1
|
Rafferty A, Vennes B, Bain A, Preston TC. Optical trapping and light scattering in atmospheric aerosol science. Phys Chem Chem Phys 2023; 25:7066-7089. [PMID: 36852581 DOI: 10.1039/d2cp05301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Aerosol particles are ubiquitous in the atmosphere, and currently contribute a large uncertainty to climate models. Part of the endeavour to reduce this uncertainty takes the form of improving our understanding of aerosol at the microphysical level, thus enabling chemical and physical processes to be more accurately represented in larger scale models. In addition to modeling efforts, there is a need to develop new instruments and methodologies to interrogate the physicochemical properties of aerosol. This perspective presents the development, theory, and application of optical trapping, a powerful tool for single particle investigations of aerosol. After providing an overview of the role of aerosol in Earth's atmosphere and the microphysics of these particles, we present a brief history of optical trapping and a more detailed look at its application to aerosol particles. We also compare optical trapping to other single particle techniques. Understanding the interaction of light with single particles is essential for interpreting experimental measurements. In the final part of this perspective, we provide the relevant formalism for understanding both elastic and inelastic light scattering for single particles. The developments discussed here go beyond Mie theory and include both how particle and beam shape affect spectra. Throughout the entirety of this work, we highlight numerous references and examples, mostly from the last decade, of the application of optical trapping to systems that are relevant to the atmospheric aerosol.
Collapse
Affiliation(s)
| | - Benjamin Vennes
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.
| | - Alison Bain
- School of Chemistry, University of Bristol, Bristol, UK
| | - Thomas C Preston
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada. .,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Alpert PA, Boucly A, Yang S, Yang H, Kilchhofer K, Luo Z, Padeste C, Finizio S, Ammann M, Watts B. Ice nucleation imaged with X-ray spectro-microscopy. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:335-351. [PMID: 35694137 PMCID: PMC9119033 DOI: 10.1039/d1ea00077b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Ice nucleation is one of the most uncertain microphysical processes, as it occurs in various ways and on many types of particles. To overcome this challenge, we present a heterogeneous ice nucleation study on deposition ice nucleation and immersion freezing in a novel cryogenic X-ray experiment with the capability to spectroscopically probe individual ice nucleating and non-ice nucleating particles. Mineral dust type particles composed of either ferrihydrite or feldspar were used and mixed with organic matter of either citric acid or xanthan gum. We observed in situ ice nucleation using scanning transmission X-ray microscopy (STXM) and identified unique organic carbon functionalities and iron oxidation state using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the new in situ environmental ice cell, termed the ice nucleation X-ray cell (INXCell). Deposition ice nucleation of ferrihydrite occurred at a relative humidity with respect to ice, RH i, between ∼120-138% and temperatures, T ∼ 232 K. However, we also observed water uptake on ferrihydrite at the same T when deposition ice nucleation did not occur. Although, immersion freezing of ferrihydrite both in pure water droplets and in aqueous citric acid occurred at or slightly below conditions for homogeneous freezing, i.e. the effect of ferrihydrite particles acting as a heterogeneous ice nucleus for immersion freezing was small. Microcline K-rich feldspar mixed with xanthan gum was also used in INXCell experiments. Deposition ice nucleation occurred at conditions when xanthan gum was expected to be highly viscous (glassy). At less viscous conditions, immersion freezing was observed. We extended a model for heterogeneous and homogeneous ice nucleation, named the stochastic freezing model (SFM). It was used to quantify heterogeneous ice nucleation rate coefficients, mimic the competition between homogeneous ice nucleation; water uptake; deposition ice nucleation and immersion freezing, and predict the T and RH i at which ice was observed. The importance of ferrihydrite to act as a heterogeneous ice nucleating particle in the atmosphere using the SFM is discussed.
Collapse
Affiliation(s)
- Peter A Alpert
- Laboratory of Environmental Chemistry, Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Anthony Boucly
- Laboratory of Environmental Chemistry, Paul Scherrer Institute 5232 Villigen PSI Switzerland
- Electrochemistry Laboratory, Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Shuo Yang
- Laboratory of Environmental Chemistry, Paul Scherrer Institute 5232 Villigen PSI Switzerland
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University Beijing 100084 China
| | - Huanyu Yang
- Laboratory of Environmental Chemistry, Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Kevin Kilchhofer
- Laboratory of Environmental Chemistry, Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Zhaochu Luo
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute 5232 Villigen PSI Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zürich Zürich Switzerland
| | - Celestino Padeste
- Laboratory of Nanoscale Biology, Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Simone Finizio
- Swiss Light Source, Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Benjamin Watts
- Swiss Light Source, Paul Scherrer Institute 5232 Villigen PSI Switzerland
| |
Collapse
|
3
|
Photolytic radical persistence due to anoxia in viscous aerosol particles. Nat Commun 2021; 12:1769. [PMID: 33741973 PMCID: PMC7979739 DOI: 10.1038/s41467-021-21913-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
In viscous, organic-rich aerosol particles containing iron, sunlight may induce anoxic conditions that stabilize reactive oxygen species (ROS) and carbon-centered radicals (CCRs). In laboratory experiments, we show mass loss, iron oxidation and radical formation and release from photoactive organic particles containing iron. Our results reveal a range of temperature and relative humidity, including ambient conditions, that control ROS build up and CCR persistence in photochemically active, viscous organic particles. We find that radicals can attain high concentrations, altering aerosol chemistry and exacerbating health hazards of aerosol exposure. Our physicochemical kinetic model confirmed these results, implying that oxygen does not penetrate such particles due to the combined effects of fast reaction and slow diffusion near the particle surface, allowing photochemically-produced radicals to be effectively trapped in an anoxic organic matrix. Sunlight can change the composition of atmospheric aerosol particles, but the mechanisms through which this happens are not well known. Here, the authors show that fast radical reaction and slow diffusion near viscous organic particle surfaces can cause oxygen depletion, radical trapping and humidity dependent oxidation.
Collapse
|
4
|
Gonçalves SJ, Weis J, China S, Evangelista H, Harder TH, Müller S, Sampaio M, Laskin A, Gilles MK, Godoi RHM. Photochemical reactions on aerosols at West Antarctica: A molecular case-study of nitrate formation among sea salt aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143586. [PMID: 33218800 DOI: 10.1016/j.scitotenv.2020.143586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Environmental implications of climate change are complex and exhibit regional variations both within and between the polar regions. The increase of solar UV radiation flux over Antarctica due to stratospheric ozone depletion creates the optimal conditions for photochemical reactions on the snow. Modeling, laboratory, and indirect field studies suggest that snowpack process release gases to the atmosphere that can react on sea salt particles in remote regions such as Antarctica, modifying aerosol composition and physical properties of aerosols. Here, we present evidence of photochemical processing in West Antarctica aerosols using microscopic and chemical speciation of individual atmospheric particles. Individual aerosol particles collected at the Brazilian module Criosfera 1 were analyzed by scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) combined with computer-controlled scanning electron microscopy (CCSEM) with energy-dispersive X-ray (EDX) microanalysis. The displacement of chlorine relative to sodium was observed over most of the sea salt particles. Particles with a chemical composition consistent with NaCl-NO3 contributed up to 30% of atmospheric particles investigated. Overall, this study provides evidence that the snowpack and particulate nitrate photolysis should be considered in dynamic partition equilibrium in the troposphere. These findings may assist in reducing modeling uncertainties and present new insights into the aerosol chemical composition in the polar environment.
Collapse
Affiliation(s)
- Sérgio J Gonçalves
- Environmental Engineering Department, Federal University of Paraná, Curitiba, PR, Brazil; LARAMG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Johannes Weis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physikalisches Institüt, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Swarup China
- William R. Wiley Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Heitor Evangelista
- LARAMG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Tristan H Harder
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physikalisches Institüt, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon Müller
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Marcelo Sampaio
- Brazilian National Space Institute - INPE, São José dos Campos, SP, Brazil
| | - Alexander Laskin
- William R. Wiley Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mary K Gilles
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ricardo H M Godoi
- Environmental Engineering Department, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Mukherjee A, Dey S, Rana A, Jia S, Banerjee S, Sarkar S. Sources and atmospheric processing of brown carbon and HULIS in the Indo-Gangetic Plain: Insights from compositional analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115440. [PMID: 32858437 DOI: 10.1016/j.envpol.2020.115440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
We present here spectroscopic compositional analysis of brown carbon (BrC) and humic-like substances (HULIS) in the Indian context under varying conditions of source emissions and atmospheric processing. To this end, we study bulk water-soluble organic matter (WSOM), neutral- and acidic-HULIS (HULIS-n and HULIS-a), and high-polarity (HP)-WSOM collected in the eastern Indo-Gangetic Plain (IGP) with respect to UV-Vis, fluorescence, FT-IR, 1H NMR and 13C characteristics under three aerosol regimes: photochemistry-dominated summer, aged biomass burning (BB)-dominated post-monsoon, and fresh BB-dominated winter. Absorption coefficients (babs_365 nm; Mm-1) of WSOM and HULIS fractions increase by a factor of 2-9 during winter as compared to summer, with HULIS-n dominating total HULIS + HP-WSOM absorption (73-81%). Fluorophores in HULIS-n appear to contain near-similar levels of aromatic and unsaturated aliphatic conjugation across seasons, while HULIS-a exhibits distinctively smaller-chain structures in summer and post-monsoon. FT-IR spectra reveals, among others, strong signatures of aromatic phenols in winter WSOM suggesting a BB-related origin. 1H NMR-based source attribution coupled with back trajectory analysis indicate the presence of secondary and BB-related organic aerosol (SOA and BBOA) in the post-monsoon and winter, and marine-derived OA (MOA) in the summer, which is supported by 13C measurements. Overall, these observations uncover a complex interplay of emissions and atmospheric processing of carbonaceous aerosols in the IGP.
Collapse
Affiliation(s)
- Arya Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Supriya Dey
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Archita Rana
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Shiguo Jia
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Sayantan Sarkar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India; School of Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175075, India.
| |
Collapse
|
6
|
Kirpes RM, Rodriguez B, Kim S, China S, Laskin A, Park K, Jung J, Ault AP, Pratt KA. Emerging investigator series: influence of marine emissions and atmospheric processing on individual particle composition of summertime Arctic aerosol over the Bering Strait and Chukchi Sea. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1201-1213. [PMID: 32083622 DOI: 10.1039/c9em00495e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Arctic is rapidly transforming due to sea ice loss, increasing shipping activity, and oil and gas development. Associated marine and combustion emissions influence atmospheric aerosol composition, impacting complex aerosol-cloud-climate feedbacks. To improve understanding of the sources and processes determining Arctic aerosol composition, atmospheric particles were collected aboard the Korean icebreaker R/V Araon cruising within the Bering Strait and Chukchi Sea during August 2016. Offline analyses of individual particles by microspectroscopic techniques, including scanning electron microscopy with energy dispersive X-ray spectroscopy and atomic force microscopy with infrared spectroscopy, provided information on particle size, morphology, and chemical composition. The most commonly observed particle types were sea spray aerosol (SSA), comprising ∼60-90%, by number, of supermicron particles, and organic aerosol (OA), comprising ∼50-90%, by number, of submicron particles. Sulfate and nitrate were internally mixed within both SSA and OA particles, consistent with particle multiphase reactions during atmospheric transport. Within the Bering Strait, SSA and OA particles were more aged, with greater number fractions of particles containing sulfate and/or nitrate, compared to particles collected over the Chukchi Sea. This is indicative of greater pollution influence within the Bering Strait from coastal and inland sources, while the Chukchi Sea is primarily influenced by marine sources.
Collapse
Affiliation(s)
- Rachel M Kirpes
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Knopf DA, Alpert PA, Zipori A, Reicher N, Rudich Y. Stochastic nucleation processes and substrate abundance explain time-dependent freezing in supercooled droplets. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2020; 3:2. [PMID: 32754650 PMCID: PMC7402410 DOI: 10.1038/s41612-020-0106-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/30/2019] [Indexed: 06/11/2023]
Abstract
Atmospheric immersion freezing (IF), a heterogeneous ice nucleation process where an ice nucleating particle (INP) is immersed in supercooled water, is a dominant ice formation pathway impacting the hydrological cycle and climate. Implementation of IF derived from field and laboratory data in cloud and climate models is difficult due to the high variability in spatio-temporal scales, INP composition, and morphological complexity. We demonstrate that IF can be consistently described by a stochastic nucleation process accounting for uncertainties in the INP surface area. This approach accounts for time-dependent freezing, a wide range of surface areas and challenges phenomenological descriptions typically used to interpret IF. The results have an immediate impact on the current description, interpretation, and experiments of IF and its implementation in models. The findings are in accord with nucleation theory, and thus should hold for any supercooled liquid material that nucleates in contact with a substrate.
Collapse
Affiliation(s)
- Daniel A. Knopf
- Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Peter A. Alpert
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Assaf Zipori
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Reicher
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Lawler MJ, Draper DC, Smith JN. Atmospheric fungal nanoparticle bursts. SCIENCE ADVANCES 2020; 6:eaax9051. [PMID: 31998839 PMCID: PMC6962048 DOI: 10.1126/sciadv.aax9051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Aerosol nanoparticles play an important role in the climate system by affecting cloud formation and properties, as well as in human health because of their deep reach into lungs and the circulatory system. Determining nanoparticle sources and composition is a major challenge in assessing their impacts in these areas. The sudden appearance of large numbers of atmospheric nanoparticles is commonly attributed to secondary formation from gas-phase precursors, but in many cases, the evidence for this is equivocal. We report the detection of a mode of fungal fragments with a mobility diameter of roughly 30 nm released in episodic bursts in ambient air over an agricultural area in northern Oklahoma. These events reached concentrations orders of magnitude higher than other reports of biological particles and show similarities to unclarified events reported previously in the Amazon. These particles potentially represent a large source of both cloud-forming ice nuclei and respirable allergens in a variety of ecosystems.
Collapse
|
9
|
Vander Wall AC, Perraud V, Wingen LM, Finlayson-Pitts BJ. Evidence for a kinetically controlled burying mechanism for growth of high viscosity secondary organic aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:66-83. [PMID: 31670732 DOI: 10.1039/c9em00379g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Secondary organic aerosol (SOA) particles are ubiquitous in air and understanding the mechanism by which they grow is critical for predicting their effects on visibility and climate. The uptake of three organic nitrates into semi-solid SOA particles formed by α-pinene ozonolysis either with or without an OH scavenger was investigated. Four types of experiments are presented here. In Series A, uptake of the selected organic nitrates (2-ethylhexyl nitrate (2EHN); β-hydroxypropyl nitrate (HPN); β-hydroxyhexyl nitrate (HHN)) into impacted SOA particles was interrogated by attenuated total reflectance (ATR)-FTIR. In this case, equilibrium was reached and partition coefficients (KSOA = [-ONO2]SOA/[-ONO2]air) were measured to be K2EHN = (3.2-11) × 104, KHPN = (4.4-5.4) × 105, and KHHN = (4.9-9.0) × 106. In Series B, SOA particles were exposed on-the-fly to gas phase organic nitrates for comparison to Series A, and uptake of organic nitrates was quantified by HR-ToF-AMS analysis, which yielded similar results. In Series C (AMS) and D (ATR-FTIR), each organic nitrate was incorporated into the SOA as the particles formed and grew. The incorporation of the RONO2 was much larger in Series C and D (during growth), exceeding equilibrium values determined in Series A and B (after growth). This suggests that enhanced uptake of organic nitrates during SOA formation and growth is due to a kinetically controlled "burying" mechanism, rather than equilibrium partitioning. This has important implications for understanding SOA formation and growth under conditions where the particles are semi-solid, which is central to accurately predicting properties for such SOA.
Collapse
Affiliation(s)
| | - Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | - Lisa M Wingen
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | | |
Collapse
|
10
|
Abstract
Airborne particles are very dynamic and highly reactive components of the Earth's atmosphere. Their high surface area and water content provide a unique reaction environment for multiphase chemistry that continually modifies particle composition and properties that consequently impact air quality as well as concentrations of gas-phase species. By absorbing and scattering solar and terrestrial radiation, particles directly influence the planet's radiative balance. Their indirect effects include modifying the nucleation, lifetime, and physical properties of clouds. Due to the sensitivity of the atmospheric environment to all these variables, fundamental studies of chemical transformations of atmospheric particles, their sources, continuously evolving composition, and physical properties are of highest research priority. Accurate descriptions of particles and their effects in the atmosphere require comprehensive information not only on the particle-type populations and their size distributions and concentrations, but also on the diversity and the spatial heterogeneity of chemical components within individual particles. Developments and applications of modern chemical imaging approaches for off-line characterization of atmospheric particles have been at the forefront of modern experimental studies and have resulted in a transformative impact in atmospheric chemistry and physics. This Account presents a synopsis of recent advances in chemical imaging of atmospheric particles collected on substrates during field and laboratory experiments. The unique advantage of chemical imaging methods is that they simultaneously provide two analytical measurements: imaging of particles to assess variability in their individual sizes and morphology, as well as particle-specific speciation of their composition and spatial heterogeneity of different chemical components within individual particles. We also highlight analytical chemistry approaches that enable chemical imaging of particles with different levels of elemental and molecular specificity, including applications of multimodal methodologies where the same or similar groups of particles are probed by two or more complementary techniques. These approaches provide unique experimental insights on the nature and sources of particles, understanding their physical properties, atmospheric reactivity, and transformations. Chemical imaging data provide unique experimental input for atmospheric models that simulate aging and changes in particle-type populations, internal composition, and their associated optical and cloud forming properties. We highlight applications of chemical imaging in selected recent studies, discuss their existing limitations, and forecast future research directions for this area.
Collapse
Affiliation(s)
- Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryan C. Moffet
- Meteorology and Air Quality Measurements, Sonoma Technology, Inc., Petaluma, California 94954, United States
| | - Mary K. Gilles
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Effect of Bulk Composition on the Heterogeneous Oxidation of Semi-Solid Atmospheric Aerosols. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The OH-initiated heterogeneous oxidation of semi-solid saccharide particles with varying bulk compositions was investigated in an atmospheric pressure flow tube at 30% relative humidity. Reactive uptake coefficients were determined from the rate loss of the saccharide reactants measured by mass spectrometry at different monosaccharide (methyl-β-d-glucopyranoside, C7H14O6) and disaccharide (lactose, C12H22O11) molar ratios. The reactive uptake for the monosaccharide was found to decrease from 0.53 ± 0.10 to 0.05 ± 0.06 as the mono-to-disaccharide molar ratio changed from 8:1 to 1:1. A reaction–diffusion model was developed in order to determine the effect of chemical composition on the reactive uptake. The observed decays can be reproduced using a Vignes relationship to predict the composition dependence of the reactant diffusion coefficients. The experimental data and model results suggest that the addition of the disaccharide significantly increases the particle viscosity leading to slower mass transport phenomena from the bulk to the particle surface and to a decreased reactivity. These findings illustrate the impact of bulk composition on reactant bulk diffusivity which determines the rate-limiting step during the chemical transformation of semi-solid particles in the atmosphere.
Collapse
|
12
|
Alpert PA, Corral Arroyo P, Dou J, Krieger UK, Steimer SS, Förster JD, Ditas F, Pöhlker C, Rossignol S, Passananti M, Perrier S, George C, Shiraiwa M, Berkemeier T, Watts B, Ammann M. Visualizing reaction and diffusion in xanthan gum aerosol particles exposed to ozone. Phys Chem Chem Phys 2019; 21:20613-20627. [PMID: 31528972 DOI: 10.1039/c9cp03731d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atmospheric aerosol particles with a high viscosity may become inhomogeneously mixed during chemical processing. Models have predicted gradients in condensed phase reactant concentration throughout particles as the result of diffusion and chemical reaction limitations, termed chemical gradients. However, these have never been directly observed for atmospherically relevant particle diameters. We investigated the reaction between ozone and aerosol particles composed of xanthan gum and FeCl2 and observed the in situ chemical reaction that oxidized Fe2+ to Fe3+ using X-ray spectromicroscopy. Iron oxidation state of particles as small as 0.2 μm in diameter were imaged over time with a spatial resolution of tens of nanometers. We found that the loss off Fe2+ accelerated with increasing ozone concentration and relative humidity, RH. Concentric 2-D column integrated profiles of the Fe2+ fraction, α, out of the total iron were derived and demonstrated that particle surfaces became oxidized while particle cores remained unreacted at RH = 0-20%. At higher RH, chemical gradients evolved over time, extended deeper from the particle surface, and Fe2+ became more homogeneously distributed. We used the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB) to simulate ozone reaction constrained with our observations and inferred key parameters as a function of RH including Henry's Law constant for ozone, HO3, and diffusion coefficients for ozone and iron, DO3 and DFe, respectively. We found that HO3 is higher in our xanthan gum/FeCl2 particles than for water and increases when RH decreased from about 80% to dry conditions. This coincided with a decrease in both DO3 and DFe. In order to reproduce observed chemical gradients, our model predicted that ozone could not be present further than a few nanometers from a particle surface indicating near surface reactions were driving changes in iron oxidation state. However, the observed chemical gradients in α observed over hundreds of nanometers must have been the result of iron transport from the particle interior to the surface where ozone oxidation occurred. In the context of our results, we examine the applicability of the reacto-diffusive framework and discuss diffusion limitations for other reactive gas-aerosol systems of atmospheric importance.
Collapse
Affiliation(s)
- Peter A Alpert
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| | - Pablo Corral Arroyo
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland. and Institute for Physical Chemistry, ETH Zürich, 8092 Zürich, Switzerland
| | - Jing Dou
- Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Ulrich K Krieger
- Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Sarah S Steimer
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Jan-David Förster
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Florian Ditas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Christopher Pöhlker
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Stéphanie Rossignol
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France and Aix Marseille Université, CNRS, LCE UMR 7376, 13331 Marseille, France
| | - Monica Passananti
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France and Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00710, Helsinki, Finland and Dipartimento di Chimica, Università di Torino, Via Giuria 5, 10125 Torino, Italy
| | - Sebastien Perrier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Christian George
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Benjamin Watts
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
13
|
Giorio C, Bortolini C, Kourtchev I, Tapparo A, Bogialli S, Kalberer M. Direct target and non-target analysis of urban aerosol sample extracts using atmospheric pressure photoionisation high-resolution mass spectrometry. CHEMOSPHERE 2019; 224:786-795. [PMID: 30851530 DOI: 10.1016/j.chemosphere.2019.02.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous atmospheric pollutants of high concern for public health. In the atmosphere they undergo oxidation, mainly through reactions with ·OH and NOx to produce nitro- and oxygenated (oxy-) derivatives. In this study, we developed a new method for the detection of particle-bound PAHs, nitro-PAHs and oxy-PAHs using direct infusion into an atmospheric pressure photoionisation high-resolution mass spectrometer (APPI-HRMS). Method optimisation was done by testing different source temperatures, gas flow rates, mobile phases and dopants. Samples were extracted with methanol, concentrated by evaporation and directly infused in the APPI source after adding toluene as dopant. Acquisition was performed in both polarity modes. The method was applied to target analysis of seasonal PM2.5 samples from an urban background site in Padua (Italy), in the Po Valley, in which a series of PAHs, nitro- and oxy-PAHs were detected. APPI-HRMS was then used for non-target analysis of seasonal PM2.5 samples and results compared with nano-electrospray ionisation (nanoESI) HRMS. The results showed that, when samples were characterised by highly oxidised organic compounds, including S-containing compounds, like in summer samples, APPI did not bring any additional information with respect to nanoESI in negative polarity (nanoESI(-)). Conversely, for winter samples, APPI(-) could detect a series of aromatic and poly-aromatic compounds, mainly oxidised and nitrogenated aromatics, that were not otherwise detected with nanoESI.
Collapse
Affiliation(s)
- Chiara Giorio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy.
| | - Claudio Bortolini
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Ivan Kourtchev
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andrea Tapparo
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| |
Collapse
|
14
|
Tirella PN, Craig RL, Tubbs DB, Olson NE, Lei Z, Ault AP. Extending surface enhanced Raman spectroscopy (SERS) of atmospheric aerosol particles to the accumulation mode (150-800 nm). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1570-1580. [PMID: 30124713 DOI: 10.1039/c8em00276b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Due to their small size, measurements of the complex composition of atmospheric aerosol particles and their surfaces are analytically challenging. This is particularly true for microspectroscopic methods, where it can be difficult to optically identify individual particles smaller than the diffraction limit of visible light (∼350 nm) and measure their vibrational modes. Recently, surface enhanced Raman spectroscopy (SERS) has been applied to the study of aerosol particles, allowing for detection and characterization of previously undistinguishable vibrational modes. However, atmospheric particles analyzed via SERS have primarily been >1 μm to date, much larger than the diameter of the most abundant atmospheric aerosols (∼100 nm). To push SERS towards more relevant particle sizes, a simplified approach involving Ag foil substrates was developed. Both ambient particles and several laboratory-generated model aerosol systems (polystyrene latex spheres (PSLs), ammonium sulfate, and sodium nitrate) were investigated to determine SERS enhancements. SERS spectra of monodisperse, model aerosols between 400-800 nm were compared with non-SERS enhanced spectra, yielding average enhancement factors of 102 for both inorganic and organic vibrational modes. Additionally, SERS-enabled detection of 150 nm size-selected ambient particles represent the smallest individual aerosol particles analyzed by Raman microspectroscopy to date, and the first time atmospheric particles have been measured at sizes approaching the atmospheric number size distribution mode. SERS-enabled detection and identification of vibrational modes in smaller, more atmospherically-relevant particles has the potential to improve understanding of aerosol composition and surface properties, as well as their impact on heterogeneous and multiphase reactions involving aerosol surfaces.
Collapse
Affiliation(s)
- Peter N Tirella
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Bondy AL, Kirpes RM, Merzel RL, Pratt KA, Banaszak Holl MM, Ault AP. Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric Aerosol Particles: Subdiffraction Limit Vibrational Spectroscopy and Morphological Analysis. Anal Chem 2017; 89:8594-8598. [DOI: 10.1021/acs.analchem.7b02381] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Amy L. Bondy
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel M. Kirpes
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel L. Merzel
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kerri A. Pratt
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark M. Banaszak Holl
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew P. Ault
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Abstract
The morphology of aerosol particles impacts their role in the climate system. In the submicron size regime, the morphology of particles that undergo liquid-liquid phase separation is dependent on their size, where for some systems small particles are homogeneous and large particles are phase-separated. We use cryogenic transmission electron microscopy to probe the morphology of model organic aerosol systems. We observe that the transition region (where both homogeneous and phase-separated morphologies are seen) spans 121 nm at the fastest drying rates with a midpoint diameter > 170 nm. By slowing the drying rate over several orders of magnitude, the transition region shifts to smaller diameters (midpoint < 40 nm) and the width narrows to 4 nm. Our results suggest that the size-dependent morphology originates from an underlying finite size effect, rather than solely kinetics, due to the presence of a size dependence even at the slowest drying rates.
Collapse
Affiliation(s)
- Muhammad Bilal Altaf
- Department of Chemistry, The Pennsylvania State University , 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Miriam Arak Freedman
- Department of Chemistry, The Pennsylvania State University , 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
18
|
Estillore AD, Morris HS, Or VW, Lee HD, Alves MR, Marciano MA, Laskina O, Qin Z, Tivanski AV, Grassian VH. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles. Phys Chem Chem Phys 2017; 19:21101-21111. [DOI: 10.1039/c7cp04051b] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sea spray aerosol (SSA) particles are mixtures of organics and salts that show diversity in their morphologies and water uptake properties.
Collapse
Affiliation(s)
- Armando D. Estillore
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | | | - Victor W. Or
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Hansol D. Lee
- Department of Chemistry
- University of Iowa
- Iowa City
- USA
| | - Michael R. Alves
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Meagan A. Marciano
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Olga Laskina
- Department of Chemistry
- University of Iowa
- Iowa City
- USA
| | - Zhen Qin
- Department of Chemistry
- University of Iowa
- Iowa City
- USA
| | | | - Vicki H. Grassian
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
- Scripps Institution of Oceanography and Department of Nanoengineering
| |
Collapse
|
19
|
Ault AP, Axson JL. Atmospheric Aerosol Chemistry: Spectroscopic and Microscopic Advances. Anal Chem 2016; 89:430-452. [DOI: 10.1021/acs.analchem.6b04670] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew P. Ault
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L. Axson
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|