1
|
Zhao D, Gao L, Huang X, Chen G, Gao B, Wang J, Gu M, Wang F. Complementary imaging of nanoclusters interacting with mitochondria via stimulated emission depletion and scanning transmission electron microscopy. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133371. [PMID: 38185082 DOI: 10.1016/j.jhazmat.2023.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
The emerging stress caused by nanomaterials in the environment is of great concern because they can have toxic effects on organisms. However, thorough study of the interactions between cells and diverse nanoparticles (NPs) using a unified approach is challenging. Here, we present a novel approach combining stimulated emission depletion (STED) microscopy and scanning transmission electron microscopy (STEM) for quantitative assessment, real-time tracking, and in situ imaging of the intracellular behavior of gold-silver nanoclusters (AuAgNCs), based on their fluorescence and electron properties. The results revealed an aggregated state of AuAgNCs within the mitochondria and an increase in sulfur content in AuAgNCs, presumably owing to their reaction with thiol-containing molecules inside the mitochondria. Moreover, AuAgNCs (100 μg/mL) induced a 75% decline in mitochondrial membrane potential and a 12-fold increase of mitochondrial reactive oxygen species in comparison to control. This mitochondrial damage may be triggered by the reaction of AuAgNCs with thiol, which provides direct imaging evidence for uncovering the action mechanism of AuAgNCs on the mitochondria. The proposed dual-imaging strategy using STED and STEM is a potential tool to offer valuable insights into cytotoxicity between subcellular structures and diverse NPs, and can serve as a key strategy for nanomaterial biosafety assessment.
Collapse
Affiliation(s)
- Dan Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Chen
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Min Gu
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Liu H, Jia R, Xin X, Wang M, Sun S, Zhang C, Hou W, Guo W. Single particle ICP-MS combined with filtration membrane for accurate determination of silver nanoparticles in the real aqueous environment. ANAL SCI 2023:10.1007/s44211-023-00347-z. [PMID: 37093556 DOI: 10.1007/s44211-023-00347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
This work presents the role of commercial microfiltration membranes combined with single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) in removing environmental matrix interference for model silver nanoparticles (AgNPs) determination. The filters with different pore sizes (0.22 μm, 0.45 μm, 0.8 μm) and materials (mixed cellulose ester, polyether sulfone, and nylon) were investigated to acquire the recovery of particle concentration and size of AgNPs spiked into different real aqueous solutions, including ultrapure water, tap water, surface water, and sewage effluent. The maximum recovery of nanoparticle concentration was 70.2% through the 0.8 μm polyether sulfone membrane. The heated filters were able to improve the recovery of AgNPs particle concentration in the real aqueous environment. Hence, the pretreatment method by SP-ICP-MS combined with filtration membrane was simple, fast, and low-cost to quantify AgNPs in natural water environments.
Collapse
Affiliation(s)
- Hong Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
- Shandong Province Water Supply and Drainage Monitoring Center, No. Aotizhong Road, Jinan, 250101, China
| | - Ruibao Jia
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
- Shandong Province Water Supply and Drainage Monitoring Center, No. Aotizhong Road, Jinan, 250101, China.
| | - Xiaodong Xin
- Shandong Province Water Supply and Drainage Monitoring Center, No. Aotizhong Road, Jinan, 250101, China
| | - Mingquan Wang
- Shandong Province Water Supply and Drainage Monitoring Center, No. Aotizhong Road, Jinan, 250101, China
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, No. Aotizhong Road, Jinan, 250101, China
| | - Chengxiao Zhang
- Shandong Province Water Supply and Drainage Monitoring Center, No. Aotizhong Road, Jinan, 250101, China
| | - Wei Hou
- Shandong Province Water Supply and Drainage Monitoring Center, No. Aotizhong Road, Jinan, 250101, China
| | - Weilin Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
3
|
Quantitative Detection of Zinc Oxide Nanoparticle in Environmental Water by Cloud Point Extraction Combined ICP-MS. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9958422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increasing usage of zinc oxide nanoparticles (ZnONPs) inevitably leads to their release into the environment. To understand their fate and toxicity in water systems, a reliable method for the quantitative analysis of ZnONPs in environmental waters is urgently needed to be established. In this study, a quantitative analytical method of ZnONPs in environmental waters was developed by cloud point extraction (CPE) combined inductively coupled plasma mass spectrometry (ICP-MS). To obtain high recoveries of ZnONPs, the CPE parameters including pH, surfactant concentration, salt concentration, bath temperature, and time were optimized. The results demonstrated that the addition of β-mercaptoethylamine could significantly reduce the interference of Zn2+ on the extraction of ZnONPs, while the CPE approach was not affected significantly by the typical environmental inorganic ion and ENMs (such as Au, TiO2, and Al2O3). The extraction method of ZnONPs with different diameters was also assessed, and satisfactory extraction efficiency was obtained. The results of ZnONP concentration in collected environmental water were in the range of
-
μg/L. And the recoveries of ZnONPs in different environmental waters were
-
at low concentration spiked levels (12.57-54.68 μg/L), demonstrating that it is efficient to extract trace ZnONPs from real environmental waters. This established method offered a reliable method for the quantitative determination of ZnONPs in environmental waters, which could further promote the study of the environmental behavior, fate, and toxicity of ZnONPs in an aqueous environment.
Collapse
|
4
|
Kaegi R, Fierz M, Hattendorf B. Quantification of Nanoparticles in Dispersions Using Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-9. [PMID: 33973509 DOI: 10.1017/s1431927621000398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The quantification of the particle size and the number concentration (PNC) of nanoparticles (NPs) is key for the characterization of nanomaterials. Transmission electron microscopy (TEM) is often considered as the gold standard for assessing the size of NPs; however, the TEM sample preparation suitable for estimating the PNC based on deposited NPs is challenging. Here, we use an ultrasonic nebulizer (USN) to transfer NPs from aqueous suspensions into dried aerosols which are deposited on TEM grids in an electrostatic precipitator of an aerosol monitor. The deposition efficiency of the electrostatic precipitator was ≈2%, and the transport efficiency of the USN was ≈7%. Experiments using SiO2 NPs (50–200 nm) confirmed an even deposition of the nebulized particles in the center of the TEM grids. PNCs of the SiO2 NPs derived from TEM images underestimated the expected PNCs of the suspensions by a factor of up to three, most likely resulting from droplet coagulation and NP aggregation in the USN. Nevertheless, single particles still dominated the PNC. Our approach results in reproducible and even deposition of particles on TEM grids suitable for morphological analysis and allows an estimation of the PNC in the suspensions based on the number of particles detected by TEM.
Collapse
Affiliation(s)
- Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600Dübendorf, Switzerland
| | - Martin Fierz
- naneos particle solutions GmbH, Dorfstr. 69, 5210Windisch, Switzerland
| | - Bodo Hattendorf
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Shokry A, Khalil M, Ibrahim H, Soliman M, Ebrahim S. Acute toxicity assessment of polyaniline/Ag nanoparticles/graphene oxide quantum dots on Cypridopsis vidua and Artemia salina. Sci Rep 2021; 11:5336. [PMID: 33674670 PMCID: PMC7935903 DOI: 10.1038/s41598-021-84903-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nanotoxicology is argued and considered one of the emerging topics. In this study, polyaniline (PANI)/2-acrylamido-2-methylpropanesulfonic acid (AMPSA) capped silver nanoparticles (NPs)/graphene oxide (GO) quantum dots (QDs) nanocomposite (PANI/Ag (AMPSA)/GO QDs NC) as a nanoadsorbent has a potential for removal of toxic hexavalent chromium (Cr(VI)) ions from water. The acute toxicity of this NC was evaluated on Artemia salina and freshwater Ostracods (Cypridopsis vidua) larvae for 48 h. The measurements were made at 24 and 48 h with 3 repetitions. The 50% effective concentration (EC50) values of the NC were determined after the exposure of these organisms. According to the results of the optical microscope, it was found that both experimental organisms intake the NC. In the toxicity results of Ostracods, the NC had a highly toxic effect only at 250 mg/L after 48 h and the EC50 value was 157.6 ± 6.4 mg/L. For Artemia salina individuals, it was noted that they were less sensitive than the Ostracods and EC50 value was 476 ± 25.1 mg/L after 48 h. These results indicated that PANI/Ag (AMPSA)/GO QDs NC has low toxicity towards both investigated organisms.
Collapse
Affiliation(s)
- Azza Shokry
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt.
| | - Marwa Khalil
- Department of Nanotechnology and Composite Materials, Institute of New Materials and Advanced Technology, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City, P.O. Box 21934, Alexandria, Egypt
| | - Hesham Ibrahim
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Moataz Soliman
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Shaker Ebrahim
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
6
|
Tarrahi R, Mahjouri S, Khataee A. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111697. [PMID: 33396028 DOI: 10.1016/j.ecoenv.2020.111697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Owing to the unique properties and useful applications in numerous fields, nanomaterials (NMs) received a great attention. The mass production of NMs has raised major concern for the environment. Recently, some altered growth patterns in plants have been reported due to the plant-NMs interactions. However, for NMs safe applications in agriculture and medicine, a comprehensive understanding of bio-nano interactions is crucial. The main goal of this review article is to summarize the results of the toxicological studies that have shown the in vitro and in vivo interactions of NMs with plants. The toxicity mechanisms are briefly discussed in plants as the defense mechanism works to overcome the stress caused by NMs implications. Indeed, the impact of NMs on plants varies significantly with many factors including physicochemical properties of NMs, culture media, and plant species. To investigate the impacts, dose metrics is an important analysis for assaying toxicity and is discussed in the present article to broadly open up different aspects of nanotoxicological investigations. To access reliable quantification and measurement in laboratories, standardized methodologies are crucial for precise dose delivery of NMs to plants during exposure. Altogether, the information is significant to researchers to describe restrictions and future perspectives.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Sepideh Mahjouri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
7
|
Torres MAM, Veglia AV, Pacioni NL. The fluorescence quenching of rhodamine 6G as an alternative sensing strategy for the quantification of silver and gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Perrier F, Bertucci A, Pierron F, Feurtet-Mazel A, Simon O, Klopp C, Candaudap F, Pokrovski O, Etcheverria B, Mornet S, Baudrimont M. Transfer and Transcriptomic Profiling in Liver and Brain of European Eels (Anguilla anguilla) After Diet-borne Exposure to Gold Nanoparticles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2450-2461. [PMID: 32833228 DOI: 10.1002/etc.4858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
A nanometric revolution is underway, promising technical innovations in a wide range of applications and leading to a potential boost in environmental discharges. The propensity of nanoparticles (NPs) to be transferred throughout trophic chains and to generate toxicity was mainly assessed in primary consumers, whereas a lack of knowledge for higher trophic levels persists. The present study focused on a predatory fish, the European eel (Anguilla anguilla) exposed to gold NPs (AuNPs; 10 nm, polyethylene glycol-coated) for 21 d at 3 concentration levels in food: 0 (NP0), 1 (NP1), and 10 (NP10) mg Au kg-1 . Transfer was assessed by Au quantification in eel tissues, and transcriptomic responses in the liver and brain were revealed by a high-throughput RNA-sequencing approach. Eels fed at NP10 presented an erratic feeding behavior, whereas Au quantification only indicated transfer to intestine and kidney of NP1-exposed eels. Sequencing of RNA was performed in NP0 and NP1 eels. A total of 258 genes and 156 genes were significantly differentially transcribed in response to AuNP trophic exposure in the liver and brain, respectively. Enrichment analysis highlighted modifications in the immune system-related processes in the liver. In addition, results pointed out a shared response of both organs regarding 13 genes, most of them being involved in immune functions. This finding may shed light on the mode of action and toxicity of AuNPs in fish. Environ Toxicol Chem 2020;39:2450-2461. © 2020 SETAC.
Collapse
Affiliation(s)
- Fanny Perrier
- Université de Bordeaux, CNRS, UMR EPOC 5805, Arcachon, France
| | | | - Fabien Pierron
- Université de Bordeaux, CNRS, UMR EPOC 5805, Arcachon, France
| | | | - Olivier Simon
- LECO, IRSN, PSE ENV, SRTE, Cadarache, Saint-Paul-lez-Durance Cedex, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | | | - Oleg Pokrovski
- Université de Toulouse, CNRS, GET, UMR, 5563, Toulouse, France
| | | | - Stéphane Mornet
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR, 5026, Pessac, France
| | | |
Collapse
|
9
|
Rand LN, Bi Y, Poustie A, Bednar AJ, Hanigan DJ, Westerhoff P, Ranville JF. Quantifying temporal and geographic variation in sunscreen and mineralogic titanium-containing nanoparticles in three recreational rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140845. [PMID: 32758854 DOI: 10.1016/j.scitotenv.2020.140845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 05/21/2023]
Abstract
Detection of metal nanoparticles (NPs) in the environment is an analytical challenge of interest due to increasing use of nanomaterials in consumer and industrial products. Detecting NPs associated with human activities is affected by both the magnitude and variation in background concentrations of natural NPs. In this work, we investigated the potential release of titanium dioxide (TiO2) NPs from sunscreen in three recreational rivers, with a time-intensive sampling regime on one river, in order to determine the range and variability of natural, background titania (Ti). Conventional ICP analysis for total metal concentrations, single particle ICP-MS for NP concentrations, and electron microscopy aided in assessing mineralogical morphology and composition. Oxybenzone, a widely-used organic sunscreen, was measured and used as a surrogate for the intensity of recreational activity in the water. Statistically significant increases in Ti concentrations were observed in Clear Creek, CO during one recreation period, but the significance of other instances of recreation-associated Ti increases was unclear, in part due to storm impacts on the natural suspended sediment load of the stream. A comparison of three recreational rivers showed increases in both Ti mass concentrations and NP sizes occur during recreation in both Clear Creek, CO and the Salt River, AZ, but no detectable changes in the Truckee River, NV. However, size distributions were variable in background samples, which make the significance of differences observed during recreation unclear. These results underline that the release of engineered nanoparticles to a natural system cannot be detected without a well-defined background, including measures of its variability during the study period.
Collapse
Affiliation(s)
- Logan N Rand
- Colorado School of Mines, Department of Chemistry, Golden, CO, United States of America.
| | - Yuqiang Bi
- Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ, United States of America
| | - Andrew Poustie
- University of Nevada Reno, Civil and Environmental Engineering, Reno, NV, United States of America
| | - Anthony J Bednar
- U.S. Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, MS, United States of America
| | - David J Hanigan
- University of Nevada Reno, Civil and Environmental Engineering, Reno, NV, United States of America
| | - Paul Westerhoff
- Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ, United States of America
| | - James F Ranville
- Colorado School of Mines, Department of Chemistry, Golden, CO, United States of America
| |
Collapse
|
10
|
Choleva TG, Tsogas GZ, Vlessidis AG, Giokas DL. Development of a sequential extraction and speciation procedure for assessing the mobility and fractionation of metal nanoparticles in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114407. [PMID: 32224387 DOI: 10.1016/j.envpol.2020.114407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
This study describes the development of a sequential extraction procedure for the evaluation of metal nanoparticle mobility and bioaccessibility in soils. The procedure, that was developed using gold nanoparticles (AuNPs) as model species, relies on the fractionation of nanoparticles by sequentially dissolving soil matrix components (carbonates, metal oxides, organic matter and mineral phases) in order to release the entrapped nanoparticle species in the extract solution. By summing up the concentration of AuNPs recovered in each fraction it was found that 93.5% of the spiked AuNP concentration could be recovered which satisfactorily represents the nominal AuNP concentration in the soil. The efficiency of the procedure was found to depend on several procedural artifacts related to the separation of AuNPs from soil colloids and the reactivity of the extraction reagents with AuNPs and their precursor metal ions. Based on the results obtained a protocol for the speciation of the AuNPs and Au ions in the soil sample was also developed. The results of the study show that both AuNPs and Au ions are mainly associated with soil organic matter, which significantly reduces their mobility, while a small amount (<10%) is associated with metal oxides which are more mobile and potentially bioaccessible. The developed procedure provides a springboard for further development of sequential extraction procedures of metal nanoparticles in soils that could be used to assess both the exposure and release of metal nanoparticles and their precursor metal ions in the environment (as total extractable concentration) as well as provide evidence regarding their bioaccessibility and potential bioavailability by determining the concentration of nanoparticles in each specific soil fraction.
Collapse
Affiliation(s)
- Tatiana G Choleva
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - George Z Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | | | | |
Collapse
|
11
|
Khoshnamvand M, Ashtiani S, Liu J. Acute toxicity of gold nanoparticles synthesized from macroalga Saccharina japonica towards Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22120-22126. [PMID: 32304044 DOI: 10.1007/s11356-020-08770-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to explore acute toxicity of biologically synthesized gold nanoparticles (AuNPs) to a model organism Daphnia magna. Hence, using aqueous extract of marine macroalga Saccharina japonica, two AuNPs including SJ-AuNPs-72 (72.6 ± 43.8 nm) and SJ-AuNPs-10 (10.8 ± 2.8 nm) were synthesized. These AuNPs were characterized by different techniques such as UV-Vis spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDX). The 48-h LC50 values of SJ-AuNPs-72 and SJ-AuNPs-10 to D. magna were 1.57 ± 0.07 and 2.69 ± 0.12 mg/L, respectively, showing greater toxicity of SJ-AuNPs-72. After exposure of daphnids to treatments, AuNPs were accumulated in gut tract, and lipid droplets under the Daphnia carapace were also observed. Whereas studies on toxicity of biosynthesized AuNPs are still scarce, the achievements of this work are helpful for understanding the toxicity of biosynthesized AuNPs to crustacean D. magna.
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, P. O. Box 2871, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Saeed Ashtiani
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qingdao Key Laboratory of Functional Membrane Matter and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, P. O. Box 2871, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Wang Q, Li L, Long CL, Luo L, Yang Y, Yang ZG, Zhou Y. Detection of C 60 in environmental water using dispersive liquid-liquid micro-extraction followed by high-performance liquid chromatography. ENVIRONMENTAL TECHNOLOGY 2020; 41:1015-1022. [PMID: 30146967 DOI: 10.1080/09593330.2018.1516804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The wide application of fullerene C60 nanoparticles would inevitably lead to their release into the environment. In order to evaluate the environment risks of C60 and the subsequent effects on ecosystem health, a reliable quantitative methodology of C60 should be established. In this study, a rapid pretreatment method called low-density solvent-based dispersive liquid-liquid micro-extraction (DLLME) combined high-performance liquid chromatography-UV detector (HPLC-UV) was developed to detect C60 in environmental water. In this proposed method, toluene and methanol were chosen as the extraction solvent and the dispersive solvent, respectively. The optimized volume of extraction solvent and dispersive solvent were 100 μL and 10 μL, respectively. And the best shaking time was chosen as 10 min at room temperature for the optimal homogenization procedure for the extraction of C60 in water samples. The enrichment factor of 50 was obtained with 100 μL toluene, and the recoveries of C60 from various environmental samples were in the range of 81.4 ± 5.0-101.4 ± 6.2% at 1.25-5.00 µg/L spiked levels. The detection limits of C60 in tap water, surface water, living sewage and mining waste water were 0.19, 0.29, 0.34 and 0.22 μg/L, respectively. The low detection limit, good linear range and high recoveries of C60 in environmental water indicated that the proposed method could provide an efficient approach for the analysis and tracking of C60 in the environment.
Collapse
Affiliation(s)
- Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Lei Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Chen-Lu Long
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Li Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| | - Zhao-Guang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
13
|
Rand LN, Ranville JF. Characteristics and Stability of Incidental Iron Oxide Nanoparticles during Remediation of a Mining-Impacted Stream. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11214-11222. [PMID: 31448904 DOI: 10.1021/acs.est.9b03036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acid mine drainage (AMD) produces nanoparticulate Fe oxides and sorbed toxic metals, such as Cu and Zn. As an indirect product of human activity, these Fe oxides can be classified as incidental nanoparticles (INPs) and their colloidal aggregates. Research in nanoparticle fate and transport has advanced with the development of single particle inductively coupled plasma-mass spectrometry (spICP-MS), but AMD INPs have received little attention. We examined the characteristics and abundance of Fe oxide INPs in an AMD-impacted stream over the first 6 months of remediation. Fe and Cu INP concentrations were approximately 107 and 105 particles mL-1, before and after treatment, respectively. Overall, ∼4 Cu-containing INPs were counted for every 100 Fe-containing INPs. We also studied surface chemistry changes during the treatment period using hematite, a model Fe INP, suspended in filtered field waters. Changes in zeta potential and INP size, measured by dynamic light scattering, support that the contaminated stream chemistry (low pH, high ionic strength) promoted rapid aggregation while improved water quality favored stability. However, the water chemistry and INP stability during snowmelt were additionally impacted by electrolyte dilution, the addition of dissolved organic matter, and physical scouring. By linking field measurements to laboratory experiments, this work explores the effects of surface chemistry on AMD-generated INP behavior before and during remediation in a hydrologically dynamic alpine stream. To our knowledge, this is the first investigation of remediation effects on AMD INPs and the first use of spICP-MS as a technique to measure them.
Collapse
Affiliation(s)
- Logan N Rand
- Department of Chemistry , Colorado School of Mines , 1500 Illinois St. , Golden , Colorado 80401 , United States
| | - James F Ranville
- Department of Chemistry , Colorado School of Mines , 1500 Illinois St. , Golden , Colorado 80401 , United States
| |
Collapse
|
14
|
Li L, Wang Q, Yang Y, Luo L, Ding R, Yang ZG, Li HP. Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2019; 91:9442-9450. [DOI: 10.1021/acs.analchem.8b05575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lei Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Hunan Agricultural University, Changsha 410128, PR China
| | - Li Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Ru Ding
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Zhao-Guang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Hai-Pu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| |
Collapse
|
15
|
Schwaferts C, Niessner R, Elsner M, Ivleva NP. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Joo SH, Aggarwal S. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:62-74. [PMID: 30071367 DOI: 10.1016/j.jenvman.2018.07.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/19/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Since their advent a few decades ago, engineered nanoparticles (ENPs) have been extensively used in consumer products and industrial applications and their use is expected to continue at the rate of thousands of tons per year in the next decade. The widespread use of ENPs poses a potential risk of large scale environmental proliferation of ENPs which can impact and endanger environmental health and safety. Recent studies have shown that microbial biofilms can serve as an important biotic component for partitioning and perhaps storage of ENPs released into aqueous systems. Considering that biofilms can be one of the major sinks for ENPs in the environment, and that the field of biofilms itself is only three to four decades old, there is a recent and growing body of literature investigating the ENP-biofilm interactions. While looking at biofilms, it is imperative to consider the interactions of ENPs with the planktonic microbial cells inhabiting the bulk systems in the vicinity of surface-attached biofilms. In this review article, we attempt to establish the state of current knowledge regarding the interactions of ENPs with bacterial cells and biofilms, identifying key governing factors and interaction mechanisms, as well as prominent knowledge gaps. Since the context of ENP-biofilm interactions can be multifarious-ranging from ecological systems to water and wastewater treatment to dental/medically relevant biofilms- and includes devising novel strategies for biofilm control, we believe this review will serve an interdisciplinary audience. Finally, the article also touches upon the future directions that the research in the ENP-microbial cells/biofilm interactions could take. Continued research in this area is important to not only enhance our scientific knowledge and arsenal for biofilm control, but to also support environmental health while reaping the benefits of the 'nanomaterial revolution'.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630, USA.
| | - Srijan Aggarwal
- Department of Civil and Environmental Engineering, University of Alaska Fairbanks, 1760 Tanana Loop, Duckering Building, Fairbanks, AK 99775, USA
| |
Collapse
|
17
|
Sidhu I, Frischknecht AL, Atzberger PJ. Electrostatics of Nanoparticle-Wall Interactions within Nanochannels: Role of Double-Layer Structure and Ion-Ion Correlations. ACS OMEGA 2018; 3:11340-11353. [PMID: 31459242 PMCID: PMC6644950 DOI: 10.1021/acsomega.8b01393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/06/2018] [Indexed: 05/21/2023]
Abstract
We perform computational investigations of the electrolyte-mediated interactions of charged nanoparticles with the walls of nanochannels. We investigate the role of discrete ion effects, valence, and electrolyte strength on nanoparticle-wall interactions. We find for some of the multivalent charge regimes that the like-charged nanoparticles and walls can have attractive interactions. We study in detail these interactions and the free-energy profile for the nanoparticle-wall separation. We find there are energy barriers and energy minima giving preferred nanoparticle locations in the channel near the center and at a distance near to but separated from the channel walls. We characterize contributions from surface overcharging, condensed layers, and overlap of ion double layers. We perform our investigations using coarse-grained particle-level simulations with Brownian dynamics, classical density functional theory, and the mean-field Poisson-Boltzmann theory. We discuss the implications of our results for phenomena in nanoscale devices.
Collapse
Affiliation(s)
- Inderbir
S. Sidhu
- Department
of Mathematics and Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Amalie L. Frischknecht
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Paul J. Atzberger
- Department
of Mathematics and Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Westerhoff P, Atkinson A, Fortner J, Wong MS, Zimmerman J, Gardea-Torresdey J, Ranville J, Herckes P. Low risk posed by engineered and incidental nanoparticles in drinking water. NATURE NANOTECHNOLOGY 2018; 13:661-669. [PMID: 30082812 DOI: 10.1038/s41565-018-0217-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 05/06/2023]
Abstract
Natural nanoparticles (NNPs) in rivers, lakes, oceans and ground water predate humans, but engineered nanoparticles (ENPs) are emerging as potential pollutants due to increasing regulatory and public perception concerns. This Review contrasts the sources, composition and potential occurrence of NNPs (for example, two-dimensional clays, multifunctional viruses and metal oxides) and ENPs in surface water, after centralized drinking water treatment, and in tap water. While analytical detection challenges exist, ENPs are currently orders of magnitude less common than NNPs in waters that flow into drinking water treatment plants. Because such plants are designed to remove small-sized NNPs, they are also very good at removing ENPs. Consequently, ENP concentrations in tap water are extremely low and pose low risk during ingestion. However, after leaving drinking water treatment plants, corrosion by-products released from distribution pipes or in-home premise plumbing can release incidental nanoparticles into tap water. The occurrence and toxicity of incidental nanoparticles, rather than ENPs, should therefore be the focus of future research.
Collapse
Affiliation(s)
- Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Ariel Atkinson
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - John Fortner
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemical Engineering, Rice University, Houston, TX, USA
| | - Julie Zimmerman
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Jorge Gardea-Torresdey
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemistry, University of Texas - El Paso, El Paso, TX, USA
| | - James Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, USA
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
19
|
Yang Y, Luo L, Li HP, Wang Q, Yang ZG, Qu ZP, Ding R. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS. Talanta 2018; 182:156-163. [DOI: 10.1016/j.talanta.2018.01.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
20
|
Feasibility study on the differentiation between engineered and natural nanoparticles based on the elemental ratios. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0223-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Duncan TV, Singh G. Nanomaterials in Food Products: A New Analytical Challenge. NANOTECHNOLOGIES IN FOOD 2017. [DOI: 10.1039/9781782626879-00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter focuses on the problem of detecting, characterizing, and determining the concentration of nanomaterials in foods and other biological matrices. After providing an overview of the unique challenges associated with nanoparticle metrology in complex media, sample pretreatment methods (including extraction, digestion, and inline chromatographic separation), imaging analysis, and nanomaterial quantification methods are presented in detail. The chapter also addresses numerous methods under development, including atmospheric scanning electron microscopy, single-particle inductively coupled plasma mass spectrometry, immunological detection methods, and optical techniques such surface plasmon resonance. The chapter concludes with an overview of the research needs in this area.
Collapse
Affiliation(s)
- Timothy V. Duncan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition Bedford Park Illinois USA
| | - Gurmit Singh
- Food Research Division, Bureau of Chemical Safety, Health Canada Ottawa Canada
| |
Collapse
|
22
|
Separation and determination of silver nanoparticle in environmental water and the UV-induced photochemical transformations study of AgNPs by cloud point extraction combined ICP-MS. Talanta 2016; 161:342-349. [DOI: 10.1016/j.talanta.2016.08.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 11/18/2022]
|
23
|
Leopold K, Philippe A, Wörle K, Schaumann GE. Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Yang Y, Long CL, Li HP, Wang Q, Yang ZG. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:996-1007. [PMID: 26895948 DOI: 10.1016/j.scitotenv.2015.12.150] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
The production and use of engineering nanomaterials (ENMs) leads to the release of manufactured or engineered nanoparticles into environment. The quantification and characterization of ENMs are crucial for the assessment of their environmental fate, transport behavior and health risks to humans. To analyze the size distribution and particle number concentration of AgNPs and AuNPs in environmental water and track their stability at low number concentration, a systematic study on SP-ICPMS was presented. The Poisson statistics was used to discuss the effect of dwell time and particle number concentration theoretically on the detection of NPs in solution by SP-ICPMS. The dynamic range of SP-ICPMS is approximately two orders of magnitude. The size detection limits for silver and gold nanoparticle in ultrapure water are 20 and 19nm respectively. The detection limit of nanoparticle number concentration is 8×10(4)particlesL(-1). Size distribution of commercial silver and gold nanoparticle dispersions is determined by SP-ICP-MS, which was in accordance with the TEM results. High particle concentration recoveries of spiked AgNPs and AuNPs are obtained (80-108% and 85-107% for AgNPs and AuNPs respectively in ultrapure and filtered natural water). It indicates that SP-ICPMS can be used to detect AgNPs and AuNPs. The filtration study with different membranes showed that filtration might be a problematic pre-treatment method for the detection of AgNPs and AuNPs in environmental water. Furthermore, the stability of citrate-coated AgNPs and tannic acid-coated AuNPs spiked into filtrated natural and waste water matrix was also studied at low concentration using SP-ICP-MS measurements. Dissolution of AgNPs was observed while AuNPs was stable during a ten day incubation period. Finally SP-ICPMS was used to analyze NPs in natural water and waste water. The results indicate that SP-ICPMS can be used to size metallic nanoparticles sensitively of low concentration under realistic environmental conditions.
Collapse
Affiliation(s)
- Yuan Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China.
| | - Chen-Lu Long
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China.
| | - Hai-Pu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China.
| | - Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China.
| | - Zhao-Guang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China; Shenzhen Research Institute of Central South University, B406 Virtual University, Shenzhen High-Tech Industrial Pk, Shenzhen, Guangdong 518057, PR China.
| |
Collapse
|
25
|
Chekli L, Brunetti G, Marzouk ER, Maoz-Shen A, Smith E, Naidu R, Shon HK, Lombi E, Donner E. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:636-645. [PMID: 27357483 DOI: 10.1016/j.envpol.2016.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The use of zero-valent iron nanoparticles (nZVI) has been advocated for the remediation of both soils and groundwater. A key parameter affecting nZVI remediation efficacy is the mobility of the particles as this influences the reaction zone where remediation can occur. However, by engineering nZVI particles with increased stability and mobility we may also inadvertently facilitate nZVI-mediated contaminant transport away from the zone of treatment. Previous nZVI mobility studies have often been limited to model systems as the presence of background Fe makes detection and tracking of nZVI in real systems difficult. We overcame this problem by synthesising Fe-59 radiolabelled nZVI. This enabled us to detect and quantify the leaching of nZVI-derived Fe-59 in intact soil cores, including a soil contaminated by Chromated-Copper-Arsenate. Mobility of a commercially available nZVI was also tested. The results showed limited mobility of both nanomaterials; <1% of the injected mass was eluted from the columns and most of the radiolabelled nZVI remained in the surface soil layers (the primary treatment zone in this contaminated soil). Nevertheless, the observed breakthrough of contaminants and nZVI occurred simultaneously, indicating that although the quantity transported was low in this case, nZVI does have the potential to co-transport contaminants. These results show that direct injection of nZVI into the surface layers of contaminated soils may be a viable remediation option for soils such as this one, in which the mobility of nZVI below the injection/remediation zone was very limited. This Fe-59 experimental approach can be further extended to test nZVI transport in a wider range of contaminated soil types and textures and using different application methods and rates. The resulting database could then be used to develop and validate modelling of nZVI-facilitated contaminant transport on an individual soil basis suitable for site specific risk assessment prior to nZVI remediation.
Collapse
Affiliation(s)
- L Chekli
- School of Civil and Environmental Engineering, University of Technology, Sydney, Post Box 129, Broadway, NSW 2007, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - G Brunetti
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - E R Marzouk
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia; Division of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Suez Canal University, North Sinai 45516, Egypt
| | - A Maoz-Shen
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - E Smith
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - R Naidu
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - H K Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney, Post Box 129, Broadway, NSW 2007, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - E Lombi
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - E Donner
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia.
| |
Collapse
|
26
|
Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 2016; 904:10-32. [DOI: 10.1016/j.aca.2015.11.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
27
|
Part F, Zecha G, Causon T, Sinner EK, Huber-Humer M. Current limitations and challenges in nanowaste detection, characterisation and monitoring. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 43:407-420. [PMID: 26117420 DOI: 10.1016/j.wasman.2015.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while micro- and ultrafiltration can be used to enrich nanoparticulate species. Imaging techniques combined with X-ray-based methods are powerful tools for determining particle size, morphology and screening elemental composition. However, quantification of nanowaste is currently hampered due to the problem to differentiate engineered from naturally-occurring nanoparticles. A promising approach to face these challenges in nanowaste characterisation might be the application of nanotracers with unique optical properties, elemental or isotopic fingerprints. At present, there is also a need to develop and standardise analytical protocols regarding nanowaste sampling, separation and quantification. In general, more experimental studies are needed to examine the fate and transport of ENMs in waste streams and to deduce transfer coefficients, respectively to develop reliable material flow models.
Collapse
Affiliation(s)
- Florian Part
- Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria
| | - Gudrun Zecha
- Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria
| | - Tim Causon
- Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Eva-Kathrin Sinner
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
| | - Marion Huber-Humer
- Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria.
| |
Collapse
|
28
|
Grillo R, Clemente Z, de Oliveira JL, Campos EVR, Chalupe VC, Jonsson CM, de Lima R, Sanches G, Nishisaka CS, Rosa AH, Oehlke K, Greiner R, Fraceto LF. Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:562-572. [PMID: 25636059 DOI: 10.1016/j.jhazmat.2014.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.
Collapse
Affiliation(s)
- Renato Grillo
- Department of Environmental Engineering, UNESP - Univ. Estadual Paulista, Avenida Três de Março, no. 511, 18087-180 Sorocaba, SP, Brazil; Department of Biochemistry, Institute of Biology, UNICAMP, Cidade Universitária Zeferino Vaz s/n, Campinas, SP, Brazil
| | - Zaira Clemente
- Department of Environmental Engineering, UNESP - Univ. Estadual Paulista, Avenida Três de Março, no. 511, 18087-180 Sorocaba, SP, Brazil; Embrapa Environmental, Jaguariúna, SP, Brazil
| | - Jhones Luis de Oliveira
- Department of Environmental Engineering, UNESP - Univ. Estadual Paulista, Avenida Três de Março, no. 511, 18087-180 Sorocaba, SP, Brazil
| | - Estefânia Vangelie Ramos Campos
- Department of Environmental Engineering, UNESP - Univ. Estadual Paulista, Avenida Três de Março, no. 511, 18087-180 Sorocaba, SP, Brazil; Department of Biochemistry, Institute of Biology, UNICAMP, Cidade Universitária Zeferino Vaz s/n, Campinas, SP, Brazil
| | | | | | - Renata de Lima
- Department of Biotechnology, University of Sorocaba, Sorocaba, SP, Brazil
| | - Gabriela Sanches
- Department of Biotechnology, University of Sorocaba, Sorocaba, SP, Brazil
| | | | - André H Rosa
- Department of Environmental Engineering, UNESP - Univ. Estadual Paulista, Avenida Três de Março, no. 511, 18087-180 Sorocaba, SP, Brazil
| | - Kathleen Oehlke
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Leonardo F Fraceto
- Department of Environmental Engineering, UNESP - Univ. Estadual Paulista, Avenida Três de Março, no. 511, 18087-180 Sorocaba, SP, Brazil; Department of Biochemistry, Institute of Biology, UNICAMP, Cidade Universitária Zeferino Vaz s/n, Campinas, SP, Brazil.
| |
Collapse
|
29
|
Majedi SM, Kelly BC, Lee HK. Evaluation of a cloud point extraction approach for the preconcentration and quantification of trace CuO nanoparticles in environmental waters. Anal Chim Acta 2014; 814:39-48. [DOI: 10.1016/j.aca.2014.01.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 12/28/2022]
|
30
|
Zänker H, Hennig C. Colloid-borne forms of tetravalent actinides: a brief review. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 157:87-105. [PMID: 24365396 DOI: 10.1016/j.jconhyd.2013.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted.
Collapse
Affiliation(s)
- Harald Zänker
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 51 01 19, D-01314 Dresden, Germany.
| | - Christoph Hennig
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 51 01 19, D-01314 Dresden, Germany
| |
Collapse
|