and from 178.45 ± 39.46 to 166.23 ± 29.64 mg/dL in control group (p<0.001). HbA1c was changed from 7.23 ± 0.25 to 6.13 ± 0.61% in treatment group (p<0.001) and from 7.65 ± 0.85 to 7.12 ± 0.33% in control group (p=0.854). Docking results showed that 1-DNJ binds more efficiently, and with a significant score than glucose, to human alpha-glucosidase. CONCLUSIONS This clinical trial and virtual analysis showed that a hydro-alcoholic extract of black mulberry (M. nigra) leaf may be efficient in reducing the blood glucose and HbA1c% in diabetic patients. Furthermore, docking studies propose a competitive and allosteric regulation for herbal ingredients. Drug-development could be based on the presented idea in this report.
Collapse
Affiliation(s)
- Hamid Momeni
- Department of Nursing, Khomein University of Medical Sciences, Khomein, Iran
| | - Ashraf Salehi
- Department of Nursing, Khomein University of Medical Sciences, Khomein, Iran
| | - Abdorrahim Absalan
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Mehran Akbari
- Department of Nursing, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
16
|
Shih CK, Chen CM, Varga V, Shih LC, Chen PR, Lo SF, Shyur LF, Li SC. White sweet potato ameliorates hyperglycemia and regenerates pancreatic islets in diabetic mice. Food Nutr Res 2020; 64:3609. [PMID: 32425738 PMCID: PMC7217293 DOI: 10.29219/fnr.v64.3609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND White sweet potato (WSP) has many potential beneficial effects on metabolic control and on diabetes-related insulin resistance. The antihyperglycemic effects of Tainung No. 10 (TNG10), a variety of WSP in Taiwan, warrant investigation. OBJECTIVE To investigate the antidiabetic activity of WSP (Ipomoea batatas L. TNG10) and the mechanisms for interventions using whole leaves or tubers of WSP in diabetic mice. DESIGN Mice were co-administered with streptozotocin and nicotinamide to induce diabetes and then treated with an experimental diet including either 10% WSP tuber (10%-T) and 30% WSP tuber (30%-T) or 0.5% WSP leaf (0.5%-L) and 5% WSP leaf (5%-L). After 8 weeks' treatment, their plasma glycemic parameters, lipid profiles, and inflammatory marker were analyzed. Their pancreases were removed for histopathologic image analysis; proteins were also extracted from their muscles for phosphoinositide 3-kinase pathway analysis. RESULTS The 30%-T or 5%-L mice had lower plasma glucose, insulin, glucose area under the curve (AUC), homeostatic model assessment of insulin resistance (HOMA-IR), alanine transaminase, triglyceride, and tumor necrosis factor alpha levels. In all diabetic mice, their Langerhans's area was reduced by 60%; however, after 30% WSP-T or 5% WSP-L diets, the mice demonstrated significant restoration of the Langerhans's areas (approximately 30%). Only in 5%-L mice, slightly increased expression of insulin-signaling pathway-related proteins, phosphorylated insulin receptor and protein kinase B and membrane glucose transporter 4 was noted. CONCLUSIONS WSP has antihyperglycemic effects by inducing pancreatic islet regeneration and insulin resistance amelioration. Therefore, WSP has potential applications in dietary diabetes management.
Collapse
Affiliation(s)
- Chun-Kuang Shih
- School of Nutrition and Health Science, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chiao-Ming Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
| | - Viola Varga
- School of Nutrition and Health Science, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chen Shih
- School of Nutrition and Health Science, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Peng-Ru Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
| | - Shu-Fang Lo
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Sing-Chung Li
- School of Nutrition and Health Science, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Meng Q, Qi X, Fu Y, Chen Q, Cheng P, Yu X, Sun X, Wu J, Li W, Zhang Q, Li Y, Wang A, Bian H. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112326. [PMID: 31639486 DOI: 10.1016/j.jep.2019.112326] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry (Morus alba L.) leaves have been widely applied to controlling blood glucose as a efficacious traditional Chinese medicine or salutary medical supplement. The extracts of mulberry leaf suppress inflammatory mediators and oxidative stress, protect the pancreatic β-cells and modulate glucose metabolism in diabetic rats. Our previous studies and others have shown that mulberry leaf extract has excellent therapeutic effects on type 2 diabetes mellitus (T2DM), however, the underlying mechanism remains to be studied. AIM OF THE STUDY Skeletal muscle insulin resistance (IR) plays an important role in the pathogenesis of T2DM. The aim of this study was to investigate the effects and mechanisms of Mulberry leaf flavonoids (MLF) in L6 skeletal muscle cells and db/db mice. MATERIALS AND METHODS L6 skeletal muscle cells were cultured and treated with/without MLF for in vitro studies. For in vivo studies, the db/db mice with/without MLF therapy were used. Coomassie brilliant blue staining and α-SMA immunofluorescence staining were used to identify the differentiated L6 cells. Glucose level and ATP level of L6 myotubes were performed by optical density detection and cell viability was performed by MTT method. Mitochondrial membrane potential of L6 myotubes was detected by JC-1 fluorescent staining. ROS level of L6 myotubes was detected by DCFH-DA fluorescent staining. The body weight, food intake, and blood glucose of the mice were measured in different treatment days. Oral glucose tolerance test (OGTT), starch glucose tolerance test (STT) and insulin tolerance test (ITT) were performed in mice. Glycated hemoglobin, glycated serum protein, insulin, liver and muscle glycogen, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and low-density lipoprotein cholesterol (LDL-c) of the mice were detected by corresponding kit. The pathologic change of pancreas and skeletal muscle of mice were performed by H & E staining. Immunohistochemistry staining was used to detect the GLUT4 and p-AMPK expressions in skeletal muscle in mice. GLUT4, CPT-1, NRF1, COXIV, PGC-1α, and p-AMPK expression levels in L6 cells and mice were detected by western bolt assay. RESULTS MLF and metformin significantly ameliorated muscle glucose uptake and mitochondrial function in L6 muscle cells. MLF also increased the phosphorylation of AMPK and the expression of PGC-1α, and up-regulated the protein levels of m-GLUT4 and T-GLUT4. These effects were reversed by the AMPK inhibitor compound C. In db/db mice, MLF improve diabetes symptoms and insulin resistance. Moreover, MLF elevated the levels of p-AMPK and PGC-1α, raised m-GLUT4 and T-GLUT4 protein expression, and ameliorated mitochondrial function in skeletal muscle of db/db mice. CONCLUSIONS MLF significantly improved skeletal muscle insulin resistance and mitochondrial function in db/db mice and L6 myocytes through AMPK-PGC-1α signaling pathway, and our findings support the therapeutic effects of MLF on type 2 diabetes.
Collapse
Affiliation(s)
- Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Qi
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yu Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peng Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xichao Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xin Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jingzhen Wu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wenwen Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Aiyun Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
18
|
Derosa G, D'Angelo A, Maffioli P. Ilex paraguariensis, white mulberry and chromium picolinate in patients with pre-diabetes. Phytother Res 2020; 34:1377-1384. [PMID: 31994278 DOI: 10.1002/ptr.6611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/28/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
AIM to evaluate if a nutraceutical compound containing Ilex paraguariensis, White Mulberry and Chromium Picolinate can ameliorate glycemic status in patients with pre-diabetes. METHODS we enrolled patients with IFG or IGT, not taking other hypoglycemic compounds. Patients were randomized to take placebo or the nutraceutical compound for 3 months, in a randomized, double-blind, placebo-controlled design. Both treatments were self-administered once a day, 1 tablet during the breakfast. RESULTS a reduction of FPG was observed with the nutraceutical combination (-7.8%). Furthermore, there was a decrease of HOMA-IR with the nutraceutical combination (-7.9%). M value was higher (p < 0.05 vs baseline and p < 0.05 vs placebo) at the end of the treatment. We obtained a reduction of Tg with the nutraceutical combination (-8.3%). About 16.6% of patients treated with nutraceutical returned to have a normal glycemia (< 100 mg/dL), and all patients had an improvement of insulin-resistance, in particular 67% of patients returned to have a M value inside range of normal insulin sensitivity. CONCLUSIONS a nutraceutical containing Ilex paraguariensis, White Mulberry and Chromium Picolinate at 500 mg can be helpful in improving glycemia and Tg value, in patients with pre-diabetes.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, PAVIA, Italy
- Laboratory of Molecular Medicine, University of Pavia, PAVIA, Italy
- Centre for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico San Matteo, PAVIA, Italy
| | - Angela D'Angelo
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, PAVIA, Italy
- Laboratory of Molecular Medicine, University of Pavia, PAVIA, Italy
| | - Pamela Maffioli
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, PAVIA, Italy
- Centre for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico San Matteo, PAVIA, Italy
| |
Collapse
|
19
|
Meng Q, Qi X, Chao Y, Chen Q, Cheng P, Yu X, Kuai M, Wu J, Li W, Zhang Q, Li Y, Bian H. IRS1/PI3K/AKT pathway signal involved in the regulation of glycolipid metabolic abnormalities by Mulberry ( Morus alba L.) leaf extracts in 3T3-L1 adipocytes. Chin Med 2020; 15:1. [PMID: 31908653 PMCID: PMC6941306 DOI: 10.1186/s13020-019-0281-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/21/2019] [Indexed: 02/24/2023] Open
Abstract
Background Mulberry (Morus alba L.) leaf tea benefits the control of diabetes in Asian nations. This study was aim to investigate if the flavonoids, which extracts from mulberry leaves, could regulate the metabolism of glycolipid, and to investigate if flavonoids could regulate IRS1/PI3K/AKT pathway signal to affect the expression of FAS and membrane transfer capacity GLUT4 in 3T3-L1 adipocytes. Results Results revealed that flavonoids decreased the levels of free fatty acid and increased the glucose consumption and the levels of adiponectin and leptin in a dose-dependent manner, and remarkably increased the protein expression levels of p-IRS1, p-PI3K, p-Akt, total GLUT4, and membrane GLUT4, and decreased the protein expression levels of PTEN and FAS in 3T3-L1 adipocytes IR model. On the other hand, wortmannin (2 nM), a selective and irreversible PI3K inhibitor, significantly decreased the glucose consumption and the adiponectin and leptin levels, and increased the free fatty acid level in flavonoids treated 3T3-L1 adipocytes IR model. Furthermore, wortmannin (2 nM) partly eliminated the activation of PI3K/AKT signaling, the suppression of FAS, and the up-regulated membrane transfer capacity of GLUT4 in flavonoids treated 3T3-L1 adipocytes IR model. Conclusion In conclusion, our results illustrated that mulberry leaf extracts flavonoids alleviated the glycolipid metabolic abnormalities in 3T3-L1 adipocytes IR model, and the effect was associated with the activation of IRS1/PI3K/AKT pathway, the suppression of FAS, and the up-regulation of membrane transfer capacity of GLUT4.![]()
Collapse
Affiliation(s)
- Qinghai Meng
- 1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xu Qi
- 4Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Ying Chao
- 1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Qi Chen
- 1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Peng Cheng
- 1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xichao Yu
- 1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Meiyu Kuai
- 1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jingzhen Wu
- 2School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Wenwen Li
- 2School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Qichun Zhang
- 1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China.,3Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yu Li
- 2School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Huimin Bian
- 1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China.,3Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
20
|
Yimam M, Jiao P, Hong M, Brownell L, Lee YC, Kim HJ, Nam JB, Kim MR, Jia Q. Morus alba, a Medicinal Plant for Appetite Suppression and Weight Loss. J Med Food 2019; 22:741-751. [PMID: 31120370 DOI: 10.1089/jmf.2017.0142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The prevalence of obesity is expanding rapidly worldwide, making the disease a global burden with limited treatment options. The current obesity drug development trends suggest the possibility of reducing weight and reverse metabolic disturbances of obesity by controlling appetite. In this study, we screened more than 8000 plants from our plant library for the cannabinoid (CB1) receptor antagonists and identified Morus alba as a lead medicinal plant. Kuwanon G and Albanin G were isolated and identified from root-barks of Morus alba with 92% and 96% CB1 receptor ligand binding inhibitory activity, respectively. The bioflavonoid standardized extract was tested in the acute food intake study in rats at oral doses of 250 and 500 mg/kg for its appetite suppression activity. Diet-induced obesity in the C57BL/6J mice was used to evaluate the long-term food intake reduction activity and effect on the weight loss administered orally at 250 and 500 mg/kg for 7 weeks. Statistically significant and dose-dependent reduction in food intake was observed in both acute and long-term studies for the extract. Food intake reductions of 58.6% and 44.8% at 250 mg/kg and 50.1% and 44.3% at 500 mg/kg were observed at 1 and 2 h postfood provision, respectively. A 20% reduction in daily calorie intake was observed in the long-term study. Obese mice treated with the high dose of Morus root-bark extract showed 10.4 g (22.5%) and 7.1 g (16.5%) loss in body weight compared with the vehicle-treated obese animals (at week 7) and baseline, respectively. Statistically significant reductions in biochemical markers and visceral fat deposit were also observed. These results demonstrated that Morus alba extracts enriched in Kuwanon G, and Albanin G could be used alone to control appetite, manage body weight, and improve metabolic syndromes.
Collapse
Affiliation(s)
| | - Ping Jiao
- 1 Unigen, Inc., Seattle, Washington, USA
| | - Mei Hong
- 1 Unigen, Inc., Seattle, Washington, USA
| | | | | | | | | | | | - Qi Jia
- 1 Unigen, Inc., Seattle, Washington, USA
| |
Collapse
|
21
|
Jung SH, Han JH, Park HS, Lee DH, Kim SJ, Cho HS, Kang JS, Myung CS. Effects of unaltered and bioconverted mulberry leaf extracts on cellular glucose uptake and antidiabetic action in animals. Altern Ther Health Med 2019; 19:55. [PMID: 30841887 PMCID: PMC6404318 DOI: 10.1186/s12906-019-2460-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022]
Abstract
Background Mulberry is a Korean medicinal herb that shows effective prevention and treatment of obesity and diabetes. Bioconversion is the process of producing active ingredients from natural products using microorganisms or enzymes. Methods In this study, we prepared bioconverted mulberry leaf extract (BMLE) with Viscozyme L, which we tested in insulin-sensitive cells (i.e., skeletal muscle cells and adipocytes) and insulin-secreting pancreatic β-cells, as well as obese diabetic mice induced by co-administration of streptozotocin (100 mg/kg, IP) and nicotinamide (240 mg/kg, IP) and feeding high-fat diet, as compared to unaltered mulberry leaf extract (MLE). Results BMLE increased the glucose uptake in C2C12 myotubes and 3 T3-L1 adipocytes and increased glucose-stimulated insulin secretion in HIT-T15 pancreatic β-cells. The fasting blood glucose levels in diabetic mice treated with BMLE or MLE (300 and 600 mg/kg, PO, 7 weeks) were significantly lower than those of the vehicle-treated group. At the same concentration, BMLE-treated mice showed better glucose tolerance than MLE-treated mice. Moreover, the blood concentration of glycated hemoglobin (HbA1C) in mice treated with BMLE was lower than that in the MLE group at the same concentration. Plasma insulin levels in mice treated with BMLE or MLE tended to increase compared to the vehicle-treated group. Treatment with BMLE yielded significant improvements in insulin resistance and insulin sensitivity. Conclusion These results indicate that in the management of diabetic condition, BMLE is superior to unaltered MLE due to at least, in part, high concentrations of maker compounds (trans-caffeic acid and syringaldehyde) in BMLE. Electronic supplementary material The online version of this article (10.1186/s12906-019-2460-5) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Lee MR, Kim JE, Choi JY, Park JJ, Kim HR, Song BR, Choi YW, Kim KM, Song H, Hwang DY. Anti-obesity effect in high-fat-diet-induced obese C57BL/6 mice: Study of a novel extract from mulberry ( Morus alba) leaves fermented with Cordyceps militaris. Exp Ther Med 2019; 17:2185-2193. [PMID: 30867704 PMCID: PMC6395968 DOI: 10.3892/etm.2019.7191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
The therapeutic effects of mulberry (Morus alba) leaves on lipid metabolism, including lipogenesis, lipolysis and hyperlipidemia are widely known, although their fermented products are yet to be applied. To investigate the therapeutic effects of a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) on lipid metabolism, the lipid profile of serum, lipid accumulation, lipolytic activity and lipogenesis regulation were measured in high fat diet (HFD)-induced obese C57BL/6 mice treated with EMfC for 12 weeks. Briefly, the concentrations of low-density lipoprotein, triglyceride, total cholesterol and glucose significantly decreased in the serum of the HFD+EMfC treated group when compared with the HFD+Vehicle treated group, while the levels of high-density lipoprotein increased in the HFD+EMfC group. The amount of abdominal fat and the size of adipocytes were significantly lower in the HFD+EMfC treated group when compared with the HFD+Vehicle treated group. The weight and number of lipid droplets of liver tissue exhibited a similar decrease. Furthermore, the mRNA levels of peroxisome proliferator-activated receptor-γ for adipogenesis as well as adipocyte protein 2 and Fas cell surface death receptor for lipogenesis reduced following EMfC treatment for 12 weeks. Phosphorylation of perilipin and hormone-sensitive lipase, and in the adipose triglyceride lipase expression showed a significant increase in the HFD+EMfC treated group. These results indicated that EMfC may prevent fat accumulation in the HFD-induced obese C57BL/6 mice through the inhibition of lipogenesis and by stimulating lipolysis. Thus, the results provide evidence for the potential use of EMfC as an anti-obesity complex in the treatment of obesity.
Collapse
Affiliation(s)
- Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Jun Young Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Jin Ju Park
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Hye Ryeong Kim
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Bo Ram Song
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Kyung Mi Kim
- Life Science Research Institute, Novarex Co., Ltd., Chungju, Chungcheong 28126, Republic of Korea
| | - Hyunkeun Song
- Biomedical Science Institute, Changwon National University, Changwon, Gyeongsangnam 51140, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| |
Collapse
|
23
|
Haselgrübler R, Stadlbauer V, Stübl F, Schwarzinger B, Rudzionyte I, Himmelsbach M, Iken M, Weghuber J. Insulin Mimetic Properties of Extracts Prepared from Bellis perennis. Molecules 2018; 23:molecules23102605. [PMID: 30314325 PMCID: PMC6222741 DOI: 10.3390/molecules23102605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) and consequential cardiovascular diseases lead to millions of deaths worldwide each year; 90% of all people suffering from DM are classified as Type 2 DM (T2DM) patients. T2DM is linked to insulin resistance and a loss of insulin sensitivity. It leads to a reduced uptake of glucose mediated by glucose transporter 4 (GLUT4) in muscle and adipose tissue, and finally hyperglycemia. Using a fluorescence microscopy-based screening assay we searched for herbal extracts that induce GLUT4 translocation in the absence of insulin, and confirmed their activity in chick embryos. We found that extracts prepared from Bellis perennis (common daisy) are efficient inducers of GLUT4 translocation in the applied in vitro cell system. In addition, these extracts also led to reduced blood glucose levels in chicken embryos (in ovo), confirming their activity in a living organism. Using high-performance liquid chromtaography (HPLC) analysis, we identified and quantified numerous polyphenolic compounds including apigenin glycosides, quercitrin and chlorogenic acid, which potentially contribute to the induction of GLUT4 translocation. In conclusion, Bellis perennis extracts reduce blood glucose levels and are therefore suitable candidates for application in food supplements for the prevention and accompanying therapy of T2DM.
Collapse
Affiliation(s)
- Renate Haselgrübler
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, A-4600 Wels, Austria.
| | - Verena Stadlbauer
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, A-4600 Wels, Austria.
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, A-4600 Wels, Austria.
| | - Flora Stübl
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, A-4600 Wels, Austria.
| | - Bettina Schwarzinger
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, A-4600 Wels, Austria.
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, A-4600 Wels, Austria.
| | - Ieva Rudzionyte
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, A-4600 Wels, Austria.
| | - Markus Himmelsbach
- Institute for Analytical Chemistry, Johannes Kepler University, A-4040 Linz, Austria.
| | - Marcus Iken
- PM International AG, L-5445 Schengen, Luxembourg.
| | - Julian Weghuber
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, A-4600 Wels, Austria.
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, A-4600 Wels, Austria.
| |
Collapse
|
24
|
Bae UJ, Jung ES, Jung SJ, Chae SW, Park BH. Mulberry leaf extract displays antidiabetic activity in db/db mice via Akt and AMP-activated protein kinase phosphorylation. Food Nutr Res 2018; 62:1473. [PMID: 30150922 PMCID: PMC6109265 DOI: 10.29219/fnr.v62.1473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 01/05/2023] Open
Abstract
Background Augmenting glucose utilization in skeletal muscle via the phosphatidylinositol-3 kinase (PI3 kinase)/protein kinase B (Akt) pathway or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway is necessary to regulate hyperglycemia in patients with type 2 diabetes mellitus. Objective We investigated the effect of mulberry leaf extract (MLE) on glucose uptake in skeletal muscle cells and explored its in vivo antidiabetic potential. Design Male db/db mice were treated with either MLE (50 mg/kg, 100 mg/kg, and 250 mg/kg) or metformin (100 mg/kg) for 8 weeks. Results MLE treatment stimulated glucose uptake, driven by enhanced translocation of glucose transporter 4 to cell membranes in L6 myotubes. These effects of MLE were synergistic with those of insulin and were abolished in the presence of PI3K inhibitor or AMPK inhibitor. In db/db mice, supplementation with MLE decreased fasting blood glucose and insulin levels and enhanced insulin sensitivity, with increases of p-Akt and p-AMPK in skeletal muscle. Moreover, MLE improved blood lipid parameters and attenuated hepatic steatosis in diabetic db/db mice. Discussion These findings suggest that MLE exerts antidiabetic activity through stimulating glucose disposal in skeletal muscle cells via the PI3K/Akt and AMPK pathways. Conclusions MLE can potentially improve hyperglycemia and hepatic steatosis in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea.,Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea.,Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
25
|
Naowaboot J, Wannasiri S, Pannangpetch P. Vernonia cinerea water extract improves insulin resistance in high-fat diet-induced obese mice. Nutr Res 2018; 56:51-60. [PMID: 30055774 DOI: 10.1016/j.nutres.2018.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Abstract
Vernonia cinerea (V cinerea) is a plant distributed in grassy areas in Southeast Asia and has several pharmacological effects, including antidiabetic activity. However, the information available regarding the effect of V cinerea on insulin resistance in high-fat diet (HFD)-induced obese mice is not yet determined. We hypothesized that V cinerea water extract (VC) improves insulin sensitivity in HFD-induced obese mice by modulating both phosphatidylinositol-3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) pathways in liver, skeletal muscle, and adipose tissue. Obesity was induced in mice from the Institute for Cancer Research by feeding an HFD 188.28 kJ (45 kcal % lard fat) for 12 weeks. During the last 6 weeks of the HFD, obese mice were treated with VC (250 and 500 mg/kg). We found that VC at both doses significantly reduced the hyperglycemia, hyperinsulinemia, hyperleptinemia, and hyperlipidemia. Obese mice treated with VC could increase serum adiponectin but reduce the proinflammatory cytokines, tumor necrosis factor-α, and monocyte chemoattractant protein-1. The extracts decreased triglyceride storage in liver and skeletal muscle of obese mice. The average size of fat cells was smaller in VC-treated groups than that of the HFD group. The protein expressions of PI3K and AMPK pathways in liver, skeletal muscle, and adipose tissue were upregulated (increased phosphorylation of PI3K, protein kinase B, AMPK, and acetyl-CoA carboxylase) by VC treatment. Furthermore, the glucose transporter 4 was increased in muscle and adipose tissue in obese mice treated with VC. These data indicate that VC treatment stimulates phosphorylation of PI3K and AMPK pathways in liver, muscle, and adipose tissue. Stimulating these pathways may improve impaired glucose and lipid homeostasis in an HFD-induced obesity mouse model. Based on these findings, it appears that VC has potential as a functional food or therapeutic agent in management of insulin resistance related diseases, such as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand.
| | - Supaporn Wannasiri
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | | |
Collapse
|
26
|
Moslemizadeh A, Samadzadeh Hafshejani K, Shahbazi K, Zaravi Dezfuli M, Zendehboudi S. A biosurfactant for inhibiting clay hydration in aqueous solutions: Applications to petroleum industry. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aghil Moslemizadeh
- Department of Petroleum EngineeringPetroleum University of TechnologyAhwazIran
| | | | - Khalil Shahbazi
- Department of Petroleum EngineeringPetroleum University of TechnologyAhwazIran
| | | | - Sohrab Zendehboudi
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| |
Collapse
|
27
|
Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4) Protein Translocation. Molecules 2018; 23:molecules23020258. [PMID: 29382104 PMCID: PMC6017132 DOI: 10.3390/molecules23020258] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4) from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.
Collapse
|
28
|
Lipolytic effect of novel extracts from mulberry ( Morus alba) leaves fermented with Cordyceps militaris in the primary adipocytes derived from SD rats. Lab Anim Res 2017; 33:270-279. [PMID: 29046704 PMCID: PMC5645607 DOI: 10.5625/lar.2017.33.3.270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 12/14/2022] Open
Abstract
Mulberry (Morus alba) leaves are known to have therapeutic effects on lipid metabolism including lipogenesis, lipolysis and hyperlipidemia. However, novel compounds with strong lipolytic ability among 27 extracts of the mulberry leaves fermented with Cordyceps militaris (EMfCs) have not yet been identified. Therefore, the cAMP concentration and cell viability were measured in the primary adipocytes of SD (Sprague Dawley) rats and 3T3-L1 cells after treatment of 27 EMfCs. Briefly, mulberry leaves powders amended with three different concentrations (0, 25 and 50%) of silkworm pupae (SWP) powder were fermented with 10% C. militaris (v/w) during three different periods (3, 4 and 6 weeks). A total of 27 extracts were obtained from the fermented mulberry leaves powders using three different solvents (dH2O, 50% EtOH and 95% EtOH). Among the 27 EMfCs treated groups, a significant increase in the concentration of cAMP was detected in primary adipocytes treated with 10 extracts when compared with the Vehicle treated group. However, their cAMP concentration did not agree completely with the non-toxicity, although most extracts showed non-toxicity. Furthermore, the concentration of cAMP and level of free glycerol gradually increased in a dose dependent manner (100, 200 and 400 µg/mL) of 4M3-95 contained cordycepin without any significant toxicity. Overall, the results of this study provide strong evidence that 4M3-95 extract derived from EMfCs can stimulate the lipolysis of primary adipocytes at an appropriate concentration and therefore have the potential for use as lipolytic agents to treat obesity.
Collapse
|
29
|
Yin XL, Liu HY, Zhang YQ. Mulberry branch bark powder significantly improves hyperglycemia and regulates insulin secretion in type II diabetic mice. Food Nutr Res 2017; 61:1368847. [PMID: 28970780 PMCID: PMC5614128 DOI: 10.1080/16546628.2017.1368847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022] Open
Abstract
This experiment, based on the previous study on R. mori, introduces whole mulberry branch powder into the diet to treat diabetic mice. Mulberry branch bark powder (MBBP) was administered orally to streptozotocin (STZ)-induced type II diabetic (T2D) mice to investigate hypoglycemic effects. After a 4-week period of diet consumption containing 5%, 10% and 20% MBBP, the fasting blood glucose, body weight and the related western blotting were measured, pathologic and immunohistochemical were observed. The 20% MBBP group showed a significant reduction in hyperglycemia and hyperinsulinemia; fasting blood glucose and insulin decreased from 25.0 to 14.8 mmol/L and 26.5 to 16.0 mU/L, respectively. Pathologic and immunohistochemical observation showed that MBBP administration lead to the repair of pancreas cells and restoration of insulin secretion. Dietary MBBP was associated with the decrease in the contents of 3, 4-methylenedioxeamphetamine, 8-OHdG, aspartate aminotransferase, and alanine aminotransferase, and the increase in antioxidative ability and glucose tolerance. Western blotting (WB) analysis suggested that MBBP decreased the TNF-α levels, thus relieving inflammation and improving liver function. It also led to the downregulation of apoptosis factor expression. WB also confirmed that MBBP enhanced the gene expression of the key enzymes: insulin receptor, insulin receptor substrate, p-AKT, GSK3β, glycogen synthase, G6Pase and phosphoenolpyruvate carboxykinase, which are related to glucose metabolism in the liver, and increase the expression of the genes PDX-1, GLUT2, MafA, and glucokinase, related to insulin secretion. Thus, oral administration of MBBP regulated insulin secretion and effectively maintained normal levels of glucose metabolism in mice, which may be done by improving the antioxidant capacity and activating insulin signaling with T2D..
Collapse
Affiliation(s)
- Xiao-Lu Yin
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, P R China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, P R China
| | - Hua-Yu Liu
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, P R China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, P R China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, P R China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, P R China
| |
Collapse
|
30
|
Józefczuk J, Malikowska K, Glapa A, Stawińska-Witoszyńska B, Nowak JK, Bajerska J, Lisowska A, Walkowiak J. Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects-A randomized, placebo-controlled, crossover study. Adv Med Sci 2017; 62:302-306. [PMID: 28501729 DOI: 10.1016/j.advms.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/27/2017] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Mulberry (Morus alba L.) leaf tea has recently received much attention as a dietary supplement due to the wide range of putative health benefits, such as antidiabetic effects. Nevertheless, data evaluating its influence on carbohydrate metabolism in humans are scarce. The present study aims to investigate the effect of mulberry leaf extract supplementation on starch digestion and absorption in humans. MATERIALS AND METHODS The study comprised of 25 healthy subjects, aged 19-27 years. In all subjects, a starch 13C breath test was performed twice in a crossover and single blind design. Subjects were initially randomized to ingest naturally 13C-abundant cornflakes (50g cornflakes+100ml low fat milk) either with the mulberry leaf extract (36mg of active component-1-deoxynojirimycin) or the placebo and each subject received the opposite preparation one week later. RESULTS The cumulative percentage dose recovery was lower for the mulberry leaf extract test than for the placebo test (median [quartile distribution]: 13.9% [9.9-17.4] vs. 17.2% [13.3-20.6]; p=0.015). A significant decrease was detectable from minute 120 after the ingestion. CONCLUSIONS A single dose of mulberry leaf extract taken with a test meal decreases starch digestion and absorption. These findings could possibly be translated into everyday practice for improvement of postprandial glycemic control.
Collapse
Affiliation(s)
- Jan Józefczuk
- Pediatric Division, City Hospital, 39-360 Nowa Deba, Poland
| | - Klaudia Malikowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Glapa
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Bajerska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Poznan, Poland
| | - Aleksandra Lisowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
31
|
Yimam M, Jiao P, Hong M, Brownell L, Lee YC, Kim HJ, Nam JB, Kim MR, Jia Q. A Botanical Composition from Morus alba, Ilex paraguariensis, and Rosmarinus officinalis for Body Weight Management. J Med Food 2017; 20:1100-1112. [PMID: 28708468 DOI: 10.1089/jmf.2017.0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obesity is the largest and fastest growing public health catastrophe in the world affecting both adults and children with a prevalence impacting more than one-third of United States (US) adult population. Although the long-term solution lies in lifestyle changes in the form of dieting and exercise, intervention is required for those who are already obese. Unfortunately, treatment options remain quite limited due to associated side effects of conventional therapeutics. As a natural alternative, in this study we describe the beneficial effect of a standardized composition (UP603) comprised of extracts from Morus alba, Ilex paraguariensis, and Rosmarinus officinalis in improving metabolic disorders in high fat diet (HFD) and high fat & high fructose diet (HFFD) induced obese C57BL/6J mice. Mice treated with UP603 showed dose-correlated decrease in body weight gains compared to vehicle treated HFFD group. Following 7 weeks of treatment, the changes in body weight gains from baseline were found as 6.4%, 27.3%, 2.0%, 3.1%, 0.4%, and -2.9% for normal control diet, HFFD, Orlistat, 450, 650, and 850 mg/kg UP603 treated animals, respectively. Reductions of 7.9-21.1% in total cholesterol, 25.4-44.6% in triglyceride, and 22.5-38.2% in low-density lipoprotein were observed for mice treated with 450-850 mg/kg of UP603. In a dual energy X-ray absorptiometry scan, percentage body fat of 18.9%, 47.8%, 46.1%, and 40.4% were found for mice treated with normal control, HFD, Orlistat, and UP603, respectively. Reductions of 65.5% and 16.4% in insulin and leptin, respectively, and 2.1-fold increase in ghrelin level were also observed for the UP603 group. Statistically significant improvements in nonalcoholic steatohepatitis scores were also observed from liver histology for mice treated with UP603. Hence, UP603, a standardized botanical composition from M. alba, I. paraguariensis, and R. officinalis could potentially be considered as a natural alternative to maintain healthy body weight and to manage metabolic syndrome.
Collapse
Affiliation(s)
| | - Ping Jiao
- 1 Unigen, Inc. , Seattle, Washington
| | - Mei Hong
- 1 Unigen, Inc. , Seattle, Washington
| | | | | | | | | | | | - Qi Jia
- 1 Unigen, Inc. , Seattle, Washington
| |
Collapse
|
32
|
Kan J, Velliquette RA, Grann K, Burns CR, Scholten J, Tian F, Zhang Q, Gui M. A novel botanical formula prevents diabetes by improving insulin resistance. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:352. [PMID: 28679380 PMCID: PMC5499036 DOI: 10.1186/s12906-017-1848-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease, and the prevalence has increased significantly in recent decades to epidemic proportions in China. Individually, fenugreek (Trigonella foenum graecum) seed, mulberry (Morus alba L.) leaf and American ginseng (Panax quinquefolius) root can improve glycemia in various animal models and humans with impaired glucose metabolism and T2DM. The aim of this study was to design an optimized botanical formula containing these herbal extracts as a nutritional strategy for the prevention of insulin resistance and T2DM. Methods Cell-free α-amylase and α-glucosidase enzyme assays were used to determine inhibitory potential of extracts. Glucose uptake was examined in differentiated human adipocytes using radiolabeled 2-deoxyglucose. Male Sprague Dawley rats were divided and glycemia balanced into 5 groups: two controls (naïve and model) and three doses of the botanical test formula containing standardized fenugreek seed, mulberry leaf and American ginseng extracts (42.33, 84.66 and 169.33 mg/kg BW). Insulin resistance and T2DM was induced by feeding animals a high fat diet and with an alloxan injection. Glucose tolerance was examined by measuring serum glucose levels following an oral glucose load. Results Fenugreek seed and mulberry leaf dose dependently inhibited α-amylase (IC50 = 73.2 μg/mL) and α-glucosidase (IC50 = 111.8 ng/mL), respectively. All three botanical extracts improved insulin sensitivity and glucose uptake in human adipocytes, which lead to the design of an optimized botanical test formula. In a rat model of insulin resistance and T2DM, the optimized botanical test formula improved fasting serum glucose levels, fasting insulin resistance and the development of impaired glucose tolerance. The reduction in epididymal adipose tissue GLUT4 and PDK1 expression induced by high fat diet and alloxan was blunted by the botanical test formula. Conclusions A novel botanical formula containing standardized extracts of mulberry leaf, fenugreek seed and American ginseng at a ratio of 1:1.3:3.4 prevented the development of insulin resistance, impaired glucose tolerance and T2DM. Given the rising need for effective non-drug targeting of insulin resistance and progression to T2DM, complementary and alternative nutritional strategies without intolerable side effects could have meaningful impact on metabolic health and diabetes risks.
Collapse
|
33
|
Lown M, Fuller R, Lightowler H, Fraser A, Gallagher A, Stuart B, Byrne C, Lewith G. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study. PLoS One 2017; 12:e0172239. [PMID: 28225835 PMCID: PMC5321430 DOI: 10.1371/journal.pone.0172239] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/21/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High sugar and refined carbohydrate intake is associated with weight gain, increased incidence of diabetes and is linked with increased cardiovascular mortality. Reducing the health impact of poor quality carbohydrate intake is a public health priority. Reducose, a proprietary mulberry leaf extract (ME), may reduce blood glucose responses following dietary carbohydrate intake by reducing absorption of glucose from the gut. METHODS A double-blind, randomised, repeat measure, phase 2 crossover design was used to study the glycaemic and insulinaemic response to one reference product and three test products at the Functional Food Centre, Oxford Brooks University, UK. Participants; 37 adults aged 19-59 years with a BMI ≥ 20kg/m2 and ≤ 30kg/m2. The objective was to determine the effect of three doses of mulberry-extract (Reducose) versus placebo on blood glucose and insulin responses when co-administered with 50g maltodextrin in normoglycaemic healthy adults. We also report the gastrointestinal tolerability of the mulberry extract. RESULTS Thirty-seven participants completed the study: The difference in the positive Incremental Area Under the Curve (pIAUC) (glucose (mmol / L x h)) for half, normal and double dose ME compared with placebo was -6.1% (-18.2%, 5.9%; p = 0.316), -14.0% (-26.0%, -2.0%; p = 0.022) and -22.0% (-33.9%, -10.0%; p<0.001) respectively. The difference in the pIAUC (insulin (mIU / L x h)) for half, normal and double dose ME compared with placebo was -9.7% (-25.8%, 6.3%; p = 0.234), -23.8% (-39.9%, -7.8%; p = 0.004) and -24.7% (-40.8%, -8.6%; p = 0.003) respectively. There were no statistically significant differences between any of the 4 groups in the odds of experiencing one or more gastrointestinal symptoms (nausea, abdominal cramping, distension or flatulence). CONCLUSIONS Mulberry leaf extract significantly reduces total blood glucose rise after ingestion of maltodextrin over 120 minutes. The pattern of effect demonstrates a classical dose response curve with significant effects over placebo. Importantly, total insulin rises were also significantly suppressed over the same time-period. There were no statistically significant differences between any of the treatment groups (including placebo) in the odds of experiencing one or more gastrointestinal symptoms. Mulberry extract may have multiple modes of action and further studies are necessary to evaluate ME as a potential target for the prevention of type 2 diabetes and the regulation of dysglycaemia.
Collapse
Affiliation(s)
- Mark Lown
- Primary Care & Population Sciences, Faculty of Medicine, University of Southampton, Aldermoor Health Centre, Southampton, United Kingdom
| | - Richard Fuller
- Primary Care & Population Sciences, Faculty of Medicine, University of Southampton, Aldermoor Health Centre, Southampton, United Kingdom
| | - Helen Lightowler
- Functional Food Centre, Oxford Brooks University, Gipsy Lane Campus, Oxford, United Kingdom
| | - Ann Fraser
- Functional Food Centre, Oxford Brooks University, Gipsy Lane Campus, Oxford, United Kingdom
| | - Andrew Gallagher
- Chief Operating Officer, Phynova Group Ltd, 16 Fenlock Court, Long Hanborough, United Kingdom
| | - Beth Stuart
- Primary Care & Population Sciences, Faculty of Medicine, University of Southampton, Aldermoor Health Centre, Southampton, United Kingdom
| | - Christopher Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton and University Hospitals Southampton, United Kingdom
- Southampton National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - George Lewith
- Primary Care & Population Sciences, Faculty of Medicine, University of Southampton, Aldermoor Health Centre, Southampton, United Kingdom
| |
Collapse
|
34
|
Yimam M, Jiao P, Hong M, Brownell L, Lee YC, Hyun EJ, Kim HJ, Nam JB, Kim MR, Jia Q. UP601, a standardized botanical composition composed of Morus alba, Yerba mate and Magnolia officinalis for weight loss. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:114. [PMID: 28209193 PMCID: PMC5314713 DOI: 10.1186/s12906-017-1627-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022]
Abstract
Background The prevalence of obesity is surging in an alarming rate all over the world. Pharmaceutical drugs are considered potential adjunctive therapy to lifestyle modification. However, for most, besides being too expensive, their long term usages are hindered by their severe adverse effects. Here we describe the effect of UP601, a standardized blend of extracts from Morus alba, Yerba mate and Magnolia officinalis, in modulating a number of obesity-related phenotypic and biochemical markers in a high-fat high-fructose (HFF)-induced C57BL/6J mouse model of obesity. Method Adipogenesis activity of the composition was assessed in 3T3-L1 cells in vitro. Effects of UP601 on body weight and metabolic markers were evaluated. It was administered at oral doses of 300 mg/kg, 450 mg/kg and 600 mg/kg for 7 weeks. Orlistat (40 mg/kg/day) was used as a positive control. Body compositions of mice were assessed using dual energy X-ray absorptiometry (DEXA). Serum biomarkers were measured for liver function and lipid profiling. Relative organ weights were determined. Histopathological analysis was performed for non-alcoholic steatohepatitis (NASH) scoring. Results UP601 at 250 μg/ml resulted in 1.8-fold increase in lipolysis. Statistically significant changes in body weight (decreased by 9.1, 19.6 and 25.6% compared to the HFF group at week-7) were observed for mice treated with UP601 at 300, 450 and 600 mg/kg, respectively. Reductions of 9.1, 16.9, and 18.6% in total cholesterol; 45.0, 55.0, 63.6% in triglyceride; 34.8, 37.1 and 41.6% in LDL; 3.2, 21.6 (P = 0.03) and 33.7% (P = 0.005) in serum glucose were observed for UP601 at 300, 450 and 600 mg/kg, respectively. Body fat distribution was found reduced by 31.6 and 17.2% for the 450 mg/kg UP601 and orlistat, respectively, from the DEXA scan analysis. Up to an 89.1% reduction in mesenteric fat deposit was observed for UP601 in relative organ weight. Statistically significant improvements in NASH scores were observed for mice treated with UP601. Conclusion UP601, a standardized botanical composition from Morus alba, Yerba mate and Magnolia officinalis could potentially be used for achieving healthy weight loss and maintenance.
Collapse
|
35
|
Guo H, Xu Y, Huang W, Zhou H, Zheng Z, Zhao Y, He B, Zhu T, Tang S, Zhu Q. Kuwanon G Preserves LPS-Induced Disruption of Gut Epithelial Barrier In Vitro. Molecules 2016; 21:molecules21111597. [PMID: 27879681 PMCID: PMC6272946 DOI: 10.3390/molecules21111597] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/13/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Defects in the gut epithelial barrier have now been recognized to be responsible for diabetic endotoxemia. In everyday life, Mulberry leaf tea is widely used in Asian nations due to its proposed benefits to health and control of diabetes. Evidence indicates the potential role of Kuwanon G (KWG), a component from Morus alba L., on blocking the gut epithelial barrier. In lipopolysaccharides (LPS)-damaged Caco-2 cells, it was found that KWG increased the viability of cells in a concentration-dependent manner. KWG administration significantly elevated the anti-oxidant abilities via increasing ratio of superoxidase dismutase (SOD)/malondialdehyde (MDA) and decreasing reactive oxygen species (ROS) within the cells. During KWG incubation, pro-inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α were significantly reduced, tight junction proteins including zonula occludens (ZO)-1, intercellular adhesion molecule (ICAM)-1 and Occludin were dramatically increased as detected by immunofluorescence assay, trans-epithelial electrical resistance was significantly increased and the transmission of albumin-fluorescein isothiocyanate (FITC) across the barrier was decreased. In conclusion, the present study demonstrated that KWG could ameliorate LPS-induced disruption of the gut epithelial barrier by increasing cell viability and tight junction between cells, and decreasing pro-inflammatory cytokines and oxidative damage.
Collapse
Affiliation(s)
- Hengli Guo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Wei Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Affiliated Hospital of Southwest Medical University, Luzhou 640000, China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Macau Institute for Applied Research in Medicine and Health, Avenida Wai Long, Taipa, Macao, China.
| | - Zhaoguang Zheng
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| | - Yonghua Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Bao He
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| | - Tingting Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Affiliated Hospital of Southwest Medical University, Luzhou 640000, China.
| | - Shanshan Tang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
| | - Quan Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou 510760, China.
| |
Collapse
|
36
|
Ebrahimi E, Shirali S, Afrisham R. Effect and Mechanism of Herbal Ingredients in Improving Diabetes Mellitus Complications. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-31657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Ebrahimi E, Shirali S, Afrisham R. Effect and Mechanism of Herbal Ingredients in Improving Diabetes Mellitus Complications. Jundishapur J Nat Pharm Prod 2016; 12. [DOI: 10.5812/jjnpp.31657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
|
38
|
Zhang Q, Lu Y, Ma Z, Li Y, Guo J, Meng Q, Bian H. A novel formula from mulberry leaf ameliorates diabetic nephropathy in rats via inhibiting the TGF-β1 pathway. Food Funct 2016; 6:3307-15. [PMID: 26242486 DOI: 10.1039/c5fo00711a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Based on the hypoglycemia and hypolipidemia of mulberry leaf and its extracts, we investigated the effect of a novel formula, Sang Tong Jian (STJ), from mulberry leaf on rats with diabetic nephropathy (DN). METHODS The DN rats were induced by a long-term high-fat diet and a single streptozotocin injection. STJ was introduced for 12 weeks from the presence of hyperglycemia. The fasting blood glucose of DN rats was determined at weeks 5, 7, 9, and 11 respectively. The serum GSP, GHb and lipid profiles were analyzed by using a colorimetric method and ELISA kits. The kidney function of DN rats was demonstrated through the analysis of urine creatinine, urine albumin, serum urea nitrogen, serum creatinine and the creatinine clearance rate. The H-E (haematoxylin and eosin) and PAS (Periodic Acid-Schiff) staining were adopted to exhibit the morphology of the kidney. The TGF-β1 and p-smad2/3, smad2/3, collagen IV, connexin 43 and E-cadherin were assayed via immunohistochemistry and western blot. RESULTS STJ significantly decreased the fasting blood glucose (p < 0.01) and the glycation end product (p < 0.05), and regulated dyslipidemia. Inhibition of the thickening of the glomerular basement membrane and amelioration of the kidney function were shown in STJ-treated DN rats. Moreover, STJ decreased the levels of TGF-β1, collagen IV, connexin 43 and activation of smad2/3 (p < 0.01), and enhanced E-cadherin (p < 0.01) in the kidney of DN rats. CONCLUSION 12 week administration of STJ improved the metabolic parameters associated with blood glucose and lipid and inhibited the TGF-β1 signaling pathway, which positively contributed to the amelioration of chronic diabetic kidney disease.
Collapse
Affiliation(s)
- Qichun Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Moslemizadeh A, Dehkordi AF, Barnaji MJ, Naseri M, Ravi SG, Jahromi EK. Novel bio-based surfactant for chemical enhanced oil recovery in montmorillonite rich reservoirs: Adsorption behavior, interaction impact, and oil recovery studies. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Liu Y, Li X, Xie C, Luo X, Bao Y, Wu B, Hu Y, Zhong Z, Liu C, Li M. Prevention Effects and Possible Molecular Mechanism of Mulberry Leaf Extract and its Formulation on Rats with Insulin-Insensitivity. PLoS One 2016; 11:e0152728. [PMID: 27054886 PMCID: PMC4824359 DOI: 10.1371/journal.pone.0152728] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/18/2016] [Indexed: 11/24/2022] Open
Abstract
For centuries, mulberry leaf has been used in traditional Chinese medicine for the treatment of diabetes. This study aims to test the prevention effects of a proprietary mulberry leaf extract (MLE) and a formula consisting of MLE, fenugreek seed extract, and cinnamon cassia extract (MLEF) on insulin resistance development in animals. MLE was refined to contain 5% 1-deoxynojirimycin by weight. MLEF was formulated by mixing MLE with cinnamon cassia extract and fenugreek seed extract at a 6:5:3 ratio (by weight). First, the acute toxicity effects of MLE on ICR mice were examined at 5 g/kg BW dose. Second, two groups of normal rats were administrated with water or 150 mg/kg BW MLE per day for 29 days to evaluate MLE’s effect on normal animals. Third, to examine the effects of MLE and MLEF on model animals, sixty SD rats were divided into five groups, namely, (1) normal, (2) model, (3) high-dose MLE (75 mg/kg BW) treatment; (4) low-dose MLE (15 mg/kg BW) treatment; and (5) MLEF (35 mg/kg BW) treatment. On the second week, rats in groups (2)-(5) were switched to high-energy diet for three weeks. Afterward, the rats were injected (ip) with a single dose of 105 mg/kg BW alloxan. After four more days, fasting blood glucose, post-prandial blood glucose, serum insulin, cholesterol, and triglyceride levels were measured. Last, liver lysates from animals were screened with 650 antibodies for changes in the expression or phosphorylation levels of signaling proteins. The results were further validated by Western blot analysis. We found that the maximum tolerance dose of MLE was greater than 5 g/kg in mice. The MLE at a 150 mg/kg BW dose showed no effect on fast blood glucose levels in normal rats. The MLE at a 75 mg/kg BW dose and MLEF at a 35 mg/kg BW dose, significantly (p < 0.05) reduced fast blood glucose levels in rats with impaired glucose and lipid metabolism. In total, 34 proteins with significant changes in expression and phosphorylation levels were identified. The changes of JNK, IRS1, and PDK1 were confirmed by western blot analysis. In conclusion, this study demonstrated the potential protective effects of MLE and MLEF against hyperglycemia induced by high-energy diet and toxic chemicals in rats for the first time. The most likely mechanism is the promotion of IRS1 phosphorylation, which leads to insulin sensitivity restoration.
Collapse
Affiliation(s)
- Yan Liu
- Research and Development Center of Amway (China), Shanghai, China
| | - Xuemei Li
- Beijing Institute for Drug Control (Beijing Center For Health Food And Cosmetics Control), Beijing, China
| | - Chen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiuzhen Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | | | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yuchi Hu
- Beijing Institute for Drug Control (Beijing Center For Health Food And Cosmetics Control), Beijing, China
| | - Zhong Zhong
- Botanic Century (Beijing) Co., Ltd, Beijing, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
- * E-mail: (CL); (MJL)
| | - MinJie Li
- Research and Development Center of Amway (China), Shanghai, China
- * E-mail: (CL); (MJL)
| |
Collapse
|
41
|
Biomolecular Characterization of Putative Antidiabetic Herbal Extracts. PLoS One 2016; 11:e0148109. [PMID: 26820984 PMCID: PMC4731058 DOI: 10.1371/journal.pone.0148109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.
Collapse
|
42
|
Sheweita SA, Mashaly S, Newairy AA, Abdou HM, Eweda SM. Changes in Oxidative Stress and Antioxidant Enzyme Activities in Streptozotocin-Induced Diabetes Mellitus in Rats: Role of Alhagi maurorum Extracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5264064. [PMID: 26885249 PMCID: PMC4739472 DOI: 10.1155/2016/5264064] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022]
Abstract
Alhagi maurorum (camel thorn plant) is a promising medicinal plant due to the presence of flavonoids and phenolic compounds as major contents of its constituents. No previous study has been conducted before on A. maurorum extracts as an antioxidative stress and/or antidiabetic herb in STZ-induced DM in rats. Therefore, four groups of rats were allocated as control (C), STZ-induced DM (D), and STZ-induced DM supplemented with 300 mg/kg BW of either aqueous extract (WE) or ethanolic extract (EE) of A. maurorum. The plasma levels of glucose, TG, TC, LDL-C and VLDL-C, MDA, and bilirubin and the activities of transaminases and GR were significantly increased in the diabetic group. Also, diabetic rats showed severe glucose intolerance and histopathological changes in their livers. In addition, levels of insulin, total proteins, GSH, and HDL-C and the activities of SOD, GPx, and GST were significantly decreased in the diabetic rats compared to those of the control group. The ingestion of A. maurorum extracts lowered the blood glucose levels during the OGTT compared to the diabetic rats and restored all tested parameters to their normal levels with the exception of insulin level that could not be restored. It is concluded that A. maurorum extracts decreased elevated blood glucose levels and hyperlipidemia and suppressed oxidative stress caused by diabetes mellitus in rats.
Collapse
Affiliation(s)
- S. A. Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - S. Mashaly
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - A. A. Newairy
- Department of Biochemistry, Faculty of Science, Alexandria University, Egypt
| | - H. M. Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - S. M. Eweda
- Department of Biochemistry, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
43
|
Yimam M, Jiao P, Hong M, Brownell L, Lee YC, Hyun EJ, Kim HJ, Kim TW, Nam JB, Kim MR, Jia Q. Appetite Suppression and Antiobesity Effect of a Botanical Composition Composed of Morus alba, Yerba mate, and Magnolia officinalis. J Obes 2016; 2016:4670818. [PMID: 27699065 PMCID: PMC5028828 DOI: 10.1155/2016/4670818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022] Open
Abstract
Background. Obesity and its comorbidities continue to challenge the world at an alarming rate. Although the long term solution lies on lifestyle changes in the form of dieting and exercising, drug, medical food, or dietary supplement interventions are required for those who are already obese. Here we describe a standardized blend composed of extracts from three medicinal plants: Morus alba, Yerba mate, and Magnolia officinalis for appetite suppression and metabolic disorders management. Method. Extracts were standardized to yield a composition designated as UP601. Appetite suppression activity was tested in acute feed intake rat model. Efficacy was evaluated in C57BL/6J mouse models treated with oral doses of 1.3 g/kg/day for 7 weeks. Orlistat at 40 mg/kg/day was used as a positive control. Body compositions of mice were assessed using a dual energy X-ray absorptiometry (DEXA). ELISA was done for insulin, leptin, and ghrelin level quantitation. Nonalcoholic steatohepatitis (NASH) scoring was conducted. Results. Marked acute hypophagia with 81.8, 75.3, 43.9, and 30.9% reductions in food intake at 2, 4, 6, and 24 hours were observed for UP601. Decreases in body weight gain (21.5% compared to the HFD at weeks 7 and 8.2% compared to baseline) and calorie intake (40.5% for the first week) were observed. 75.9% and 46.8% reductions in insulin and leptin, respectively, 4.2-fold increase in ghrelin level, and reductions of 18.6% in cholesterol and 59% in low-density lipoprotein were documented. A percentage body fat of 18.9%, 47.8%, 46.1%, and 30.4% was found for mice treated with normal control, HFD, Orlistat, and UP601, respectively. 59.3% less mesenteric fat pad and improved NASH scores were observed for UP601. Conclusion. UP601, a standardized botanical composition from Morus alba, Yerba mate, and Magnolia officinalis could be used as a natural alternative for appetite suppression, maintaining healthy body weight and metabolism management.
Collapse
Affiliation(s)
- Mesfin Yimam
- Unigen Inc., 3005 1st Avenue Seattle, WA 98121, USA
- *Mesfin Yimam:
| | - Ping Jiao
- Unigen Inc., 3005 1st Avenue Seattle, WA 98121, USA
| | - Mei Hong
- Unigen Inc., 3005 1st Avenue Seattle, WA 98121, USA
| | | | - Young-Chul Lee
- Unigen Inc., No. 450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam 330-863, Republic of Korea
| | - Eu-Jin Hyun
- Unigen Inc., No. 450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam 330-863, Republic of Korea
| | - Hyun-Jin Kim
- Unigen Inc., No. 450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam 330-863, Republic of Korea
| | - Tae-Woo Kim
- Unigen Inc., No. 450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam 330-863, Republic of Korea
| | - Jeong-Bum Nam
- Unigen Inc., No. 450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam 330-863, Republic of Korea
| | - Mi-Ran Kim
- Unigen Inc., No. 450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam 330-863, Republic of Korea
| | - Qi Jia
- Unigen Inc., 3005 1st Avenue Seattle, WA 98121, USA
| |
Collapse
|
44
|
Current anti-diabetes mechanisms and clinical trials using Morus alba L. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [DOI: 10.1016/j.jtcms.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
45
|
Farzaei MH, Rahimi R, Farzaei F, Abdollahi M. Traditional Medicinal Herbs for the Management of Diabetes and its Complications: An Evidence-Based Review. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.874.887] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Banu S, Jabir NR, Manjunath NC, Khan MS, Ashraf GM, Kamal MA, Tabrez S. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J Biol Sci 2015; 22:32-6. [PMID: 25561880 PMCID: PMC4281624 DOI: 10.1016/j.sjbs.2014.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022] Open
Abstract
AIM The dietary contents have a very important role in the management of metabolic syndrome along with type 2 diabetes mellitus (T2DM). Indian diet contains a large amount of carbohydrates that set off unpredictable blood sugar fluctuations and leads to increased risk of diabetic complications. The aim of the present study was to identify the effect of mulberry tea in the reduction of abnormally high postprandial blood glucose (PPG) levels in T2DM patients. METHODS The study design was follow-up T2DM, 20 diabetic patients were given plain tea (control) and 28 diabetic patients were given mulberry tea (test subject) to measure the effect of mulberry tea on fasting blood glucose and PPG levels. Fasting blood glucose samples were collected after a standard breakfast. The PPG levels were recorded after the consumption of 70 ml tea along with 1 teaspoon of sugar after 90 min in all 48 patients. RESULTS Fasting blood glucose levels in control and test group samples were found to be 178.55 ± 35.61 and 153.50 ± 48.10, respectively. After the consumption of plain tea and mulberry tea, the PPG values were recorded as 287.20 ± 56.37 and 210.21 ± 58.73, respectively. A highly significant (p < 0.001) change in the PPG level was observed in response to mulberry tea in all the test patients compared with control. Moreover, the effect size was also found to be very large (1.31). CONCLUSION Mulberry tea suppresses postprandial rise of blood glucose levels after 90 min of its consumption.
Collapse
Affiliation(s)
- Shaheena Banu
- Sri Jayadeva Institute of Cardiovascular Science and Research, Department of Biochemistry, Bangalore, India
| | - Nasimudeen R. Jabir
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Nanjappa C. Manjunath
- Sri Jayadeva Institute of Cardiovascular Science and Research, Department of Biochemistry, Bangalore, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
47
|
Yang SJ, Park NY, Lim Y. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes. Nutr Res Pract 2014; 8:613-7. [PMID: 25489399 PMCID: PMC4252519 DOI: 10.4162/nrp.2014.8.6.613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/13/2014] [Accepted: 09/01/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Adipogenesis is part of the cell differentiation process in which undifferentiated fibroblasts (pre-adipocytes) become mature adipocytes with the accumulation of lipid droplets and subsequent cell morphological changes. Several transcription factors and food components have been suggested to be involved in adipogenesis. The aim of this study was to determine whether mulberry leaf ethanol extract (MLEE) affects adipogenesis in 3T3-L1 adipocytes. MATERIALS/METHODS The 3T3-L1 adipocytes were treated with different doses of MLEE for 8 days starting 2 days post-confluence. Cell viability, fat accumulation, and adipogenesis-related factors including CCAAT-enhancer-binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator 1 alpha (PGC-1α), fatty acid synthase (FAS), and adiponectin were analyzed. RESULTS Results showed that MLEE treatments at 10, 25, 50, and 100 µg/ml had no effect on cell morphology and viability. Without evident toxicity, all MLEE treated cells had lower fat accumulation compared with control as shown by lower absorbances of Oil Red O stain. MLEE at 50 and 100 µg/ml significantly reduced protein levels of PPARγ, PGC-1α, FAS, and adiponectin in differentiated adipocytes. Furthermore, protein level of C/EBPα was significantly decreased by the treatment of 100 µg/ml MLEE. CONCLUSION These results demonstrate that MLEE treatment has an anti-adipogenic effect in differentiated adipocytes without toxicity, suggesting its potential as an anti-obesity therapeutic.
Collapse
Affiliation(s)
- Soo Jin Yang
- Department of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Jeonnam 500-757, Korea
| | - Na-Young Park
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea
| |
Collapse
|
48
|
Zapata-Bustos R, Alonso-Castro AJ, Gómez-Sánchez M, Salazar-Olivo LA. Ibervillea sonorae (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3K-independent pathway. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:546-552. [PMID: 24534528 DOI: 10.1016/j.jep.2014.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ibervillea sonorae (S. Watson) Greene (Cucurbitaceae), a plant used for the empirical treatment of type 2 diabetes in México, exerts antidiabetic effects on animal models but its mechanism of action remains unknown. The aim of this study is to investigate the antidiabetic mechanism of an Ibervillea sonorae aqueous extract (ISE). MATERIALS AND METHODS Non-toxic ISE concentrations were assayed on the glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes, both in the absence or the presence of insulin signaling pathway inhibitors, and on murine and human adipogenesis. Chemical composition of ISE was examined by spectrophotometric and HPLC techniques. RESULTS ISE stimulated the 2-NBDGlucose uptake by mature adipocytes in a concentration-dependent manner. ISE 50 µg/ml induced the 2-NBDG uptake in insulin-sensitive 3T3-F442A, 3T3-L1 and human adipocytes by 100%, 63% and 33%, compared to insulin control. Inhibitors for the insulin receptor, PI3K, AKT and GLUT4 blocked the 2-NBDG uptake in murine cells, but human adipocytes were insensitive to the PI3K inhibitor Wortmannin. ISE 50 µg/ml also stimulated the 2-NBDG uptake in insulin-resistant adipocytes by 117% (3T3-F442A), 83% (3T3-L1) and 48% (human). ISE induced 3T3-F442A adipogenesis but lacked proadipogenic effects on 3T3-L1 and human preadipocytes. Chemical analyses showed the presence of phenolics in ISE, mainly an appreciable concentration of gallic acid. CONCLUSION Ibervillea sonorae exerts its antidiabetic properties by means of hydrosoluble compounds stimulating the glucose uptake in human preadipocytes by a PI3K-independent pathway and without proadipogenic effects.
Collapse
Affiliation(s)
- Rocio Zapata-Bustos
- Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la presa San José 2055, Lomas 4a secc., San Luis Potosí 76216, Mexico
| | - Angel Josabad Alonso-Castro
- Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la presa San José 2055, Lomas 4a secc., San Luis Potosí 76216, Mexico
| | | | - Luis A Salazar-Olivo
- Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la presa San José 2055, Lomas 4a secc., San Luis Potosí 76216, Mexico.
| |
Collapse
|
49
|
Lim HH, Yang SJ, Kim Y, Lee M, Lim Y. Combined treatment of mulberry leaf and fruit extract ameliorates obesity-related inflammation and oxidative stress in high fat diet-induced obese mice. J Med Food 2014; 16:673-80. [PMID: 23957352 DOI: 10.1089/jmf.2012.2582] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate whether a combined treatment of mulberry leaf extract (MLE) and mulberry fruit extract (MFE) was effective for improving obesity and obesity-related inflammation and oxidative stress in high fat (HF) diet-induced obese mice. After obesity was induced by HF diet for 9 weeks, the mice were divided into eight groups: (1) lean control, (2) HF diet-induced obese control, (3) 1:1 ratio of MLE and MFE at doses of 200 (L1:1), (4) 500 (M1:1), and (5) 1000 (H1:1) mg/kg per day, and (6) 2:1 ratio of MLE and MFE at doses of 200 (L2:1), (7) 500 (M2:1), and (8) 1000 (H2:1) mg/kg per day. All six combined treatments significantly lowered body weight gain, plasma triglycerides, and lipid peroxidation levels after the 12-week treatment period. Additionally, all combined treatments suppressed hepatic fat accumulation and reduced epididymal adipocyte size. These improvements were accompanied by decreases in protein levels of proinflammatory markers (tumor necrosis factor-alpha, C-reactive protein, interleukin-1, inducible nitric oxide synthase, and phospho-nuclear factor-kappa B inhibitor alpha) and oxidative stress markers (heme oxygenase-1 and manganese superoxide dismutase). M2:1 was the most effective ratio and dose for the improvements in obesity, inflammation, and oxidative stress. These results demonstrate that a combined MLE and MFE treatment ameliorated obesity and obesity-related metabolic stressors and suggest that it can be used as a means to prevent and/or treat obesity.
Collapse
Affiliation(s)
- Hyun Hwa Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | | | | | | | | |
Collapse
|
50
|
Hsu CY, Shih HY, Chia YC, Lee CH, Ashida H, Lai YK, Weng CF. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 2014; 58:1168-76. [DOI: 10.1002/mnfr.201300691] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Chia-Yu Hsu
- Institute of Biotechnology; National Dong-Hwa University; Hualien 97401 Taiwan
- Institute of Biotechnology & Department of Life Science; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Hung-Yuan Shih
- Institute of Biotechnology; National Dong-Hwa University; Hualien 97401 Taiwan
| | - Yi-Chen Chia
- Department of Food Science & Technology; Tajen University; Ping Tung Hsien Taiwan
| | - Chia-Hung Lee
- Institute of Biotechnology; National Dong-Hwa University; Hualien 97401 Taiwan
| | - Hitoshi Ashida
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Nada-ku Kobe 657-8501 Japan
| | - Yiu-Kay Lai
- Institute of Biotechnology & Department of Life Science; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Ching-Feng Weng
- Institute of Biotechnology; National Dong-Hwa University; Hualien 97401 Taiwan
| |
Collapse
|