1
|
Sun A, Fan L, Zhang Z, Liu Y, Chen X, Peng Y, Li X. A metabolomics approach reveals the pharmacological effects and mechanisms of Cistanche tubulosa stems and its combination with fluoxetine on depression in comorbid with sexual dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118891. [PMID: 39362326 DOI: 10.1016/j.jep.2024.118891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried succulent stems of Cistanche tubulosa (Schenk) Wight are utilized in traditional medicine for tonifying kidney yang, which have shown to be effective in alleviating depression-like behaviors or male sexual dysfunction, respectively. However, the pharmacological effects and mechanisms of C. tubulosa and its combinations in the treatment of depression in comorbid with sexual dysfunction remain unclear. AIM OF THE STUDY This study aims to elucidate the pharmacological effects and mechanisms of C. tubulosa aqueous extract (CTE) and its combination with fluoxetine (FLX) on depression in comorbid with sexual dysfunction. MATERIALS AND METHODS A mouse model of depression in comorbid with sexual dysfunction was created using the chronic unpredictable mild stress (CUMS) procedure. The therapeutic effects of CTE and its combination with FLX were assessed using depressive-like and mating behavior experiments, histopathological analysis, and hypothalamic-pituitary-gonadal (HPG) axis function evaluation. The mechanisms were explored by integrated serum and testicular metabolomics combined with network correlation analysis. RESULTS CTE was confirmed to significantly improve depressive-like behaviors, reduce mating abilities, testicular histopathological damage, and HPG axis hormone secretion disorders in CUMS mice. Subsequently, mechanism exploration findings indicated that CTE might exert its effect by regulating potential efficacy-related biomarkers (isobutyrylglycine, citric acid, D-galactose) to improve certain metabolic pathways centered around steroid hormone biosynthesis and tricarboxylic acid (TCA) cycle. Furthermore, the combination of CTE and FLX exhibited stronger antidepressant effects than FLX alone, and ameliorated the exacerbated sexual dysfunction induced by FLX. These effects were achieved through the regulation of potential efficacy-related biomarkers (17α-hydroxypregnenolone, tetrahydrodeoxy-corticosterone, sphingosine, cortol, thymine, and L-histidine), thereby improving disorders in glycerophospholipid and histidine metabolism. CONCLUSION In conclusion, the amelioration effects of CTE and its combination with FLX on depression in comorbid with sexual dysfunction were confirmed for the first time. This key mechanism may be achieved by modulating the levels of potential efficacy-related biomarkers, and then emphatically intervene in steroid hormone biosynthesis, TCA cycle, glycerophospholipid and histidine metabolism. The study offers a new perspective for the development and utilization of C. tubulosa.
Collapse
Affiliation(s)
- An Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Fan
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengxu Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Liu K, Li J, Hao W, Li J, Khan I, Liang Y, Wang H, Li X, Zhang C. Lactiplantibacillus plantarum LZU-J-Q21 enhanced the functional metabolic profile and bioactivity of Cistanche deserticola. Food Chem X 2024; 24:101941. [PMID: 39568517 PMCID: PMC11577131 DOI: 10.1016/j.fochx.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Microbial fermentation is an effective method to enhance the bioavailability of herbs. This study utilized Lactiplantibacillus plantarum LZU-J-Q21 to ferment Cistanche deserticola and evaluated its metabolic properties and biological activity. Results showed that the contents of total acid and flavone, and the clearance rates of DPPH, ABTS and OH- in fermented Cistanche deserticola (FCD) were increased by 142.74 %, 56.45 %, 58.1 %, 62.3 %,51.2 %, compared with non-fermented Cistanche deserticola (NFCD). The metabolic profile of FCD had remarkable changes, especially elevated glucose and adenosine (97.31 % and 59.18 %). Further, FCD increased the weight-bearing swimming time of mice by 88.57 %, reduced fatigue markers BUN, BLA, and MDA (18.47 %, 12.92 %, and 15.16 %), and enhanced liver/muscle glycogen and SOD (28.99 %, 28.57 %, and 14.47 %). The investigation into its anti-fatigue mechanism suggested that FCD enhanced GS protein expression by activating PI3K/AKT/GSK3β signaling. These findings suggest that FCD enhances anti-fatigue effects by modifying its metabolic properties and biological activity.
Collapse
Affiliation(s)
- Kangkang Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, PR China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| | - Wenting Hao
- Center for Pharmacovigilance of Gansu Province, Lanzhou 730070, PR China
| | - Jingjing Li
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, PR China
| | - Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| | - Yibo Liang
- Gansu Institute for Drug Control, Lanzhou 730030, PR China
| | - Haijuan Wang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, PR China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
3
|
He J, Zhu T, Mao N, Jiang W, Lin F, Lu X, Gao Z, Yang Y, Wang D. Cistanche deserticola polysaccharide-functionalized dendritic fibrous nano-silica as oral delivery system for H 9N 2 vaccine to promote systemic and mucosal immune response. Int J Biol Macromol 2024; 282:136690. [PMID: 39433190 DOI: 10.1016/j.ijbiomac.2024.136690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Most infectious diseases are caused by pathogens that invade the body tissues through mucosal tract. Therefore, it is essential to develop effective vaccines administered through the mucosa as a first-line of defense against major infectious diseases. Oral delivery of vaccines is currently of great interest due to its potential to elicit both mucosal and systemic immune responses, high compliance rate and non-invasive nature. However, their development is limited by the challenging gastrointestinal (GI) environment, the low permeability of the mucus barrier, and the lack of effective and safe mucosal adjuvants. Currently, nanoparticle-based strategies show significant potential for improving oral vaccine delivery systems. Herein, the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) were developed for oral delivery of H9N2 antigen. CDP-DFNS induced the activation of macrophages, thereby enhancing antigen uptake in vitro. Additionally, CDP-DFNS/H9N2 significantly activated the dendritic cells (DCs) in Peyer's patches (PPs), and T/B cells in mesenteric lymph nodes (MLNs). Moreover, CDP-DFNS/H9N2 enhanced the HI titers and levels of H9N2-specific antibody IgG, secretory IgA (SIgA) and H9N2-specific IgA in intestinal and respiratory mucosa, as well as Th-associated cytokines. Our results indicate that CDP-DFNS could be a promising oral vaccine adjuvant delivery system.
Collapse
Affiliation(s)
- Jin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, PR China
| | - Fangzhu Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenzhen Gao
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212499, PR China
| | - Yang Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
He J, Lu X, Mao N, Zhu T, Yu L, Yu Y, Peng S, Deng X, Hu B, Jiang W, Lu Y, Wang D. Cistanche deserticola polysaccharide- functionalized dendritic fibrous nano-silica -based adjuvant for H 9N 2 oral vaccine enhance systemic and mucosal immunity in chickens. Int J Pharm 2024; 660:124318. [PMID: 38852750 DOI: 10.1016/j.ijpharm.2024.124318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Avian influenza virus subtype H9N2 has the ability to infect birds and humans, further causing significant losses to the poultry industry and even posing a great threat to human health. Oral vaccine received particular interest for preventing majority infection due to its ability to elicit both mucosal and systemic immune responses, but their development is limited by the bad gastrointestinal (GI) environment, compact epithelium and mucus barrier, and the lack of effective mucosal adjuvants. Herein, we developed the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) as an adjuvant for H9N2 vaccine. Encouragingly, CDP-DFNS facilitated the proliferation of T and B cells, and further induced the activation of T lymphocytes in vitro. Moreover, CDP-DFNS/H9N2 significantly promoted the antigen-specific antibodies levels in serum and intestinal mucosal of chickens, indicating the good ability to elicit both systemic and mucosal immunity. Additional, CDP-DFNS facilitate the activation of CD4 + and CD8 + T cells both in spleen and intestinal mucosal, and the indexes of immune organs. This study suggested that CDP-DFNS may be a new avenue for development of oral vaccine against pathogens that are transmitted via mucosal route.
Collapse
Affiliation(s)
- Jin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanqi Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ningning Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaming Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Peng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangwen Deng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deyun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Li Z, Li J, Li Y, Guo L, Xu P, Du H, Lin N, Xu Y. The role of Cistanches Herba and its ingredients in improving reproductive outcomes: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155681. [PMID: 38718638 DOI: 10.1016/j.phymed.2024.155681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Infertility patients account for an astonishing proportion of individuals worldwide. Due to its complex etiology and challenging treatment, infertility has imposed significant psychological and economic burdens on many patients. C. Herba (Cistanche tubulosa (Schenk) Wight and Cistanche deserticola Ma), renowned as one of the most prominent Chinese herbal medicines (CHMs), is abundant in diverse bioactive compounds that exhibit therapeutic effects on many diseases related to oxidative stress (OS) and disorders of sex hormone levels. OBJECTIVE Due to the limited drugs currently used in clinical practice to improve reproductive outcomes and their inevitable side effects, developing safe and effective new medications for infertility is of significance. This article comprehensively reviewed the phytochemicals of C. Herba, focusing on their efficacy and mechanisms on infertility and their safety for the first time, aiming to offer valuable insights for the development and application of C. Herba, and for developing novel strategies for treating infertility. METHODS We used "Cistanche" and its known bioactive components in combination with "sperm", "testicles", "epididymis", "ovaries", "uterus", and "infertility" as keywords to search in PubMed, Web of Science, Scopus and CNKI up to November 2023. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS The therapeutic effects of C. Herba on infertility are mainly attributed to echinacoside (ECH), verbascoside (VB), salidroside (SAL), polysaccharides, and betaine. They can effectively improve spermatogenic dysfunction, gonadal dysfunction and erectile dysfunction (ED) by exerting anti-oxidation, sex hormones regulation and anti-hypoxia. Moreover, they can also improve premature ovarian failure (POF), ovarian and uterine cancer, oocyte maturation by exerting anti-oxidation, anti-apoptosis, and anti-cancer. C. Herba and its active ingredients also exhibit pleasing safety. CONCLUSION C. Herba is a promising source of natural medicine for infertility. Additionally, compared to current therapeutic drugs, its favorable safety also supports its development as a nutritional supplement. However, high-quality clinical studies are required to validate its effectiveness for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zehui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiashan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Panyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hanqian Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
6
|
Wang K, Qiu H, Chen F, Cai P, Qi F. Considering traditional Chinese medicine as adjunct therapy in the management of chronic constipation by regulating intestinal flora. Biosci Trends 2024; 18:127-140. [PMID: 38522913 DOI: 10.5582/bst.2024.01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chronic constipation is one of the most common gastrointestinal disorders worldwide. Due to changes in diet, lifestyle, and the aging population, the incidence of chronic constipation has increased year by year. It has had an impact on daily life and poses a considerable economic burden. Nowadays, many patients with chronic constipation try to seek help from complementary and alternative therapies, and traditional Chinese medicine (TCM) is often their choice. The intestinal flora play an important role in the pathogenesis of constipation by affecting the body's metabolism, secretion, and immunity. Regulating the intestinal flora and optimizing its composition might become an important prevention and treatment for chronic constipation. TCM has unique advantages in regulating the imbalance of intestinal flora, and its curative effect is precise. Therefore, we reviewed the relationship between intestinal flora and chronic constipation as well as advances in research on TCM as adjunct therapy in the management of chronic constipation by regulating intestinal flora. Some single Chinese herbs and their active ingredients (e.g., Rheum palmatum, Radix Astragalus, and Cistanche deserticola), some traditional herbal formulations (e.g., Jichuan decoction, Zengye decoction, and Zhizhu decoction) and some Chinese patent medicines (e.g., Maren pills and Shouhui Tongbian capsules) that are commonly used to treat chronic constipation by regulating intestinal flora are highlighted and summarized. Moreover, some external forms of TCM, and especially acupuncture, have also been found to improve intestinal movement and alleviate constipation symptoms by regulating intestinal flora. We hope this review can contribute to an understanding of TCM as an adjunct therapy for chronic constipation and that it can provide useful information for the development of more effective constipation therapies.
Collapse
Affiliation(s)
- Ke Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Hua Qiu
- Gynecology, Jinan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, China
| | - Fang Chen
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Pingping Cai
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| |
Collapse
|
7
|
Wang L, Jia JX, Zhang SB, Song W, Yan XS, Huo DS, Wang H, Wu LE, Yang ZJ. The protective effect and mechanism of glycosides of cistanche deserticola on rats in middle cerebral artery occlusion (MCAO) model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:448-456. [PMID: 38557302 DOI: 10.1080/15287394.2024.2337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurology, The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Shi-Bin Zhang
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Wei Song
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Li-E Wu
- Department of Neurology, The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Zhan-Jun Yang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
- Department of Human Anatomy, Chifeng University, Chifeng, China
| |
Collapse
|
8
|
Jiang HY, Ma RA, Ji FL, Liu Y, Wang B, Fu SQ, Ma LS, Wang S, Liu CX, Guo Z, Li R, Wang YC, Sun W, Dong L, Dong CX, Sun DQ. Structure characterization of polysaccharides from Cistanche deserticola and their neuroprotective effects against oxidative stress in slow transit constipation mice. Int J Biol Macromol 2024; 260:129527. [PMID: 38246435 DOI: 10.1016/j.ijbiomac.2024.129527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Oxidative stress-induced enteric neuropathy is an important factor in slow transit constipation (STC). Cistanche deserticola crude polysaccharides (CDCP) are natural antioxidants with various biological activities. We prepared CDCP through water-extract and alcohol-precipitation methods. The structural characteristics of CDCP were analyzed by infrared spectroscopy and methylation analysis. The results showed that CDCP was primarily composed of (1 → 4)-linked glucans with minor amounts of pectic polysaccharides. Different doses of CDCP (100, 200, and 400 mg/kg) were administered to loperamide-induced STC mice to explore the therapeutic effects of CDCP. Compared with the untreated group, CDCP treatment significantly improved constipation symptoms, relevant gut-regulating peptides levels, colonic pathological damage, and colonic myenteric nerons injury. CDCP enhanced the antioxidant capacity by decreasing Malondialdehyde (MDA) content, increasing Superoxide Dismutase (SOD) activity and Reduced Glutathione (GSH) content. CDCP significantly reduced oxidative stress-induced injury by preserving mitochondrial function in the colonic myenteric plexus. Furthermore, the neuroprotective effects of CDCP might be associated with the Nrf2/Keap1 pathway. Thus, our findings first revealed the potential of CDCP to protect the colonic myenteric plexus against oxidative stress-induced damage in STC, establishing CDCP as promising candidates for natural medicine in the clinical management of STC.
Collapse
Affiliation(s)
- Hong-Yu Jiang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300074, China
| | - Rui-An Ma
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Fu-Long Ji
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bo Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Si-Qi Fu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu-Shun Ma
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chun-Xiang Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Chao Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Liang Dong
- Department of General Surgery, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300074, China.
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Da-Qing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
9
|
Wang H, Yan J, Wang K, Liu Y, Liu S, Wu K, Wang X, Haider A, Liu Y, Zhou Q, Wang X. The gut-liver axis perspective: Exploring the protective potential of polysaccharides from Cistanche deserticola against alcoholic liver disease. Int J Biol Macromol 2024; 256:128394. [PMID: 38013074 DOI: 10.1016/j.ijbiomac.2023.128394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
The primary objective of this study is to investigate the potential mechanism behind the protective effect of Cistanche deserticola polysaccharides (CP) against alcoholic liver disease (ALD). Multiple chromography techniques were employed to characterize CP from polysaccharide, the molecular weight distribution of polysaccharides, monosaccharide composition, isomeric hydrogen and isomeric carbon, in order to clarify the material basis of CP. To create the ALD mouse model, we utilized the well-established Lieber-DeCarli alcoholic liquid feed method. Findings from the study revealed that CP administration resulted in significant improvements in intestinal permeability, upregulation of barrier proteins expression, and reduced levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in mouse liver and serum. Additionally, CP treatment reduced the presence of inflammatory cytokines both in serum and liver while enhancing the activity of antioxidant enzymes in the liver. Furthermore, CP effectively reduced alcohol-induced oxidative damage by downregulating Keap1 protein levels in the liver, leading to increased expression of Nrf2 protein. The 16S rDNA sequencing results revealed that CP significantly restored the intestinal microbiota composition in ALD mice. These findings establish a strong association between gut microbiota and liver injury indicators, highlighting the potential of CP in preventing and treating ALD by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Jiajing Yan
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Reyoung Pharmaceutical Co., Ltd. Jinan Branch, Jinan 250014, China
| | - Kai Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yang Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xumei Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, 50700, Pakistan
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| | - Qian Zhou
- Shandong Academy of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
10
|
Nan ZD, Zhu YD, Deng CF, Yang JL, Ma XL, Jiang ZB, Jiang Y, Tu P. Cistadesertosides B-E, Four New Diastereomeric Lignan Glycosides from the Stems of Cultural Cistanche deserticola in Tarim Desert. Chem Biodivers 2023; 20:e202301600. [PMID: 37963833 DOI: 10.1002/cbdv.202301600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Four previously undescribed diastereomeric lignan glycosides, namely cistadesertosides B-E (1-4) were isolated from the stems of cultural Cistanche deserticola in Tarim desert. The structures of these compounds were elucidated on the basis of extensive spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR, circular dichroism (CD) data and chemical degradation. The in vitro anti-inflammatory activity of the isolates was also investigated. It showed that compounds 3 and 4 exhibited potential effects with IC50 values of 21.17 μM and 26.97 μM, respectively (positive control quercetin, IC50 , 10.01 μM).
Collapse
Affiliation(s)
- Ze-Dong Nan
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, and Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P.R., China
| | - Yi-Dong Zhu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, and Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P.R., China
| | - Chao-Fan Deng
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, and Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P.R., China
| | - Jing-Lin Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, and Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P.R., China
| | - Xiao-Li Ma
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, and Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P.R., China
| | - Zhi-Bo Jiang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, and Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P.R., China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
11
|
Liu N, Zhang GX, Zhu CH, Lan XB, Tian MM, Zheng P, Peng XD, Li YX, Yu JQ. Antinociceptive and neuroprotective effect of echinacoside on peripheral neuropathic pain in mice through inhibiting P2X7R/FKN/CX3CR1 pathway. Biomed Pharmacother 2023; 168:115675. [PMID: 37812887 DOI: 10.1016/j.biopha.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Clinically, neuropathic pain treatment remains a challenging issue because the major therapy, centred around pharmacological intervention, is not satisfactory enough to patient by reason of low effectiveness and more adverse reaction. Therefore, it is still necessary to find more effective and safe therapy to ameliorate neuropathic pain. The purpose of this study was to explore the antinociceptive effect of Echinacoside (ECH), an active compound of Cistanche deserticola Ma, on peripheral neuropathic pain induced by chronic constriction injury (CCI) in mice, and to demonstrate its potential mechanism in vivo and vitro. In the present study, results showed that intraperitoneal administration of ECH (50, 100, and 200 mg/kg) could alleviate mechanical allodynia, cold allodynia and thermal hyperalgesia via behavioural test. Moreover, the structure and function of injured sciatic nerve by CCI were taken a turn for the better to a certain extent after ECH treatment using histopathological and electrophysiological test. Furthermore, ECH repressed the expression of the P2X7R and FKN and reduced the expression and release of the IL-1β, IL-6 and TNF-α. Besides, ECH could decrease Ca2+ influx and Cats efflux and inhibit phosphorylation of p38MAPK. To sum up, the present study illustrated that ECH could alleviate peripheral neuropathic pain by inhibiting microglia overactivation and inflammation through P2X7R/FKN/CX3CR1 signalling pathway in spinal cord. This study would provide a new perspective and strategy for the pharmacological treatment on neuropathic pain.
Collapse
Affiliation(s)
- Ning Liu
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guo-Xin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun-Hao Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiao-Bing Lan
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Miao-Miao Tian
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ping Zheng
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiao-Dong Peng
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yu-Xiang Li
- School of Nursing, Ningxia Medical University, Yinchuan, China.
| | - Jian-Qiang Yu
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
12
|
Liu J, Wang Y, Li Q, Liu T, Liu X, Zhang H, Fu Z, Dai Y, Yang H, Wang Y, Wang Y. Phenylethanoid glycosides derived from Cistanche deserticola promote neurological functions and the proliferation of neural stem cells for improving ischemic stroke. Biomed Pharmacother 2023; 167:115507. [PMID: 37722192 DOI: 10.1016/j.biopha.2023.115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Phenylethanoid glycosides derived from Cistanche deserticola (PhGs) are plant-derived natural medicinal compounds that occur in many medicinal plants. This study aims to investigate whether PhGs treatment improves the stroke and its potential mechanisms. Adult male C57BL/6 J mice were administrated PhGs once daily for 7 days after MCAO surgery. The neurological score, and catwalk were evaluated on Day 1, 3 and 7 after ischemic stroke. Furthermore, triphenyl-2,3,5-tetrazoliumchloride (TTC) and hematoxylin-eosin (H&E) staining were used for evaluating the infarct volume and neuronal restoration. The effects of PhGs on NSCs proliferation were investigated in vitro and in vivo. Western blot was used to detect the proteins of Wnt/β-catenin signaling pathway. This study found that PhGs effectively improved the neurological functions in ischemic stroke mice. TTC and H&E staining demonstrated that PhGs not only reduced infarct volume, but also improved neuronal restoration. The immunohistochemistry and 5-Ethynyl-2-deoxyuridine (EdU) incorporation assays revealed that PhGs promoted the proliferation of neural stem cells (NSCs) in subventricular zone (SVZ). In addition, transcriptome analysis of NSCs showed that the Wnt/β-catenin signaling pathway was involved in the PhGs induced NSCs proliferation. Importantly, the related proteins in the Wnt/β-catenin signaling pathway were changed after PhGs treatment, including β-catenin, Wnt3a, GSK-3β, c-Myc. PhGs treatment improved the stroke through enhancing endogenous NSCs proliferation via activating Wnt/β-catenin signaling pathway. Due to its effect on the proliferation of NSCs, PhGs are a potential adjuvant therapeutic drug for post-stroke treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yanyan Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qinyuan Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Liu
- Tianjin Xiqing District Hospital of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component based Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifei Fu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component based Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ying Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
13
|
Takaya K, Asou T, Kishi K. Cistanche deserticola Polysaccharide Reduces Inflammation and Aging Phenotypes in the Dermal Fibroblasts through the Activation of the NRF2/HO-1 Pathway. Int J Mol Sci 2023; 24:15704. [PMID: 37958685 PMCID: PMC10647235 DOI: 10.3390/ijms242115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Dermal fibroblasts maintain the skin homeostasis by interacting with the epidermis and extracellular matrix. Their senescence contributes to functional defects in the skin related to aging. Therefore, there is an urgent need for novel therapeutic agents that could inhibit fibroblast senescence. In this study, we investigated the effects of Cistanche deserticola polysaccharide (CDP), a natural anti-inflammatory component, on the progression of senescence in human dermal fibroblasts. Normal human dermal fibroblasts (NHDFs) were cultured in passages, and highly senescent cells were selected as senescent cells. CDP treatment increased the cell proliferation in senescent NHDFs and decreased the proportion of senescence-associated-β-galactosidase-positive cells. The treatment suppressed the senescence-related secretory phenotype, and reactive oxygen species (ROS) production was reduced, alleviating H2O2-induced oxidative stress. CDP mitigated ROS formation via the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway in senescent cells and was involved in the suppression of upstream p-extracellular signal-regulated kinase. These results indicate that CDP is an antioxidant that can alleviate age-related inflammation and may be a useful compound for skin anti-aging.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
14
|
Ye WW, Meng XY, Zhao Q, Chen JY, Liu C, Chen F, Zhou Y, Wang Y. Echinacoside exerts its protective effects in a type 2 diabetes mellitus injury model via the AKT pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:880-889. [PMID: 36573490 DOI: 10.1080/10286020.2022.2157269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 08/26/2023]
Abstract
Echinacoside (ECH) is the main compound of Cistanche deserticola, which possesses antioxidant, antitumor, antifatigue, and anti-inflammatory properties. The present study investigated the protective effects of echinacoside on type 2 diabetes mellitus (T2DM)-induced injury in T2DM injury db/db mice model and insulin-resistant LO2 cell model. The results demonstrated that ECH probably alleviated T2DM-induced injury by mediating the AKT pathway, which provided a new direction for the treatment of T2DM-induced injury.
Collapse
Affiliation(s)
- Wei-Wei Ye
- Department of Endocrinology, Dahua Hospital, Shanghai 200237, China
| | - Xiang-Ying Meng
- Department of Endocrinology, Dahua Hospital, Shanghai 200237, China
| | - Qian Zhao
- Department of Endocrinology, Dahua Hospital, Shanghai 200237, China
| | - Jian-Yang Chen
- Department of Endocrinology, Dahua Hospital, Shanghai 200237, China
| | - Cong Liu
- Department of Endocrinology, Dahua Hospital, Shanghai 200237, China
| | - Feng Chen
- Department of Endocrinology, Dahua Hospital, Shanghai 200237, China
| | - Yong Zhou
- Department of Endocrinology, Dahua Hospital, Shanghai 200237, China
| | - Yi Wang
- Department of Endocrinology, Dahua Hospital, Shanghai 200237, China
| |
Collapse
|
15
|
He E, Jiang Y, Wei D, Wang Y, Sun W, Jia M, Shi B, Cui H. The potential effects and mechanism of echinacoside powder in the treatment of Hirschsprung's Disease. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14222-14240. [PMID: 37679133 DOI: 10.3934/mbe.2023636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Possible complications, such as intestinal obstruction and inflammation of the intestinal tract, can have a detrimental effect on the prognosis after surgery for Hirschsprung disease. The aim of this study was to investigate the potential targets and mechanisms of action of echinacoside to improve the prognosis of Hirschsprung disease. Genes related to the disease were obtained through analysis of the GSE96854 dataset and four databases: OMIM, DisGeNET, Genecard and NCBI. The targets of echinacoside were obtained from three databases: PharmMapper, Drugbank and TargetNet. The intersection of disease genes and drug targets was validated by molecular docking. The valid docked targets were further explored for their expression by using immunohistochemistry. In this study, enrichment analysis was used to explore the mechanistic pathways involved in the genes. Finally, we identified CA1, CA2, CA9, CA12, DNMT1, RIMS2, RPGRIP1L and ZEB2 as the core targets. Except for ZEB2, which is predominantly expressed in brain tissue, the remaining seven genes show tissue specificity and high expression in the gastrointestinal tract. RIMS2 possesses a high mutation phenomenon in pan-cancer, while a validated ceRNA network of eight genes was constructed. The core genes are involved in several signaling pathways, including the one-carbon metabolic process, carbonate dehydratase activity and others. This study may help us to further understand the pharmacological mechanisms of echinacoside and provide new guidance and ideas to guide the treatment of Hirschsprung disease.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Yuhang Jiang
- Tianjin Medical University of Clinical Medicine, Tianjin, China
| | - Diwei Wei
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Yifan Wang
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Wenjing Sun
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Miao Jia
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Hualei Cui
- Tianjin Children's Hospital of Minimally Invasive Surgery, Tianjin, China
| |
Collapse
|
16
|
Hou S, Tan M, Chang S, Zhu Y, Rong G, Wei G, Zhang J, Zhao B, Zhao QS. Effects of different processing (Paozhi) on structural characterization and antioxidant activities of polysaccharides from Cistanche deserticola. Int J Biol Macromol 2023:125507. [PMID: 37355072 DOI: 10.1016/j.ijbiomac.2023.125507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
In this study, five polysaccharides were extracted from processed Cistanche deserticola. The processing included crude product, enzymatic hydrolysis, hot air drying, stir-baking with wine and high-pressure steaming, and these polysaccharides were named as CP-CDPs, EH-CDPs, HAD-CDPs, SBW-CDPs and HPS-CDPs, respectively. The structural characteristics and biological activities were explored. The results showed that processing changed properties of C. deserticola polysaccharides. CP-CDPs had the highest brightness value L*(93.84) and carbohydrate content (61.27 %). EH-CDPs had minimum Mw (1531.50 kDa), while SBW-CDPs had maximum Mw (2526.0 kDa). Glucose was major predominant monosaccharide in CP-CDPs (89.82 %), HAD-CDPs (79.3 %), SBW-CDPs (59.41 %) and HPS-CDPs (63.86 %), while galactose was major monosaccharide in EH-CDPs (29.44 %). According to SEM, SBW-CDPs showed compact structures, while HPS-CDPs and HAD-CDPs had similar looser structure than SBW-CDPs; meanwhile, CP-CDPs showed irregular agglomeration shape and EH-CDPs was dense blocky shape. The AFM showed SBW-CDPs had the largest molecular chain than other polysaccharides. When scavenging activity reaching 50 %, the concentrations of CP-CDPs, EH-CDPs, HAD-CDPs, SBW-CDPs, HPS-CDPs are 2.25, 0.25, 0.75, 1.8 and 1.5 mg/mL, respectively. This study sheds light on the effects of traditional Chinese medicine processing on characteristics, bioactivities of C. deserticola polysaccharides, and provides the basis for applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shoubu Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Senlin Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guang Rong
- HiperCog Group, Department of Education, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Gaojie Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinyu Zhang
- Inner Mongolia Alashan Cistanche Co. ltd, Alashanzuoqi, Inner Mongolia 750306, PR China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
17
|
Yan J, Wang H, Wang H, Bian Y, Wang K, Zhai X, Li Y, Wu K, Wang W, Li J, Tang Z, Wang X. Quantitative analysis and hepatoprotective mechanism of Cistanche deserticola Y. C. Ma against alcohol-induced liver injury in mice. Biomed Pharmacother 2023; 162:114719. [PMID: 37080088 DOI: 10.1016/j.biopha.2023.114719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023] Open
Abstract
Cistanche deserticola Y. C. Ma (CD), known as "desert ginseng", has been found to have hepatoprotective effect. This research aimed to investigate the quality control and its alleviating effect on alcoholic liver injury in mice. In this study, for the first time, a sensitive and efficient ultra-high-performance liquid chromatography with quadrupole ion-trap mass spectrometry (UPLC-Q-TRAP/MS) method was developed to rapidly characterize nine representative phenylethanoid glycosides (PhGs) in the CD extract within 14 min, offering a reference for the quality control standard of this plant. In addition, we found that the CD extract significantly inhibited the weight loss, decreased the liver index, and attenuated excessive lipid deposition, inflammatory and oxidative stress in the mice liver. With the help of the high-throughput lipidomics technique, we discovered that CD markedly reversed 17 lipid metabolites and their involved linoleic acid, arachidonic acid and glycerophospholipid metabolic pathways. As these metabolites are mainly associated with lipid metabolism and liver damage, we further used molecular biological tests to found that CD could regulate the upstream genes and proteins of the lipid metabolism pathway, including adenosine 5'-monophosphate-activated protein kinase (AMPK), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and peroxidase proliferators activate receptors α (PPARα). In conclusion, this study elucidates the modulatory effects of CD on lipid metabolism disorders in alcoholic fatty liver from holistic system and provides a reference for further research and development of CD as a therapeutic agent.
Collapse
Affiliation(s)
- Jiajing Yan
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Huanjun Wang
- College of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Kai Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xinyuan Zhai
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Weihua Wang
- Engineer Center of Pharmaceutical Technology, Tsinghua University, Beijing 100084, China
| | - Jie Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| | - Zhixin Tang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
18
|
Wu L, Xiang T, Chen C, Isah MB, Zhang X. Studies on Cistanches Herba: A Bibliometric Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1098. [PMID: 36903966 PMCID: PMC10005655 DOI: 10.3390/plants12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
As a famous tonic herb, Cistanches Herba is known for its broad medicinal functions, especially its hormone balancing, anti-aging, anti-dementia, anti-tumor, anti-oxidative, neuroprotective, and hepatoprotective effects. This study aims to provide a comprehensive bibliometric analysis of studies on Cistanche and to identify research hotspots and frontier topics on the genus. Based on the metrological analysis software CiteSpace, 443 Cistanche related papers were quantitatively reviewed. The results indicate that 330 institutions from 46 countries have publications in this field. China was the leading country in terms of research importance and number of publication (335 articles). In the past decades, studies on Cistanche have mainly focused on its rich active substances and pharmacological effects. Although the research trend shows that Cistanche has grown from an endangered species to an important industrial plant, its breeding and cultivation continue to be important areas for research. In the future, the application of Cistanche species as functional foods may be a new research trend. In addition, active collaborations among researchers, institutions, and countries are expected.
Collapse
Affiliation(s)
- Longjiang Wu
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tian Xiang
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Murtala Bindawa Isah
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, P.M.B. 2218, Katsina 820102, Nigeria
- Biomedical Research and Training Centre, Yobe State University, P.M.B. 1144, Damaturu 600213, Nigeria
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
19
|
Cistanche Deserticola for Regulation of Bone Metabolism: Therapeutic Potential and Molecular Mechanisms on Postmenopausal Osteoporosis. Chin J Integr Med 2023; 29:74-80. [PMID: 35930138 DOI: 10.1007/s11655-022-3518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/24/2022]
Abstract
Osteoporosis is a generalized disease of bone that leads to a loss of bone density and bone mass, destruction of bone microstructure, increased brittleness and therefore fracture. At present, the main treatment of Western medicine is drug therapy such as bisphosphonates, calcitriol, vitamin D, etc. However, long-term use of these drugs may bring some adverse reactions. Chinese herbal medicine Cistanche deserticola could regulate bone metabolism by promoting osteoblast activity and inhibiting osteoclast activity with low toxicity and adverse reactions. Therefore, Cistanche deserticola has attracted increasing attention for its efficacy in the prevention and treatment of osteoporosis in recent years. Here we present a literature review of the molecular pathways involved in osteoporosis and the effects of Cistanche deserticola on bone metabolism. Our objective is to clarify the mechanism of Cistanche deserticola in the treatment of osteoporosis.
Collapse
|
20
|
Research progress on polysaccharide components of Cistanche deserticola as potential pharmaceutical agents. Eur J Med Chem 2023; 245:114892. [DOI: 10.1016/j.ejmech.2022.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
|
21
|
Fan Y, Zhao Q, Duan H, Bi S, Hao X, Xu R, Bai R, Yu R, Lu W, Bao T, Wuriyanghan H. Large-scale mRNA transfer between Haloxylon ammodendron (Chenopodiaceae) and herbaceous root holoparasite Cistanche deserticola (Orobanchaceae). iScience 2022; 26:105880. [PMID: 36686392 PMCID: PMC9852350 DOI: 10.1016/j.isci.2022.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Exchanges of mRNA were shown between host and stem parasites but not root parasites. Cistanche deserticola (Orobanchaceae) is a holoparasitic herb which parasitizes on the roots of woody plant Haloxylon ammodendron (Chenopodiaceae). We used transcriptome sequencing and bioinformatic analyses to identify nearly ten thousand mobile mRNAs. Transcript abundance appears to be a driving force for transfer event and mRNA exchanges occur through haustorial junction. Mobility of selected mRNAs was confirmed in situ and in sunflower-Orobanche cumana heterologous parasitic system. Four C. deserticola →H. ammodendron mobile mRNAs appear to facilitate haustorium development. Of interest, two mobile mRNAs of putative resistance genes CdNLR1 and CdNLR2 cause root-specific hypersensitive response and retard parasite development, which might contribute to parasitic equilibrium. The present study provides evidence for the large-scale mRNA transfer event between a woody host and a root parasite, and demonstrates the functional relevance of six C. deserticola genes in host-parasite interactions.
Collapse
Affiliation(s)
- Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuxin Bi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaomin Hao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Rui Xu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenting Lu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Tiejun Bao
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China,Corresponding author
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China,Corresponding author
| |
Collapse
|
22
|
Chen SY, Wang TY, Zhao C, Wang HJ. Oxidative stress bridges the gut microbiota and the occurrence of frailty syndrome. World J Gastroenterol 2022; 28:5547-5556. [PMID: 36304085 PMCID: PMC9594011 DOI: 10.3748/wjg.v28.i38.5547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 02/06/2023] Open
Abstract
The incidence of frailty gradually increases with age. This condition places a heavy burden on modern society, of which the aging population is increasing. Frailty is one of the most complicated clinical syndromes; thus, it is difficult to uncover its underlying mechanisms. Oxidative stress (OS) is involved in frailty in multiple ways. The association between the gut microbiota (GM) and frailty was recently reported. Herein, we propose that OS is involved in the association between the GM and the occurrence of frailty syndrome. An imbalance between oxidation and antioxidants can eventually lead to frailty, and the GM probably participates in this process through the production of reactive oxygen species. On the other hand, OS can disturb the GM. Such dysbiosis consequently induces or exacerbates tissue damage, leading to the occurrence of frailty syndrome. Finally, we discuss the possibility of improving frailty by intervening in the vicious cycle between the imbalance of OS and dysbiosis.
Collapse
Affiliation(s)
- Si-Yue Chen
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai 201318, China
| | - Tong-Yao Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Frontiers Science Center, Shanghai 200032, China
| | - Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai 201318, China
| |
Collapse
|
23
|
Safety, tolerability and pharmacokinetics of a Class I natural medicine with therapeutic potential for vascular dementia: Naoqingzhiming tablet. Biomed Pharmacother 2022; 153:113425. [DOI: 10.1016/j.biopha.2022.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
|
24
|
Miao Y, Chen H, Xu W, Yang Q, Liu C, Huang L. Structural mutations of small single copy (SSC) region in the plastid genomes of five Cistanche species and inter-species identification. BMC PLANT BIOLOGY 2022; 22:412. [PMID: 36008757 PMCID: PMC9404617 DOI: 10.1186/s12870-022-03682-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cistanche is an important genus of Orobanchaceae, with critical medicinal, economic, and desertification control values. However, the phylogenetic relationships of Cistanche genus remained obscure. To date, no effective molecular markers have been reported to discriminate effectively the Cistanche closely related species reported here. In this study, we obtained and characterized the plastomes of four Cistanche species from China, to clarify the phylogenetic relationship within the genus, and to develop molecular markers for species discrimination. RESULTS: Four Cistanche species (Cistanche deserticola, Cistanche salsa, Cistanche tubulosa and Cistanche sinensis), were deep-sequenced with Illumina. Their plastomes were assembled using SPAdes and annotated using CPGAVAS2. The plastic genomes were analyzed in detail, finding that all showed the conserved quadripartite structure (LSC-IR-SSC-IR) and with full sizes ranging from 75 to 111 Kbp. We observed a significant contraction of small single copy region (SSC, ranging from 0.4-29 Kbp) and expansion of inverted repeat region (IR, ranging from 6-30 Kbp), with C. deserticola and C. salsa showing the smallest SSCs with only one gene (rpl32). Compared with other Orobanchaceae species, Cistanche species showed extremely high rates of gene loss and pseudogenization, as reported for other parasitic Orobanchaceae species. Furthermore, analysis of sequence divergence on protein-coding genes showed the three genes (rpl22, clpP and ycf2) had undergone positive selection in the Cistanche species under study. In addition, by comparison of all available Cistanche plastomes we found 25 highly divergent intergenic spacer (IGS) regions that were used to predict two DNA barcode markers (Cis-mk01 and Cis-mk02 based on IGS region trnR-ACG-trnN-GUU) and eleven specific DNA barcode markers using Ecoprimer software. Experimental validation showed 100% species discrimination success rate with both type of markers. CONCLUSION Our findings have shown that Cistanche species are an ideal model to investigate the structure variation, gene loss and pseudogenization during the process of plastome evolution in parasitic species, providing new insights into the evolutionary relationships among the Cistanche species. In addition, the developed DNA barcodes markers allow the proper species identification, ensuring the effective and safe use of Cistanche species as medicinal products.
Collapse
Affiliation(s)
- Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Haimei Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Wanqi Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qiaoqiao Yang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
25
|
Weng X, Zhao B, Feng S, Yang Y, Zhang A. Chemical composition and adjuvant properties of the macromolecules from cultivated Cistanche deserticola Y. C. Ma as an immunopotentiator. Int J Biol Macromol 2022; 220:638-658. [PMID: 35973483 DOI: 10.1016/j.ijbiomac.2022.08.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022]
Abstract
The study aims to investigate the constituents, adjuvant effects, and underlying mechanisms of purified polysaccharides from cultivated Cistanche deserticola (C. deserticola). Two macromolecules designated as CCDP-1 (26.5 kDa) and CCDP-2 (32.3 kDa) from C. deserticola were respectively identified as carbohydrate-lignin complexes with 44.1 % and 43.8 % lignin. CCDP-1 and CCDP-2 were composed of glucose, rhamnose, galactose, arabinose, and mannose respectively in the molar ratios of 7.22: 5.98:2.51:1.81:1.00 and 6.57:8.48:4.20:2.72:1.00. An in vitro experiment revealed that endotoxin-free CCDP-1 and CCDP-2 promoted splenocyte proliferation without cytotoxicity, but CCDP-2 induced dendritic cell (DC) maturation more efficiently than CCDP-1. An in vivo experiment suggested that CCDP-2 enhanced OVA-specific antibody production, antigen-specific T-cell activation, IFN-γ production, IL-4 production, and DC activation. Notably, CCDP-2 elicited a Th1-biased response. Mechanically, CCDP-2 upregulated CD40, CD80, CD86, and MHC II, facilitated allogeneic T-cell proliferation and Th1/Th2 cytokines, improved IFN-γ, IL-12, IL-6, and TNF-α production, and decreased endocytosis from DCs in vitro. Blocking assays indicated that TLR2 and TLR4 were the membrane receptor candidates of DCs. Western blot implied that CCDP-2 with the immune-enhancing activities were involved in the activation of MAPKs and NF-κB pathways in a dose-/time-related manner and could be employed as a more balanced Th1/Th2 adjuvant for vaccine exploitation.
Collapse
Affiliation(s)
- Xiang Weng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Bing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Shuangshuang Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ailian Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
26
|
Lu X, Jiang R, Zhang G. Predicting the potential distribution of four endangered holoparasites and their primary hosts in China under climate change. FRONTIERS IN PLANT SCIENCE 2022; 13:942448. [PMID: 35991412 PMCID: PMC9384867 DOI: 10.3389/fpls.2022.942448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Climate change affects parasitic plants and their hosts on distributions. However, little is known about how parasites and their hosts shift in distribution, and niche overlap in response to global change remains unclear to date. Here, the potential distribution and habitat suitability of four endangered holoparasites and their primary hosts in northern China were predicted using MaxEnt based on occurrence records and bioclimatic variables. The results indicated that (1) Temperature annual range (Bio7) and Precipitation of driest quarter (Bio17) were identified as the common key climatic factors influencing distribution (percentage contribution > 10%) for Cynomorium songaricum vs. Nitraria sibirica (i.e., parasite vs. host); Temperature seasonality (Bio4) and Precipitation of driest month (Bio14) for Boschniakia rossica vs. Alnus mandshurica; Bio4 for Cistanche deserticola vs. Haloxylon ammodendron; Precipitation of warmest quarter (Bio18) for Cistanche mongolica vs. Tamarix ramosissima. Accordingly, different parasite-host pairs share to varying degree the common climatic factors. (2) Currently, these holoparasites had small suitable habitats (i.e., moderately and highly) (0.97-3.77%), with few highly suitable habitats (0.19-0.81%). Under future scenarios, their suitable habitats would change to some extent; their distribution shifts fell into two categories: growing type (Boschniakia rossica and Cistanche mongolica) and fluctuating type (Cynomorium songaricum and Cistanche deserticola). In contrast, the hosts' current suitable habitats (1.42-13.43%) varied greatly, with highly restricted suitable habitats (0.18-1.00%). Under future scenarios, their suitable habitats presented different trends: growing type (Nitraria sibirica), declining type (Haloxylon ammodendron) and fluctuating type (the other hosts). (3) The niche overlaps between parasites and hosts differed significantly in the future, which can be grouped into two categories: growing type (Boschniakia rossica vs. Alnus mandshurica, Cistanche mongolica vs. Tamarix ramosissima), and fluctuating type (the others). Such niche overlap asynchronies may result in severe spatial limitations of parasites under future climate conditions. Our findings indicate that climate factors restricting parasites and hosts' distributions, niche overlaps between them, together with parasitic species identity, may jointly influence the suitable habitats of parasitic plants. Therefore, it is necessary to take into account the threatened holoparasites themselves in conjunction with their suitable habitats and the parasite-host association when developing conservation planning in the future.
Collapse
|
27
|
Xiong WL, Sun Y, Ma TC, Zhang XY, Wang JY, Du YY, Wu B, Yan TX, Jia Y. A pair of novel phenylethanol glycosides from Cistanche tubulosa (Schenk) Wight. Fitoterapia 2022; 160:105227. [PMID: 35662650 DOI: 10.1016/j.fitote.2022.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
A pair of differential epimers with opposite C-7 configurations, crenatosides A and B (1 and 2), and 10 known phenylethanoid glycosides (PhGs) (3-12) were obtained from the succulent stem of Cistanche tubulosa. The structures were elucidated based on extensive spectral data (UV, IR, 1D and 2D NMR, HR-ESIMS), which are first reported natural products with unique glycoside structures. After acid hydrolysis, the configuration of the sugar was determined by comparing it with the normative sugar by HPLC. The absolute configurations of both compounds were determined by ECD spectrum analysis. All the obtained compounds were examined for their inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse microglial cells (BV-2 cells), and compounds 1 and 2 showed potent inhibition on NO production with IC50 values of 5.62 μM and 6.30 μM, respectively.
Collapse
Affiliation(s)
- Wei-Lin Xiong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Yu Sun
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui North Street 333, Qiqihar 161006, People's Republic of China
| | - Tian-Cheng Ma
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China; Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui North Street 333, Qiqihar 161006, People's Republic of China
| | - Xiao-Ying Zhang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Jin-Yu Wang
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Yi-Yang Du
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Bo Wu
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Ting-Xu Yan
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Ying Jia
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China.
| |
Collapse
|
28
|
Zhang S, Gong F, Liu J, Liu T, Yang J, Hu J. A novel PHD2 inhibitor acteoside from Cistanche tubulosa induces skeletal muscle mitophagy to improve cancer-related fatigue. Biomed Pharmacother 2022; 150:113004. [PMID: 35658245 DOI: 10.1016/j.biopha.2022.113004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE To study whether ACT exerts anti-fatigue activity against CRF by inducing skeletal muscle mitophagy via suppressing PHD2 to upregulate the HIF-1α/BNIP3 signaling pathway. METHODS In this study, the molecular docking virtual screening technique was used to screen active components in Cistanche tubulosa that act as potential PHD2 inhibitors; the preliminary verification was carried out by Surface plasmon resonance (SPR) technology. BALB/c mice were treated with Paclitaxel (PTX, 10 mg/kg) and ACT (50, 100 mg/kg) alone or in combination for 20 days. Fatigue-related behaviors, energy metabolism and skeletal muscle mitochondria were assessed. Murine C2C12 myoblast was cultured and differentiated; then, a C26 tumor cell-conditioned medium was added to induce cachexia. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential, mitochondrial microstructure and function, autophagy, PHD2/HIF-1 and PINK1/Parkin signal pathway proteins were analyzed. Then, interfering RNA technology was used to silence PHD2 and observe the efficacy of ACT. RESULTS We demonstrated that ACT exerted good binding activity with PHD2; ACT administration ameliorated PTX-induced muscle fatigue-like behavior via improving muscle quality and mitochondria function, increasing mitophagy, upregulating COXIV, CytoC, PINK1, Parkin, HIF-1α and BNIP3 expression and inhibiting p62, LC3B, PHD2 and Beclin-1 expression. The protective effect of ACT disappeared after transfection with the PHD2 gene knockdown plasmid Egln-1-RNAi. CONCLUSIONS These results suggest that ACT can improve CRF by promoting mitophagy via suppression of PHD2 to remove dysfunctional mitochondria, demonstrating that ACT has huge prospects for clinical application in CRF treatment.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Department of Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, China.
| | - Fukai Gong
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.
| | - Jiali Liu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| | - Tao Liu
- Department of Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, China.
| | - Jianhua Yang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Department of Pharmacy, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| | - Junping Hu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
29
|
Magnetic dual-template molecularly imprinted polymers for separation and enrichment of echinacoside and acteoside from Cistanche deserticola Y. C. Ma. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Liu X, Jian C, Li M, Wei F, Liu H, Qin X. Microbiome-metabolomics deciphers the effects of Cistanche deserticola polysaccharides on aged constipated rats. Food Funct 2022; 13:3993-4008. [PMID: 35315484 DOI: 10.1039/d2fo00008c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic constipation is an extremely common gastrointestinal disorder that severely affects the life quality of the elderly. As an edible food and therapeutic medicine, Cistanche deserticola (CD) has been widely used not only as food in daily life, but also as a medicine to treat constipation. As the main component in CD, polysaccharide shows great potentials in improving constipation in the elderly. In this study, 16S rRNA analysis and fecal metabolomics were applied to investigate the impacts of constipation in an aged rat model, as well as the regulatory effects and the underlying mechanisms of CD polysaccharide (CDPS). Firstly, a classic constipation model of aged rats was constructed. The behavioral indicators of the rats were analyzed, providing behavioral correlations at the macro level. Meanwhile, the levels of SOD, GSH-Px, MDA, and CAT in serum samples of the rats were assessed. Additionally, the changes of gut microbiota, fecal metabolites and corresponding metabolic pathways in the aged constipated rats were demonstrated. On top of this, inter-and inner-layer networks of "behavioral indicators - intestinal bacteria - metabolites" were constructed to visually demonstrate the relationships among differential indicators. We found that CDPS significantly regulated the abnormalities of the behavioral indexes, the microbial richness and diversity, and the metabolite profiles that were induced by constipation in the aged rats. From the intestinal microbiological point of view, CDPS significantly increased the prevalence of beneficial bacteria while reducing the potentially pathogenic bacterial population. In terms of metabolomics, a total of 16 metabolites were finally identified as potential biomarkers of constipation in the aged rats. The mechanisms of CDPS were mainly involved in metabolic energy and the synthesis of amino acids. The current findings not only deepen our understanding about constipation in the elderly from the perspectives of microbiome and metabolomics, but also lay a solid foundation for the applications of polysaccharides in constipation in the elderly, the discovery of new medicines for constipation, and improving the life quality of the elderly.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Fuxiao Wei
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Huanle Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China. .,The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Tai Yuan, 030006, China
| |
Collapse
|
31
|
Zhang X, Liu X, Chang S, Zhang C, Du W, Hou F. Effect of Cistanche deserticola on Rumen Microbiota and Rumen Function in Grazing Sheep. Front Microbiol 2022; 13:840725. [PMID: 35432287 PMCID: PMC9009397 DOI: 10.3389/fmicb.2022.840725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
For a long time, veterinary drugs and chemical additives have been widely used in livestock and poultry breeding to improve production performance. However, problems such as drug residues in food are causing serious concerns. The use of functional plants and their extracts to improve production performance is becoming increasingly popular. This study aimed to evaluate the effect of Cistanche deserticola in sheep feed on rumen flora and to analyze the causes to provide a theoretical basis for the future use of Cistanche deserticola as a functional substance to improve sheep production performance. A completely randomized experimental design was adopted using 24 six-month-old sheep males divided into four groups (six animals in each group) which were fed a basic diet composed of alfalfa and tall fescue grass. The C. deserticola feed was provided to sheep at different levels (0, 2, 4, and 6%) as experimental treatments. On the last day (Day 75), ruminal fluid was collected through a rumen tube for evaluating changes in rumen flora. The test results showed that Prevotella_1, Lactobacillus, and Rikenellaceae_RC9_gut_group were the dominant species at the genus level in all samples. Lactobacillus, Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Butyrivibrio_2, and Christensenellaceae_R-7_group differed significantly in relative abundance among the treatment groups. The polysaccharides in C. deserticola was the major factor influencing the alteration in rumen flora abundance, and had the functions of improving rumen fermentation environment and regulating rumen flora structure, etc. Hence, C. deserticola can be used to regulate rumen fermentation in grazing sheep to improve production efficiency.
Collapse
|
32
|
Effect of an Ultrasound Pre-Treatment on the Characteristics and Quality of Far-Infrared Vacuum Drying with Cistanche Slices. Foods 2022; 11:foods11060866. [PMID: 35327287 PMCID: PMC8950557 DOI: 10.3390/foods11060866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, the effect of an ultrasound (US) pre-treatment on the process of drying Cistanche slices through far-infrared vacuum drying was investigated with various experimental factors, including the US treatment time (25, 35, 45 min), frequency (20, 40, 60 kHz) and power (150, 180, 210 W). The results showed that compared with the samples without US, the material drying time after the US treatment was reduced by 16–36.8%. The effective moisture diffusion coefficients of Cistanche slices under different US conditions ranged from 1.61122 × 10−8 to 2.39274 × 10−8 m2/s, which agreed with food processing ranges. In addition, the phenylethanoid glycoside, iridoid, polysaccharide, total phenol and total flavonoid contents in Cistanche were significantly increased after US pre-treatment. However, the dried products obtained with the 45 min US treatment had greatly damaged internal structures, collapsed and seriously deformed surfaces, and low contents of active ingredients. Overall, the US pre-treatment could significantly improve the drying quality of Cistanche slices.
Collapse
|
33
|
Bouzayani B, Koubaa I, Frikha D, Samet S, Ben Younes A, Chawech R, Maalej S, Allouche N, Mezghani Jarraya R. Spectrometric analysis, phytoconstituents isolation and evaluation of in vitro antioxidant and antimicrobial activities of Tunisian Cistanche violacea (Desf). CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Maxent Modeling for Identifying the Nature Reserve of Cistanche deserticola Ma under Effects of the Host (Haloxylon Bunge) Forest and Climate Changes in Xinjiang, China. FORESTS 2022. [DOI: 10.3390/f13020189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cistanche deserticola Ma is a traditional Chinese medicinal plant exclusively parasitizing on the roots of Haloxylon ammodendron (C. A. Mey.) Bunge and H. Persicum Bunge ex Boiss and the primary cultivated crop of the desert economy. Its wild resources became scarce due to over-exploitation and poaching for economic benefits. To protect the biological diversity of the desert Haloxylon–Cistanche community forest, the optimal combination of desert ecology and economy industry, and their future survival, this paper examines the conservation areas of wild C. deserticola from the perspective of hosts’ effects and climate changes. To identify conservation areas, the potential distributions generated by MaxEnt in two strategies (AH: abiotic and hosts factors; HO: hosts factors only) compare the model’s performance, the niche range overlap, and the changing trend in climate changes. The results show the following: (1) The HO strategy is more suitable for prediction and identifying the core conservation areas in hosts and climate changes (indirectly affected by host distributions) for C. deserticola. (2) The low-suitable habitat and the medium-suitable habitat are both sensitive to the climate changes; the reduction reaches 48.2% (SSP585, 2081–2100) and 26.6%(SSP370, 2081–2100), respectively. The highly suitable habitat is always in growth, with growth reaching 27.3% (SSP585, 2081–2100). (3) Core conservation areas and agriculture and education areas are 317,315.118 km2 and 319,489.874 km2, respectively. This study developed a predictive model for Maxent under climate change scenarios by limiting host and abiotic factors and inverted the natural habitat of C. deserticola to provide scientific zoning for biodiversity conservation in desert Haloxylon–Cistanche community forests systems, providing an effective reference for decision makers.
Collapse
|
35
|
Ma D, He Z, Bai X, Wang W, Zhao P, Lin P, Zhou H. Atriplex canescens, a valuable plant in soil rehabilitation and forage production. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150287. [PMID: 34798761 DOI: 10.1016/j.scitotenv.2021.150287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
A. canescens (Pure) Nutt. is a halophytic forage shrub distributes in arid and semiarid regions, which has great use potential in disturbed lands for its strong adaptability and feeding value. At present, land degradation caused by salinization, desertification and heavy metal pollution is still expanding all over the world, meanwhile, stock raising in arid and semi-arid areas may face more shortage of forage supply. Although A. canescens is much accounted of in some regions, its application values are not widely concerned in some countries such as China. Therefore, a comprehensive understanding is needed to promote its application in these regions. In the review, we introduced the morphological and physiological characteristics of A. canescens, summarized its ecological and economic values, and we also discussed its use prospect and main problems in China. This review could be helpful for understanding of A. canescens adaptive characteristics and application values, thus promote its reasonable popularization and use in areas in need.
Collapse
Affiliation(s)
- Dengke Ma
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin He
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xuelian Bai
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhao
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Lin
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hai Zhou
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
36
|
Li Q, Ba X, Cao H, Weng X, Yang Y, Wang B, Zhang A. Crude polysaccharides from Cistanche deserticola Y.C. Ma as an immunoregulator and an adjuvant for foot-and-mouth disease vaccine. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
37
|
Jiang L, Zhou B, Wang X, Bi Y, Guo W, Wang J, Yao R, Li M. The Quality Monitoring of Cistanches Herba ( Cistanche deserticola Ma): A Value Chain Perspective. Front Pharmacol 2021; 12:782962. [PMID: 34803722 PMCID: PMC8602053 DOI: 10.3389/fphar.2021.782962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cistanche deserticola Ma was used as a medicine food homology, which was mainly produced in the Alxa region of northwest China. In recent years, it has been widely used in various food items. The increasing demand for Cistanches Herba has led to problems such as overexploitation and quality deterioration. The quality and safety of herbal medicines are critical and have been shown to be affected by the value chain (VC). Using the VC framework, the study is embedded in a larger study aiming to investigate the effects of different VCs types on the quality and stakeholders of Cistanches Herba. In this study, 90 Cistanches Herba samples were collected during fieldwork. An additional 40 samples were obtained from the herbal markets and medicine purchasing stations. Semi-structured interviews and key informant interviews were performed to collect data on stakeholders in major production areas. These samples were analyzed using high performance liquid chromatography (HPLC) coupled with the k-means clustering method; a targeted quality assessment strategy based on chemical analysis was adopted to understand the quality of Cistanches Herba. Based on market research, the collected samples were divided into different grades through k-means clustering analysis. Moreover, quality differences of Cistanches Herba in Alxa region were explored through DNA barcoding and chemical analysis. Accordingly, 10 different types of VCs were determined in the production of Cistanches Herba. The results show that there is a close relationship between the quality of Cistanches Herba and stakeholder benefits. Vertical integration at different levels was found for independent farmer-based VCs, horizontal collaboration was found in the cooperative-based VCs. The vertical coordination has led to a more consistent traceability system and strict regulation of supply chains. At the same time, the Cistanches Herba were divided into three grades. Through DNA barcoding and chemical analysis, we found that the quality differences between Cistanches Herba in the Alxa area were not significant. It was found that geographical suitability and vertical integration could impact the quality and sustainable production of Cistanches Herba. At the same time, the well-developed VCs can provide products with reliable quality, and ensure adequate financial revenue for relevant stakeholders.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Baochang Zhou
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yaqiong Bi
- Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China
| | - Wenfang Guo
- Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China
| | - Jianhua Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ruyu Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, China.,Baotou Medical College, Baotou, China.,Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| |
Collapse
|
38
|
Sun X, Pei J, Zhao L, Ahmad B, Huang LF. Fighting climate change: soil bacteria communities and topography play a role in plant colonization of desert areas. Environ Microbiol 2021; 23:6876-6894. [PMID: 34693620 DOI: 10.1111/1462-2920.15799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Global warming has exacerbated desertification in arid regions. Exploring the environmental variables and microbial communities that drive the dynamics of geographic patterns of desert crops is important for large-scale standardization of crops that can control desertification. Here, predictions based on future climate data from CMIP6 show that a steady expand in the suitable production areas for three desert plants (Cistanche deserticola, Cynomorium songaricum and Cistanche salsa) under global warming, demonstrating their high adaptability to future climate change. We examined the biogeography of three desert plant soil bacteria communities and assessed the environmental factors affecting the community assembly process. The α-diversity significantly decreased along elevated latitudes, indicating that the soil bacterial communities of the three species have latitude diversity patterns. The neutral community model evaluated 66.6% of the explained variance of the bacterial community in the soil of desert plants and Modified Stochasticity Ratio <0.5, suggesting that deterministic processes dominate the assembly of bacterial communities in three desert plants. Moreover, topography (longitude, elevation) and precipitation as well as key OTUs (OTU4911: Streptomyces eurythermus and OTU4672: Streptomyces flaveus) drive the colonization of three desert plants. This research offers a promising solution for desert management in arid areas under global warming.
Collapse
Affiliation(s)
- Xiao Sun
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, 611137, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Lei Zhao
- Central Medical District of Chinese PLA General Hospital, Beijing, 100193, China
| | - Bashir Ahmad
- Center for Biotechnology & Microbiology, University of Peshawar, Peshawar, 25000, Pakistan
| | - Lin-Fang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
39
|
Chemical profiles and metabolite study of raw and processed Cistanche deserticola in rats by UPLC-Q-TOF-MS E. Chin Med 2021; 16:95. [PMID: 34583715 PMCID: PMC8480105 DOI: 10.1186/s13020-021-00508-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
Background Chinese materia medica processing is a distinguished and unique pharmaceutical technique in Traditional Chinese Medicine (TCM) used for reducing side effects, and increasing or even changing therapeutic efficacy of the raw herbs.Changes in the essential components induced by an optimized processing procedure are primarily responsible for the increased efficacy of medicinal plants.The kidney-yang invigorating effect of rice wine-steamed Cistancha deserticola (C. deserticola) was stronger than raw C. deserticola (CD). Methods A comparison analysis was carried out using the UPLC-Q-TOF-MSE with the UNIFI informatics platform to determine the influence of processing. In vitro studies were performed for the characterization of constituents as well as metabolites in vivo. The chemical components were determined in CD and its processed products. The multivariate statistical analyses were conducted to evaluate variations between them while OPLS-DA was used for pairwise comparison. Results The results of this study revealed considerable variations in phenylethanoid glycosides (PhGs) and iridoids after processing. A total of 97 compounds were detected in the extracts of CD and its processed product. PhGs having 4'-O-caffeoyl group in the 8-O-β-d-glucopyranosyl part, like acteoside, cistanoside C, campneoside II, osmanthuside decreased after being processed, while PhGs with 6'-O-caffeoyl group in the 8-O-β-d-glucopyranosyl part, such as isoacetoside, isocistanoside C, isocampneoside I, isomartynoside increased, especially in the CD-NP group. The intensity of echinacoside and cistanoside B whose structure possess 6'-O-β-d-glucopyranosyl moiety also increased. In in vivo study, 10 prototype components and 44 metabolites were detected in rat plasma, feces, and urine. The obtained results revealed that processing leads to the considerable variation in the chemical constituents of CD and affected the disposition of the compounds in vivo, and phase II metabolic processes are the key cascades of each compound and most of the metabolites are associated with echinacoside or acteoside. Conclusions This is the first global comparison research of raw and processed CD. These findings add to our understanding of the impact of CD processing and give important data for future efficacy investigations.
Collapse
|
40
|
Sun X, Zheng Y, Tian L, Miao Y, Zeng T, Jiang Y, Pei J, Ahmad B, Huang L. Metabolome profiling and molecular docking analysis revealed the metabolic differences and potential pharmacological mechanisms of the inflorescence and succulent stem of Cistanche deserticola. RSC Adv 2021; 11:27226-27245. [PMID: 35480642 PMCID: PMC9037670 DOI: 10.1039/d0ra07488h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cistanche deserticola is an endangered plant used for medicine and food. Our purpose is to explore the differences in metabolism between inflorescences in non-medicinal parts and succulent stems in medicinal parts in order to strengthen the application and development of the non-medicinal parts of C. deserticola. We performed metabolomics analysis through LC-ESI-MS/MS on the inflorescences and succulent stems of three ecotypes (saline-alkali land, grassland and sandy land) of C. deserticola. A total of 391 common metabolites in six groups were identified, of which isorhamnetin O-hexoside (inflorescence) and rosinidin O-hexoside (succulent stems) can be used as chemical markers to distinguish succulent stems and inflorescences. Comparing the metabolic differences of three ecotypes, we found that most of the different metabolites related to salt-alkali stress were flavonoids. In particular, we mapped the biosynthetic pathway of phenylethanoid glycosides (PhGs) and showed the metabolic differences in the six groups. To better understand the pharmacodynamic mechanisms and targets of C. deserticola, we screened 88 chemical components and 15 potential disease targets through molecular docking. The active ingredients of C. deserticola have a remarkable docking effect on the targets of aging diseases such as osteoporosis, vascular disease and atherosclerosis. To explore the use value of inflorescence, we analyzed the molecular docking of the unique flavonoid metabolites in inflorescence with inflammation targets. The results showed that chrysoeriol and cynaroside had higher scores for inflammation targets. This study provides a scientific basis for the discovery and industrialization of the resource value of the non-medicinal parts of C. deserticola, and the realization of the sustainable development of C. deserticola. It also provides a novel strategy for exploring indications of Chinese herb. Flow chart for exploring the metabolic and pharmacological characteristics of different parts of Cistanche deserticola.![]()
Collapse
Affiliation(s)
- Xiao Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Yan Zheng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197.,Jiangxi University of Traditional Chinese Medicine Nanchang 330000 Jiangxi China
| | - Lixia Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Yujing Miao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Tiexin Zeng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197.,Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Yuan Jiang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Jin Pei
- Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Bashir Ahmad
- Center for Biotechnology & Microbiology, University of Peshawar 25000 Peshawar Pakistan
| | - Linfang Huang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| |
Collapse
|
41
|
Wang F, Zhuo B, Wang S, Lou J, Zhang Y, Chen Q, Shi Z, Song Y, Tu P. Atriplex canescens: A new host for Cistanche deserticola. Heliyon 2021; 7:e07368. [PMID: 34235285 PMCID: PMC8246398 DOI: 10.1016/j.heliyon.2021.e07368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/02/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Cistanche deserticola has been historically used in traditional Chinese medicine for supplementing kidney (yang) function, benefiting blood and essence, and moistening intestines in order to pass stool. Its host, Haloxylon ammodendron, is an important pioneer plant used for windbreaks and sand dune fixation, which are strategies used for the control desertification. For a long time, it has been considered that C. deserticola can only parasitize H. ammodendron. In this study, morphological identification, gene barcoding identification and inoculation experiment were carried out, we finally found that C. deserticola can also parasitize Atriplex canescens. A. canescens is a species of Chenopodiaceae with a wide range of adaptability. Compared with H. ammodendron, it has more biomass and a wider range of ecological adaptability, making it more suitable for the industrial production of C. deserticola. In addition, we also found that the concentration of active components was higher in C. deserticola parasitized on A. canescens than in those parasitized on H. ammodendron; this finding further suggests that the application of C. deserticola on a larger scale warrants further exploration.
Collapse
Affiliation(s)
- Fangming Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bingyu Zhuo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuai Wang
- Quheng Foundation, Asia Sci-Tech Center, 4760 Jiangnan Avenue, Binjiang, Hangzhou, Zhejiang, 310053, China
| | - Jin Lou
- Quheng Foundation, Asia Sci-Tech Center, 4760 Jiangnan Avenue, Binjiang, Hangzhou, Zhejiang, 310053, China
| | - Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingliang Chen
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziyi Shi
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuelin Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
42
|
Xiao W, Wei Y, Yang F, Lu X, Liu S, Long Y, Yu Y. Cistanche deserticola polysaccharide inhibits OVX-induced bone loss in mice and RANKL-induced osteoclastogenesis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
43
|
Echinacoside improves diabetic liver injury by regulating the AMPK/SIRT1 signaling pathway in db/db mice. Life Sci 2021; 271:119237. [PMID: 33600859 DOI: 10.1016/j.lfs.2021.119237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023]
Abstract
AIMS Echinacoside (ECH) is a natural compound extracted from the stem of the Cistanche deserticola plant, has significant biological properties, including antioxidant, anti-inflammatory, neuroprotective, anti-tumor, hepatoprotective, and immunomodulatory properties. In this study, we aimed to explore the protection effects and mechanisms of ECH on diabetic liver injury in db/db mice. MAIN METHODS Overall, 6-week-old db/db mice (n = 20) were randomly allocated to 2 groups: diabetic model group (db/db group, intragastric administration of normal saline, n = 10) and ECH-treated group (db/db + ECH group, n = 10). Additionally, the normal control group comprised 6-week-old db/m mice (db/m group, normal saline intragastric administration, n = 10). ECH was administered once a day for 10 weeks. Weight and fasting blood glucose (FBG) were measured biweekly. HE staining and Oil O staining were used to evaluate liver tissue pathological changes and lipid accumulation respectively. Immunofluorescence staining, Western blot and RT-PCR analysis were used to detect the expression of components of the AMPK/SIRT1 signaling axis. KEY FINDINGS The results showed that the administration of echinacoside for 10 weeks could significantly improve liver injury and insulin resistance in db/db mice (p < 0.01). Also, echinacoside treatment helped to reduce blood lipids and blood glucose (p < 0.01). Moreover, ECH actived AMPK/SIRT1 signaling, upregulated peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), proliferator-activated receptor-α (PPARα), carnitine palmitoyl transferase-1A (CPT1A) in db/db mice (p < 0.01). SIGNIFICANCE The effect of ECH may be elicited by the activation of the liver AMPK/SIRT1 pathway and its downstream factors to improve adiposity, insulin resistance, and dyslipidemia.
Collapse
|
44
|
Lei H, Wang X, Zhang Y, Cheng T, Mi R, Xu X, Zu X, Zhang W. Herba Cistanche (Rou Cong Rong): A Review of Its Phytochemistry and Pharmacology. Chem Pharm Bull (Tokyo) 2021; 68:694-712. [PMID: 32741910 DOI: 10.1248/cpb.c20-00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herba Cistanche, known as Rou Cong Rong in Chinese, is a very valuable Chinese herbal medicine that has been recorded in the Chinese Pharmacopoeia. Rou Cong Rong has been extensively used in clinical practice in traditional herbal formulations and has also been widely used as a health food supplement for a long time in Asian countries such as China and Japan. There are many bioactive compounds in Rou Cong Rong, the most important of which are phenylethanoid glycosides. This article summarizes the up-to-date information regarding the phytochemistry, pharmacology, processing, toxicity and safety of Rou Cong Rong to reveal its pharmacodynamic basis and potential therapeutic effects, which could be of great value for its use in future research.
Collapse
Affiliation(s)
- Huibo Lei
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | - Xinyu Wang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | - Yuhao Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | | | - Rui Mi
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Xike Xu
- School of Pharmacy, Second Military Medical University
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University
| | - Weidong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine.,School of Pharmacy, Shanghai Jiao Tong University.,School of Pharmacy, Second Military Medical University
| |
Collapse
|
45
|
Song Y, Zeng K, Jiang Y, Tu P. Cistanches Herba, from an endangered species to a big brand of Chinese medicine. Med Res Rev 2021; 41:1539-1577. [PMID: 33521978 DOI: 10.1002/med.21768] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
Cistanches Herba (CH, Chinese name: Roucongrong), is a very precious, tonic Chinese medicine. Cistanche deserticola and Cistanche tubulosa are the two commonly used species and authenticated in Chinese Pharmacopoeia. Due to the parasitic nature of Cistanche plants, the wild source was once endangered and listed in the Appendix II of Convention on International Trade in Endangered Species of Wild Fauna and Flora. However, after continuously struggling in the past decades, CH has grown up to a big brand of Chinese medicine featured with the cultivation area as 1.26 million mu, the annual output as 6000 tons, and the related industrial output value as more than 20 billion China Yuan, attributing to large-scale cultivation and in-depth phytochemical and pharmacological investigations. Noteworthily, great achievements have reached concerning the research and development of relevant products, such as modern drugs, traditional Chinese medicine prescriptions, and dietary supplements. The current review summarizes the research progresses concerning the distribution and cultivation, phytochemistry, pharmacology, metabolism and product development of CH in the past decades, and the emerging challenges and developing prospects are discussed as well.
Collapse
Affiliation(s)
- Yuelin Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
46
|
Zhang A, Ba X, Weng X, Zhao B, Wang D, Cao H, Huang J. Immunological activities of the aqueous extracts of Cistanche deserticola as a polysaccharide adjuvant for inactivated foot-and-mouth disease vaccines. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1880551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Ailian Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xueli Ba
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xiang Weng
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Bin Zhao
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Danyang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Hui Cao
- Xinjiang Tiankang Animal Biotechnology Co., Ltd., Urumqi, People’s Republic of China
| | - Jiong Huang
- Xinjiang Tiankang Animal Biotechnology Co., Ltd., Urumqi, People’s Republic of China
| |
Collapse
|
47
|
Mandakh U, Battseren M, Ganbat D, Ayanga T, Adiya Z, Borjigidai A, Long C. Folk nomenclature of plants in Cistanche deserticola-associated community in South Gobi, Mongolia. PLANT DIVERSITY 2020; 42:434-442. [PMID: 33733011 PMCID: PMC7936101 DOI: 10.1016/j.pld.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 05/15/2023]
Abstract
Cistanche deserticola is an important medicinal plant in Mongolia. Despite its significant role in local healing systems, little traditional knowledge had been reported. The present study investigated folk names of C. deserticola and other species of the same community in Umnugobi Province, South Gobi region of Mongolia, based on ethnobotanical approaches. The high correspondence between folk names and scientific names of plant species occurring in Cistanche-associated community shows the scientific meaning of folk nomenclature and classification in Mongolia. The Mongolian and folk names of plants were formed on the basis of observations and understanding of wild plants including their morphology, phenology and traditional uses as well. Results from this study will support the conservation of C. deserticola itself, a rare and endangered plant species listed in the Monglian Red Data Book. Our documentation of folk nomenclature based on 96 plant species in the Cistanche community, as a part of traditional knowledge associated with biodiversity, will be very helpful for making strategy of plant biodiversity conservation in Mongolia.
Collapse
Affiliation(s)
- Urtnasan Mandakh
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, 15170, Mongolia
| | - Munkhjargal Battseren
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, 210351, Mongolia
| | - Danzanchadav Ganbat
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, 15170, Mongolia
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Turuutuvshin Ayanga
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, 15170, Mongolia
| | - Zolzaya Adiya
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, 15170, Mongolia
- Department of Geography, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
- Corresponding author. Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China.
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
- Corresponding author. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
48
|
Li Y, Li N, Zhao X, Zhang B, Yang L, Liu J, Snooks H, Hu C, Ma X. Beneficial effect of 2'-acetylacteoside on ovariectomized mice via modulating the function of bone resorption. Biomed Pharmacother 2020; 131:110747. [PMID: 32932047 DOI: 10.1016/j.biopha.2020.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
2'-Acetylacteoside-(2'-AA), a bioactive constituent isolated from Cistanche deserticola, has been proven to possess a variety of important pharmacological effects, thus brought an increased amount of scientists' attention. As the extract of C. deserticola exhibited significant anti-osteoporotic bioactivity in our previous study, we proposed that 2'-AA maybe one of the responsibilities. As a result, 2'-AA (10, 20 and 40 mg/kg body weight/day) exhibited significant anti-osteoporotic effects on ovariectomized (OVX) mice after 12 weeks of oral administration, confirmed by the increased bone mineral density, enhanced bone strength and improved trabecular bone micro-architecture including bone mineral content, tissue mineral content, trabecular number, and trabecular separation of OVX mice. Moreover, the properties of bone resorption markers including cathepsin K, TRAP and deoxypyridinoline were significantly suppressed, whereas the activities of bone formation index like ALP and BGP as well as the weights of the body, uterus, and vagina were seemingly not influenced by 2'-AA intervention. Mechanistically, the above therapeutic effect of 2'-AA on bone resorption of OVX mice operated maybe mainly through RANKL/RANK/TRAF6-mediated NF-κB/NFATc1 pathway, which was confirmed by the down-regulated expressions of RANK, TRAF6, IκB kinase β, NF-κB and NFATc1. Summarily, 2'-AA exhibited significant anti-osteoporotic activity and may be regarded as a promising anti-osteoporotic candidate for future clinical trial.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Nan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojun Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Bo Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jingjing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Hunter Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Caroline A & T State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Caroline A & T State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
49
|
Chen Y, Li YQ, Fang JY, Li P, Li F. Establishment of the concurrent experimental model of osteoporosis combined with Alzheimer's disease in rat and the dual-effects of echinacoside and acteoside from Cistanche tubulosa. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112834. [PMID: 32278031 DOI: 10.1016/j.jep.2020.112834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/15/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche tubulosa is a precious traditional Chinese medicine that has been widely used in the treatment of osteoporosis and Alzheimer's disease. Echinacoside and acteoside are the main active constituents in Cistanche tubulosa that have the pharmacological activities with research value. It has been reported that echinacoside and acteoside could improve the learning and memory ability, promote the proliferation and differentiation of osteoblast. AIM OF STUDY Echinacoside and acteoside from Cistanche tubulosa have shown significant activities of anti-osteoporosis and anti-Alzheimer's disease, while these effects have not been studied concurrently in a rat model. The aim of this study was to establish and verify the model of osteoporosis combined with Alzheimer's disease in rat, and to investigate the double effects of echinacoside and acteoside on this concurrent model. MATERIALS AND METHODS Three model groups of ovariectomy (OVX), sham surgery with D-galactose and AlCl3 (D), ovariectomy with D-galactose and AlCl3 (OVX + D) were set at the same time. The rats in drug treatment groups were ovariectomized. While conducting the intraperitoneal injection of D-galactose and intragastric administration of AlCl3 in the rats of drug treatment groups, the rats were orally administered echinacoside (90 mg/kg/d), acteoside (90 mg/kg/d) and the positive control drugs of estradiol valerate (0.6 mg/kg/d), donepezil HCl (0.8 mg/kg/d), respectively. After the drug treatment of 8 weeks, Morris Water Maze (MWM) test for 6 days was firstly performed. The rats were then sacrificed to harvest the blood, uteri, femora, tibiae and brain tissues. The serum was used for biochemical tests. The uteri were used for histomorphometry. The right femora were used for Micro-CT and histomorphometry, respectively. The right tibiae were used for biomechanical test. The hippocampus collected on ice box was used for biochemical tests. The brain collected by perfusion was used for histomorphometry. RESULTS Compared with Sham group, OVX + D group could significantly reduce the learning and memory ability by causing oxidative damage, impairing neurons in hippocampus and affecting the hydrolysis and synthesis of acetylcholine. Meanwhile, the activities of BALP and TRAP in OVX + D group increased significantly (P < 0.001) as compared to Sham group. In addition, compared with Sham group, the mean bone mineral density obviously decreased (P < 0.05), the trabecular bone mass and microarchitecture were also destroyed significantly in OVX + D group. Furthermore, the maximum load and maximum stress significantly reduced (P < 0.01) and the energy absorption also decreased greatly as compared to Sham group. After administrated with echinacoside and acteoside, the typical pathological features of osteoporosis and Alzheimer's disease were ameliorated. CONCLUSIONS The model of osteoporosis combined with Alzheimer's disease in rat was feasible and successfully established. Echinacoside and acteoside also showed some significant effects on this concurrent model, and they could be potential candidates from Cistanche tubulosa with double effects for further study.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Qi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jia-Yi Fang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
50
|
Ben Attia I, Zucca P, Cesare Marincola F, Nieddu M, Piras A, Rosa A, Rescigno A, Chaieb M. Evaluation of the Antioxidant and Cytotoxic Activities on Cancer Cell Line of Extracts of Parasitic Plants Harvested in Tunisia. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/122040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|