1
|
Lu D, Xu M, Li Y, He X, Cao J, Zhu C, Sun C, Jia H, Li S. PpGATA4 mediates fruit softening and transcriptionally regulates PpEXPA1 in peach (Prunus persica). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112341. [PMID: 39615755 DOI: 10.1016/j.plantsci.2024.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Softening during fruit ripening often exacerbates mechanical damage during postharvest processing and increases susceptibility to pathogens. According to current research, the fruit softening process is closely related to the degradation of the cell wall. The nonenzymatic protein expansin (EXP) is a key cell wall loosening agent involved in cell growth and cell wall degradation. However, the transcriptional regulation of EXPs during peach fruit softening remains unclear. In this study, the transcription factor PpGATA4 was found to be involved in the postharvest softening of peach fruit. To better understand the regulatory mechanisms involved, the GATA gene family in peach (Prunus persica) was identified. Analysis of the transcriptomes of the transient overexpression and postharvest storage stages of peach revealed that an expansin gene, PpEXPA1, was related to PpGATA4. Further studies revealed a regulatory model in which PpGATA4 could transactivate the expression of PpEXPA1.
Collapse
Affiliation(s)
- Dingwang Lu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Mengjie Xu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yinchun Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xueqi He
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinping Cao
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Changqing Zhu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chongde Sun
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Huijuan Jia
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
2
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39853950 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Tianjun Cao
- School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaobo Li
- School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, 311231, China
| |
Collapse
|
3
|
Wang Z, Wang Y, Wong DCJ. Editorial: Surviving and thriving: how crops perceive and respond to temperature stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1550257. [PMID: 39866320 PMCID: PMC11758980 DOI: 10.3389/fpls.2024.1550257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and Chinese Academy of Sciences (CAS) Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School Research of Biology, The Australian National University, Acton, ACT, Australia
- School of Agriculture, Food, and Wine, Waite Research Precinct, University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Guo S, Chen H, Wu H, Xu Z, Yang H, Lin Q, Feng H, Zeng Z, Wang S, Liu H, Liu X, Cao S, Wang K. Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Betula platyphylla Reveals Promising Candidates for Heat Tolerance. Int J Mol Sci 2024; 26:172. [PMID: 39796031 PMCID: PMC11720272 DOI: 10.3390/ijms26010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the HSF gene family in Betula platyphylla remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 BpHSF genes within the Betula platyphylla genome, revealing their uneven distribution across chromosomes. These genes were categorized into three subfamilies: A, B, and C. Each was characterized by conserved protein motifs and gene structures, with notable divergence observed between subfamilies. Collinearity analysis suggested that segmental duplication events have driven the evolutionary expansion of the BpHSF gene family. Promoter region analysis identified an array of cis-acting elements linked to growth, development, hormonal regulation, and stress responses. Subcellular localization experiments confirmed the nuclear localization of BpHSFA2a, BpHSFB1a, and BpHSFC1a, consistent with in silico predictions. RNA-seq and RT-qPCR analyses revealed tissue-specific expression patterns of BpHSF genes and their dynamic responses to heat stress, with qPCR validation highlighting a significant upregulation of BpHSFA2a under high-temperature conditions. In summary, this study provided a comprehensive characterization of the HSF gene family in Betula platyphylla, laying a solid foundation for future functional studies. Particularly, BpHSFA2a emerges as a promising candidate gene for enhancing heat tolerance in Betula platyphylla, warranting further detailed investigation.
Collapse
Affiliation(s)
- Shengzhou Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Hao Chen
- College of Computer Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hongwei Wu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Institute of Science and Technology, College of Forestry, Haixia Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zuyuan Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Hao Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hanyu Feng
- College of Jixian Honors, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Zilu Zeng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Sanjiao Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.W.); (X.L.)
| | - Haolin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.W.); (X.L.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Kang Wang
- College of Jixian Honors, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| |
Collapse
|
5
|
Liu X, Zhang F, Xun Z, Shao J, Luo W, Jiang X, Wang J, Wang J, Li S, Lin Q, Ren Y, Zhao H, Cheng Z, Wan J. The OsNL1-OsTOPLESS2-OsMOC1/3 pathway regulates high-order tiller outgrowth in rice. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39676575 DOI: 10.1111/pbi.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Tiller is an important factor in determining rice yield. Currently, researches mainly focus on the outgrowth of low-order tiller (LOT), while the regulation mechanism of high-order tiller (HOT) outgrowth has remained unknown. In this study, we detected one OsNL1 mutant, nl1, exhibiting HOT numbers increase, and found that OsNL1 interacts with OsTOPLESS2, which was mediated by the core motif of nine amino acids VDCTLSLGT within the HAN domain of OsNL1. The topless2 mutant exhibits similar HOT number increase as in the nl1. Through ChIP-seq analysis, we revealed that OsNL1 recruits OsTOPLESS2 to conduct histone deacetylation in the promoters of OsMOC1 and OsMOC3 to regulate HOT outgrowth. Moreover, we showed that the HAN domain is essential for OsNL1 function as a repressor. In summary, our study reveals partial mechanism of HOT outgrowth in rice and deciphers the molecular biology function of the HAN domain. This will contribute to the comprehensive understanding of tiller outgrowth and the role of HAN-domain-containing genes.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Feng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Ziqi Xun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Jiale Shao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Wenfan Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xiaokang Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Jiachang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Shuai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Huixian Zhao
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Nanfan Research Institute, CAAS, Sanya, Haina, China
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Nanfan Research Institute, CAAS, Sanya, Haina, China
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
6
|
Song Y, Lan Y, Li K, Qiao D, Cao Y, Xu H. Regulation of a novel DsGATA1 from Dunaliella salina on the synthesis of carotenoids under red light. Appl Microbiol Biotechnol 2024; 108:82. [PMID: 38189955 DOI: 10.1007/s00253-023-12894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024]
Abstract
Dunaliella salina is a high-quality industrial effector for carotenoid production. The mechanism by which red light regulates carotenoid synthesis is still unclear. In this study, a transcription factor of DsGATA1 with a distinct structure was discovered in D. salina. The recognition motif of DsGATA1 was comparable to that of plant and fungal GATA, despite its evolutionary proximity to animal-derived GATA. The expression of DsGATA1 in D. salina was still noticeably decreased when exposed to red light. Analysis of physiological and biochemical transcriptomic data from overexpressed, interfering, and wild-type strains of DsGATA1 revealed that DsGATA1 acts as a global regulator of D. salina carotenoid synthesis. The upregulated genes in the CBP pathway by DsGATA1 were involved in its regulation of the synthesis of carotenoids. DsGATA1 also enhanced carotenoid accumulation under red light by affecting N metabolism. DsGATA1 was found to directly bind to the promoter of nitrate reductase to activate its expression, promoting D. salina nitrate uptake and accelerating biomass accumulation. DsGATA1 affected the expression of the genes encoding GOGAT, GDH, and ammonia transporter proteins. Moreover, our study revealed that the regulation of N metabolism by DsGATA1 led to the production of NO molecules that inhibited carotenoid synthesis. However, DsGATA1 significantly enhanced carotenoid synthesis by NO scavenger removal of NO. The D. salina carotenoid accumulation under red light was elevated by 46% in the presence of overexpression of DsGATA1 and NO scavenger. Nevertheless, our results indicated that DsGATA1 could be an important target for engineering carotenoid production. KEY POINTS: • DsGATA1 with a distinct structure and recognition motif was found in D. salina • DsGATA1 enhanced carotenoid production and biomass in D. salina under red light • DsGATA1 is involved in the regulation of N metabolism and carotenoid synthesis.
Collapse
Affiliation(s)
- Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yanhong Lan
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ke Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Bataller S, Davis JA, Gu L, Baca S, Chen G, Majid A, Villacastin AJ, Barth D, Han MV, Rushton PJ, Shen QJ. Disruption of the OsWRKY71 transcription factor gene results in early rice seed germination under normal and cold stress conditions. BMC PLANT BIOLOGY 2024; 24:1090. [PMID: 39551730 PMCID: PMC11571745 DOI: 10.1186/s12870-024-05808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Early seed germination in crops can confer a competitive advantage against weeds and reduce the time to maturation and harvest. WRKY transcription factors regulate many aspects of plant development including seed dormancy and germination. Both positive and negative regulators of seed germination have been reported in many plants such as rice and Arabidopsis. Using a transient expression system, we previously demonstrated that OsWRKY71 is a negative regulator of gibberellin (GA) signaling in aleurone cells and likely forms a "repressosome" complex with other transcriptional repressors. Hence, it has the potential to impact seed germination properties. RESULTS In this study, we demonstrate that OsWRKY71, a Group IIa WRKY gene, appeared at the same time as seed-bearing plants. Rice mutants lacking OsWRKY71 have seeds and embryos that germinate earlier than wildtype controls. In oswrky71 aleurone layers, α-amylase activity was hypersensitive to stimulation by GA3 and hyposensitive to inhibition by abscisic acid (ABA). Early germination in oswrky71 intact seeds was also hyposensitive to ABA. Transcriptomic profiling during embryo germination and early post-germination growth demonstrates that OsWRKY71 influences the expression of 9-17% of genes in dry and imbibing embryos. Compared to wildtype embryos, the mutant transcriptomes have large temporal shifts at 4, 8 and 12 h after imbibition (HAI). Importantly, many genes involved in the ABA-dependent inhibition of seed germination were downregulated in oswrky71-1. This mutant also displayed altered expression of multiple ABA receptors (OsPYLs/RCARs) that control ABA signaling and the VP1-SDR4-DOG1L branch of ABA signaling that promotes seed dormancy. Association studies reveal an OsWRKY71-containing quantitative trait locus involved in low-temperature seed germinability, qLTG-2. Indeed, oswrky71 seeds germinated early at 15 °C. CONCLUSIONS Rice Group-IIa WRKY transcription factor OsWRKY71 is a master regulator of germination that influences the expression of 9-17% of genes in dry and imbibing embryos. It is also most likely the primary candidate of low-temperature seed germinability QTL, qLTG-2. We propose that knockouts of OsWRKY71 can generate rice varieties with improved germination properties under normal or low-temperature conditions.
Collapse
Affiliation(s)
- Santiago Bataller
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - James A Davis
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Lingkun Gu
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Sophia Baca
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Gaelan Chen
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Azeem Majid
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Anne J Villacastin
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Dylan Barth
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Paul J Rushton
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA.
| |
Collapse
|
8
|
Bhardwaj E, Pokhriyal E, Jain A, Lal M, Khari M, Jalan K, Das S. The non-canonically organized members of MIR395 gene family in Brassica juncea are associated with developmentally regulated, sulfate-stress responsive bidirectional promoters that exhibit orientation-dependent differential transcriptional activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112214. [PMID: 39127349 DOI: 10.1016/j.plantsci.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Several MICRORNA genes belonging to same family or different families are often found in homologous or non-homologous clusters. Among the various classes, head-to-head arranged genes form one of the largest categories of non-canonically organized genes. Such head-to-head arranged, non-canonically organized genes possibly share cis-regulatory region with the intergenic sequence having the potential to function as bi-directional promoter (BDP). The transcriptional regulation of head-to-head arranged genes, especially with bidirectional promoters, remains an enigma. In the past, bidirectional promoters have been characterized for a small set of protein-coding gene pairs in plants; however, to the best of our knowledge, no such study has been carried so far for MICRORNA genes. The present study thus functionally characterizes bidirectional promoters associated with members of MIR395 family, which is evolutionary conserved and is most frequently occurring cluster across plant kingdom. In Arabidopsis thaliana, the MIR395 gene family contains six members with two head-to-head arranged gene pairs- MIR395A-B and MIR395E-F. This organization was found to be conserved at seven loci for MIR395A-B, and eleven loci for MIR395E-F in five Brassica sps. Sequence analysis of the putative bidirectional promoters revealed variation in length, GC content and distribution of strict TATA-box. Comparatively higher level of conservation at both the ends of the bidirectional promoters, corresponding to ca. 250 bp upstream of 5'end of the respective MIRNA precursor, was observed. These conserved regions harbour several abiotic stress (nutrient, salt, drought) and hormone (ABA, ethylene) responsive cis-motifs. Functional characterization of putative bidirectional promoters associated with MIR395A-B and MIR395E-F from Arabidopsis and their respective orthologs from Brassica juncea (Bj_A08 MIR395A-B, Bj_B03 MIR395A-B, Bj_A07.1 MIR395E-F and Bj_A07.2 MIR395E-F) was carried out using a dual-reporter vector with β-glucuronidase (GUS) and Green Fluorescent Protein (GFP). Analysis of transcriptional regulation of the two reporter genes - GUS and GFP during developmental stages confirmed their bidirectional nature. Orientation-dependent differential reporter activity indicated asymmetric nature of the promoters. Comparison of the reporter activity amongst orthologs, paralogs and homeologs revealed regulatory diversification, an outcome expected in polyploid genomes. Interestingly, reporter gene activities driven by selected bidirectional promoters were also observed in anther and siliques apart vegetative tissues indicating role of miR395 in anther and fruit development. Finally, we evaluated the activity of reporter genes driven under transcriptional regulation of bidirectional promoters under normal and sulfate-deprived conditions which revealed asymmetric inducibility under sulfate-starvation, in agreement with the known role of miR395 in sulfate homeostasis.
Collapse
Affiliation(s)
- Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Ekta Pokhriyal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Aditi Jain
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Megha Khari
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Komal Jalan
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
9
|
Duan X, Yuan Y, Real N, Tang M, Ren J, Wei J, Liu B, Zhang X. Fine mapping and identification of candidate genes associated with powdery mildew resistance in melon ( Cucumis melo L.). HORTICULTURE RESEARCH 2024; 11:uhae222. [PMID: 39411005 PMCID: PMC11473854 DOI: 10.1093/hr/uhae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Powdery mildew (PM), a common disease of many major crop species, including melon (Cucumis melo L.), affects plant growth and fruit quality and seriously reduces production. Using a combined morphological and molecular approach, we attribute the PM pathogen that naturally occurs in melon to Podosphaera xanthii, and specifically to physiological race 1. An investigation into the genetic basis of PM resistance in melon using the resistant accession 'PI 164637' and susceptible counterpart 'HDZ' reveals dominant inheritance of PM resistance at the seedling stage, supported by F2 and backcross population segregation ratios. Adult plant assessments indicate a major gene with an additive effect for PM resistance. Bulk segregant analysis coupled with high-throughput sequencing identified a significant quantitative trait locus on chromosome 6 that is associated with PM resistance. Genetic mapping narrowed down the candidate region to 63.5 kb using InDel molecular markers, harboring 12 candidate genes. The marker chr06_indel_5 047 127 demonstrated high accuracy in screening PM resistance in an F2 segregating population and 30 inbred lines as natural populations. Functional annotation and expression analysis of candidate genes revealed that MYB transcription factor MELO3C006700, GATA transcription factor MELO3C028829 and heparanase-like protein MELO3C006697 are promising candidate genes for PM resistance in melon. The genetic architecture underlying this resistance in melon offers valuable insights for breeding programs, and the identified markers, especially chr06_indel_5 047 127, may enable practical applications for marker-assisted selection in developing PM-resistant melon varieties.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Nanchang Road 403, Saybagh District, Urumqi 830091, China
- Sanya Mingzhu Melon and Watermelon Variety Demonstration Evaluation and Research Center, Yazhou District, Sanya 572000, China
| | - Yue Yuan
- Wuhan Academy of Agricultural Sciences, Baishazhou Avenue 107, Hongshan District, Wuhan 430072, China
| | - Núria Real
- Plant Pathology, IRTA Cabrils. Carretera de Cabrils km 2, 08348 Cabrils Spain
| | - Mi Tang
- Wuhan Academy of Agricultural Sciences, Baishazhou Avenue 107, Hongshan District, Wuhan 430072, China
- Anhui Jianghuai Horticulture Seeds Co., Ltd, Changfeng County, Hefei City, Anhui Province
| | - Jian Ren
- Wuhan Academy of Agricultural Sciences, Baishazhou Avenue 107, Hongshan District, Wuhan 430072, China
| | - Jiaqi Wei
- Wuhan Academy of Agricultural Sciences, Baishazhou Avenue 107, Hongshan District, Wuhan 430072, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Nanchang Road 403, Saybagh District, Urumqi 830091, China
- Sanya Mingzhu Melon and Watermelon Variety Demonstration Evaluation and Research Center, Yazhou District, Sanya 572000, China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Nanchang Road 403, Saybagh District, Urumqi 830091, China
- Sanya Mingzhu Melon and Watermelon Variety Demonstration Evaluation and Research Center, Yazhou District, Sanya 572000, China
- Hainan Sanya Crops Breeding Trial Center of Xinjiang Academy Agricultural Sciences, Haitang District, Sanya, 572000
| |
Collapse
|
10
|
Voichek Y, Hristova G, Mollá-Morales A, Weigel D, Nordborg M. Widespread position-dependent transcriptional regulatory sequences in plants. Nat Genet 2024; 56:2238-2246. [PMID: 39266765 PMCID: PMC11525189 DOI: 10.1038/s41588-024-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Much of what we know about eukaryotic transcription stems from animals and yeast; however, plants evolved separately for over a billion years, leaving ample time for divergence in transcriptional regulation. Here we set out to elucidate fundamental properties of cis-regulatory sequences in plants. Using massively parallel reporter assays across four plant species, we demonstrate the central role of sequences downstream of the transcription start site (TSS) in transcriptional regulation. Unlike animal enhancers that are position independent, plant regulatory elements depend on their position, as altering their location relative to the TSS significantly affects transcription. We highlight the importance of the region downstream of the TSS in regulating transcription by identifying a DNA motif that is conserved across vascular plants and is sufficient to enhance gene expression in a dose-dependent manner. The identification of a large number of position-dependent enhancers points to fundamental differences in gene regulation between plants and animals.
Collapse
Affiliation(s)
- Yoav Voichek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| | - Gabriela Hristova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Almudena Mollá-Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
11
|
Elsadek MA, Wang R, Xu K, Wang T, Zhang A, Qi Z, Liu B, Yuan L, Chen L. Tuber quality enhancement via grafting potato onto a wooden goji rootstock through vitalizing multi-pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108927. [PMID: 39067104 DOI: 10.1016/j.plaphy.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.
Collapse
Affiliation(s)
- Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Department of Horticulture, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Ruiting Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Zheng Q, Huang Y, He X, Zhang MM, Liu ZJ. Genome-Wide Identification and Expression Pattern Analysis of GATA Gene Family in Orchidaceae. Genes (Basel) 2024; 15:915. [PMID: 39062694 PMCID: PMC11276399 DOI: 10.3390/genes15070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The GATA transcription factors play crucial roles in plant growth, development, and responses to environmental stress. Despite extensive studies of GATA genes in many plants, their specific functions and mechanisms in orchids remain unexplored. In our study, a total of 149 GATA genes were identified in the genomes of seven sequenced orchid species (20 PeqGATAs, 23 CgGATAs, 24 CeGATAs, 23 DcaGATAs, 20 DchGATAs, 27 DnoGATAs, and 12 GelGATAs), classified into four subfamilies. Subfamily I typically contains genes with two exons, while subfamily II contains genes with two or three exons. Most members of subfamilies III and IV have seven or eight exons, with longer introns compared to subfamilies I and II. In total, 24 pairs (CgGATAs-DchGATAs), 27 pairs (DchGATAs-DnoGATAs), and 14 pairs (DnoGATAs-GelGATAs) of collinear relationships were identified. Cis-acting elements in GATA promoters were mainly enriched in abscisic acid (ABA) response elements and methyl jasmonate (MeJA) elements. Expression patterns and RT-qPCR analysis revealed that GATAs are involved in the regulation of floral development in orchids. Furthermore, under high-temperature treatment, GL17420 showed an initial increase followed by a decrease, GL18180 and GL17341 exhibited a downregulation followed by upregulation and then a decrease, while GL30286 and GL20810 displayed an initial increase followed by slight inhibition and then another increase, indicating diverse regulatory mechanisms of different GATA genes under heat stress. This study explores the function of GATA genes in orchids, providing a theoretical basis and potential genetic resources for orchid breeding and stress resistance improvement.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Wu W, Dong X, Chen G, Lin Z, Chi W, Tang W, Yu J, Wang S, Jiang X, Liu X, Wu Y, Wang C, Cheng X, Zhang W, Xuan W, Terzaghi W, Ronald PC, Wang H, Wang C, Wan J. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice. Nat Genet 2024; 56:1516-1526. [PMID: 38872029 PMCID: PMC11250373 DOI: 10.1038/s41588-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Excessive nitrogen promotes the formation of nonproductive tillers in rice, which decreases nitrogen use efficiency (NUE). Developing high-NUE rice cultivars through balancing nitrogen uptake and the formation of productive tillers remains a long-standing challenge, yet how these two processes are coordinated in rice remains elusive. Here we identify the transcription factor OsGATA8 as a key coordinator of nitrogen uptake and tiller formation in rice. OsGATA8 negatively regulates nitrogen uptake by repressing transcription of the ammonium transporter gene OsAMT3.2. Meanwhile, it promotes tiller formation by repressing the transcription of OsTCP19, a negative modulator of tillering. We identify OsGATA8-H as a high-NUE haplotype with enhanced nitrogen uptake and a higher proportion of productive tillers. The geographical distribution of OsGATA8-H and its frequency change in historical accessions suggest its adaption to the fertile soil. Overall, this study provides molecular and evolutionary insights into the regulation of NUE and facilitates the breeding of rice cultivars with higher NUE.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Zhixi Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Saisai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xingzhou Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaolan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Yujun Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Chunyuan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xinran Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | | | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
14
|
Wang Y, Li X, Mo Y, Jiang C, Zhou Y, Hu J, Zhang Y, Lv J, Zhao K, Lu Z. Identification and expression profiling of SmGATA genes family involved in response to light and phytohormones in eggplant. FRONTIERS IN PLANT SCIENCE 2024; 15:1415921. [PMID: 38863540 PMCID: PMC11165305 DOI: 10.3389/fpls.2024.1415921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
GATA proteins are transcription factors of zinc finger proteins, which play an important role in plant growth development and abiotic stress. However, there have been no identification or systematic studies of the GATA gene family in eggplant. In this study, 28 SmGATA genes were identified in the genome database of eggplant, which could be divided into four subgroups. Plant development, hormones, and stress-related cis-acting elements were identified in promoter regions of the SmGATA gene family. RT-qPCR indicated that 4 SmGATA genes displayed upregulated expressions during fruit developmental stage, whereas 2 SmGATA genes were down-regulated expression patterns. It was also demonstrated that SmGATA genes may be involved in light signals to regulate fruit anthocyanin biosynthesis. Furthermore, the expression patterns of SmGATA genes under ABA, GA and MeJA treatments showed that the SmGATAs were involved in the process of fruit ripening. Notably, SmGATA4 and SmGATA23 were highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways and the proteins they encoded were localized in the nucleus. All these results showed GATA genes likely play a major role in regulating fruit anthocyanin biosynthesis by integrating the light, ABA, GA and MeJA signaling pathways and provided references for further research on fruit quality in eggplant.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Xinyun Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Yunrong Mo
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Caiqian Jiang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Ying Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Jingyi Hu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Youling Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Kai Zhao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Zhenya Lu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Abdulla MF, Mostafa K, Aydin A, Kavas M, Aksoy E. GATA transcription factor in common bean: A comprehensive genome-wide functional characterization, identification, and abiotic stress response evaluation. PLANT MOLECULAR BIOLOGY 2024; 114:43. [PMID: 38630371 PMCID: PMC11024004 DOI: 10.1007/s11103-024-01443-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
The GATA transcription factors (TFs) have been extensively studied for its regulatory role in various biological processes in many plant species. The functional and molecular mechanism of GATA TFs in regulating tolerance to abiotic stress has not yet been studied in the common bean. This study analyzed the functional identity of the GATA gene family in the P. vulgaris genome under different abiotic and phytohormonal stress. The GATA gene family was systematically investigated in the P. vulgaris genome, and 31 PvGATA TFs were identified. The study found that 18 out of 31 PvGATA genes had undergone duplication events, emphasizing the role of gene duplication in GATA gene expansion. All the PvGATA genes were classified into four significant subfamilies, with 8, 3, 6, and 13 members in each subfamily (subfamilies I, II, III, and IV), respectively. All PvGATA protein sequences contained a single GATA domain, but subfamily II members had additional domains such as CCT and tify. A total of 799 promoter cis-regulatory elements (CREs) were predicted in the PvGATAs. Additionally, we used qRT-PCR to investigate the expression profiles of five PvGATA genes in the common bean roots under abiotic conditions. The results suggest that PvGATA01/10/25/28 may play crucial roles in regulating plant resistance against salt and drought stress and may be involved in phytohormone-mediated stress signaling pathways. PvGATA28 was selected for overexpression and cloned into N. benthamiana using Agrobacterium-mediated transformation. Transgenic lines were subjected to abiotic stress, and results showed a significant tolerance of transgenic lines to stress conditions compared to wild-type counterparts. The seed germination assay suggested an extended dormancy of transgenic lines compared to wild-type lines. This study provides a comprehensive analysis of the PvGATA gene family, which can serve as a foundation for future research on the function of GATA TFs in abiotic stress tolerance in common bean plants.
Collapse
Affiliation(s)
- Mohamed Farah Abdulla
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, 55200, Samsun, Türkiye
| | - Karam Mostafa
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, 55200, Samsun, Türkiye
- The Central Laboratory for Date Palm Research and Development, Agricultural Research Center (ARC), 12619, Giza, Egypt
| | - Abdullah Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, 55200, Samsun, Türkiye
| | - Musa Kavas
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, 55200, Samsun, Türkiye.
| | - Emre Aksoy
- Faculty of Arts and Sciences, Department of Biology, Middle East Technical University, 06800, Ankara, Türkiye
| |
Collapse
|
16
|
Rosati VC, Quinn AA, Gleadow RM, Blomstedt CK. The Putative GATA Transcription Factor SbGATA22 as a Novel Regulator of Dhurrin Biosynthesis. Life (Basel) 2024; 14:470. [PMID: 38672741 PMCID: PMC11051066 DOI: 10.3390/life14040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Cyanogenic glucosides are specialized metabolites produced by over 3000 species of higher plants from more than 130 families. The deployment of cyanogenic glucosides is influenced by biotic and abiotic factors in addition to being developmentally regulated, consistent with their roles in plant defense and stress mitigation. Despite their ubiquity, very little is known regarding the molecular mechanisms that regulate their biosynthesis. The biosynthetic pathway of dhurrin, the cyanogenic glucoside found in the important cereal crop sorghum (Sorghum bicolor (L.) Moench), was described over 20 years ago, and yet no direct regulator of the biosynthetic genes has been identified. To isolate regulatory proteins that bind to the promoter region of the key dhurrin biosynthetic gene of sorghum, SbCYP79A1, yeast one-hybrid screens were performed. A bait fragment containing 1204 base pairs of the SbCYP79A1 5' regulatory region was cloned upstream of a reporter gene and introduced into Saccharomyces cerevisiae. Subsequently, the yeast was transformed with library cDNA representing RNA from two different sorghum developmental stages. From these screens, we identified SbGATA22, an LLM domain B-GATA transcription factor that binds to the putative GATA transcription factor binding motifs in the SbCYP79A1 promoter region. Transient assays in Nicotiana benthamiana show that SbGATA22 localizes to the nucleus. The expression of SbGATA22, in comparison with SbCYP79A1 expression and dhurrin concentration, was analyzed over 14 days of sorghum development and in response to nitrogen application, as these conditions are known to affect dhurrin levels. Collectively, these findings suggest that SbGATA22 may act as a negative regulator of SbCYP79A1 expression and provide a preliminary insight into the molecular regulation of dhurrin biosynthesis in sorghum.
Collapse
Affiliation(s)
- Viviana C. Rosati
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| | - Alicia A. Quinn
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| | - Roslyn M. Gleadow
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cecilia K. Blomstedt
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| |
Collapse
|
17
|
Zhang T, Zhang R, Zeng XY, Lee S, Ye LH, Tian SL, Zhang YJ, Busch W, Zhou WB, Zhu XG, Wang P. GLK transcription factors accompany ELONGATED HYPOCOTYL5 to orchestrate light-induced seedling development in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:2400-2421. [PMID: 38180123 DOI: 10.1093/plphys/kiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.
Collapse
Affiliation(s)
- Ting Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Xi-Yu Zeng
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Sanghwa Lee
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Lu-Huan Ye
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Shi-Long Tian
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi-Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wen-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin-Guang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| |
Collapse
|
18
|
Zhang X, Fan R, Yu Z, Du X, Yang X, Wang H, Xu W, Yu X. Genome-wide identification of GATA transcription factors in tetraploid potato and expression analysis in differently colored potato flesh. FRONTIERS IN PLANT SCIENCE 2024; 15:1330559. [PMID: 38576788 PMCID: PMC10991705 DOI: 10.3389/fpls.2024.1330559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
The GATA gene family belongs to a kind of transcriptional regulatory protein featuring a zinc finger motif, which is essential for plant growth and development. However, the identification of the GATA gene family in tetraploid potato is still not performed. In the present research, a total of 88 GATA genes in the tetraploid potato C88.v1 genome were identified by bioinformatics methods. These StGATA genes had an uneven distribution on 44 chromosomes, and the corresponding StGATA proteins were divided into four subfamilies (I-IV) based on phylogenetic analysis. The cis-elements of StGATA genes were identified, including multiple cis-elements related to light-responsive and hormone-responsive. The collinearity analysis indicates that segmental duplication is a key driving force for the expansion of GATA gene family in tetraploid potato, and that the GATA gene families of tetraploid potato and Arabidopsis share a closer evolutionary relationship than rice. The transcript profiling analysis showed that all 88 StGATA genes had tissue-specific expression, indicating that the StGATA gene family members participate in the development of multiple potato tissues. The RNA-seq analysis was also performed on the tuber flesh of two potato varieties with different color, and 18 differentially expressed GATA transcription factor genes were screened, of which eight genes were validated through qRT-PCR. In this study, we identified and characterized StGATA transcription factors in tetraploid potato for the first time, and screened differentially expressed genes in potato flesh with different color. It provides a theoretical basis for further understanding the StGATA gene family and its function in anthocyanin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoxia Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
19
|
Fan J, Xian B, Huang X, Yu Q, Zhang M, Zhang C, Jia R, Chen S, He Y, Li Q. Genome-Wide Identification and Characterization of the Sweet Orange ( Citrus sinensis) GATA Family Reveals a Role for CsGATA12 as a Regulator of Citrus Bacterial Canker Resistance. Int J Mol Sci 2024; 25:2924. [PMID: 38474170 DOI: 10.3390/ijms25052924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Citrus bacterial canker (CBC) is a severe bacterial infection caused by Xanthomonas citri subsp. citri (Xcc), which continues to adversely impact citrus production worldwide. Members of the GATA family are important regulators of plant development and regulate plant responses to particular stressors. This report aimed to systematically elucidate the Citrus sinensis genome to identify and annotate genes that encode GATAs and evaluate the functional importance of these CsGATAs as regulators of CBC resistance. In total, 24 CsGATAs were identified and classified into four subfamilies. Furthermore, the phylogenetic relationships, chromosomal locations, collinear relationships, gene structures, and conserved domains for each of these GATA family members were also evaluated. It was observed that Xcc infection induced some CsGATAs, among which CsGATA12 was chosen for further functional validation. CsGATA12 was found to be localized in the nucleus and was differentially upregulated in the CBC-resistant and CBC-sensitive Kumquat and Wanjincheng citrus varieties. When transiently overexpressed, CsGATA12 significantly reduced CBC resistance with a corresponding increase in abscisic acid, jasmonic acid, and antioxidant enzyme levels. These alterations were consistent with lower levels of salicylic acid, ethylene, and reactive oxygen species. Moreover, the bacteria-induced CsGATA12 gene silencing yielded the opposite phenotypic outcomes. This investigation highlights the important role of CsGATA12 in regulating CBC resistance, underscoring its potential utility as a target for breeding citrus varieties with superior phytopathogen resistance.
Collapse
Affiliation(s)
- Jie Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xin Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Ruirui Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
| |
Collapse
|
20
|
Virolainen PA, Chekunova EM. GATA family transcription factors in alga Chlamydomonas reinhardtii. Curr Genet 2024; 70:1. [PMID: 38353733 DOI: 10.1007/s00294-024-01280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
GATA family transcription factors (GATA-TFs) are metalloproteins that regulate many metabolic pathways. These conserved proteins recognize the consensus sequence (A/T)GATA(A/G) in the promoter regions of many genes and regulate their transcription in response to environmental signals. Currently, the study of GATA-TFs is of increasing interest. GATA genes and their proteins are most actively studied in vascular plants and fungi. Based on the results of numerous studies, it has been shown that GATA factors regulate the metabolic pathways of nitrogen and carbon, and also play a major role in the processes induced by light and circadian rhythms. In algae, GATA-TFs remain poorly studied, and information about them is scattered. In this work, all known data on GATA-TFs in the unicellular green alga Chlamydomonas reinhardtii has been collected and systematized. The genome of this alga contains 12 GATA coding genes. Using the phylogenetic analysis, we identified three classes of GATA factors in C. reinhardtii according to the structure of the zinc finger domain and showed their difference from the classification of GATA factors developed on vascular plants.
Collapse
Affiliation(s)
- Pavel A Virolainen
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation.
| | - Elena M Chekunova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
21
|
Shao Y, Zhou Y, Yang L, Mu D, Wilson IW, Zhang Y, Zhu L, Liu X, Luo L, He J, Qiu D, Tang Q. Genome-wide identification of GATA transcription factor family and the effect of different light quality on the accumulation of terpenoid indole alkaloids in Uncaria rhynchophylla. PLANT MOLECULAR BIOLOGY 2024; 114:15. [PMID: 38329633 DOI: 10.1007/s11103-023-01400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/07/2023] [Indexed: 02/09/2024]
Abstract
Uncaria rhynchophylla is an evergreen vine plant, belonging to the Rubiaceae family, that is rich in terpenoid indole alkaloids (TIAs) that have therapeutic effects on hypertension and Alzheimer's disease. GATA transcription factors (TF) are a class of transcription regulators that participate in the light response regulation, chlorophyll synthesis, and metabolism, with the capability to bind to GATA cis-acting elements in the promoter region of target genes. Currently the charactertics of GATA TFs in U. rhynchophylla and how different light qualities affect the expression of GATA and key enzyme genes, thereby affecting the changes in U. rhynchophylla alkaloids have not been investigated. In this study, 25 UrGATA genes belonging to four subgroups were identified based on genome-wide analysis. Intraspecific collinearity analysis revealed that only segmental duplications were identified among the UrGATA gene family. Collinearity analysis of GATA genes between U. rhynchophylla and four representative plant species, Arabidopsis thaliana, Oryza sativa, Coffea Canephora, and Catharanthus roseus was also performed. U. rhynchophylla seedlings grown in either red lights or under reduced light intensity had altered TIAs content after 21 days. Gene expression analysis reveal a complex pattern of expression from the 25 UrGATA genes as well as a number of key TIA enzyme genes. UrGATA7 and UrGATA8 were found to have similar expression profiles to key enzyme TIA genes in response to altered light treatments, implying that they may be involved in the regulation TIA content. In this research, we comprehensively analyzed the UrGATA TFs, and offered insight into the involvement of UrGATA TFs from U. rhynchophylla in TIAs biosynthesis.
Collapse
Affiliation(s)
- Yingying Shao
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Yu Zhou
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Li Yang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Detian Mu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China.
| | - Iain W Wilson
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Yao Zhang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Lina Zhu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Xinghui Liu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Ling Luo
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Jialong He
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Qi Tang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
22
|
Mladenov P, Wang X, Yang Z, Djilianov D, Deng X. Dynamics of chromatin accessibility and genome wide control of desiccation tolerance in the resurrection plant Haberlea rhodopensis. BMC PLANT BIOLOGY 2023; 23:654. [PMID: 38110858 PMCID: PMC10729425 DOI: 10.1186/s12870-023-04673-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Drought is one of the main consequences of global climate change and this problem is expected to intensify in the future. Resurrection plants evolved the ability to withstand the negative impact of long periods of almost complete desiccation and to recover at rewatering. In this respect, many physiological, transcriptomic, proteomic and genomic investigations have been performed in recent years, however, few epigenetic control studies have been performed on these valuable desiccation-tolerant plants so far. RESULTS In the present study, for the first time for resurrection plants we provide evidences about the differential chromatin accessibility of Haberlea rhodopensis during desiccation stress by ATAC-seq (Assay for Transposase Accessible Chromatin with high-throughput sequencing). Based on gene similarity between species, we used the available genome of the closely related resurrection plant Dorcoceras hygrometricum to identify approximately nine hundred transposase hypersensitive sites (THSs) in H. rhodopensis. The majority of them corresponds to proximal and distal regulatory elements of different genes involved in photosynthesis, carbon metabolism, synthesis of secondary metabolites, cell signalling and transcriptional regulation, cell growth, cell wall, stomata conditioning, chaperons, oxidative stress, autophagy and others. Various types of binding motifs recognized by several families of transcription factors have been enriched from the THSs found in different stages of drought. Further, we used the previously published RNA-seq data from H. rhodopensis to evaluate the expression of transcription factors putatively interacting with the enriched motifs, and the potential correlation between the identified THS and the expression of their corresponding genes. CONCLUSIONS These results provide a blueprint for investigating the epigenetic regulation of desiccation tolerance in resurrection plant H. rhodopensis and comparative genomics between resurrection and non-resurrection species with available genome information.
Collapse
Affiliation(s)
- Petko Mladenov
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Agricultural Academy, 8 Dragan Tzankov Blvd, Sofia, 1164, Bulgaria.
| | - Xiaohua Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhaolin Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
23
|
Zhang X, Ma J, Yang S, Yao W, Zhang N, Hao X, Xu W. Analysis of GATA transcription factors and their expression patterns under abiotic stress in grapevine (Vitis vinifera L.). BMC PLANT BIOLOGY 2023; 23:611. [PMID: 38041099 PMCID: PMC10693065 DOI: 10.1186/s12870-023-04604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND GATA transcription factors are type IV zinc-finger proteins that play key roles in plant growth and responses to environmental stimuli. Although these proteins have been studied in model plants, the related studies of GATA gene family under abiotic stresses are rarely reported in grapevine (Vitis vinifera L.). RESULTS In the current study, a total of 23 VviGATA genes were identified in grapevine and classified into four groups (I, II, III, and IV), based on phylogenetic analysis. The proteins in the same group exhibited similar exon-intron structures and conserved motifs and were found to be unevenly distributed among the thirteen grapevine chromosomes. Accordingly, it is likely that segmental and tandem duplication events contributed to the expansion of the VviGATA gene family. Analysis of cis-acting regulatory elements in their promoters suggested that VviGATA genes respond to light and are influenced by multiple hormones and stresses. Organ/tissue expression profiles showed tissue specificity for most of the VviGATA genes, and five were preferentially upregulated in different fruit developmental stages, while others were strongly induced by drought, salt and cold stress treatments. Heterologously expressed VamGATA5a, VamGATA8b, VamGATA24a, VamGATA24c and VamGATA24d from cold-resistant V. amurensis 'Shuangyou' showed nuclear localization and transcriptional activity was shown for VamGATA5a, VamGATA8b and VamGATA24d. CONCLUSIONS The results of this study provide useful information for GATA gene function analysis and aid in the understanding of stress responses in grapevine for future molecular breeding initiatives.
Collapse
Affiliation(s)
- Xiuming Zhang
- College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, 750021, P. R. China
| | - Jiahui Ma
- College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, 750021, P. R. China
| | - Shijin Yang
- College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, 750021, P. R. China
| | - Wenkong Yao
- College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, 750021, P. R. China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, 750021, P. R. China
| | - Xinyi Hao
- College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, 750021, P. R. China.
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, 750021, P. R. China.
| |
Collapse
|
24
|
Zhang F, Wu Y, Shi X, Wang X, Yin Y. Comparative Analysis of the GATA Transcription Factors in Five Solanaceae Species and Their Responses to Salt Stress in Wolfberry ( Lycium barbarum L.). Genes (Basel) 2023; 14:1943. [PMID: 37895292 PMCID: PMC10606309 DOI: 10.3390/genes14101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
GATA proteins are a class of zinc-finger DNA-binding proteins that participate in diverse regulatory processes in plants, including the development processes and responses to environmental stresses. However, a comprehensive analysis of the GATA gene family has not been performed in a wolfberry (Lycium barbarum L.) or other Solanaceae species. There are 156 GATA genes identified in five Solanaceae species (Lycium barbarum L., Solanum lycopersicum L., Capsicum annuum L., Solanum tuberosum L., and Solanum melongena L.) in this study. Based on their phylogeny, they can be categorized into four subfamilies (I-IV). Noticeably, synteny analysis revealed that dispersed- and whole-genome duplication contributed to the expansion of the GATA gene family. Purifying selection was a major force driving the evolution of GATA genes. Moreover, the predicted cis-elements revealed the potential roles of wolfberry GATA genes in phytohormone, development, and stress responses. Furthermore, the RNA-seq analysis identified 31 LbaGATA genes with different transcript profiling under salt stress. Nine candidate genes were then selected for further verification using quantitative real-time PCR. The results revealed that four candidate LbaGATA genes (LbaGATA8, LbaGATA19, LbaGATA20, and LbaGATA24) are potentially involved in salt-stress responses. In conclusion, this study contributes significantly to our understanding of the evolution and function of GATA genes among the Solanaceae species, including wolfberry.
Collapse
Affiliation(s)
- Fengfeng Zhang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Yan Wu
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Xin Shi
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Xiaojing Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China; (F.Z.); (Y.W.); (X.S.)
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
25
|
Zhao K, Nan S, Li Y, Yu C, Zhou L, Hu J, Jin X, Han Y, Wang S. Comprehensive Analysis and Characterization of the GATA Gene Family, with Emphasis on the GATA6 Transcription Factor in Poplar. Int J Mol Sci 2023; 24:14118. [PMID: 37762421 PMCID: PMC10532138 DOI: 10.3390/ijms241814118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
GATA transcription factors are ubiquitously present in eukaryotic organisms and play a crucial role in multiple biological processes, such as plant growth, stress response, and hormone signaling. However, the study of GATA factors in poplar is currently limited to a small number of proteins, despite their evident functional importance. In this investigation, we utilized the most recent genome annotation and stringent criteria to identify 38 GATA transcription factor genes in poplar. Subsequently, we conducted a comprehensive analysis of this gene family, encompassing phylogenetic classification, protein characterization, analysis of promoter cis-acting elements, and determination of chromosomal location. Our examination of gene duplication events indicated that both tandem and segmental duplications have contributed to the expansion of the GATA gene family in poplar, with segmental duplication potentially being a major driving force. By performing collinearity analysis of genes across six different species, we identified 74 pairs of co-linear genes, which provide valuable insights for predicting gene functions from a comparative genomics perspective. Furthermore, through the analysis of gene expression patterns, we identified five GATA genes that exhibited differential expression in leaf-stem-root tissues and eight genes that were responsive to salt stress. Of particular interest was GATA6, which displayed strong induction by salt stress and overlapped between the two gene sets. We discovered that GATA6 encodes a nuclear-localized protein with transcription activation activity, which is continuously induced by salt stress in leaf and root tissues. Moreover, we constructed a co-expression network centered around GATA6, suggesting the potential involvement of these genes in the growth, development, and response to abiotic stress processes in poplar through cell transport systems and protein modification mechanisms, such as vesicle-mediated transport, intracellular transport, ubiquitination, and deubiquitination. This research provides a foundation for further exploration of the functions and mechanisms of GATA transcription factors in poplar.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
26
|
Yao X, Lai D, Zhou M, Ruan J, Ma C, Wu W, Weng W, Fan Y, Cheng J. Genome-wide identification, evolution and expression pattern analysis of the GATA gene family in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2023; 14:1163357. [PMID: 37600205 PMCID: PMC10437121 DOI: 10.3389/fpls.2023.1163357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 08/22/2023]
Abstract
The GATA family of transcription factors is zinc finger DNA binding proteins involved in a variety of biological processes, including plant growth and development and response to biotic/abiotic stresses, and thus play an essential role in plant response to environmental changes. However, the GATA gene family of Sorghum (SbGATA) has not been systematically analyzed and reported yet. Herein, we used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 33 SbGATA genes identified. These SbGATA genes, distributed on 10 chromosomes, are classified into four subfamilies (I-IV) containing one pair of tandem duplications and nine pairs of segment duplications, which are more closely related to the monocot Brachypodium distachyon and Oryza sativa GATA genes. The physicochemical properties of the SbGATAs are significantly different among the subfamilies, while the protein structure and conserved protein motifs are highly conserved in the subfamilies. In addition, the transcription of SbGATAs is tissue-specific during Sorghum growth and development, which allows for functional diversity in response to stress and hormones. Collectively, our study lays a theoretical foundation for an in-depth analysis of the functions, mechanisms and evolutionary relationships of SbGATA during plant growth and development.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Dili Lai
- College of Agronomy, Guizhou University, Guiyang, China
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang, China
| | - Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang, China
| | - Yu Fan
- College of Agronomy, Guizhou University, Guiyang, China
| | | |
Collapse
|
27
|
Hwarari D, Radani Y, Guan Y, Chen J, Liming Y. Systematic Characterization of GATA Transcription Factors in Liriodendron chinense and Functional Validation in Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2349. [PMID: 37375974 PMCID: PMC10302256 DOI: 10.3390/plants12122349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The Liriodendron chinense in the Magnoliaceae family is an endangered tree species useful for its socio-economic and ecological benefits. Abiotic stresses (cold, heat, and drought stress), among other factors, affect its growth, development, and distribution. However, GATA transcription factors (TFs) respond to various abiotic stresses and play a significant role in plant acclimatization to abiotic stresses. To determine the function of GATA TFs in L. chinense, we investigated the GATA genes in the genome of L. chinense. In this study, a total of 18 GATA genes were identified, which were randomly distributed on 12 of the total 17 chromosomes. These GATA genes clustered together in four separate groups based on their phylogenetic relationships, gene structures, and domain conservation arrangements. Detailed interspecies phylogenetic analyses of the GATA gene family demonstrated a conservation of the GATAs and a probable diversification that prompted gene diversification in plant species. In addition, the LcGATA gene family was shown to be evolutionarily closer to that of O. sativa, giving an insight into the possible LcGATA gene functions. Investigations of LcGATA gene duplication showed four gene duplicate pairs by the segmental duplication event, and these genes were a result of strong purified selection. Analysis of the cis-regulatory elements demonstrated a significant representation of the abiotic stress elements in the promoter regions of the LcGATA genes. Additional gene expressions through transcriptome and qPCR analyses revealed a significant upregulation of LcGATA17, and LcGATA18 in various stresses, including heat, cold, and drought stress in all time points analyzed. We concluded that the LcGATA genes play a pivotal role in regulating abiotic stress in L. chinense. In summary, our results provide new insights into understanding of the LcGATA gene family and their regulatory functions during abiotic stresses.
Collapse
Affiliation(s)
| | | | | | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Liming
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
28
|
Fleitas AL, Castro A, Blumwald E, Vidal S. Functional specialization of chloroplast vesiculation ( CV) duplicated genes from soybean shows partial overlapping roles during stress-induced or natural senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1184020. [PMID: 37346131 PMCID: PMC10280078 DOI: 10.3389/fpls.2023.1184020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Soybean is a globally important legume crop which is highly sensitive to drought. The identification of genes of particular relevance for drought responses provides an important basis to improve tolerance to environmental stress. Chloroplast Vesiculation (CV) genes have been characterized in Arabidopsis and rice as proteins participating in a specific chloroplast-degradation vesicular pathway (CVV) during natural or stress-induced leaf senescence. Soybean genome contains two paralogous genes encoding highly similar CV proteins, CV1 and CV2. In this study, we found that expression of CV1 was differentially upregulated by drought stress in soybean contrasting genotypes exhibiting slow-wilting (tolerant) or fast-wilting (sensitive) phenotypes. CV1 reached higher induction levels in fast-wilting plants, suggesting a negative correlation between CV1 gene expression and drought tolerance. In contrast, autophagy (ATG8) and ATI-PS (ATI1) genes were induced to higher levels in slow-wilting plants, supporting a pro-survival role for these genes in soybean drought tolerance responses. The biological function of soybean CVs in chloroplast degradation was confirmed by analyzing the effect of conditional overexpression of CV2-FLAG fusions on the accumulation of specific chloroplast proteins. Functional specificity of CV1 and CV2 genes was assessed by analyzing their specific promoter activities in transgenic Arabidopsis expressing GUS reporter gene driven by CV1 or CV2 promoters. CV1 promoter responded primarily to abiotic stimuli (hyperosmolarity, salinity and oxidative stress), while the promoter of CV2 was predominantly active during natural senescence. Both promoters were highly responsive to auxin but only CV1 responded to other stress-related hormones, such as ABA, salicylic acid and methyl jasmonate. Moreover, the dark-induced expression of CV2, but not of CV1, was strongly inhibited by cytokinin, indicating similarities in the regulation of CV2 to the reported expression of Arabidopsis and rice CV genes. Finally, we report the expression of both CV1 and CV2 genes in roots of soybean and transgenic Arabidopsis, suggesting a role for the encoded proteins in root plastids. Together, the results indicate differential roles for CV1 and CV2 in development and in responses to environmental stress, and point to CV1 as a potential target for gene editing to improve crop performance under stress without compromising natural development.
Collapse
Affiliation(s)
- Andrea Luciana Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
29
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
30
|
Cai J, Yang S, Liu W, Yan J, Jiang B, Xie D. A transcriptome analysis of Benincasa hispida revealed the pathways and genes involved in response to Phytophthora melonis infection. FRONTIERS IN PLANT SCIENCE 2022; 13:1106123. [PMID: 36618646 PMCID: PMC9815465 DOI: 10.3389/fpls.2022.1106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Wilt disease caused by Phytophthora melonis infection is one of the most serious threats to Benincasa hispida production. However, the mechanism of the response of B. hispida to a P. melonis infection remains largely unknown. In the present study, two B. hispida cultivars with different degrees of resistance to P. melonis were identified: B488 (a moderately resistant cultivar) and B214 (a moderately susceptible cultivar). RNA-seq was performed on P. melonis-infected B488 and B214 12 hours post infection (hpi). Compared with the control, 680 and 988 DEGs were respectively detected in B488 and B214. A KEGG pathway analysis combined with a cluster analysis revealed that phenylpropanoid biosynthesis, plant-pathogen interaction, the MAPK signaling pathway-plant, and plant hormone signal transduction were the most relevant pathways during the response of both B488 and B214 to P. melonis infection, as well as the differentially expressed genes in the two cultivars. In addition, a cluster analysis of transcription factor genes in DEGs identified four genes upregulated in B488 but not in B214 at 6 hpi and 12 hpi, which was confirmed by qRT-PCR. These were candidate genes for elucidating the mechanism of the B. hispida response to P. melonis infection and laying the foundation for the improvement of B. hispida.
Collapse
Affiliation(s)
- Jinsen Cai
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenrui Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jinqiang Yan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Biao Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dasen Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
31
|
Jan M, Liu Z, Rochaix JD, Sun X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. FRONTIERS IN PLANT SCIENCE 2022; 13:980237. [PMID: 36119624 PMCID: PMC9478734 DOI: 10.3389/fpls.2022.980237] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 06/02/2023]
Abstract
The chloroplast is a complex cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids, and phytohormones. Nuclear and chloroplast genetic activity are closely coordinated through signaling chains from the nucleus to chloroplast, referred to as anterograde signaling, and from chloroplast to the nucleus, named retrograde signaling. The chloroplast can act as an environmental sensor and communicates with other cell compartments during its biogenesis and in response to stress, notably with the nucleus through retrograde signaling to regulate nuclear gene expression in response to developmental cues and stresses that affect photosynthesis and growth. Although several components involved in the generation and transmission of plastid-derived retrograde signals and in the regulation of the responsive nuclear genes have been identified, the plastid retrograde signaling network is still poorly understood. Here, we review the current knowledge on multiple plastid retrograde signaling pathways, and on potential plastid signaling molecules. We also discuss the retrograde signaling-dependent regulation of nuclear gene expression within the frame of a multilayered network of transcription factors.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
32
|
Huang H, Gao X, Gao X, Zhang S, Zheng Y, Zhang N, Hong B, Zhao X, Gu Z. Flower color mutation, pink to orange, through CmGATA4 - CCD4a-5 module regulates carotenoids degradation in chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111290. [PMID: 35753140 DOI: 10.1016/j.plantsci.2022.111290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The carotenoids biosynthesis pathway in plants has been studied extensively, yet little is known about the regulatory mechanisms underlying this process, especially for ornamental horticulture plants. In this study, a natural variation of chrysanthemum with orange coloration was identified and compared with the wild type with pink coloration; the content and component of carotenoids were largely enriched in the mutant with orange coloration. CmCCD4a-5, the DNA sequence in both 'Pink yan' and the mutant, was identified and shown to function as a carotenoid degradation enzyme. Compared with 'Pink yan', the mutant shows lower expression level of CmCCD4a-5. Furthermore, CmGATA4 was found to have an opposite expression trend to CmCCD4a-5, and it could directly bind with the CmCCD4a-5 promoter. Taken together, this study demonstrates that CmGATA4 acts as a negative regulator of CmCCD4a-5 and, furthermore, low expression of CmCCD4a-5 resulted in carotenoid accumulation in the mutant.
Collapse
Affiliation(s)
- Hongfeng Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xuekai Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shiqi Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ying Zheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ning Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xin Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhaoyu Gu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Genome-Wide Characterization and Expression Analysis of GATA Transcription Factors in Response to Methyl Jasmonate in Salvia miltiorrhiza. Genes (Basel) 2022; 13:genes13050822. [PMID: 35627207 PMCID: PMC9140432 DOI: 10.3390/genes13050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Salvia miltiorrhiza is an important medicinal plant, which is mainly used for treatment of cardiovascular and cerebrovascular diseases. GATA transcription factors are evolutionarily conser-ved proteins that play essential roles in biological process of plants. In this study, we systematically characterized the GATA transcription factors in S. miltiorrhiza. A total 28 SmGATA genes were identified and divided into four subfamilies based on phylogenetic analysis and domain. SmGATA genes being clustered into a subfamily have similar conserved motifs and exon-intron patterns, and unevenly distribute on eight chromosomes of S. miltiorrhiza. Tissue-specific expression analysis based on transcriptome datasets showed that the majority of SmGATA genes were preferentially expressed in roots. Under methyl jasmonate (MeJA) treatment, the quantitative real-time PCR (qRT-PCR) analysis indicated that several SmGATA genes in roots showed distinct upregulation post-MeJA treatment, especially SmGATA08, which was highly responsive to MeJA, and might be involved in the jasmonate signal, thereby affecting root growth, development, tolerance to various stresses, or secondary metabolites biosynthesis. The study found that several SmGATAs, like SmGATA08, are highly responsive to MeJA, indicating that these SmGATAs might be vital in the biosynthesis of tanshinones and phenolic acids by regulating the response to MeJA in S. miltiorrhiza. Our results laid the foundation for understanding their biological roles and quality improvement in S. miltiorrhiza.
Collapse
|