1
|
Al-Obaidi JR, Lau SE, Liew YJM, Tan BC, Rahmad N. Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications. Protein J 2024; 43:1083-1103. [PMID: 39487361 DOI: 10.1007/s10930-024-10240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Seeds are essential for plant reproduction, ensuring species survival and dispersal while adapting to diverse environments throughout a plant's life. Proteomics has emerged as a powerful tool for deciphering the complexities of seed growth, germination, and stress responses. Advanced proteomic technologies enable the analysis of protein changes during germination, dormancy, and ageing, enhancing our understanding of seed lifespan and vitality. Recent studies have revealed detailed insights into metabolic processes and storage protein profiles across various plant species. This knowledge is crucial for improving seed storage, conserving quality, and maintaining viability. Additionally, it contributes to sustainable agriculture by identifying stress-responsive proteins and signalling pathways that can mitigate stress and enhance farming practices. This review highlights significant advancements in seed proteomics over the past decade, discussing critical discoveries related to storage proteins, protein interactions, and proteome modifications due to stress. It illustrates how these insights transform seed biology, boosting productivity, food security, and environmentally friendly practices. The review also identifies existing knowledge gaps and provides direction for future research, underscoring the need for continued interdisciplinary collaboration in this dynamic field.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, 35900, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yvonne Jing Mei Liew
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- University of Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
2
|
Fonseca JDS, Wojciechowska E, Kulesza J, Barros BS. Carbon Nanomaterials in Seed Priming: Current Possibilities. ACS OMEGA 2024; 9:44891-44906. [PMID: 39554415 PMCID: PMC11561606 DOI: 10.1021/acsomega.4c07230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
The prevailing agricultural system has become deeply ingrained and insufficient due to outdated practices inherited from the Green Revolution, necessitating innovative approaches for sustainable agricultural development. Nanomaterials possess the potential to significantly improve the efficient utilization of resources while simultaneously encouraging sustainability. Among these, carbonaceous nanomaterials have found diverse applications in agriculture, exhibiting remarkable capabilities in this domain. Notably, using biowaste to produce these materials makes them both cost-effective and environmentally friendly for seed priming. Seed priming is a technique that can potentially enhance germination rates and stress tolerance by effectively regulating gene pathways and metabolism. This review provides a comprehensive summary of recent progress in the field, highlighting the challenges and opportunities of applying carbonaceous materials in seed priming to advance sustainable agriculture practices. The existing reviews provide a general overview of using carbonaceous materials (graphene and derivatives) in agriculture. Yet, they often lack a comprehensive examination of their specific application in seed-related contexts. In this review, we aim to offer a detailed analysis of the application of carbonaceous materials in seed priming and elucidate their influence on germination. Furthermore, the review shows that crop response to carbonaceous nanomaterials is linked to material concentration and crop species.
Collapse
Affiliation(s)
- José
Daniel da Silva Fonseca
- Programa
de Pós-graduação em Ciência de Materiais,
Centro de Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Av. Prof. Morais Rego, 1235-Cidade Universitária, Recife, Pernambuco 50670-901, Brasil
| | - Ewa Wojciechowska
- Gdansk
University of Technology, Faculty of Civil
and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Joanna Kulesza
- Departamento
de Química Fundamental, Centro de Ciências Exatas e
da Natureza-CCEN, Universidade Federal de
Pernambuco, Av. Prof. Morais Rego, 1235-Cidade Universitária, Recife, Pernambuco 50670-901, Brasil
| | - Bráulio Silva Barros
- Departamento
de Engenharia Mecânica, Centro de Tecnologia e Geociências-CTG, Universidade Federal de Pernambuco, Av. Prof. Morais Rego, 1235-Cidade
Universitária, Recife, Pernambuco 50670-901, Brasil
| |
Collapse
|
3
|
Granata A, Capozzi F, Gaglione A, Riccardi R, Spigno P, Giordano S, Sorrentino MC, Spagnuolo V. Seed priming enhances seed germination and plant growth in four neglected cultivars of Capsicum annuum L. PeerJ 2024; 12:e18293. [PMID: 39484210 PMCID: PMC11526797 DOI: 10.7717/peerj.18293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/21/2024] [Indexed: 11/03/2024] Open
Abstract
Priming is basically a water-based technique inducing controlled seed rehydration to trigger the metabolic processes normally activated during the early phase of germination. It is regarded as an ecofriendly approach alternative to fertilizers in traditional agriculture, but also a method to synchronize off-field crops and resume stored seeds, improving vigor, and allowing for a rapid, uniform seedling emergence. In this work we tested several methods of seed priming (i.e., hydro-priming, halopriming by KNO3, and acid priming with HCl) in four ancient and neglected cultivars of Capsicum annuum L., a crop species belonging to Solanaceae family cultivated worldwide. We followed germination performance, seedling growth and selected morphological traits, antioxidant production in the leaves, and protein content of the seeds. Apart from acid priming, which inhibited root emergence, both hydropriming and halopriming decreased the mean germination time in all cultivars. The best treatments were KNO3 6% for 96 h > KNO3 4% for 48 h > hydropriming for 24 h. In particular, KNO3 6% for 96 h in all four cultivars significantly increased plant growth, simple vigor index, development germination index, leaf antioxidant concentration and protein content in the seeds, in comparison to control and other priming treatments, indicating the prompt activation of pre-germinative processes.
Collapse
Affiliation(s)
- Angelo Granata
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fiore Capozzi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Anna Gaglione
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | - Valeria Spagnuolo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Yue JR, Liu YJ, Yuan SH, Sun H, Lou HY, Li YM, Guo HY, Liu ZH, Zhang FT, Zhai N, Zhang SQ, Bai JF, Zhang LP. Uncovering seed vigor responsive miRNA in hybrid wheat and its parents by deep sequencing. BMC Genomics 2024; 25:991. [PMID: 39438825 PMCID: PMC11515737 DOI: 10.1186/s12864-024-10878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Two-line hybrid wheat technology system is one way to harness wheat heterosis both domestically and internationally. Seed vigor is a crucial parameter for assessing seed quality, as enhanced seed vigor can lead to yield increments of over 20% to a certain extent. MicroRNAs (miRNAs) were known to participate in the development and vigor of seed in plants, but its impact on seed vigor in two-line hybrid wheat remains poorly elucidated. RESULTS The hybrid (BS1453/11GF5135) wheat exhibited superiority in seed vigor and anti-aging capacity, compared to its male parent (11GF5135, MP) and female parent (BS1453, FP). We identified four miRNAs associated with seed vigor, all of which are novel miRNAs. The majority of targets of miRNAs were related to ubiquitin ligases, kinases, sucrose synthases and hydrolases, involving in starch and sucrose metabolism, hydrolysis, catalysis, plant hormone signal transduction, and other pathways, which played crucial roles in seed development. Additionally, we also found miR531 was differentially expressed in both male parent and hybrid, and its target gene was a component of the E1 subunit of α-ketoate dehydrogenase complex, which interacted with dihydrolipoamide acetyltransferase (E2) and dihydrolipoyl dehydrogenase (E3). Finally, We established a presumptive interaction model to speculate the relationship of miR531 and seed vigor. CONCLUSIONS This study analyzed the seed vigor of two-line hybrid wheat, and screened seed vigor-related miRNAs. Meanwhile speculated the genetic relationship of hybrid and parents, in terms of miRNAs. Consequently, the present study provides new insights into the miRNA-mediated gene and protein interaction network that regulates seed vigor. These findings hold significance for enhancing the yield and quality of two-line hybrid wheat, facilitating its future applications.
Collapse
Affiliation(s)
- Jie-Ru Yue
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yong-Jie Liu
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shao-Hua Yuan
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Sun
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hong-Yao Lou
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yan-Mei Li
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hao-Yu Guo
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zi-Han Liu
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Feng-Ting Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Nuo Zhai
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Sheng-Quan Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jian-Fang Bai
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Li-Ping Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
5
|
Wang YC, Hsieh WH, Lin LP, He MH, Jhan YT, Huang CJ, Zhan J, Chang CC, Hsieh TF, Lin JY. Dissecting the temporal genetic networks programming soybean embryo development from embryonic morphogenesis to post-germination. PLANT CELL REPORTS 2024; 43:266. [PMID: 39422819 PMCID: PMC11489296 DOI: 10.1007/s00299-024-03354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
KEY MESSAGE Desiccation-stage transcription factors perform similar functions, with early ones focused on desiccation tolerance and later ones on development. Gene networks governing late embryo development diverge between soybean and Arabidopsis. To understand gene activities programming seed embryo development, we profiled the soybean embryo transcriptome across embryonic morphogenesis through post-germination. Transcriptomic landscapes across embryo development feature highly prevalent transcripts, categorized into early and late groups, with shared and distinct functions. During the mid-storage reserve accumulation stage, the upregulated genes are enriched with regulatory tasks at both the transcriptional and chromatin levels, including DNA methylation and chromatin remodeling. The epigenetic-related functions also dominate in the upregulated genes during germination, involving core histone variants and histone chaperones. Gene network analysis reveals both stage-specific modules and modules active across multiple stages. The desiccation-associated gene module integrates diverse transcription factors (TFs) that are sequentially active during different desiccation stages, transitioning from abiotic stress functions early on to developmental functions later. Two TFs, active during the early and mid-desiccation stages were functionally assessed in Arabidopsis overexpression lines to uncover their potential roles in desiccation processes. Interestingly, nearly half of the Arabidopsis orthologs of soybean TFs active in the desiccation-associated module are inactive during Arabidopsis desiccation. Our results reveal that chromatin and transcriptional regulation coordinate during mid-storage reserve accumulation, while distinct epigenetic mechanisms drive germination. Additionally, gene modules either perform stage-specific functions or are required across multiple stages, and gene networks during late embryogenesis diverge between soybean and Arabidopsis. Our studies provide new information on the biological processes and gene networks underlying development from embryonic morphogenesis to post-germination.
Collapse
Affiliation(s)
- Yen-Ching Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan City, 711, Taiwan
| | - Wei-Hsun Hsieh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan City, 711, Taiwan
| | - Liang-Peng Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan City, 711, Taiwan
| | - Meng-Hsun He
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan City, 711, Taiwan
| | - Ya-Ting Jhan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan City, 711, Taiwan
| | - Chu-Jun Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan City, 711, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Junpeng Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ching-Chun Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jer-Young Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan City, 711, Taiwan.
| |
Collapse
|
6
|
Sohrabi S, Gherekhloo J, Hassanpour-bourkheili S, Soltani A, Gonzalez-Andujar JL. Factors Influencing the Variation of Plants' Cardinal Temperature: A Case Study in Iran. PLANTS (BASEL, SWITZERLAND) 2024; 13:2848. [PMID: 39458795 PMCID: PMC11510968 DOI: 10.3390/plants13202848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The establishment and spread of plants in their native or alien geographical ranges are determined by their germination. This study investigated the impact of different factors on variations in cardinal temperatures. We used the lm procedure and measured the effect size by the Eta-square approach to find the association of different factors (species, ecotypes, origin (native/alien), year, and life cycle) with the cardinal temperatures of 31 species. Our results showed that the base, optimum, and maximum temperatures responded differently to these factors. The base temperature was less impacted by ecotypes compared with the optimum and maximum temperatures, whereas the species had a higher impact on the variation in the base temperature. The effect of the origin of weedy plants on the base temperature was higher than the optimum and maximum temperatures. The effect of the year on the optimum temperature was more prominent than that on the base and maximum temperatures. The results confirmed that weedy alien plants preferred high and narrow ranges of base, optimum, and maximum temperatures and probably will be more problematic in summer crops. The results indicate that alien plants can benefit from warmer conditions in invaded areas at the germination stage. These findings lay the foundation for further studies to elucidate which factors are more important.
Collapse
Affiliation(s)
- Sima Sohrabi
- Department of Agronomy, Ferdowsi University of Mashhad, Iran and Leader of Iranian Invasive Plants Working Group, Gorgan 4917739001, Iran
| | - Javid Gherekhloo
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran; (J.G.); (S.H.-b.); (A.S.)
| | - Saeid Hassanpour-bourkheili
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran; (J.G.); (S.H.-b.); (A.S.)
| | - Afshin Soltani
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran; (J.G.); (S.H.-b.); (A.S.)
| | | |
Collapse
|
7
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Wang J, Almutairi BO, Wang L, Shi P, Yao W, Niinemets Ü. Scaling of cotyledon and primary leaf mass versus area in Acer platanoides seedlings under different light conditions. AOB PLANTS 2024; 16:plae054. [PMID: 39478873 PMCID: PMC11523618 DOI: 10.1093/aobpla/plae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Cotyledons play an important role in early seedling establishment. However, relative to primary leaves, cotyledons tend to have a different investment-on-return strategy. To detect the potential differences in the mass (M) versus area (A) scaling relationships between cotyledons and primary leaves in different light environments, a total of 75 Acer platanoides seedlings were sampled at an open site (n = 52; light availability: 74 ± 5 %) and a shaded site (n = 23; light availability: 4.2 ± 1.2 %). Reduced major axis regression protocols were used to fit the M versus A scaling relationships of primary leaves and cotyledons. The bootstrap percentile method was used to test the significance of the differences in the scaling exponents of M versus A between the two light environments. The scaling exponents of cotyledons at both two sites, as well as the primary leaves at the shade site, were greater than unity indicating 'diminishing returns', while the scaling exponent of primary leaves at the open site was smaller than unity indicating 'increasing returns'. The data collectively indicated light-dependent shifts in support investments and differences in the function of cotyledons and primary leaves. Average leaf structural traits displayed significant differences between the two light environments in accordance with the premium in enhancing photosynthetic capacity in high light and light interception in low light. Although the trait responses to light availability were similar for primary leaves and cotyledons, primary leaves were more responsive to light availability, indicating lower plasticity of cotyledons in response to light levels. These results advance our understanding of the roles of cotyledons and primary leaves in the life history of seedlings in different forest light environments.
Collapse
Affiliation(s)
- Jinfeng Wang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Bader O Almutairi
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Lin Wang
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu 610065, China
| | - Peijian Shi
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Weihao Yao
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Ülo Niinemets
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| |
Collapse
|
9
|
Corbineau F. Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. PLANTS (BASEL, SWITZERLAND) 2024; 13:2674. [PMID: 39409543 PMCID: PMC11478528 DOI: 10.3390/plants13192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L-1. The signaling pathway of ethylene starts with its binding to five membrane-anchored receptors, which results in the deactivation of Constitutive Triple Response 1 (CTR1, a protein kinase) that does not exert its inhibitory effect on Ethylene Insensitive 2 (EIN2) by phosphorylating its cytosolic C-terminal domain. An analysis of germination in the presence of inhibitors of ethylene synthesis or action, and using seeds from mutant lines altered in terms of the genes involved in ethylene synthesis (acs) and the signaling pathway (etr1, ein2, ein4, ctr1 and erf1), demonstrates the involvement of ethylene in the regulation of seed dormancy. The promoting effect of ethylene is also regulated through crosstalk with abscisic acid (ABA) and gibberellins (GAs), essential hormones involved in seed germination and dormancy, and Reactive Oxygen Species (ROS). Using a mutant of the proteolytic N-degron pathway, Proteolysis (PRT6), the Ethylene Response Factors (ERFs) from group VII (HRE1, HRE2, RAP 2.2, RAP2.3 and RAP 2.12) have also been identified as being involved in seed insensitivity to ethylene. This review highlights the key roles of EIN2 and EIN3 in the ethylene signaling pathway and in interactions with different hormones and discusses the responsiveness of seeds to ethylene, depending on the species and the dormancy status.
Collapse
|
10
|
Wang ZZ, Cao MJ, Yan J, Dong J, Chen MX, Yang JF, Li JH, Ying RN, Gao YY, Li L, Leng YN, Tian Y, Hewage KAH, Pei RJ, Huang ZY, Yin P, Zhu JK, Hao GF, Yang GF. Stabilization of dimeric PYR/PYL/RCAR family members relieves abscisic acid-induced inhibition of seed germination. Nat Commun 2024; 15:8077. [PMID: 39277642 PMCID: PMC11401921 DOI: 10.1038/s41467-024-52426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination. Here, we reveal that stabilization of PYL dimer can relieve ABA-induced inhibition of seed germination using chemical genetic approaches. Di-nitrobensulfamide (DBSA), a computationally designed chemical probe, yields around ten-fold improvement in receptor affinity relative to ABA. DBSA reverses ABA-induced inhibition of seed germination mainly through dimeric receptors and recovers the expression of ABA-responsive genes. DBSA maintains PYR1 in dimeric state during protein oligomeric state experiment. X-ray crystallography shows that DBSA targets a pocket in PYL dimer interface and may stabilize PYL dimer by forming hydrogen networks. Our results illustrate the potential of PYL dimer stabilization in preventing ABA-induced seed germination inhibition.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Min-Jie Cao
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junjie Yan
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Dong
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jing-Fang Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Rui-Ning Ying
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Li Li
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya-Nan Leng
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kamalani Achala H Hewage
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Rong-Jie Pei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Zhi-You Huang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Ping Yin
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China.
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
11
|
Guo S, Ai J, Zheng N, Hu H, Xu Z, Chen Q, Li L, Liu Y, Zhang H, Li J, Pan Q, Chen F, Yuan L, Fu J, Gu R, Wang J, Du X. A genome-wide association study uncovers a ZmRap2.7-ZCN9/ZCN10 module to regulate ABA signalling and seed vigour in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2472-2487. [PMID: 38761386 PMCID: PMC11331778 DOI: 10.1111/pbi.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 05/20/2024]
Abstract
Seed vigour, including rapid, uniform germination and robust seedling establishment under various field conditions, is becoming an increasingly essential agronomic trait for achieving high yield in crops. However, little is known about this important seed quality trait. In this study, we performed a genome-wide association study to identify a key transcription factor ZmRap2.7, which regulates seed vigour through transcriptionally repressing expressions of three ABA signalling genes ZmPYL3, ZmPP2C and ZmABI5 and two phosphatidylethanolamine-binding genes ZCN9 and ZCN10. In addition, ZCN9 and ZCN10 proteins could interact with ZmPYL3, ZmPP2C and ZmABI5 proteins, and loss-of-function of ZmRap2.7 and overexpression of ZCN9 and ZCN10 reduced ABA sensitivity and seed vigour, suggesting a complex regulatory network for regulation of ABA signalling mediated seed vigour. Finally, we showed that four SNPs in ZmRap2.7 coding region influenced its transcriptionally binding activity to the downstream gene promoters. Together with previously identified functional variants within and surrounding ZmRap2.7, we concluded that the distinct allelic variations of ZmRap2.7 were obtained independently during maize domestication and improvement, and responded separately for the diversities of seed vigour, flowering time and brace root development. These results provide novel genes, a new regulatory network and an evolutional mechanism for understanding the molecular mechanism of seed vigour.
Collapse
Affiliation(s)
- Shasha Guo
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Junmin Ai
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Nannan Zheng
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hairui Hu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhuoyi Xu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Quanquan Chen
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Li Li
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongwei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jieping Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Qingchun Pan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Fanjun Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Junjie Fu
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Riliang Gu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Joint Research Institute of China Agricultural University in AksuAksuChina
| | - Jianhua Wang
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xuemei Du
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
12
|
Al-Khafaji AH, Kwao S, Gómez Galindo F, Sajeevan RS. Germination and stress tolerance of oats treated with pulsed electric field at different phases of seedling growth. Bioelectrochemistry 2024; 158:108692. [PMID: 38547778 DOI: 10.1016/j.bioelechem.2024.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024]
Abstract
This study explores the impact of pulsed electric field (PEF) application on oat seedling growth and stress tolerance. PEF treatment (99 monopolar, rectangular pulses lasting 10 µs each, with a frequency of 13 Hz and a nominal electric field strength of 2250 V/cm) was applied at two growth stages: (i) when the seedlings had 0.2 cm roots emerging from the kernel, and (ii) when they had a 0.4 cm shoot emerging from the kernel. Post-treatment, the seedlings were hydroponically grown for 8 days. To induce stress, the hydroponic medium was augmented with PEG (15 %) to induce drought stress and NaCl (150 mM) to induce salinity stress. Results demonstrate that applying PEF improved the growth of the root and shoot of oat seedlings. This effect was more pronounced when applied to more developed seedlings. When PEF was applied during the later stage of germination, seedlings exposed to salinity stress showed enhanced shoot growth compared to the control. Under the studied conditions, the application of PEF had no impact on the growth of seedlings under drought stress.
Collapse
Affiliation(s)
- Alia Hussain Al-Khafaji
- Division of Food Technology, Engineering and Nutrition, Lund University, Sweden, PO Box 124, SE-22100 Lund, Sweden
| | - Stephen Kwao
- OptiCept Technologies AB, Skiffervägen 12, 22478 Lund, Sweden
| | - Federico Gómez Galindo
- Division of Food Technology, Engineering and Nutrition, Lund University, Sweden, PO Box 124, SE-22100 Lund, Sweden.
| | - Radha Sivarajan Sajeevan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden.
| |
Collapse
|
13
|
Xiong Z, Liu S, Tan J, Huang Z, Li X, Zhuang G, Fang Z, Chen T, Zhang L. Combining Hyperspectral Techniques and Genome-Wide Association Studies to Predict Peanut Seed Vigor and Explore Associated Genetic Loci. Int J Mol Sci 2024; 25:8414. [PMID: 39125982 PMCID: PMC11313457 DOI: 10.3390/ijms25158414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Seed vigor significantly affects peanut breeding and agricultural yield by influencing seed germination and seedling growth and development. Traditional vigor testing methods are inadequate for modern high-throughput assays. Although hyperspectral technology shows potential for monitoring various crop traits, its application in predicting peanut seed vigor is still limited. This study developed and validated a method that combines hyperspectral technology with genome-wide association studies (GWAS) to achieve high-throughput detection of seed vigor and identify related functional genes. Hyperspectral phenotyping data and physiological indices from different peanut seed populations were used as input data to construct models using machine learning regression algorithms to accurately monitor changes in vigor. Model-predicted phenotypic data from 191 peanut varieties were used in GWAS, gene-based association studies, and haplotype analyses to screen for functional genes. Real-time fluorescence quantitative PCR (qPCR) was used to analyze the expression of functional genes in three high-vigor and three low-vigor germplasms. The results indicated that the random forest and support vector machine models provided effective phenotypic data. We identified Arahy.VMLN7L and Arahy.7XWF6F, with Arahy.VMLN7L negatively regulating seed vigor and Arahy.7XWF6F positively regulating it, suggesting distinct regulatory mechanisms. This study confirms that GWAS based on hyperspectral phenotyping reveals genetic relationships in seed vigor levels, offering novel insights and directions for future peanut breeding, accelerating genetic improvements, and boosting agricultural yields. This approach can be extended to monitor and explore germplasms and other key variables in various crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingting Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.X.); (S.L.); (J.T.); (Z.H.); (X.L.); (G.Z.); (Z.F.)
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.X.); (S.L.); (J.T.); (Z.H.); (X.L.); (G.Z.); (Z.F.)
| |
Collapse
|
14
|
Zhang D, He T, Wang X, Zhou C, Chen Y, Wang X, Wang S, He S, Guo Y, Liu Z, Chen M. Transcription factor DIVARICATA1 positively modulates seed germination in response to salinity stress. PLANT PHYSIOLOGY 2024; 195:2997-3009. [PMID: 38687890 DOI: 10.1093/plphys/kiae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Da Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xumin Wang
- Ningxia Agricultural Technology Extension Station, Yinchuan 750001, Ningxia, China
| | - Chenchen Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youpeng Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
15
|
Escudero V, Fuenzalida M, Rezende EL, González-Guerrero M, Roschzttardtz H. Perspectives on embryo maturation and seed quality in a global climate change scenario. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4394-4399. [PMID: 38597771 DOI: 10.1093/jxb/erae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Global climate change has already brought noticeable alterations to multiple regions of our planet, including increased CO2 concentrations and changes in temperature. Several important steps of plant growth and development, such as embryogenesis, can be affected by such environmental changes; for instance, they affect how stored nutrients are used during early stages of seed germination during the transition from heterotrophic to autotrophic metabolism-a critical period for the seedling's survival. In this article, we briefly describe relevant processes that occur during embryo maturation and account for nutrient accumulation, which are sensitive to environmental change. Most of the nutrients stored in the seed during its development-including carbohydrates, lipids, and proteins, depending on the species-accumulate during the seed maturation stage. It is also known that iron, a key micronutrient for various electron transfer processes in plant cells, accumulates during embryo maturation. The existing literature indicates that climate change can not only affect the quality of the seed, in terms of total nutritional content, but also affect seed production. We discuss the potential effects of temperature and CO2 increases from an embryo-autonomous point of view, in an attempt to separate the effects on the parent plant from those on the embryo.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Spain
| | - Marlene Fuenzalida
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrico L Rezende
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas. Universidad Politécnica de Madrid, Spain
| | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Gao L, Xu S, Zhang J, Kang J, Zhong S, Shi H. Promotion of seedling germination in Arabidopsis by B-box zinc-finger protein BBX32. Curr Biol 2024; 34:3152-3164.e6. [PMID: 38971148 DOI: 10.1016/j.cub.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Seed germination represents a determinant for plants to enter ecosystems and is thus regarded as a key ecological and agronomic trait. It is tightly regulated by a variety of environmental cues to ensure that seeds germinate under favorable conditions. Here, we characterize BBX32, a B-box zinc-finger protein, as an imbibition-stimulated positive regulator of seed germination. Belonging to subgroup V of the BBX family, BBX32 exhibits distinct characteristics compared with its close counterparts within the same subgroup. BBX32 is transiently induced at both the transcriptional and post-transcriptional levels in the embryo upon water absorption. Genetic evidence indicates that BBX32 acts upstream of the master transcription factor PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) to facilitate light-induced seed germination. BBX32 directly interacts with PIF1, suppressing its protein-interacting and DNA-binding capabilities, thereby relieving PIF1's repression on seed germination. Furthermore, the imbibition-stimulated BBX32 functions in parallel with the light-induced transcription regulator HFR1 to collectively attenuate the transcriptional activities of PIF1. The BBX32-PIF1 de-repression module serves as a molecular connection that enables plants to integrate signals of water availability and light exposure, effectively coordinating the initiation of seed germination.
Collapse
Affiliation(s)
- Lulu Gao
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Sheng Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinming Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Jing Kang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China.
| |
Collapse
|
17
|
Li H, Yue H, Lu M, Jia R, Jiang X. Rupture Test: A New Method for Evaluating Maize ( Zea mays) Seed Vigour. PLANTS (BASEL, SWITZERLAND) 2024; 13:1847. [PMID: 38999687 PMCID: PMC11243803 DOI: 10.3390/plants13131847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
To explore the application of seed germination biomechanical event(s) in seed vigour tests, a new procedure for the evaluation of maize seed vigour tests based on pericarp-testa rupture (PR) and coleorhiza rupture (CR) during seed germination was developed. Twenty-four lots of hybrid maize were used to determine the feasibility of the rupture test (RT) as a seed vigour test in Zea mays. The results showed that the physiological quality pattern of 24 maize seed lots assessed through RT was similar to that obtained through analysis with other seed test methods. Correlation and regression analyses revealed that the percentage of CR and percentage of PR + CR at "15 ± 0.5 °C for 120 h ± 1 h" and "20 ± 0.5 °C for 72 h ± 15 min" exhibited positive correlations with the field seedling emergence data (p < 0.01). Hence, the proposed method (the rupture test) is cogent and effective, thus providing an important reference for more crops to select for seed germination event(s) and establishing corresponding new methods for seed vigour tests in the future.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiwang Yue
- Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China
| | - Miaomiao Lu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ru Jia
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
18
|
Zhang Z, Lv Y, Sun Q, Yao X, Yan H. Comparative Phenotypic and Transcriptomic Analyses Provide Novel Insights into the Molecular Mechanism of Seed Germination in Response to Low Temperature Stress in Alfalfa. Int J Mol Sci 2024; 25:7244. [PMID: 39000350 PMCID: PMC11241472 DOI: 10.3390/ijms25137244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Low temperature is the most common abiotic factor that usually occurs during the seed germination of alfalfa (Medicago sativa L.). However, the potential regulatory mechanisms involved in alfalfa seed germination under low temperature stress are still ambiguous. Therefore, to determine the relevant key genes and pathways, the phenotypic and transcriptomic analyses of low-temperature sensitive (Instict) and low-temperature tolerant (Sardi10) alfalfa were conducted at 6 and 15 h of seed germination under normal (20 °C) and low (10 °C) temperature conditions. Germination phenotypic results showed that Sardi10 had the strongest germination ability under low temperatures, which was manifested by the higher germination-related indicators. Further transcriptome analysis indicated that differentially expressed genes were mainly enriched in galactose metabolism and carbon metabolism pathways, which were the most commonly enriched in two alfalfa genotypes. Additionally, fatty acid metabolism and glutathione metabolism pathways were preferably enriched in Sardi10 alfalfa. The Weighted Gene Co-Expression Network Analysis (WGCNA) suggested that genes were closely related to galactose metabolism, fatty acid metabolism, and glutathione metabolism in Sardi10 alfalfa at the module with the highest correlation (6 h of germination under low temperature). Finally, qRT-PCR analysis further validated the related genes involved in the above pathways, which might play crucial roles in regulating seed germination of alfalfa under low temperature conditions. These findings provide new insights into the molecular mechanisms of seed germination underlying the low temperature stress in alfalfa.
Collapse
Affiliation(s)
- Zhao Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (Y.L.); (Q.S.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao 266109, China
| | - Yanzhen Lv
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (Y.L.); (Q.S.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao 266109, China
| | - Qingying Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (Y.L.); (Q.S.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao 266109, China
| | - Xingjie Yao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (Y.L.); (Q.S.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao 266109, China
| | - Huifang Yan
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (Y.L.); (Q.S.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao 266109, China
| |
Collapse
|
19
|
Iradukunda M, van Iersel MW, Seymour L, Lu G, Ferrarezi RS. Automated Imaging to Evaluate the Exogenous Gibberellin (Ga 3) Impact on Seedlings from Salt-Stressed Lettuce Seeds. SENSORS (BASEL, SWITZERLAND) 2024; 24:4228. [PMID: 39001005 PMCID: PMC11244474 DOI: 10.3390/s24134228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Salinity stress is a common challenge in plant growth, impacting seed quality, germination, and general plant health. Sodium chloride (NaCl) ions disrupt membranes, causing ion leakage and reducing seed viability. Gibberellic acid (GA3) treatments have been found to promote germination and mitigate salinity stress on germination and plant growth. 'Bauer' and 'Muir' lettuce (Lactuca sativa) seeds were soaked in distilled water (control), 100 mM NaCl, 100 mM NaCl + 50 mg/L GA3, and 100 mM NaCl + 150 mg/L GA3 in Petri dishes and kept in a dark growth chamber at 25 °C for 24 h. After germination, seedlings were monitored using embedded cameras, capturing red, green, and blue (RGB) images from seeding to final harvest. Despite consistent germination rates, 'Bauer' seeds treated with NaCl showed reduced germination. Surprisingly, the 'Muir' cultivar's final dry weight differed across treatments, with the NaCl and high GA3 concentration combination yielding the poorest results (p < 0.05). This study highlights the efficacy of GA3 applications in improving germination rates. However, at elevated concentrations, it induced excessive hypocotyl elongation and pale seedlings, posing challenges for two-dimensional imaging. Nonetheless, a sigmoidal regression model using projected canopy size accurately predicted dry weight across growth stages and cultivars, emphasizing its reliability despite treatment variations (R2 = 0.96, RMSE = 0.11, p < 0.001).
Collapse
Affiliation(s)
- Mark Iradukunda
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Marc W van Iersel
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Lynne Seymour
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Guoyu Lu
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
20
|
Iradukunda M, van Iersel MW, Seymour L, Lu G, Ferrarezi RS. The Use of Imaging to Quantify the Impact of Seed Aging on Lettuce Seed Germination and Seedling Vigor. SENSORS (BASEL, SWITZERLAND) 2024; 24:4235. [PMID: 39001015 PMCID: PMC11244243 DOI: 10.3390/s24134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
The decline in seed quality over time due to natural aging or mishandling requires assessing seed vigor for resilience in adverse conditions. Accelerated aging (AA) methods simulate seed deterioration by subjecting seeds to high temperatures and humidity. Saturated salt accelerated aging (SSAA) is an AA method adopted for small seeds like lettuce (Lactuca sativa). In this study, we subjected seeds of two lettuce cultivars ('Muir' and 'Bauer') to SSAA by sealing them in a box containing 40 g/100 mL of a sodium chloride (NaCl) solution in a dark growth chamber at 41 °C for 24, 48, and 72 h with a control. We monitored their vigor using embedded computer cameras, tracking the projected canopy size (PCS) daily from sowing to harvest. The cultivar 'Muir' exhibited consistent PCS values across the treatments, while 'Bauer' showed PCS variations, with notable declines after prolonged aging. The germination rates dropped significantly after 48 and 72 h of SSAA. A nonlinear regression model revealed a strong relationship between PCS and shoot dry weight across harvests and cultivars (R2 = 0.93, RMSE = 0.15, p < 0.001). The research found that the projected canopy size and shoot dry weight increased over time with significant differences in treatments for the cultivar 'Bauer' but not for 'Muir,' with the canopy size being a strong predictor of dry weight and no significant impact from the SSAA treatments. This study highlights cultivar-specific responses to aging and demonstrates the efficacy of our imaging tool in predicting lettuce dry weight despite treatment variations. Understanding how aging affects different lettuce varieties is crucial for seed management and crop sustainability.
Collapse
Affiliation(s)
- Mark Iradukunda
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Marc W van Iersel
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Lynne Seymour
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Guoyu Lu
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
21
|
Laurençon M, Legrix J, Wagner MH, Demilly D, Baron C, Rolland S, Ducournau S, Laperche A, Nesi N. Genomic and phenomic predictions help capture low-effect alleles promoting seed germination in oilseed rape in addition to QTL analyses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:156. [PMID: 38858297 PMCID: PMC11164772 DOI: 10.1007/s00122-024-04659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
KEY MESSAGE Phenomic prediction implemented on a large diversity set can efficiently predict seed germination, capture low-effect favorable alleles that are not revealed by GWAS and identify promising genetic resources. Oilseed rape faces many challenges, especially at the beginning of its developmental cycle. Achieving rapid and uniform seed germination could help to ensure a successful establishment and therefore enabling the crop to compete with weeds and tolerate stresses during the earliest developmental stages. The polygenic nature of seed germination was highlighted in several studies, and more knowledge is needed about low- to moderate-effect underlying loci in order to enhance seed germination effectively by improving the genetic background and incorporating favorable alleles. A total of 17 QTL were detected for seed germination-related traits, for which the favorable alleles often corresponded to the most frequent alleles in the panel. Genomic and phenomic predictions methods provided moderate-to-high predictive abilities, demonstrating the ability to capture small additive and non-additive effects for seed germination. This study also showed that phenomic prediction estimated phenotypic values closer to phenotypic values than GEBV. Finally, as the predictive ability of phenomic prediction was less influenced by the genetic structure of the panel, it is worth using this prediction method to characterize genetic resources, particularly with a view to design prebreeding populations.
Collapse
Affiliation(s)
- Marianne Laurençon
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Julie Legrix
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Marie-Hélène Wagner
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Didier Demilly
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Cécile Baron
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Sophie Rolland
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Sylvie Ducournau
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Anne Laperche
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France.
| | - Nathalie Nesi
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| |
Collapse
|
22
|
Carrera-Castaño G, Mira S, Fañanás-Pueyo I, Sánchez-Montesino R, Contreras Á, Weiste C, Dröge-Laser W, Gómez L, Oñate-Sánchez L. Complex control of seed germination timing by ERF50 involves RGL2 antagonism and negative feedback regulation of DOG1. THE NEW PHYTOLOGIST 2024; 242:2026-2042. [PMID: 38494681 DOI: 10.1111/nph.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Seed dormancy governs germination timing, with both evolutionary and applied consequences. Despite extensive studies on the hormonal and genetic control of these processes, molecular mechanisms directly linking dormancy and germination remain poorly understood. By screening a collection of lines overexpressing Arabidopsis transcription factors, we identified ERF50 as a key gene to control dormancy and germination. To study its regulation, we measured seed-related physiological parameters in loss-of-function mutants and carried out transactivation, protein interaction and ChIP-PCR analyses. We found direct ERF50-mediated repression of DOG1 and activation of EXPA2 transcription, which results in enhanced seed germination. Although ERF50 expression is increased by DOG1 in dormant seeds, ERF50 germination-promoting activity is blocked by RGL2. The physiological, genetic and molecular evidence gathered here supports that ERF50 controls germination timing by regulating DOG1 levels to leverage its role as enhancer of seed germination, via RGL2 antagonism on EXPA2 expression. Our results highlight the central role of ERF50 as a feedback regulator to couple and fine-tune seed dormancy and germination.
Collapse
Affiliation(s)
- Gerardo Carrera-Castaño
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Sara Mira
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Ángela Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Luis Gómez
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, 28040, Madrid, Spain
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| |
Collapse
|
23
|
Punia A, Kumari M, Chouhan M, Saini V, Joshi R, Kumar A, Kumar R. Proteomic and metabolomic insights into seed germination of Ferula assa-foetida. J Proteomics 2024; 300:105176. [PMID: 38604334 DOI: 10.1016/j.jprot.2024.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Cold stratification is known to affect the speed of seed germination; however, its regulation at the molecular level in Ferula assa-foetida remains ambiguous. Here, we used cold stratification (4 °C in the dark) to induce germination in F. assa-foetida and adopted a proteomic and metabolomic approach to understand the molecular mechanism of germination. Compared to the control, we identified 209 non-redundant proteins and 96 metabolites in germinated F. assa-foetida seed. Results highlight the common and unique regulatory mechanisms like signaling cascade, reactivation of energy metabolism, activation of ROS scavenging system, DNA repair, gene expression cascade, cytoskeleton, and cell wall modulation in F. assa-foetida germination. A protein-protein interaction network identifies 18 hub protein species central to the interactome and could be a key player in F. assa-foetida germination. Further, the predominant metabolic pathways like glucosinolate biosynthesis, arginine and proline metabolism, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis, and carotenoid biosynthesis in germinating seed may indicate the regulation of carbon and nitrogen metabolism is prime essential to maintain the physiology of germinating seedlings. The findings of this study provide a better understanding of cold stratification-induced seed germination, which might be utilized for genetic modification and traditional breeding of Ferula assa-foetida. SIGNIFICANCE: Seed germination is the fundamental checkpoint for plant growth and development, which has ecological significance. Ferula assa-foetida L., commonly known as "asafoetida," is a medicinal and food crop with huge therapeutic potential. To date, our understanding of F. assa-foetida seed germination is rudimentary. Therefore, studying the molecular mechanism that governs dormancy decay and the onset of germination in F. assa-foetida is essential for understanding the basic principle of seed germination, which could offer to improve genetic modification and traditional breeding.
Collapse
Affiliation(s)
- Ashwani Punia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manglesh Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Chouhan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Yang X, Huang Y, Xia P. The property and function of proteins undergoing liquid-liquid phase separation in plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38808958 DOI: 10.1111/pce.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
A wide variety of membrane-less organelles in cells play an essential role in regulating gene expression, RNA processing, plant growth and development, and helping organisms cope with changing external environments. In biology, liquid-liquid phase separation (LLPS) usually refers to a reversible process in which one or more specific molecular components are spontaneously separated from the bulk environment, producing two distinct liquid phases: concentrated and dilute. LLPS may be a powerful cellular compartmentalisation mechanism whereby biocondensates formed via LLPS when biomolecules exceed critical or saturating concentrations in the environment where they are found will be generated. It has been widely used to explain the formation of membrane-less organelles in organisms. LLPS studies in the context of plant physiology are now widespread, but most of the research is still focused on non-plant systems; the study of phase separation in plants needs to be more thorough. Proteins and nucleic acids are the main components involved in LLPS. This review summarises the specific features and properties of biomolecules undergoing LLPS in plants. We describe in detail these biomolecules' structural characteristics, the mechanism of formation of condensates, and the functions of these condensates. Finally, We summarised the phase separation mechanisms in plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Xuejiao Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
25
|
Ahmad M, Waraich EA, Zulfiqar U, Yong JWH, Ishfaq M, Din KU, Ullah A, Abbas A, Awan MI, Moussa IM, Elshikh MS. Thiourea improves yield and quality traits of Brassica napus L. by upregulating the antioxidant defense system under high temperature stress. Sci Rep 2024; 14:12195. [PMID: 38806561 PMCID: PMC11133410 DOI: 10.1038/s41598-024-62257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ejaz Ahmad Waraich
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Aman Ullah
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Masood Iqbal Awan
- Department of Agronomy, University of Agriculture, Faisalabad, Depalpur-Okara Campus, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Manai M, Fiorillo A, Matuozzo M, Li M, D'Ambrosio C, Franco L, Scaloni A, Fogliano V, Camoni L, Marra M. Phenotypical and biochemical characterization of tomato plants treated with triacontanol. Sci Rep 2024; 14:12096. [PMID: 38802434 PMCID: PMC11130248 DOI: 10.1038/s41598-024-62398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Biostimulants are heterogeneous products designed to support plant development and to improve the yield and quality of crops. Here, we focused on the effects of triacontanol, a promising biostimulant found in cuticle waxes, on tomato growth and productivity. We examined various phenological traits related to vegetative growth, flowering and fruit yield, the metabolic profile of fruits, and the response of triacontanol-treated plants to salt stress. Additionally, a proteomic analysis was conducted to clarify the molecular mechanisms underlying triacontanol action. Triacontanol application induced advanced and increased blooming without affecting plant growth. Biochemical analyses of fruits showed minimal changes in nutritional properties. The treatment also increased the germination rate of seeds by altering hormone homeostasis and reduced salt stress-induced damage. Proteomics analysis of leaves revealed that triacontanol increased the abundance of proteins related to development and abiotic stress, while down-regulating proteins involved in biotic stress resistance. The proteome of the fruits was not significantly affected by triacontanol, confirming that biostimulation did not alter the nutritional properties of fruits. Overall, our findings provide evidence of the effects of triacontanol on growth, development, and stress tolerance, shedding light on its mechanism of action and providing new insights into its potential in agricultural practices.
Collapse
Grants
- SFIDA-Development of an Intelligent Fertigator for Biofortified Agricultural Production Ministry of Enterprises and Made in Italy (MIMIT)
- NUTRAGE Italian National Research Council
- ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security - Working ON Foods," project PE00000003 Italian Ministry of University and Research (MUR)
- National Recovery and Resilience Plan, mission 4, component 2, investment 1.4 - D.D. 1032 -17/06/2022, project CN00000022 Agritech National Research Center
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, Tor Vergata University of Rome, Rome, Italy.
Collapse
Affiliation(s)
- Michela Manai
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Anna Fiorillo
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Monica Matuozzo
- Proteomics, Metabolomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80055, Portici, Italy
| | - Mei Li
- Quality and Design Group, Wageningen University & Research, 6700AA, Wageningen, The Netherlands
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80055, Portici, Italy
| | - Loris Franco
- IRRITEC SpA, 98070, Capo D'Orlando, Messina, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80055, Portici, Italy
| | - Vincenzo Fogliano
- Quality and Design Group, Wageningen University & Research, 6700AA, Wageningen, The Netherlands
| | - Lorenzo Camoni
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.
| | - Mauro Marra
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.
| |
Collapse
|
27
|
Zhao R, Yu Y, Gao M, Xing Y, Xue J, Xu L, Kang T. The conversion of monolignans to sesquilignans and dilignans is closely correlated to the regulation of Arctium lappa seed germination. PLANTA 2024; 260:9. [PMID: 38795149 DOI: 10.1007/s00425-024-04445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 05/27/2024]
Abstract
MAIN CONCLUSION The secondary metabolic conversion of monolignans to sesquilignans/dilignans was closely related to seed germination and seedling establishment in Arctium lappa. Arctium lappa plants are used as a kind of traditional Chinese medicines for nearly 1500 years, and so far, only a few studies have put focus on the key secondary metabolic changes during seed germination and seedling establishment. In the current study, a combined approach was used to investigate the correlation among secondary metabolites, plant hormone signaling, and transcriptional profiles at the early critical stages of A. lappa seed germination and seedling establishment. Of 50 metabolites in methonolic extracts of A. lappa samples, 35 metabolites were identified with LC-MS/MS and 15 metabolites were identified with GC-MS. Their qualitative properties were examined according to the predicted chemical structures. The quantitative analysis was performed for deciphering their metabolic profiles, discovering that the secondary metabolic conversion from monolignans to sesquilignans/dilignans was closely correlated to the initiation of A. lappa seed germination and seedling establishment. Furthermore, the critical transcriptional changes in primary metabolisms, translational regulation at different cellular compartments, and multiple plant hormone signaling pathways were revealed. In addition, the combined approach provides unprecedented insights into key regulatory mechanisms in both gene transcription and secondary metabolites besides many known primary metabolites during seed germination of an important traditional Chinese medicinal plant species. The results not only provide new insights to understand the regulation of key medicinal components of 'ARCTII FRUCTUS', arctiin and arctigenin at the stages of seed germination and seedling establishment, but also potentially spur the development of seed-based cultivation in A. lappa plants.
Collapse
Affiliation(s)
- Rong Zhao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, Liaoning Province, People's Republic of China
| | - Ying Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, Liaoning Province, People's Republic of China
| | - Mingze Gao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, Liaoning Province, People's Republic of China
| | - Yanping Xing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, Liaoning Province, People's Republic of China
| | - Jianing Xue
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, Liaoning Province, People's Republic of China
| | - Liang Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, Liaoning Province, People's Republic of China.
| | - Tingguo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, Liaoning Province, People's Republic of China.
| |
Collapse
|
28
|
Ding Y, Hou D, Yin Y, Chen K, He J, Yan S, Li H, Xiong Y, Zhou W, Li M. Genetic dissection of Brassica napus seed vigor after aging. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:141. [PMID: 38789698 DOI: 10.1007/s00122-024-04648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
KEY MESSAGE Stable and novel QTLs that affect seed vigor under different storage durations were discovered, and BnaOLE4, located in the interval of cqSW-C2-3, increased seed vigor after aging. Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions. A total of 229 quantitative trait loci (QTLs) were identified and were found to explain 3.78%-17.22% of the phenotypic variance for seed vigor-related traits after aging. We further demonstrated that seed vigor-related traits were positively correlated with oil content (OC) but negatively correlated with unsaturated fatty acids (FAs). Some pleiotropic QTLs that collectively regulate OC, FAs, and seed vigor, such as uq.A8, uq.A3-2, uq.A9-2, and uq.C3-1, were identified. The transcriptomic results from extreme pools of DH lines with distinct seed vigor phenotypes during accelerated aging revealed that various biological pathways and metabolic processes (such as glutathione metabolism and reactive oxygen species) were involved in seed vigor. Through integration of QTL analysis and RNA-Seq, a regulatory network for the control of seed vigor was constructed. Importantly, a candidate (BnaOLE4) from cqSW-C2-3 was selected for functional analysis, and transgenic lines overexpressing BnaOLE4 showed increased seed vigor after artificial aging. Collectively, these results provide novel information on QTL and potential candidate genes for molecular breeding for improved seed storability.
Collapse
Affiliation(s)
- Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Dalin Hou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Yiyi Xiong
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China.
| |
Collapse
|
29
|
Vukelić I, Radić D, Pećinar I, Lević S, Djikanović D, Radotić K, Panković D. Spectroscopic Investigation of Tomato Seed Germination Stimulated by Trichoderma spp. BIOLOGY 2024; 13:340. [PMID: 38785822 PMCID: PMC11118608 DOI: 10.3390/biology13050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Seed germination is a complex process that can be negatively affected by numerous stresses. Trichoderma spp. are known as effective biocontrol agents as well as plant growth and germination stimulators. However, understanding of the early interactions between seeds and Trichoderma spp. remains limited. In the present paper, Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy were used to reveal the nature of tomato seed germination as stimulated by Trichoderma. A rapid response of tomato seeds to Trichoderma spp. was observed within 48 h on Murashige and Skoog medium (MS) substrate, preceding any physical contact. Raman analysis indicated that both Trichoderma species stimulated phenolic compound synthesis by triggering plant-specific responses in seed radicles. The impact of T. harzianum and T. brevicompactum on two tomato cultivars resulted in alterations to the middle lamella pectin, cellulose, and xyloglucan in the primary cell wall. The Raman spectra indicated increased xylan content in NA with T9 treatment as well as increased hemicelluloses in GZ with T4 treatment. Moreover, T4 treatment resulted in elevated conjugated aldehydes in lignin in GZ, whereas the trend was reversed in NA. Additionally, FTIR analysis revealed significant changes in total protein levels in Trichoderma spp.-treated tomato seed radicles, with simultaneous decreases in pectin and/or xyloglucan. Our results indicate that two complementary spectroscopic methods, FTIR and Raman spectroscopy, can give valuable information on rapid changes in the plant cell wall structure of tomato radicles during germination stimulated by Trichoderma spp.
Collapse
Affiliation(s)
- Igor Vukelić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia;
| | - Danka Radić
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia;
| | - Ilinka Pećinar
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (S.L.)
| | - Steva Lević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (S.L.)
| | - Daniela Djikanović
- Institute for Multidisciplinary Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (K.R.)
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (K.R.)
| | - Dejana Panković
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia;
- Julius Kuehn Institute, Institute for Resistance Research and Stress Tolerance, Erwin Baur Strasse 27, 06484 Quedlinburg, Germany
| |
Collapse
|
30
|
O’Lone C, Juhász A, Nye-Wood M, Moody D, Dunn H, Ral JP, Colgrave ML. Advancing Sustainable Malting Practices: Aquaporins as Potential Breeding Targets for Improved Water Uptake during Controlled Germination of Barley ( Hordeum vulgare L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10149-10161. [PMID: 38635353 PMCID: PMC11066872 DOI: 10.1021/acs.jafc.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.
Collapse
Affiliation(s)
- Clare
E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, Black
Mountain, Australian Capital Territory 2601, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - David Moody
- InterGrain
Pty Ltd, Bibra
Lake 6163, Western Australia, Australia
| | - Hugh Dunn
- Pilot
Malting Australia, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - Jean-Philippe Ral
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, Black
Mountain, Australian Capital Territory 2601, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, St Lucia 4067, Queensland, Australia
| |
Collapse
|
31
|
Wani AK, Khan Z, Sena S, Akhtar N, Alreshdi MA, Yadav KK, Alkahtani AM, Wani AW, Rahayu F, Tafakresnanto C, Latifah E, Hariyono B, Arifin Z, Eltayeb LB. Carbon nanotubes in plant dynamics: Unravelling multifaceted roles and phytotoxic implications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108628. [PMID: 38636256 DOI: 10.1016/j.plaphy.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India.
| | - Zehra Khan
- Department of Biology, College of Science, Jazan University, 45142 Jazan, Saudi Arabia
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | | | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 4620044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Chendy Tafakresnanto
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Evy Latifah
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Budi Hariyono
- Research Center for Estate Crops, Research Organization for Agriculture and Food, National Research Innovation Agenc (BRIN), Bogor, 16911, Indonesia
| | - Zainal Arifin
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Sciences, Prince Sattam Bin AbdulAziz University-Al-Kharj, 11942, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Avezum L, Madode YE, Mestres C, Achir N, Delpech C, Chapron M, Gibert O, Rajjou L, Rondet E. New insights into the rapid germination process of lentil and cowpea seeds: High thiamine and folate, and low α-galactoside content. Food Chem 2024; 439:138027. [PMID: 38029561 DOI: 10.1016/j.foodchem.2023.138027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
During germination sensu-stricto in pulses, an increase in the content of thiamine (B1) and folate (B9) vitamins is expected, along with a reduction in α-galactoside levels. The aim of our study was to optimize germination to increase the nutritional quality of lentils and cowpeas. An experimental design was carried out at 12 h and 24 h of imbibition to analyze the effects of temperature, light, and water content on thiamine, folate, and α-galactoside content. Germination increased thiamine content by 152% in lentils, while in cowpeas, the increase was only 10%. Folate content in cowpea increased by 33%, while α-galactoside content decreased by 99% in cowpeas and by 48% in lentils. Germination sensu-stricto can be safely implemented by any food company worldwide as it is simple and involves less sanitary risk than sprouting. This opens up opportunities for enhancing food nutrient content and new ways of processing pulses.
Collapse
Affiliation(s)
- Luiza Avezum
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Yann E Madode
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi (LSA/FSA/UAC), Abomey-Calavi, Bénin
| | - Christian Mestres
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Nawel Achir
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Charlotte Delpech
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Morgane Chapron
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Olivier Gibert
- CIRAD, AGAP Institute, Université de Montpellier-CIRAD-INRAE-Institut Agro, Montpellier, France
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Eric Rondet
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France.
| |
Collapse
|
33
|
Gao W, Jiang Y, Yang X, Li T, Zhang L, Yan S, Cao J, Lu J, Ma C, Chang C, Zhang H. Functional analysis of a wheat class III peroxidase gene, TaPer12-3A, in seed dormancy and germination. BMC PLANT BIOLOGY 2024; 24:318. [PMID: 38654190 PMCID: PMC11040755 DOI: 10.1186/s12870-024-05041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.
Collapse
Affiliation(s)
- Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Yating Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Xiaohu Yang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Ting Li
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Litian Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China.
| |
Collapse
|
34
|
Huwanixi A, Peng Z, Li S, Zhou Y, Zhao S, Wan C. Comparative proteomic analysis of seed germination between allotetraploid cotton Gossypium hirsutum and Gossypium barbadense. J Proteomics 2024; 297:105130. [PMID: 38401592 DOI: 10.1016/j.jprot.2024.105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Seed germination, a key initial event in the plant life cycle, directly affects cotton yield and quality. Gossypium barbadense and Gossypium hirsutum gradually evolved through polyploidization, resulting in different characteristics, and this interspecific variation lacks genetic and molecular explanation. This work aimed to compare the proteomes between G. barbadense and G. hirsutum during seed germination. Here, we identified 2740 proteins for G. barbadense and 3758 for G. hirsutum. In the initial state, proteins in two cotton involved similar bioprocess, such as sugar metabolism, DNA repairing, and ABA signaling pathway. However, in the post-germination stage, G. hirsutum expressed more protein related to redox homeostasis, peroxidase activity, and pathogen interactions. Analyzing the different expression patterns of 915 single-copy orthogroups between the two kinds of cotton indicated that most of the differentially expressed proteins in G. barbadense were related to carbon metabolism. In contrast, most proteins in G. hirsutum were associated with stress response. Besides that, by proteogenomic analysis, we found 349 putative non-canonical peptides, which may be involved in plant development. These results will help to understand the different characteristics of these two kinds of cotton, such as fiber quality, yield, and adaptability. SIGNIFICANCE STATEMENT: Cotton is the predominant natural fiber crop worldwide; Gossypium barbadense and Gossypium hirsutum have evolved through polyploidization to produce differing traits. However, given their specific features, the divergence of mechanisms underlying seed germination between G. hirsutum and G. barbadense has not been discussed. Here, we explore what protein contributes to interspecific differences between G. barbadense and G. hirsutum during the seed germination period. This study helps to elucidate the evolution and domestication history of cotton polyploids and may allow breeders to understand their domestication history better and improve fiber quality and adaptability.
Collapse
Affiliation(s)
- Aishuake Huwanixi
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zhao Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Shenglan Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yutian Zhou
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Sixian Zhao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.
| |
Collapse
|
35
|
Chen Y, Wu J, Ma C, Zhang D, Zhou D, Zhang J, Yan M. Metabolome and transcriptome analyses reveal changes of rapeseed in response to ABA signal during early seedling development. BMC PLANT BIOLOGY 2024; 24:245. [PMID: 38575879 PMCID: PMC11000593 DOI: 10.1186/s12870-024-04918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.
Collapse
Affiliation(s)
- Yaqian Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- Yuelushan Laboratory, Changsha, 410125, China.
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Changrui Ma
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410125, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410125, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jihong Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Mingli Yan
- Yuelushan Laboratory, Changsha, 410125, China.
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
36
|
Zeng P, Xie T, Shen J, Liang T, Yin L, Liu K, He Y, Chen M, Tang H, Chen S, Shabala S, Zhang H, Cheng J. Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:731-748. [PMID: 38482956 DOI: 10.1111/jipb.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K+ efflux in salt-exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.
Collapse
Affiliation(s)
- Peng Zeng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaxin Shen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Taokai Liang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Lu Yin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kexin Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haijuan Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
37
|
Huang Y, Mei G, Zhu K, Ruan X, Wu H, Cao D. Shading treatment during late stage of seed development promotes subsequent seed germination and seedlings establishment in sunflower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111996. [PMID: 38272070 DOI: 10.1016/j.plantsci.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Kehua Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Xiaoli Ruan
- Zhejiang Nongke Seed Co.Ltd, 310021 Hangzhou, China
| | - Huaping Wu
- Huzhou Keao Seed Co.Ltd, 313000 Huzhou 313000, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.
| |
Collapse
|
38
|
Gonçalves JDP, Gasparini K, Picoli EADT, Costa MDBL, Araujo WL, Zsögön A, Ribeiro DM. Metabolic control of seed germination in legumes. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154206. [PMID: 38452650 DOI: 10.1016/j.jplph.2024.154206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Seed development, dormancy, and germination are connected with changes in metabolite levels. Not surprisingly, a complex regulatory network modulates biosynthesis and accumulation of storage products. Seed development has been studied profusely in Arabidopsis thaliana and has provided valuable insights into the genetic control of embryo development. However, not every inference applies to crop legumes, as these have been domesticated and selected for high seed yield and specific metabolic profiles and fluxes. Given its enormous economic relevance, considerable work has contributed to shed light on the mechanisms that control legume seed growth and germination. Here, we summarize recent progress in the understanding of regulatory networks that coordinate seed metabolism and development in legumes.
Collapse
Affiliation(s)
- Júlia de Paiva Gonçalves
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Karla Gasparini
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | | | | | - Wagner Luiz Araujo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Dimas Mendes Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
39
|
Li F, Ye H, Wang Y, Zhou J, Zhang G, Liu X, Lu X, Wang F, Chen Q, Chen G, Xiao Y, Tang W, Deng H. Transcriptomic Profiling of Two Rice Thermo-Sensitive Genic Male Sterile Lines with Contrasting Seed Storability after Artificial Accelerated Aging Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:945. [PMID: 38611475 PMCID: PMC11013862 DOI: 10.3390/plants13070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Seed storability has a significant impact on seed vitality and is a crucial genetic factor in maintaining seed value during storage. In this study, RNA sequencing was used to analyze the seed transcriptomes of two rice thermo-sensitive genic male sterile (TGMS) lines, S1146S (storage-tolerant) and SD26S (storage-susceptible), with 0 and 7 days of artificial accelerated aging treatment. In total, 2658 and 1523 differentially expressed genes (DEGs) were identified in S1146S and SD26S, respectively. Among these DEGs, 729 (G1) exhibited similar regulation patterns in both lines, while 1924 DEGs (G2) were specific to S1146S, 789 DEGs (G3) were specific to SD26S, and 5 DEGs (G4) were specific to contrary differential expression levels. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that "translation", "ribosome", "oxidative phosphorylation", "ATP-dependent activity", "intracellular protein transport", and "regulation of DNA-templated transcription" were significantly enriched during seed aging. Several genes, like Os01g0971400, Os01g0937200, Os03g0276500, Os05g0328632, and Os07g0214300, associated with seed storability were identified in G4. Core genes Os03g0100100 (OsPMEI12), Os03g0320900 (V2), Os02g0494000, Os02g0152800, and Os03g0710500 (OsBiP2) were identified in protein-protein interaction (PPI) networks. Seed vitality genes, MKKK62 (Os01g0699600), OsFbx352 (Os10g0127900), FSE6 (Os05g0540000), and RAmy3E (Os08g0473600), related to seed storability were identified. Overall, these results provide novel perspectives for studying the molecular response and related genes of different-storability rice TGMS lines under artificial aging conditions. They also provide new ideas for studying the storability of hybrid rice.
Collapse
Affiliation(s)
- Fan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Hongbing Ye
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Jieqiang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Guihua Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410128, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (F.L.); (H.Y.); (Y.W.); (J.Z.); (G.Z.); (X.L.); (X.L.); (F.W.); (Q.C.); (G.C.); (Y.X.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China
| |
Collapse
|
40
|
Zhang C, Wang H, Tian X, Lin X, Han Y, Han Z, Sha H, Liu J, Liu J, Zhang J, Bu Q, Fang J. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination. Nat Commun 2024; 15:2211. [PMID: 38480722 PMCID: PMC10937917 DOI: 10.1038/s41467-024-46420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Low-temperature germination (LTG) is an important agronomic trait for rice (Oryza sativa). Japonica rice generally has greater capacity for germination at low temperatures than the indica subpopulation. However, the genetic basis and molecular mechanisms underlying this complex trait are poorly understood. Here, we report that OsUBC12, encoding an E2 ubiquitin-conjugating enzyme, increases low-temperature germinability in japonica, owing to a transposon insertion in its promoter enhancing its expression. Natural variation analysis reveals that transposon insertion in the OsUBC12 promoter mainly occurs in the japonica lineage. The variation detected in eight representative two-line male sterile lines suggests the existence of this allele introgression by indica-japonica hybridization breeding, and varieties carrying the japonica OsUBC12 locus (transposon insertion) have higher low-temperature germinability than varieties without the locus. Further molecular analysis shows that OsUBC12 negatively regulate ABA signaling. OsUBC12-regulated seed germination and ABA signaling mainly depend on a conserved active site required for ubiquitin-conjugating enzyme activity. Furthermore, OsUBC12 directly associates with rice SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 1.1 (OsSnRK1.1), promoting its degradation. OsSnRK1.1 inhibits LTG by enhancing ABA signaling and acts downstream of OsUBC12. These findings shed light on the underlying mechanisms of UBC12 regulating LTG and provide genetic reference points for improving LTG in indica rice.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Xinyan Lin
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yunfei Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Zhongmin Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Hanjing Sha
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| |
Collapse
|
41
|
Yang Y, Ren Z, Li L, Li Y, Han Y, Liu Y, Cao H. WOX2 functions redundantly with WOX1 and WOX4 to positively regulate seed germination in Arabidopsis. PLANTA 2024; 259:83. [PMID: 38441675 DOI: 10.1007/s00425-024-04357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
MAIN CONCLUSION WOX family gene WOX2 is highly expressed during seed development, which functions redundantly with WOX1 and WOX4 to positively regulate seed germination. WOX (WUSCHEL-related homeobox) is a family of transcription factors in plants. They play essential roles in the regulation of plant growth and development, but their function in seed germination is not well understood. In this report, we show that WOX1, WOX2, and WOX4 are close homologues in Arabidopsis. WOX2 has a redundant function with WOX1 and WOX4, respectively, in seed germination. WOX2 is highly expressed during seed development, from the globular embryonic stage to mature dry seeds, and its expression is decreased after germination. Loss of function single mutant wox2, and double mutants wox1 wox2 and wox2 wox4-1 show decreased germination speed. WOX2 and WOX4 are essential for hypocotyl-radicle zone elongation during germination, potentially by promoting the expression of cell wall-related genes. We also found that WOX2 and WOX4 regulate germination through the gibberellin (GA) pathway. These results suggest that WOX2 and WOX4 integrate the GA pathway and downstream cell wall-related genes during germination.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyun Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
42
|
Rabeh K, Oubohssaine M, Hnini M. TOR in plants: Multidimensional regulators of plant growth and signaling pathways. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154186. [PMID: 38330538 DOI: 10.1016/j.jplph.2024.154186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Target Of Rapamycin (TOR) represents a ubiquitous kinase complex that has emerged as a central regulator of cell growth and metabolism in nearly all eukaryotic organisms. TOR is an evolutionarily conserved protein kinase, functioning as a central signaling hub that integrates diverse internal and external cues to regulate a multitude of biological processes. These processes collectively exert significant influence on plant growth, development, nutrient assimilation, photosynthesis, fruit ripening, and interactions with microorganisms. Within the plant domain, the TOR complex comprises three integral components: TOR, RAPTOR, and LST8. This comprehensive review provides insights into various facets of the TOR protein, encompassing its origin, structure, function, and the regulatory and signaling pathways operative in photosynthetic organisms. Additionally, we explore future perspectives related to this pivotal protein kinase.
Collapse
Affiliation(s)
- Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
| | - Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
43
|
Byregowda R, Nagarajappa N, Rajendra Prasad S, Kumar MP. Comparative regulatory network of transcripts behind radicle emergence and seedling stage of maize ( Zea mays L.). Heliyon 2024; 10:e25683. [PMID: 38370253 PMCID: PMC10869873 DOI: 10.1016/j.heliyon.2024.e25683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The transition from radicle emergence to seedling growth in maize is a crucial phase in the plant's life cycle, where rapid physiological and biochemical changes occur to facilitate successful development. In this study, we conducted a comparative transcriptomic analysis to gain a deeper understanding of the molecular processes driving this critical transition. The early divergence in gene expression patterns highlighted the upregulation of a substantial number of genes during radicle emergence. During radicle emergence, gene ontology (GO) term enrichment analysis unveiled active participation in biological processes such as chromatin assembly, cellular response to abiotic stress, and hormone signaling. This indicates that the initial stages of growth are marked by cellular expansion and adaptation to environmental stimuli. Conversely, in the seedling growth stage, GO analysis demonstrated a shift toward processes such as photosynthesis, nitrogen metabolism, and secondary metabolite biosynthesis, reflecting a transition to energy production and enhanced growth. In contrast, seedling growth was characterized by pathways related to photosynthesis and the production of gibberellins, crucial for robust seedling development. Hormonal regulation and starch metabolism were also prominent during radicle emergence, with various hormones, including auxins, diterpenoids, and brassinosteroids, driving processes like cell enlargement and stem growth. Moreover, starch and sucrose metabolism genes were expressed to mobilize stored reserves for energy during this stage. These findings offer valuable insights into the dynamic regulation of genes and pathways during this critical phase of maize development.
Collapse
Affiliation(s)
- Roopashree Byregowda
- Department of Seed Science and Technology, University of Agricultural Sciences, Bangalore 560065, India
| | - Nethra Nagarajappa
- Seed Technology Research Center, All India Co-ordinated Research Project on Seed (Crops), Gandhi Krishi Vignana Kendra, University of Agricultural Sciences, Bangalore 560065, India
| | | | - M.K. Prasanna Kumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| |
Collapse
|
44
|
Waterworth W, Balobaid A, West C. Seed longevity and genome damage. Biosci Rep 2024; 44:BSR20230809. [PMID: 38324350 PMCID: PMC11111285 DOI: 10.1042/bsr20230809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
Seeds are the mode of propagation for most plant species and form the basis of both agriculture and ecosystems. Desiccation tolerant seeds, representative of most crop species, can survive maturation drying to become metabolically quiescent. The desiccated state prolongs embryo viability and provides protection from adverse environmental conditions, including seasonal periods of drought and freezing often encountered in temperate regions. However, the capacity of the seed to germinate declines over time and culminates in the loss of seed viability. The relationship between environmental conditions (temperature and humidity) and the rate of seed deterioration (ageing) is well defined, but less is known about the biochemical and genetic factors that determine seed longevity. This review will highlight recent advances in our knowledge that provide insight into the cellular stresses and protective mechanisms that promote seed survival, with a focus on the roles of DNA repair and response mechanisms. Collectively, these pathways function to maintain the germination potential of seeds. Understanding the molecular basis of seed longevity provides important new genetic targets for the production of crops with enhanced resilience to changing climates and knowledge important for the preservation of plant germplasm in seedbanks.
Collapse
Affiliation(s)
- Wanda Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Atheer Balobaid
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Chris West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| |
Collapse
|
45
|
Dueñas C, Pagano A, Calvio C, Srikanthan DS, Slamet-Loedin I, Balestrazzi A, Macovei A. Genotype-specific germination behavior induced by sustainable priming techniques in response to water deprivation stress in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1344383. [PMID: 38390302 PMCID: PMC10881859 DOI: 10.3389/fpls.2024.1344383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Water stress brought about by climate change is among the major global concerns threatening food security. Rice is an important staple food which requires high water resources. Being a semi-aquatic plant, rice is particularly susceptible to drought. The aim of this work was to develop techniques directed to promote rice resilience to water deprivation stress during germination by implementing specific seed priming treatments. Five popular Italian rice varieties were subjected to priming treatments using novel, sustainable solutions, like poly-gamma-glutamic acid (γ-PGA), denatured γ-PGA (dPGA), and iron (Fe) pulsing, alone or in combination. The effect of the developed priming methods was tested under optimal conditions as well as under water deprivation stress imposed by polyethylene glycol (PEG) treatments. The priming efficacy was phenotypically determined in terms of germination behavior by measuring a series of parameters (germinability, germination index, mean germination time, seed vigor index, root and shoot length, germination stress tolerance index). Biochemical analyses were carried out to measure the levels of iron uptake and accumulation of reactive oxygen species (ROS). Integrative data analyses revealed that the rice varieties exhibited a strong genotype- and treatment-specific germination behavior. PEG strongly inhibited germination while most of the priming treatments were able to rescue it in all varieties tested except for Unico, which can be defined as highly stress sensitive. Molecular events (DNA repair, antioxidant response, iron homeostasis) associated with the transition from seed to seedling were monitored in terms of changes in gene expression profiles in two varieties sensitive to water deprivation stress with different responses to priming. The investigated genes appeared to be differentially expressed in a genotype-, priming treatment-, stress- and stage-dependent manner. The proposed seed priming treatments can be envisioned as sustainable and versatile agricultural practices that could help in addressing the impact of climate challenges on the agri-food system.
Collapse
Affiliation(s)
- Conrado Dueñas
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | | | - Inez Slamet-Loedin
- Trait and Genome Engineering Cluster, Rice Breeding Innovations, International Rice Research Institute, Metro Manila, Philippines
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
46
|
Lee JHJ, Kasote DM. Nano-Priming for Inducing Salinity Tolerance, Disease Resistance, Yield Attributes, and Alleviating Heavy Metal Toxicity in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:446. [PMID: 38337979 PMCID: PMC10857146 DOI: 10.3390/plants13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In today's time, agricultural productivity is severely affected by climate change and increasing pollution. Hence, several biotechnological approaches, including genetic and non-genetic strategies, have been developed and adapted to increase agricultural productivity. One of them is nano-priming, i.e., seed priming with nanomaterials. Thus far, nano-priming methods have been successfully used to mount desired physiological responses and productivity attributes in crops. In this review, the literature about the utility of nano-priming methods for increasing seed vigor, germination, photosynthetic output, biomass, early growth, and crop yield has been summarized. Moreover, the available knowledge about the use of nano-priming methods in modulating plant antioxidant defenses and hormonal networks, inducing salinity tolerance and disease resistance, as well as alleviating heavy metal toxicity in plants, is reviewed. The significance of nano-priming methods in the context of phytotoxicity and environmental safety has also been discussed. For future perspectives, knowledge gaps in the present literature are highlighted, and the need for optimization and validation of nano-priming methods and their plant physiological outcomes, from lab to field, is emphasized.
Collapse
Affiliation(s)
- Jisun H. J. Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Deepak M. Kasote
- Agricultural Research Station, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
47
|
Xiong M, Xu J, Zhou Z, Peng B, Shen Y, Shen H, Xu X, Li C, Deng L, Feng G. Salinity inhibits seed germination and embryo growth by reducing starch mobilization efficiency in barley. PLANT DIRECT 2024; 8:e564. [PMID: 38312996 PMCID: PMC10835642 DOI: 10.1002/pld3.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024]
Abstract
Barley is one of the world's earliest domesticated crops, which is widely used for beer production, animal feeding, and health care. Barley seed germination, particularly in increasingly saline soils, is key to ensure the safety of crop production. However, the mechanism of salt-affected seed germination in barley remains elusive. Here, two different colored barley varieties were used to independently study the regulation mechanism of salt tolerance during barley seed germination. High salinity delays barley seed germination by slowing down starch mobilization efficiency in seeds. The starch plate test revealed that salinity had a significant inhibitory effect on α-amylase activity in barley seeds. Further, NaCl treatment down-regulated the expression of Amy1, Amy2 and Amy3 genes in germinated seeds, thereby inhibiting α-amylase activity. In addition, the result of embryogenic culture system in vitro showed that the shoot elongation of barley was significantly inhibited by salt stress. These findings indicate that it is a feasible idea to study the regulation mechanism of salinity on barley seed germination and embryo growth from the aspect of starch-related source-sink communication.
Collapse
Affiliation(s)
- Min Xiong
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Jian Xu
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Zhou Zhou
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Bin Peng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Yuxiang Shen
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Huiquan Shen
- Jiangsu Coastal Area Institute of Agricultural SciencesYanchengJiangsuChina
| | - Xiao Xu
- Jiangsu Coastal Area Institute of Agricultural SciencesYanchengJiangsuChina
| | - Changya Li
- Yancheng Grain and Oil Crop Technical Guidance StationYanchengJiangsuChina
| | - Lina Deng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Gongneng Feng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| |
Collapse
|
48
|
Nogueira A, Puga H, Gerós H, Teixeira A. Seed germination and seedling development assisted by ultrasound: gaps and future research directions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:583-597. [PMID: 37728938 DOI: 10.1002/jsfa.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Since the early 1930s, when the first corn hybrids were grown commercially, innovations in the agriculture industry have had an unprecedent impact worldwide, helping to meet the demands for food of an exponentially growing population. In particular, seed technology research has contributed substantially to the improvement of crop performance over the years. Ultrasonic treatment of seeds is a green technology that promises to have an impact on the food industry, enhancing germination and seedling development in different species through the stimulation of water and oxygen uptake and seed metabolism. The increase in starch degradation has been associated with the stimulation of the α-amylases of the endosperm, but relatively few reports focus on how ultrasound affects seed germination at the biochemical and molecular levels. For instance, the picture is still unclear regarding the impact of ultrasound on transcriptional reprogramming in seeds. The purpose of this review is to assess the literature on ultrasound seed treatment accurately and critically, ultimately aiming to encourage new scientific and technological breakthroughs with a real impact on worldwide agricultural production while promoting sustainable practices on biological systems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- António Nogueira
- CMEMS-UMinho - Centre for Microelectromechanical Systems, University of Minho, Guimarães, Portugal
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Hélder Puga
- CMEMS-UMinho - Centre for Microelectromechanical Systems, University of Minho, Guimarães, Portugal
| | - Hernâni Gerós
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - António Teixeira
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
49
|
Leal LC, Koski MH. Linking pollen limitation and seed dispersal effectiveness. Ecol Lett 2024; 27:e14347. [PMID: 38073068 DOI: 10.1111/ele.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023]
Abstract
Seed production and dispersal are crucial ecological processes impacting plant demography, species distributions and community assembly. Plant-animal interactions commonly mediate both seed production and seed dispersal, but current research often examines pollination and seed dispersal separately, which hinders our understanding of how pollination services affect downstream dispersal services. To fill this gap, we propose a conceptual framework exploring how pollen limitation can impact the effectiveness of seed dispersal for endozoochorous and myrmecochorous plant species. We summarize the quantitative and qualitative effects of pollen limitation on plant reproduction and use Optimal Foraging Theory to predict its impact on the foraging behaviour of seed dispersers. In doing so, we offer a new framework that poses numerous hypotheses and empirical tests to investigate links between pollen limitation and seed dispersal effectiveness and, consequently, post-dispersal ecological processes occurring at different levels of biological organization. Finally, considering the importance of pollination and seed dispersal outcomes to plant eco-evolutionary dynamics, we discussed the implications of our framework for future studies exploring the demographic and evolutionary impacts of pollen limitation for animal-dispersed plants.
Collapse
Affiliation(s)
- Laura C Leal
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
50
|
Gupta R, Min CW, Cho JH, Jung JY, Jeon JS, Kim YJ, Kim JK, Kim ST. Integrated "-omics" analysis highlights the role of brassinosteroid signaling and antioxidant machinery underlying improved rice seed longevity during artificial aging treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108308. [PMID: 38169224 DOI: 10.1016/j.plaphy.2023.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Seed longevity is a critical characteristic in agriculture, yet the specific genes/proteins responsible for this trait and the molecular mechanisms underlying reduced longevity during seed aging remain largely elusive. Here we report the comparative proteome and metabolome profiling of three rice cultivars exhibiting varying degrees of aging tolerance: Dharial, an aging-tolerant cultivar; Ilmi, an aging-sensitive cultivar; and A2, a moderately aging-tolerant cultivar developed from the crossbreeding of Dharial and Ilmi. Artificial aging treatment (AAT) markedly reduced the germination percentage and enhanced the activities of antioxidant enzymes in all the cultivars. Further, proteomics results showed a key role of the ubiquitin (Ub)-proteasome pathway in the degradation of damaged proteins during AAT while other proteases were majorly reduced. In addition, proteins associated with energy production and protein synthesis were strongly reduced in Ilmi while these were majorly increased in A2 and Dharial. These, along with metabolomics results, suggest that Ub-proteasome mediated protein degradation during AAT results in the accumulation of free amino acids in Ilmi while tolerant cultivars potentially utilize those for energy production and synthesis of stress-related proteins, especially hsp20/alpha-crystallin family protein. Additionally, both Dharial and A2 seem to activate brassinosteroid signaling and suppress jasmonate signaling which initiates a signaling cascade that allows accumulation of enzymatic and non-enzymatic antioxidants for efficient detoxification of aging-induced ROS. Taken together, these results provide an in-depth understanding of the aging-induced changes in rice seeds and highlight key pathways responsible for maintaining seed longevity during AAT.
Collapse
Affiliation(s)
- Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jun-Hyeon Cho
- Sangju Substation, National Institute of Crop Science, Rural Development Administration (RDA), Sangju, 37139, Republic of Korea
| | - Ju-Young Jung
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea.
| |
Collapse
|