1
|
Chen Y, Chen L, Wu J, Xu X, Yang C, Zhang Y, Chen X, Lin K, Zhang S. Throw out an oligopeptide to catch a protein: Deep learning and natural language processing-screened tripeptide PSP promotes Osteolectin-mediated vascularized bone regeneration. Bioact Mater 2025; 46:37-54. [PMID: 39734571 PMCID: PMC11681832 DOI: 10.1016/j.bioactmat.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 12/31/2024] Open
Abstract
Angiogenesis is imperative for bone regeneration, yet the conventional cytokine therapies have been constrained by prohibitive costs and safety apprehensions. It is urgent to develop a safer and more efficient therapeutic alternative. Herein, utilizing the methodologies of Deep Learning (DL) and Natural Language Processing (NLP), we proposed a paradigm algorithm that amalgamates Word2vec with a TF-IDF variant, TF-IIDF, to deftly discern potential pro-angiogenic peptides from intrinsically disordered regions (IDRs) of 262 related proteins, where are fertile grounds for developing safer and highly promising bioactive peptides. After the evaluation of the candidate oligopeptides, one tripeptide, PSP, emerged as particularly notable for its exceptional ability to stimulate the vascularization of endothelial cells (ECs), enhance vascular-osteo communication, and then boost the osteogenic differentiation of bone marrow stem cells (BMSCs), evidenced in mouse critical-sized cranial model. Moreover, we found that PSP serves as a 'priming' agent, activating the body's innate ability to produce Osteolectin (Oln) - prompting ECs to release small extracellular vesicles (sEVs) enriched with Oln to facilitate bone formation. In summary, our study established a precise and efficient composite model of DL and NLP to screen bioactive peptides, opening an avenue for the development of various peptide-based therapeutic strategies applicable to a broader range of diseases.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jinyang Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Xiaofeng Xu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Chengshuai Yang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Yong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Xinrong Chen
- Academy for Engineering and Technology, Fudan University, Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai, 200000, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| | - Shilei Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stom, Shanghai, 200011, China
| |
Collapse
|
2
|
Niazi V, Ghafouri-Fard S. Effect of bone marrow niche on hematopoietic stem cells. Histochem Cell Biol 2024; 163:19. [PMID: 39714560 DOI: 10.1007/s00418-024-02348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 12/24/2024]
Abstract
Hematopoietic stem cells (HSCs) reside in a milieu that supports their functions, differentiation, and survival. This niche consists of several types of cells, including mesenchymal stem/stromal cells, endothelial cells, osteoblasts, megakaryocytes, macrophages, adipocytes, lymphoid cells, and nerve fibers. The interactions between these cells and HSCs have a role in HSC fate. Several studies have focused on identification of the biological and cellular mechanisms contributing to the establishment of this niche. However, the exact mechanisms of the interaction between HSCs and the bone marrow niche have not been elucidated yet. Unraveling these mechanisms would help in the design of effective methods for maintenance and multiplication of HSCs in clinical settings, in addition to establishment of novel therapies for hematopoietic diseases. The current review summarizes the effects of the niche cells on HSC function and underlying mechanisms of interplay between HSCs and their niche.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Jia X, Zhang G, Yu D. Application of extracellular vesicles in diabetic osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1466775. [PMID: 39720256 PMCID: PMC11666354 DOI: 10.3389/fendo.2024.1466775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024] Open
Abstract
As the population ages, the occurrence of osteoporosis is becoming more common. Diabetes mellitus is one of the factors in the development of osteoporosis. Compared with the general population, the incidence of osteoporosis is significantly higher in diabetic patients. Diabetic osteoporosis (DOP) is a metabolic bone disease characterized by abnormal bone tissue structure due to hyperglycemia and insulin resistance, reduced bone strength and increased risk of fractures. This is a complex mechanism that occurs at the cellular level due to factors such as blood vessels, inflammation, and hyperglycemia and insulin resistance. Although the application of some drugs in clinical practice can reduce the occurrence of DOP, the incidence of fractures caused by DOP is still very high. Extracellular vesicles (EVs) are a new communication mode between cells, which can transfer miRNAs and proteins from mother cells to target cells through membrane fusion, thereby regulating the function of target cells. In recent years, the role of EVs in the pathogenesis of DOP has been widely demonstrated. In this article, we first describe the changes in the bone microenvironment of osteoporosis. Second, we describe the pathogenesis of DOP. Finally, we summarize the research progress and challenges of EVs in DOP.
Collapse
Affiliation(s)
- Xiaopeng Jia
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gongzi Zhang
- Department of Rehabilitation Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Deshui Yu
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Li X, Yang W, Dai C, Qiu Z, Luan X, Zhang X, Zhang L. Integrative multi-Omics and network pharmacology reveal angiogenesis promotion by Quan-Du-Zhong Capsule via VEGFA/PI3K-Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119222. [PMID: 39647590 DOI: 10.1016/j.jep.2024.119222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quan-du-zhong capsule (QDZ), derived from the whole plant extract of Eucommiaulmoides Oliv., is a traditional Chinese herbal medicine used in treating vascular-related diseases, including hypertension and osteoporosis. Despite its established uses, its pro-angiogenic effects and underlying mechanisms require further investigation. AIM OF THIS STUDY This study aims to investigate the pro-angiogenic effects of QDZ and explore the underlying mechanisms. MATERIALS AND METHODS The chemical compositions of QDZ, including its absorbed prototypes in rats, were analyzed using UHPLC-Q Exactive-Orbitrap-MS. The pro-angiogenic activities of QDZ were evaluated in human umbilical vein endothelial cells (HUVECs) through various assays, including CCK-8, migration, scratch, tubule formation, and 3D sprouting assays. Additionally, the pro-angiogenic effects of QDZ were further assessed invivo through the matrigel plug assay and a hindlimb ischemia-reperfusion model, with three-dimensional blood flow visualized via micro-CT. A comprehensive approach involving network pharmacology, molecular docking, transcriptomics, and proteomics was utilized to explore the pro-angiogenic mechanism of QDZ, with validation by Western blot analysis. RESULTS QDZ significantly promoted the proliferation, migration, and tubule formation of HUVECs. The matrigel plug assay further confirmed its pro-angiogenic potential. Invivo, QDZ-treated mice displayed enhanced vascular distribution and faster blood flow recovery post-ischemia-reperfusion. Chemical analysis identified 49 compounds in QDZ, with 16 absorbed prototypes detected in rat plasma. Mechanistic investigations through network pharmacology, transcriptomics, and proteomics suggested that QDZ's pro-angiogenic effects were mediated through the VEGFA/PI3K-Akt signaling pathway, with increased phosphorylation of angiogenesis-related proteins such as PI3K, Akt, FAK, and Src. CONCLUSIONS This study demonstrates that QDZ promotes angiogenesis via activating the VEGFA and its downstream PI3K-Akt signaling pathway, shedding light on the mechanisms that underpin its traditional medicinal use in vascular health.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Pharmacy, Fudan University, Shanghai, 200120, China
| | - Wanyue Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunlan Dai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyang Qiu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Zhang
- School of Pharmacy, Fudan University, Shanghai, 200120, China.
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Sheppard NT, Daniel MC, Nelson NS, Donneys A, Buchman SR. Optimizing immunofluorescent staining of H vessels within an irradiated fracture callus in paraffin-embedded tissue samples. J Histotechnol 2024; 47:173-179. [PMID: 38957981 DOI: 10.1080/01478885.2024.2371060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
H vessels are an essential link in angiogenic-osteogenic coupling and orchestrate the process of bone healing. H vessels are critically deficient in the setting of radiation-induced fractures, which have been reported to occur in up to 25% of patients undergoing radiotherapy. By increasing H-vessel proliferation, Deferoxamine (DFO) revitalizes the physiologic response to skeletal injury and accelerates irradiated fracture repair. H-vessel quantification is therefore an important outcome measure in histologic analysis of bone healing. However, an optimized protocol for staining H vessels in formalin-fixed paraffin-embedded (FFPE) tissue sections has not been reported. With this protocol, we describe a method of staining FFPE bone samples with minimal background fluorescence and high signal-to-noise ratio. We examined mandibular specimens in a rat model of bone healing from a range of fracture conditions, including healthy bone (Fx), irradiated bone (XFx), and irradiated bone with DFO treatment (XFx-DFO). Quantitative analysis revealed a significant increase of H vessels in the XFxDFO group compared to both the Fx and XFx groups. By optimizing immunofluorescent staining of H vessels in FFPE samples across a range of fracture conditions, we offer investigators an efficacious means of producing reliable imaging for quantitative analysis of H vessels in an irradiated fracture callus.
Collapse
Affiliation(s)
- Nathan T Sheppard
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Melissa C Daniel
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Noah S Nelson
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Alexis Donneys
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Steven R Buchman
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Hayashi Y, Hashimoto M, Takaoka K, Takemoto T, Takakura N, Kidoya H. Tumor endothelial cell-derived Sfrp1 supports the maintenance of cancer stem cells via Wnt signaling. In Vitro Cell Dev Biol Anim 2024; 60:1123-1131. [PMID: 38625488 PMCID: PMC11655579 DOI: 10.1007/s11626-024-00899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Cancer stem cells (CSCs), which are critical targets for cancer therapy as they are involved in drug resistance to anticancer drugs, and metastasis, are maintained by angiocrine factors produced by particular niches that form within tumor tissue. Secreted frizzled-related protein 1 (Sfrp1) is an extracellular protein that modulates Wnt signaling. However, the cells that produce Sfrp1 in the tumor environment and its function remain unclear. We aimed to elucidate angiocrine factors related to CSC maintenance, focusing on Sfrp1. Although Sfrp1 is a Wnt pathway-related factor, its impact on tumor tissues remains unknown. We investigated the localization of Sfrp1 in tumors and found that it is expressed in some tumor vessels. Analysis of mice lacking Sfrp1 showed that tumor growth was suppressed in Sfrp1-deficient tumor tissues. Flow cytometry analysis indicated that CSCs were maintained in the early tumor growth phase in the Sfrp1 knockout (KO) mouse model of tumor-bearing cancer. However, tumor growth was inhibited in the late tumor growth phase because of the inability to maintain CSCs. Real-time PCR results from tumors of Sfrp1 KO mice showed that the expression of Wnt signaling target genes significantly decreased in the late stage of tumor growth. This suggests that Sfrp1, an angiocrine factor produced by the tumor vascular niche, is involved in Wnt signaling-mediated mechanisms in tumor tissues.
Collapse
Affiliation(s)
- Yumiko Hayashi
- Department of Integrative Vascular Biology, Faculty of Medical Science, Fukui University, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Katsuyoshi Takaoka
- Laboratory for Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tatsuya Takemoto
- Laboratory for Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- World Premier Institute Immunology Frontier Research Center, Integrated Frontier Research for Medical Science Division, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hiroyasu Kidoya
- Department of Integrative Vascular Biology, Faculty of Medical Science, Fukui University, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan.
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| |
Collapse
|
7
|
Koh BI, Mohanakrishnan V, Jeong HW, Park H, Kruse K, Choi YJ, Nieminen-Kelhä M, Kumar R, Pereira RS, Adams S, Lee HJ, Bixel MG, Vajkoczy P, Krause DS, Adams RH. Adult skull bone marrow is an expanding and resilient haematopoietic reservoir. Nature 2024; 636:172-181. [PMID: 39537918 PMCID: PMC11618084 DOI: 10.1038/s41586-024-08163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
The bone marrow microenvironment is a critical regulator of haematopoietic stem cell self-renewal and fate1. Although it is appreciated that ageing, chronic inflammation and other insults compromise bone marrow function and thereby negatively affect haematopoiesis2, it is not known whether different bone compartments exhibit distinct microenvironmental properties and functional resilience. Here we use imaging, pharmacological approaches and mouse genetics to uncover specialized properties of bone marrow in adult and ageing skull. Specifically, we show that the skull bone marrow undergoes lifelong expansion involving vascular growth, which results in an increasing contribution to total haematopoietic output. Furthermore, skull is largely protected against major hallmarks of ageing, including upregulation of pro-inflammatory cytokines, adipogenesis and loss of vascular integrity. Conspicuous rapid and dynamic changes to the skull vasculature and bone marrow are induced by physiological alterations, namely pregnancy, but also pathological challenges, such as stroke and experimental chronic myeloid leukaemia. These responses are highly distinct from femur, the most extensively studied bone marrow compartment. We propose that skull harbours a protected and dynamically expanding bone marrow microenvironment, which is relevant for experimental studies and, potentially, for clinical treatments in humans.
Collapse
Affiliation(s)
- Bong Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hyun-Woo Jeong
- Sequencing Core Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hongryeol Park
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kai Kruse
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Young Jun Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rahul Kumar
- Institute of Transfusion Medicine, Transfusion Center, University Medicine Mainz, Mainz, Germany
| | - Raquel S Pereira
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Medicine and Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela S Krause
- Institute of Transfusion Medicine, Transfusion Center, University Medicine Mainz, Mainz, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
8
|
Qin Z, Xie H, Su P, Song Z, Xu R, Guo S, Fu Y, Zhang P, Jiang H. Targeting endoplasmic reticulum stress-induced lymphatic dysfunction for mitigating bisphosphonate-related osteonecrosis. Clin Transl Med 2024; 14:e70082. [PMID: 39521624 PMCID: PMC11550091 DOI: 10.1002/ctm2.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Bisphosphonates (BPs) are the first-line treatment to stop bone resorption in diseases, including osteoporosis, Paget's disease, multiple myeloma and bone metastases of cancer. However, BPs-related osteonecrosis of the jaw (BRONJ), characterized by local inflammation and jawbone necrosis, is a severe intractable complication. The cumulative inflammatory burden often accompanies impaired lymphatic drainage, but its specific impact on BRONJ and the underlying mechanisms remain unclear. METHODS The mouse BRONJ model was established to assess the integrity and drainage function of lymphatic vessels by tissue clearing techniques, injected indocyanine green lymphatic clearance assay, flow cytometry analysis and histopathological staining. RNA sequencing, metabolome analysis, transmission electron microscopy and Western blotting were utilized to analyze the impacts of Zoledronate acid (ZA) on endoplasmic reticulum stress (ERS) and function of lymphatic endothelial cells (LECs). By constructing Lyve1creERT; SIRT6f/f and Lyve1creERT; ATG5f/f mice, we evaluated the role of ERS-induced LECs apoptosis in the progression of BRONJ. Additionally, we developed a nanoparticle-loaded ZA and rapamycin (ZDPR) to enhance autophagy and evaluated its potential in mitigating BRONJ. RESULTS The mouse BRONJ model displayed impaired lymphatic drainage, accompanied by significant local inflammation and bone necrosis. The prolonged stimulation of ZA resulted in the extension of ERS and the inhibition of autophagy in LECs, ultimately leading to apoptosis. Mechanistically, ZA activated XBP1s through the NAD+/SIRT6 pathway, initiating ERS-induced apoptosis in LECs. The conditional knockout mouse models demonstrated that the deletion of SIRT6 or ATG5 significantly worsened lymphatic drainage and inflammatory infiltration in BRONJ. Additionally, the innovative nanoparticle ZDPR alleviated ERS-apoptosis in LECs and enhanced lymphatic function, facilitating inflammation resolution. CONCLUSION Our study has elucidated the role of the NAD+/SIRT6/XBP1s pathway in ERS-induced apoptosis in ZA-treated LECs, and further confirmed the therapeutic potential of ZDPR in restoring endothelial function and improving lymphatic drainage, thereby effectively mitigating BRONJ. KEY POINTS Bisphosphonate-induced lymphatic drainage impairment exacerbates bone necrosis. Zoledronate acid triggers endoplasmic reticulum stress and apoptosis in lymphatic endothelial cells via the NAD+/SIRT6/XBP1s pathway. Novel nanoparticle-loaded Zoledronate acid and rapamycin enhances autophagy, restores lymphatic function, and mitigates bisphosphonates-related osteonecrosis of the jaw progression.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Hanyu Xie
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Pengcheng Su
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Zesheng Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
9
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
11
|
Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease. Cell 2024; 187:4833-4858. [PMID: 39241746 DOI: 10.1016/j.cell.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
The dysfunction of blood-vessel-lining endothelial cells is a major cause of mortality. Although endothelial cells, being present in all organs as a single-cell layer, are often conceived as a rather inert cell population, the vascular endothelium as a whole should be considered a highly dynamic and interactive systemically disseminated organ. We present here a holistic view of the field of vascular research and review the diverse functions of blood-vessel-lining endothelial cells during the life cycle of the vasculature, namely responsive and relaying functions of the vascular endothelium and the responsive roles as instructive gatekeepers of organ function. Emerging translational perspectives in regenerative medicine, preventive medicine, and aging research are developed. Collectively, this review is aimed at promoting disciplinary coherence in the field of angioscience for a broader appreciation of the importance of the vasculature for organ function, systemic health, and healthy aging.
Collapse
Affiliation(s)
- Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
12
|
Fernandes CJC, Silva RA, Ferreira MR, Fuhler GM, Peppelenbosch MP, van der Eerden BC, Zambuzzi WF. Vascular smooth muscle cell-derived exosomes promote osteoblast-to-osteocyte transition via β-catenin signaling. Exp Cell Res 2024; 442:114211. [PMID: 39147261 DOI: 10.1016/j.yexcr.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Blood vessel growth and osteogenesis in the skeletal system are coupled; however, fundamental aspects of vascular function in osteoblast-to-osteocyte transition remain unclear. Our study demonstrates that vascular smooth muscle cells (VSMCs), but not endothelial cells, are sufficient to drive bone marrow mesenchymal stromal cell-derived osteoblast-to-osteocyte transition via β-catenin signaling and exosome-mediated communication. We found that VSMC-derived exosomes are loaded with transcripts encoding proteins associated with the osteocyte phenotype and members of the WNT/β-catenin signaling pathway. In contrast, endothelial cell-derived exosomes facilitated mature osteoblast differentiation by reprogramming the TGFB1 gene family and osteogenic transcription factors osterix (SP7) and RUNX2. Notably, VSMCs express significant levels of tetraspanins (CD9, CD63, and CD81) and drive the intracellular trafficking of exosomes with a lower membrane zeta potential than those from other cells. Additionally, the high ATP content within these exosomes supports mineralization mechanisms, as ATP is a substrate for alkaline phosphatase. Osteocyte function was further validated by RNA sequencing, revealing activity in genes related to intermittent mineralization and sonic hedgehog signaling, alongside a significant increase in TNFSF11 levels. Our findings unveil a novel role of VSMCs in promoting osteoblast-to-osteocyte transition, thus offering new insights into bone biology and homeostasis, as well as in bone-related diseases. Clinically, these insights could pave the way for innovative therapeutic strategies targeting VSMC-derived exosome pathways to treat bone-related disorders such as osteoporosis. By manipulating these signaling pathways, it may be possible to enhance bone regeneration and improve skeletal health in patients with compromised bone structure and function.
Collapse
Affiliation(s)
- Célio J C Fernandes
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil
| | - Rodrigo A Silva
- School of Dentistry, University of Taubaté, 12020-340, Taubaté, São Paulo, Brazil
| | - Marcel R Ferreira
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Bram Cj van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Willian F Zambuzzi
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Zhou H, Liu H, Lin M, Wang H, Zhou J, Li M, Yang X, Fu G, Liu C. Hyperbaric oxygen promotes bone regeneration by activating the mechanosensitive Piezo1 pathway in osteogenic progenitors. J Orthop Translat 2024; 48:11-24. [PMID: 39170748 PMCID: PMC11338066 DOI: 10.1016/j.jot.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Background Hyperbaric oxygen (HBO) therapy is widely used to treat bone defects, but the correlation of high oxygen concentration and pressure to osteogenesis is unclear. Methods Bilateral monocortical tibial defect surgeries were performed on 12-week-old Prrx1-Cre; Rosa26-tdTomato and Prrx1-Cre; Piezo1fl/+ mice. Daily HBO treatment was applied on post-surgery day (PSD) 1-9; and daily mechanical loading on tibia was from PSD 5 to 8. The mice were euthanized on PSD 10, and bone defect repair in their tibias was evaluated using μCT, biomechanical testing, and immunofluorescence deep-tissue imaging. The degree of angiogenesis-osteogenesis coupling was determined through spatial correlation analysis. Bone marrow stromal cells from knockout mice were cultured in vitro, and their osteogenic capacities of the cells were assessed. The activation of genes in the Piezo1-YAP pathway was evaluated using RNA sequencing and quantitative real-time polymerase chain reaction. Results Lineage tracing showed HBO therapy considerably altered the number of Prrx1+ cells and their progeny in a healing bone defect. Using conditional knockdown mice, we found that HBO stimulation activates the Piezo1-YAP axis in Prrx1+ cells and promotes osteogenesis-angiogenesis coupling during bone repair. The beneficial effect of HBO was similar to that of anabolic mechanical stimulation, which also acts through the Piezo1-YAP axis. Subsequent transcriptome sequencing results revealed that similar mechanosensitive pathways are activated by HBO therapy in a bone defect. Conclusion HBO therapy promotes bone tissue regeneration through the mechanosensitive Piezo1-YAP pathway in a population of Prrx1+ osteogenic progenitors. Our results contribute to the understanding of the mechanism by which HBO therapy treats bone defects. The Translational Potential of this Article Hyperbaric oxygen therapy is widely used in clinical settings. Our results show that osteogenesis was induced by the activation of the Piezo1-YAP pathway in osteoprogenitors after HBO stimulation, and the underlying mechanism was elucidated. These results may help improve current HBO methods and lead to the formulation of alternative treatments that achieve the same functional outcomes.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
| | - Hongzhi Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
| | - Hantang Wang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
| | - Jingjing Zhou
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
| | - Ming Li
- Department of Rehabilitation Medicine, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, Guangdong, China
| | - Xue Yang
- Department of Rehabilitation Medicine, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, Guangdong, China
| | - Guibing Fu
- Department of Pediatric Orthopedics, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, Guangdong, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Engineering Building south 622, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
da Silva Feltran G, Augusto da Silva R, da Costa Fernandes CJ, Ferreira MR, Dos Santos SAA, Justulin Junior LA, Del Valle Sosa L, Zambuzzi WF. Vascular smooth muscle cells exhibit elevated hypoxia-inducible Factor-1α expression in human blood vessel organoids, influencing osteogenic performance. Exp Cell Res 2024; 440:114136. [PMID: 38909881 DOI: 10.1016/j.yexcr.2024.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31+ cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid. Moreover, the data indicates exclusive HIF-1α expression in VSMCs, identified through various methodologies. Subsequently, we tested the hypothesis that the generated blood vessels have the capacity to modulate the osteogenic phenotype, demonstrating the ability of HIF-1α to promote osteogenic signals, primarily by influencing Runx2 expression. Overall, this study underscores that the methodology employed to create blood vessel organoids establishes an experimental framework capable of producing a 3D culture model of both venous and arterial endothelial tissues. This model effectively guides morphogenesis from mesenchymal stem cells through paracrine signaling, ultimately leading to an osteogenic acquisition phenotype, with the dynamic involvement of HIF-1α.
Collapse
Affiliation(s)
- Geórgia da Silva Feltran
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | - Rodrigo Augusto da Silva
- CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University - UNIP, São Paulo, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | - Marcel Rodrigues Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | | | - Luis Antônio Justulin Junior
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Liliana Del Valle Sosa
- Electron Microscopy Center, Faculty of Medical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Willian Fernando Zambuzzi
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil.
| |
Collapse
|
15
|
Okada K, Niwa Y, Fukuhara K, Ohira T, Mizukami Y, Kawao N, Matsuo O, Kaji H. Plasminogen activator inhibitor-1 is involved in glucocorticoid-induced decreases in angiogenesis during bone repair in mice. J Bone Miner Metab 2024; 42:282-289. [PMID: 38704516 DOI: 10.1007/s00774-024-01510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-β1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.
Collapse
Affiliation(s)
- Kiyotaka Okada
- Department of Arts and Science, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuto Niwa
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Kazusa Fukuhara
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
16
|
Wille A, Weske S, von Wnuck Lipinski K, Wollnitzke P, Schröder NH, Thomas N, Nowak MK, Deister-Jonas J, Behr B, Keul P, Levkau B. Sphingosine-1-phosphate promotes osteogenesis by stimulating osteoblast growth and neovascularization in a vascular endothelial growth factor-dependent manner. J Bone Miner Res 2024; 39:357-372. [PMID: 38477738 PMCID: PMC11240155 DOI: 10.1093/jbmr/zjae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.
Collapse
Affiliation(s)
- Annalena Wille
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karin von Wnuck Lipinski
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Thomas
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Melissa K Nowak
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jennifer Deister-Jonas
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Björn Behr
- Department of Plastic Surgery, University Hospital BG Bergmannsheil, 44789 Bochum, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Chen Q, Wu Z, Shi Y, Li Z, Yang J, Qu M, Zhang S, Wang Z, Ji N, Li J, Shen Y, Xie L, Chen Q. Loss of PA28γ exacerbates imbalanced differentiation of bone marrow stromal cells during bone formation and bone healing in mice. J Bone Miner Res 2024; 39:326-340. [PMID: 38477820 DOI: 10.1093/jbmr/zjae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/β-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/β-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - ZuPing Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - YuJie Shi
- Department of Stomatology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P. R. China
| | - ZaiYe Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - JiaKang Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - MoYuan Qu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - ShiYu Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - YingQiang Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| |
Collapse
|
18
|
Yang Z, Dong R, Mao X, He XC, Li L. Stress-protecting harbors for hematopoietic stem cells. Curr Opin Cell Biol 2024; 86:102284. [PMID: 37995509 DOI: 10.1016/j.ceb.2023.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on specialized microenvironments known as niches to maintain their self-renewal and multilineage potential to generate diverse types of blood cells continuously. Over the last two decades, substantial advancements have been made in unraveling the niche cell components and HSC localizations under homeostatic and stressed circumstances. Advances in imaging, combined with the discovery of phenotypic surface markers combinations and single cell sequencing, have greatly facilitated the systematic examination of HSC localizations. This review aims to present a summary of HSC localizations, highlighting potential distinctions between phenotypically and functionally defined HSCs, and explore the functionality of niches in ensuring the integrity and long-term maintenance of HSCs.
Collapse
Affiliation(s)
- Zhe Yang
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Ruochen Dong
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Xinjian Mao
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
19
|
Qiu J, Liu J, Tian L, Yu J, Duan Q, Liu Y, Zhao W, Si H, Lu X, Zhang Q. Knockdown of LOX-1 ameliorates bone quality and generation of type H blood vessels in diabetic mice. Arch Biochem Biophys 2024; 752:109870. [PMID: 38141905 DOI: 10.1016/j.abb.2023.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Our previous studies have shown that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) is expressed in liver sinusoidal endothelial cells, and oxidized low-density lipoprotein induces liver sinusoidal dysfunction and defenestration through the LOX-1/ROS/NF-kB pathway, revealing that LOX-1 can mediate liver sinusoidal barrier function, involved in the regulation of non-alcoholic fatty liver disease. Here, we investigated whether, in the context of bone metabolic diseases, LOX-1 could affect bone quality and type H blood vessels in diabetic mice. We used db/db mice as model and found that LOX-1 knockdown can ameliorate bone quality and type H blood vessel generation in db/db mice. This further verifies our hypothesis that LOX-1 is involved in the regulation of bone quality and type H blood vessel homeostasis, thus inhibiting osteoporosis progression in db/db mice.
Collapse
Affiliation(s)
- Jumei Qiu
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Jing Liu
- Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China; Clinical Research Center for Metabolic Disease, Lanzhou, 730000, Gansu Province, China
| | - Limin Tian
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China; Clinical Research Center for Metabolic Disease, Lanzhou, 730000, Gansu Province, China
| | - Jing Yu
- Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China; Clinical Research Center for Metabolic Disease, Lanzhou, 730000, Gansu Province, China
| | - Qidang Duan
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Yaqian Liu
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Wenshu Zhao
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Huiling Si
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Xun Lu
- Ningxia Medical University, Yinchuan, 750000, Ningxia Hui Autonomous Region, China
| | - Qi Zhang
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Department of Geriatrics, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China; Clinical Research Center for Metabolic Disease, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
20
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
21
|
Jia J, He R, Yao Z, Su J, Deng S, Chen K, Yu B. Daidzein alleviates osteoporosis by promoting osteogenesis and angiogenesis coupling. PeerJ 2023; 11:e16121. [PMID: 37868048 PMCID: PMC10586307 DOI: 10.7717/peerj.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Postmenopausal osteoporosis and osteoporosis-related fractures are world-wide serious public health problem. Recent studies demonstrated that inhibiting caveolin-1 leads to osteoclastogenesis suppression and protection against OVX-induced osteoporosis. This study aimed to explore the mechanism of caveolin-1 mediating bone loss and the potential therapeutic target. Methods Thirty C57BL/6 female mice were allocated randomly into three groups: sham or bilateral ovariectomy (OVX) surgeries were performed for mice and subsequently daidzein or vehicle was administrated to animals (control, OVX + vehicle and OVX + daidzein). After 8-week administration, femurs were harvested for Micro-CT scan, histological staining including H&E, immunohistochemistry, immunofluorescence, TRAP. Bone marrow endothelial cells (BMECs) were cultured and treated with inhibitors of caveolin-1 (daidzein) or EGFR (erlotinib) and then scratch wound healing and ki67 assays were performed. In addition, cells were harvested for western blot and PCR analysis. Results Micro-CT showed inhibiting caveolin-1with daidzein alleviated OVX-induced osteoporosis and osteogenesis suppression. Further investigations revealed H-type vessels in cancellous bone were decreased in OVX-induced mice, which can be alleviated by daidzein. It was subsequently proved that daidzein improved migration and proliferation of BMECs hence improved H-type vessels formation through inhibiting caveolin-1, which suppressed EGFR/AKT/PI3K signaling in BMECs. Conclusions This study demonstrated that daidzein alleviates OVX-induced osteoporosis by promoting H-type vessels formation in cancellous bone, which then promotes bone formation. Activating EGFR/AKT/PI3K signaling could be the critical reason.
Collapse
Affiliation(s)
- Junjie Jia
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopaedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Ruiyi He
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopaedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Zilong Yao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwen Su
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Songyun Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kun Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Qiao X, Yang Y, Zhao Y, Wu X, Zhang L, Cai X, Ji J, Boström KI, Yao Y. Aurora Kinase A Regulates Cell Transitions in Glucocorticoid-Induced Bone Loss. Cells 2023; 12:2434. [PMID: 37887278 PMCID: PMC10605378 DOI: 10.3390/cells12202434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Glucocorticoid-induced bone loss is a severe and toxic effect of long-term therapy with glucocorticoids, which are currently prescribed for millions of people worldwide. Previous studies have uncovered that glucocorticoids reciprocally converted osteoblast lineage cells into endothelial-like cells to cause bone loss and showed that the modulations of Foxc2 and Osterix were the causative factors that drove this harmful transition of osteoblast lineage cells. Here, we find that the inhibition of aurora kinase A halts this transition and prevents glucocorticoid-induced bone loss. We find that aurora A interacts with the glucocorticoid receptor and show that this interaction is required for glucocorticoids to modulate Foxc2 and Osterix. Together, we identify a new potential approach to counteracting unwanted transitions of osteoblast lineage cells in glucocorticoid treatment and may provide a novel strategy for ameliorating glucocorticoid-induced bone loss.
Collapse
Affiliation(s)
- Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA 90095-1570, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| |
Collapse
|
23
|
Zhao Q, Liu G, Liu F, Xie M, Zou Y, Wang S, Guo Z, Dong J, Ye J, Cao Y, Zheng L, Zhao K. An enzyme-based system for extraction of small extracellular vesicles from plants. Sci Rep 2023; 13:13931. [PMID: 37626167 PMCID: PMC10457285 DOI: 10.1038/s41598-023-41224-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-derived nanovesicles (NVs) and extracellular vesicles (EVs) are the next generation of nanocarrier platforms for biotherapeutics and drug delivery. EVs exist not only in the extracellular space, but also within the cell wall. Due to the limitations of existing isolation methods, the EVs extraction efficiency is low, and a large amount of plant material is wasted, which is of concern for rare and expensive medicinal plants. We proposed and validated a novel method for isolation of plant EVs by enzyme degradation of the plant cell wall to release the EVs. The released EVs can easily be collected. The new method was used for extraction of EVs from the roots of Morinda officinalis (MOEVs). For comparison, nanoparticles from the roots (MONVs) were extracted using the grinding method. The new method yielded a greater amount of MOEVs, and the vesicles had a smaller diameter compared to MONVs. Both MOEVs and MONVs were readily absorbed by endothelial cells without cytotoxic effect and promoted the expression of miR-155. The promotion of miR-155 by MOEVs was dose-dependent. More importantly, we found that MOEVs and MONVs were enriched toward bone tissue. These results support our hypothesis that EVs in plants could be efficiently extracted by enzymatic cell wall digestion and confirm the potential of MOEVs as therapeutic agents and drug carriers.
Collapse
Affiliation(s)
- Qing Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, Guangdong, China
| | - Guilong Liu
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
- Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510378, Guangdong, China
| | - Fubin Liu
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Manlin Xie
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Yanfang Zou
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, 519000, China
| | - Zhaodi Guo
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, Guangdong, China
| | - Jiaming Dong
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Jiali Ye
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Yue Cao
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China
| | - Lei Zheng
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, Guangdong, China.
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China.
| | - Kewei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, Guangdong, China.
- The Third Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510403, Guangdong, China.
| |
Collapse
|
24
|
Qiao X, Wu X, Zhao Y, Yang Y, Zhang L, Cai X, Ma JA, Ji J, Lyons K, Boström KI, Yao Y. Cell Transitions Contribute to Glucocorticoid-Induced Bone Loss. Cells 2023; 12:1810. [PMID: 37508475 PMCID: PMC10377921 DOI: 10.3390/cells12141810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Glucocorticoid-induced bone loss is a toxic effect of long-term therapy with glucocorticoids resulting in a significant increase in the risk of fracture. Here, we find that glucocorticoids reciprocally convert osteoblast-lineage cells into endothelial-like cells. This is confirmed by lineage tracing showing the induction of endothelial markers in osteoblast-lineage cells following glucocorticoid treatment. Functional studies show that osteoblast-lineage cells isolated from glucocorticoid-treated mice lose their capacity for bone formation but simultaneously improve vascular repair. We find that the glucocorticoid receptor directly targets Foxc2 and Osterix, and the modulations of Foxc2 and Osterix drive the transition of osteoblast-lineage cells to endothelial-like cells. Together, the results suggest that glucocorticoids suppress osteogenic capacity and cause bone loss at least in part through previously unrecognized osteoblast-endothelial transitions.
Collapse
Affiliation(s)
- Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jocelyn A Ma
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Karen Lyons
- Department of Molecular, Cell & Developmental Biology at UCLA, Los Angeles, CA 90095, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA 90095, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Luo G, Sun Z, Liu H, Yuan Z, Wang W, Tu B, Li J, Fan C. Verteporfin attenuates trauma-induced heterotopic ossification of Achilles tendon by inhibiting osteogenesis and angiogenesis involving YAP/β-catenin signaling. FASEB J 2023; 37:e23057. [PMID: 37367700 DOI: 10.1096/fj.202300568r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Heterotopic ossification occurs as a pathological ossification condition characterized by ectopic bone formation within soft tissues following trauma. Vascularization has long been established to fuel skeletal ossification during tissue development and regeneration. However, the feasibility of vascularization as a target of heterotopic ossification prevention remained to be further clarified. Here, we aimed to identify whether verteporfin as a widely used FDA-approved anti-vascularization drug could effectively inhibit trauma-induced heterotopic ossification formation. In the current study, we found that verteporfin not only dose dependently inhibited the angiogenic activity of human umbilical vein endothelial cells (HUVECs) but also the osteogenic differentiation of tendon stem cells (TDSCs). Moreover, YAP/β-catenin signaling axis was downregulated by the verteporfin. Application of lithium chloride, an agonist of β-catenin, recovered TDSCs osteogenesis and HUVECs angiogenesis that was inhibited by verteporfin. In vivo, verteporfin attenuated heterotopic ossification formation by decelerating osteogenesis and the vessels densely associated with osteoprogenitors formation, which could also be readily reversed by lithium chloride, as revealed by histological analysis and Micro-CT scan in a murine burn/tenotomy model. Collectively, this study confirmed the therapeutic effect of verteporfin on angiogenesis and osteogenesis in trauma-induced heterotopic ossification. Our study sheds light on the anti-vascularization strategy with verteporfin as a candidate treatment for heterotopic ossification prevention.
Collapse
Affiliation(s)
- Gang Luo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhengqiang Yuan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wei Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bing Tu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, PR China
| |
Collapse
|
26
|
Feng G, Liu W, Yu Y, Tian B, Zhang Y, Yang F, Huang J, Zhang P, Wang W, Li D, Sun S, Niu X, Chai L, Li J. Angiogenesis coupled with osteogenesis in a bone tissue engineering scaffold enhances bone repair in osteoporotic bone defects. Biomed Mater 2023; 18. [PMID: 37144422 DOI: 10.1088/1748-605x/accf55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Increased life expectancy has resulted in an increase in osteoporosis incidence worldwide. The coupling of angiogenesis and osteogenesis is indispensable for bone repair. Although traditional Chinese medicine (TCM) exerts therapeutic effects on osteoporosis, TCM-related scaffolds, which focus on the coupling of angiogenesis and osteogenesis, have not yet been used for the treatment of osteoporotic bone defects.Panax notoginsengsaponin (PNS), the active ingredient ofPanax notoginseng, was added to a poly (L-lactic acid) (PLLA) matrix. Osteopractic total flavone (OTF), the active ingredient ofRhizoma Drynariae, was encapsulated in nano-hydroxyapatite/collagen (nHAC) and added to the PLLA matrix. Magnesium (Mg) particles were added to the PLLA matrix to overcome the bioinert character of PLLA and neutralize the acidic byproducts generated by PLLA. In this OTF-PNS/nHAC/Mg/PLLA scaffold, PNS was released faster than OTF. The control group had an empty bone tunnel; scaffolds containing OTF:PNS = 100:0, 50:50, and 0:100 were used as the treatment groups. Scaffold groups promoted new vessel and bone formation, increased the osteoid tissue, and suppressed the osteoclast activity around osteoporotic bone defects. Scaffold groups upregulated the expression levels of angiogenic and osteogenic proteins. Among these scaffolds, the OTF-PNS (50:50) scaffold exhibited a better capacity for osteogenesis than the OTF-PNS (100:0 and 0:100) scaffolds. Activation of the bone morphogenic protein (BMP)-2/BMP receptor (BMPR)-1A/runt-related transcription factor (RUNX)-2signaling pathway may be a possible mechanism for the promotion of osteogenesis. Our study demonstrated that the OTF-PNS/nHAC/Mg/PLLA scaffold could promote osteogenesis via the coupling of angiogenesis and osteogenesis in osteoporotic rats with bone defects, and activating theBMP-2/BMPR1A/RUNX2signaling pathway may be an osteogenesis-related mechanism. However, further experiments are necessary to facilitate its practical application in the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Yao Yu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Bingbing Tian
- Operating Room, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Fenghe Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Jian Huang
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Wei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| |
Collapse
|
27
|
Tian Y, Morin-Poulard I, Liu X, Vanzo N, Crozatier M. A mechanosensitive vascular niche for Drosophila hematopoiesis. Proc Natl Acad Sci U S A 2023; 120:e2217862120. [PMID: 37094122 PMCID: PMC10160988 DOI: 10.1073/pnas.2217862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
Hematopoietic stem and progenitor cells maintain blood cell homeostasis by integrating various cues provided by specialized microenvironments or niches. Biomechanical forces are emerging as key regulators of hematopoiesis. Here, we report that mechanical stimuli provided by blood flow in the vascular niche control Drosophila hematopoiesis. In vascular niche cells, the mechanosensitive channel Piezo transduces mechanical forces through intracellular calcium upregulation, leading to Notch activation and repression of FGF ligand transcription, known to regulate hematopoietic progenitor maintenance. Our results provide insight into how the vascular niche integrates mechanical stimuli to regulate hematopoiesis.
Collapse
Affiliation(s)
- Yushun Tian
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Ismaël Morin-Poulard
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Xiaohui Liu
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Nathalie Vanzo
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Michèle Crozatier
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| |
Collapse
|
28
|
Hautanen V, Toimela T, Paparella M, Heinonen T. A Human Cell-based Assay to Assess the Induction of Vasculature Formation for Non-genotoxic Carcinogenicity Testing Purposes: A Pilot Study. Altern Lab Anim 2023:2611929231171165. [PMID: 37125451 DOI: 10.1177/02611929231171165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The induction of vasculature formation is proposed to be a significant mechanism behind the non-genotoxic carcinogenicity of a chemical. The vasculature formation model used in this study is based on the coculture of human primary HUVECs and hASCs. This model was used to develop an assay to assess the induction of vasculature formation. Three assay protocols, based on different conditions, were developed and compared in order to identify the optimal conditions required. Some serum supplements and growth factors were observed to be essential for initiating vasculature formation. Of the studied putative positive reference chemicals, aspartame, sodium nitrite, bisphenol A and nicotine treatment led to a clear induction of vasculature formation, but arsenic and cadmium treatment only led to a slight increase. This human cell-based assay has the potential to be used as one test within a next generation testing battery, to assess the non-genotoxic carcinogenicity of a chemical through the mechanism of vasculature formation induction.
Collapse
Affiliation(s)
- Veera Hautanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Toimela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tuula Heinonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
29
|
Davis GE, Kemp SS. Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization. Cold Spring Harb Perspect Med 2023; 13:a041156. [PMID: 35817544 PMCID: PMC10578078 DOI: 10.1101/cshperspect.a041156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.
Collapse
Affiliation(s)
- George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| |
Collapse
|
30
|
Hu X, Xue Y, Liu D, Zhang J, Wang T, Wu Z, Lei W. Effects of material nano-topography on the angiogenesis of type H vessels: Size dependence, cell heterogeneity and intercellular communication. BIOMATERIALS ADVANCES 2023; 147:213307. [PMID: 36746099 DOI: 10.1016/j.bioadv.2023.213307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Type H vessel, a vascular subtype in bone, is a critical regulator of osteogenesis, but how material properties affect this organ-specific vessel remains unknown. Here, titania nanotubes were fabricated on bone implant surface to investigate the effects of nano-topography on type H vessels. In vivo, surface nanotubes with 20-100 nm diameters promoted the angiogenesis of type H vessels and bone regeneration in mouse femurs to different extents, with the best effects induced by 70 nm diameter. In vitro, bone-specific endothelial cells (BECs) and artery endothelial cells (AECs) presented significantly different behaviors on the same material. Nanotubes with 20 nm small diameters significantly improved the adhesion, proliferation, type H differentiation of BECs and their paracrine function to regulate pre-osteoblasts (POBs), possibly via binding integrin β1 on the cell membrane, but these effects weakened when tube diameter increased, which conflicted with the results in vivo. Further study suggested that the better in vivo effects by larger diameters of 70-100 nm might be exerted indirectly through remodeling the regulation from POBs to BECs, highlighting the underappreciated indirect bio-effects of materials via intercellular communication. These suggest that nanoscale material topography makes significant impact on the angiogenesis of type H vessels, directly via binding integrins on the cell membrane of BECs and indirectly via modulating the regulation from osteoblastic cells to BECs, both in a size-dependent manner. Cells of the same type but from different tissues may show different responses to the same material, thus material properties should be tailored to the specific cell population. In research on material-tissue interactions, conclusions from in vitro experiments exposing a single type of cell to material might deviate from the truth in vivo, because materials may indirectly influence the targeted cells through modulating intercellular communication. These provide new insights into material-tissue interactions.
Collapse
Affiliation(s)
- Xiaofan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Daming Liu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jianming Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Tianji Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zixiang Wu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
31
|
Luo Y, Liu Y, Wang B, Tu X. CHIR99021-Treated Osteocytes with Wnt Activation in 3D-Printed Module Form an Osteogenic Microenvironment for Enhanced Osteogenesis and Vasculogenesis. Int J Mol Sci 2023; 24:ijms24066008. [PMID: 36983081 PMCID: PMC10052982 DOI: 10.3390/ijms24066008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Finding a bone implant that has high bioactivity that can safely drive stem cell differentiation and simulate a real in vivo microenvironment is a challenge for bone tissue engineering. Osteocytes significantly regulate bone cell fate, and Wnt-activated osteocytes can reversely regulate bone formation by regulating bone anabolism, which may improve the biological activity of bone implants. To achieve a safe application, we used the Wnt agonist CHIR99021 (C91) to treat MLO-Y4 for 24 h, in a co-culture with ST2 for 3 days after withdrawal. We found that the expression of Runx2 and Osx increased, promoted osteogenic differentiation, and inhibited adipogenic differentiation in the ST2 cells, and these effects were eliminated by the triptonide. Therefore, we hypothesized that C91-treated osteocytes form an osteogenic microenvironment (COOME). Subsequently, we constructed a bio-instructive 3D printing system to verify the function of COOME in 3D modules that mimic the in vivo environment. Within PCI3D, COOME increased the survival and proliferation rates to as high as 92% after 7 days and promoted ST2 cell differentiation and mineralization. Simultaneously, we found that the COOME-conditioned medium also had the same effects. Therefore, COOME promotes ST2 cell osteogenic differentiation both directly and indirectly. It also promotes HUVEC migration and tube formation, which can be explained by the high expression of Vegf. Altogether, these results indicate that COOME, combined with our independently developed 3D printing system, can overcome the poor cell survival and bioactivity of orthopedic implants and provide a new method for clinical bone defect repair.
Collapse
Affiliation(s)
- Yisheng Luo
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yangxi Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Bo Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
32
|
Grosso A, Lunger A, Burger MG, Briquez PS, Mai F, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone. NPJ Regen Med 2023; 8:15. [PMID: 36914692 PMCID: PMC10011536 DOI: 10.1038/s41536-023-00288-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF) physiologically regulates both angiogenesis and osteogenesis, but its application in bone tissue engineering led to contradictory outcomes. A poorly understood aspect is how VEGF dose impacts the coordination between these two processes. Taking advantage of a unique and highly tunable platform, here we dissected the effects of VEGF dose over a 1,000-fold range in the context of tissue-engineered osteogenic grafts. We found that osteo-angiogenic coupling is exquisitely dependent on VEGF dose and that only a tightly defined dose range could stimulate both vascular invasion and osteogenic commitment of progenitors, with significant improvement in bone formation. Further, VEGF dose regulated Notch1 activation and the induction of a specific pro-osteogenic endothelial phenotype, independently of the promotion of vascular invasion. Therefore, in a therapeutic perspective, fine-tuning of VEGF dose in the signaling microenvironment is key to ensure physiological coupling of accelerated vascular invasion and improved bone formation.
Collapse
Affiliation(s)
- Andrea Grosso
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Lunger
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Maximilian G Burger
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL, 60637, USA.,Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Francesca Mai
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL, 60637, USA
| | - Dirk J Schaefer
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Banfi
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland. .,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| | - Nunzia Di Maggio
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
33
|
Li J, Chen X, Ren L, Chen X, Wu T, Wang Y, Ren X, Cheng B, Xia J. Type H vessel/platelet-derived growth factor receptor β + perivascular cell disintegration is involved in vascular injury and bone loss in radiation-induced bone damage. Cell Prolif 2023:e13406. [PMID: 36694343 DOI: 10.1111/cpr.13406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Collapse of the microvascular system is a prerequisite for radiation-induced bone loss. Since type H vessels, a specific bone vessel subtype surrounded by platelet-derived growth factor receptor β+ (PDGFRβ+ ) perivascular cells (PVCs), has been recently identified to couple angiogenesis and osteogenesis, we hypothesize that type H vessel injury initiates PDGFRβ+ PVC dysfunction, which contributes to the abnormal angiogenesis and osteogenesis after irradiation. In this study, we found that radiation led to the decrease of both type H endothelial cell (EC) and PDGFRβ+ PVC numbers. Remarkably, results from lineage tracing showed that PDGFRβ+ PVCs detached from microvessels and converted the lineage commitment from osteoblasts to adipocytes, leading to vascular injury and bone loss after irradiation. These phenotype transitions above were further verified to be associated with the decrease in hypoxia-inducible factor-1α (HIF-1α)/PDGF-BB/PDGFRβ signalling between type H ECs and PDGFRβ+ PVCs. Pharmacological blockade of HIF-1α/PDGF-BB/PDGFRβ signalling induced a phenotype similar to radiation-induced bone damage, while the rescue of this signalling significantly alleviated radiation-induced bone injury. Our findings show that the decrease in HIF-1α/PDGF-BB/PDGFRβ signalling between type H ECs and PDGFRβ+ PVCs after irradiation affects the homeostasis of EC-PVC coupling and plays a part in vascular damage and bone loss, which has broad implications for effective translational therapies.
Collapse
Affiliation(s)
- Jiayan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tong Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yun Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Zhang X, Zhang L, Xu L, Li G, Wang K, Xue T, Sun Q, Tang H, Cao X, Hu Z, Zhang S, Shi F. Exosomes from Microvascular Endothelial Cells under Mechanical Unloading Inhibit Osteogenic Differentiation via miR-92b-3p/ELK4 Axis. J Pers Med 2022; 12:2030. [PMID: 36556251 PMCID: PMC9785449 DOI: 10.3390/jpm12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical unloading-related bone loss adversely harms astronauts' health. Nevertheless, the specific molecular basis underlying the phenomenon has not been completely elucidated. Although the bone microvasculature contributes significantly to bone homeostasis, the pathophysiological role of microvascular endothelial cells (MVECs) in bone loss induced by mechanical unloading is not apparent. Here, we discovered that MC3T3-E1 cells could take up exosomes produced by MVECs under clinorotation-unloading conditions (Clino Exos), which then prevented MC3T3-E1 cells from differentiating into mature osteoblasts. Moreover, miR-92b-3p was found to be highly expressed in both unloaded MVECs and derived exosomes. Further experiments demonstrated that miR-92b-3p was transferred into MC3T3-E1 cells by exosomes, resulting in the suppression of osteogenic differentiation, and that encapsulating miR-92b-3p inhibitor into the Clino Exos blocked their inhibitory effects. Furthermore, miR-92b-3p targeted ELK4 and the expression of ELK4 was lessened when cocultured with Clino Exos. The inhibitor-92b-3p-promoted osteoblast differentiation was partially reduced by siRNA-ELK4. Exosomal miR-92b-3p secreted from MVECs under mechanical unloading has been shown for the first time to partially attenuate the function of osteoblasts through downregulation of ELK4, suggesting a potential strategy to protect against the mechanical unloading-induced bone loss and disuse osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
35
|
Chen W, Jin X, Wang T, Bai R, Shi J, Jiang Y, Tan S, Wu R, Zeng S, Zheng H, Jia H, Li S. Ginsenoside Rg1 interferes with the progression of diabetic osteoporosis by promoting type H angiogenesis modulating vasculogenic and osteogenic coupling. Front Pharmacol 2022; 13:1010937. [PMID: 36467080 PMCID: PMC9712449 DOI: 10.3389/fphar.2022.1010937] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Ginsenoside Rg1 (Rg1) has been demonstrated to have antidiabetic and antiosteoporotic activities. The aim of this study was to investigate the protective effect of Rg1 against diabetic osteoporosis and the underlying mechanism. In vitro, we found that Rg1 increased the number of osteoprogenitors and alleviated high glucose (HG) induced apoptosis of osteoprogenitors by MTT assays and flow cytometry. qRT‒PCR and western blot analysis suggested that Rg1 can also promote the secretion of vascular endothelial growth factor (VEGF) by osteoprogenitors and promote the coupling of osteogenesis and angiogenesis. Rg1 can also promote the proliferation of human umbilical vein endothelial cells (HUVECs) cultured in high glucose, enhance the angiogenic ability of endothelial cells, and activate the Notch pathway to promote endothelial cells to secrete the osteogenesis-related factor Noggin to regulate osteogenesis, providing further feedback coupling of angiogenesis and osteogenesis. Therefore, we speculated that Rg1 may have similar effects on type H vessels. We used the Goto-Kakizaki (GK) rat model to perform immunofluorescence staining analysis on two markers of type H vessels, Endomucin (Emcn) and CD31, and the osteoblast-specific transcription factor Osterix, and found that Rg1 stimulates type H angiogenesis and bone formation. In vivo experiments also demonstrated that Rg1 promotes VEGF secretion, activates the Noggin/Notch pathway, increases the level of coupling between type H vessels and osteogenesis, and improves the bone structure of GK rats. All of these data reveal that Rg1 is a promising candidate drug for treating diabetic osteoporosis as a potentially bioactive molecule that promotes angiogenesis and osteointegration coupling.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyan Jin
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Ting Wang
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Rui Bai
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Shi
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Yunxia Jiang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Simin Tan
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruijie Wu
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiqi Zeng
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongxiang Zheng
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongyang Jia
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Shuanglei Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
36
|
ROS-reactive PMS/PC drug delivery system improves new bone formation under diabetic conditions by promoting angiogenesis-osteogenesis coupling via down-regulating NOX2-ROS signalling axis. Biomaterials 2022; 291:121900. [DOI: 10.1016/j.biomaterials.2022.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022]
|
37
|
Dzamukova M, Brunner TM, Miotla-Zarebska J, Heinrich F, Brylka L, Mashreghi MF, Kusumbe A, Kühn R, Schinke T, Vincent TL, Löhning M. Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nat Commun 2022; 13:3059. [PMID: 35650194 PMCID: PMC9160028 DOI: 10.1038/s41467-022-30618-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.
Collapse
Affiliation(s)
- Maria Dzamukova
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Tobias M Brunner
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jadwiga Miotla-Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Frederik Heinrich
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anjali Kusumbe
- Tissue and Tumour Microenvironments Group, University of Oxford, Oxford, UK
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
38
|
Neto E, Monteiro AC, Leite Pereira C, Simões M, Conde JP, Chu V, Sarmento B, Lamghari M. Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Adv Healthc Mater 2022; 11:e2102305. [PMID: 35158409 PMCID: PMC11468530 DOI: 10.1002/adhm.202102305] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-a-chip in vitro platforms accurately mimic complex microenvironments offering the ability to recapitulate and dissect mechanisms of physiological and pathological settings, revealing their major importance to develop new therapeutic targets. Bone diseases, such as osteoarthritis, are extremely complex, comprising of the action of inflammatory mediators leading to unbalanced bone homeostasis and de-regulation of sensory innervation and angiogenesis. Although there are models to mimic bone vascularization or innervation, in vitro platforms merging the complexity of bone, vasculature, innervation, and inflammation are missing. Therefore, in this study a microfluidic-based neuro-vascularized bone chip (NVB chip) is proposed to 1) model the mechanistic interactions between innervation and angiogenesis in the inflammatory bone niche, and 2) explore, as a screening tool, novel strategies targeting inflammatory diseases, using a nano-based drug delivery system. It is possible to set the design of the platform and achieve the optimized conditions to address the neurovascular network under inflammation. Moreover, this system is validated by delivering anti-inflammatory drug-loaded nanoparticles to counteract the neuronal growth associated with pain perception. This reliable in vitro tool will allow understanding the bone neurovascular system, enlightening novel mechanisms behind the inflammatory bone diseases, bone destruction, and pain opening new avenues for new therapies discovery.
Collapse
Affiliation(s)
- Estrela Neto
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Ana Carolina Monteiro
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Catarina Leite Pereira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Miguel Simões
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- CESPUInstituto de Investigação e Formação Avançada em Ciências e Tecnologias da SaúdeRua Central da Gandra, 137Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| |
Collapse
|
39
|
Liu Y, Chen Q, Jeong HW, Koh BI, Watson EC, Xu C, Stehling M, Zhou B, Adams RH. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun 2022; 13:1327. [PMID: 35288551 PMCID: PMC8921288 DOI: 10.1038/s41467-022-28775-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
In adult mammalian bone marrow (BM), vascular endothelial cells and perivascular reticular cells control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the mechanisms regulating the de novo haematopoietic cell colonization of BM remain largely unknown. Here, we show that fetal and adult BM exhibit fundamental differences in cellular composition and molecular interactions by single cell RNA sequencing. While fetal femur is largely devoid of leptin receptor-expressing cells, arterial endothelial cells (AECs) provide Wnt ligand to control the initial HSPC expansion. Haematopoietic stem cells and c-Kit+ HSPCs are reduced when Wnt secretion by AECs is genetically blocked. We identify Wnt2 as AEC-derived signal that activates β-catenin-dependent proliferation of fetal HSPCs. Treatment of HSPCs with Wnt2 promotes their proliferation and improves engraftment after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism. The colonization of bone marrow by haematopoietic stem and progenitor cells is critical for lifelong blood cell formation. Here the authors report distinct features of fetal bone marrow and show that artery-derived signals promote haematopoietic colonization.
Collapse
|
40
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
41
|
Ginsenoside Rg1 as a Potential Regulator of Hematopoietic Stem/Progenitor Cells. Stem Cells Int 2022; 2021:4633270. [PMID: 35003268 PMCID: PMC8741398 DOI: 10.1155/2021/4633270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/24/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ginsenoside Rg1 (Rg1), a purified, active component of the root or stem of ginseng, exerts positive effects on mesenchymal stem cells (MSCs). Many recent studies have found that hematopoietic stem cells (HSCs), which can develop into hematopoietic progenitor cells (HPCs) and mature blood cells, are another class of heterogeneous adult stem cells that can be regulated by Rg1. Rg1 can affect HSC proliferation and migration, regulate HSC/HPC differentiation, and alleviate HSC aging, and these findings potentially provide new strategies to improve the HSC homing rate in HSC transplantation and for the treatment of graft-versus-host disease (GVHD) or other HSC/HPC dysplasia-induced diseases. In this review, we used bioinformatics methods, molecular docking verification, and a literature review to systematically explore the possible molecular pharmacological activities of Rg1 through which it regulates HSCs/HPCs.
Collapse
|
42
|
Kumar N, Saraber P, Ding Z, Kusumbe AP. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front Immunol 2021; 12:798211. [PMID: 34975909 PMCID: PMC8718446 DOI: 10.3389/fimmu.2021.798211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
The bones and joints in the skeletal system are composed of diverse cell types, including vascular niches, bone cells, connective tissue cells and mineral deposits and regulate whole-body homeostasis. The capacity of maintaining strength and generation of blood lineages lies within the skeletal system. Bone harbours blood and immune cells and their progenitors, and vascular cells provide several immune cell type niches. Blood vessels in bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting striking changes with age. The bone vasculature has a special impact on osteogenesis and haematopoiesis, and dysregulation of the vasculature is associated with diverse blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of osteogenesis, increased adipogenesis and diminished immune response and immune cell production. Endothelial and perivascular cells impact immune cell production and play a crucial role during inflammation. Here, we discuss normal and maladapted vascular niches in bone during development, homeostasis, ageing and bone diseases such as rheumatoid arthritis and osteoarthritis. Further, we discuss the role of vascular niches during bone malignancy.
Collapse
Affiliation(s)
| | | | | | - Anjali P. Kusumbe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Tissue and Tumor Microenvironments Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. CURRENT STEM CELL REPORTS 2021; 7:194-203. [PMID: 34868826 PMCID: PMC8639543 DOI: 10.1007/s40778-021-00198-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/26/2022]
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) sit at the top of the hierarchy that meets the daily burden of blood production. HSC maintenance relies on extrinsic cues from the bone marrow (BM) microenvironment to balance stem cell self-renewal and cell fate decisions. In this brief review, we will highlight the studies and model systems that define the centralized role of BM vascular endothelium in modulating HSC activity in health and stress. Recent Findings The BM microenvironment is composed of a diverse array of intimately associated vascular and perivascular cell types. Recent dynamic imaging studies, coupled with single-cell RNA sequencing (scRNA-seq) and functional readouts, have advanced our understanding of the HSC-supportive cell types and their cooperative mechanisms that govern stem cell fate during homeostasis, regeneration, and aging. These findings have established complex and discrete vascular microenvironments within the BM that express overlapping and unique paracrine signals that modulate HSC fate. Summary Understanding the spatial and reciprocal HSC-niche interactions and the molecular mechanisms that govern HSC activity in the BM vascular microenvironment will be integral in developing therapies aimed at ameliorating hematological disease and supporting healthy hematopoietic output.
Collapse
|
44
|
Mancini SJC, Balabanian K, Corre I, Gavard J, Lazennec G, Le Bousse-Kerdilès MC, Louache F, Maguer-Satta V, Mazure NM, Mechta-Grigoriou F, Peyron JF, Trichet V, Herault O. Deciphering Tumor Niches: Lessons From Solid and Hematological Malignancies. Front Immunol 2021; 12:766275. [PMID: 34858421 PMCID: PMC8631445 DOI: 10.3389/fimmu.2021.766275] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge about the hematopoietic niche has evolved considerably in recent years, in particular through in vitro analyzes, mouse models and the use of xenografts. Its complexity in the human bone marrow, in particular in a context of hematological malignancy, is more difficult to decipher by these strategies and could benefit from the knowledge acquired on the niches of solid tumors. Indeed, some common features can be suspected, since the bone marrow is a frequent site of solid tumor metastases. Recent research on solid tumors has provided very interesting information on the interactions between tumoral cells and their microenvironment, composed notably of mesenchymal, endothelial and immune cells. This review thus focuses on recent discoveries on tumor niches that could help in understanding hematopoietic niches, with special attention to 4 particular points: i) the heterogeneity of carcinoma/cancer-associated fibroblasts (CAFs) and mesenchymal stem/stromal cells (MSCs), ii) niche cytokines and chemokines, iii) the energy/oxidative metabolism and communication, especially mitochondrial transfer, and iv) the vascular niche through angiogenesis and endothelial plasticity. This review highlights actors and/or pathways of the microenvironment broadly involved in cancer processes. This opens avenues for innovative therapeutic opportunities targeting not only cancer stem cells but also their regulatory tumor niche(s), in order to improve current antitumor therapies.
Collapse
Affiliation(s)
- Stéphane J C Mancini
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMR1236, Rennes 1 University, Etablissement Français du Sang Bretagne, Rennes, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France
| | - Karl Balabanian
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Saint-Louis Research Institute, University of Paris, EMiLy, INSERM U1160, Paris, France.,The Organization for Partnerships in Leukemia (OPALE) Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Isabelle Corre
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), Signaling in Oncogenesis Angiogenesis and Permeability (SOAP), INSERM UMR1232, Centre National de la Recherche scientifique (CNRS) ERL600, Université de Nantes, Nantes, France
| | - Julie Gavard
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), Signaling in Oncogenesis Angiogenesis and Permeability (SOAP), INSERM UMR1232, Centre National de la Recherche scientifique (CNRS) ERL600, Université de Nantes, Nantes, France.,Integrated Center for Oncology, St. Herblain, France
| | - Gwendal Lazennec
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Centre National de la Recherche scientifique (CNRS) UMR9005, SYS2DIAG-ALCEDIAG, Montpellier, France
| | - Marie-Caroline Le Bousse-Kerdilès
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMRS-MD1197, Paris-Saclay University, Paul-Brousse Hospital, Villejuif, France
| | - Fawzia Louache
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMRS-MD1197, Paris-Saclay University, Paul-Brousse Hospital, Villejuif, France
| | - Véronique Maguer-Satta
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancer Research Center of Lyon (CRCL), CNRS UMR5286, INSERM U1052, Lyon 1 university, Lean Bérard Center, Lyon, France
| | - Nathalie M Mazure
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM U1065, C3M, University of Côte d'Azur (UCA), Nice, France
| | - Fatima Mechta-Grigoriou
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Stress and Cancer Laboratory, Institut Curie, INSERM U830, Paris Sciences et Lettres (PSL) Research University, Team Babelized Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Jean-François Peyron
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM U1065, C3M, University of Côte d'Azur (UCA), Nice, France
| | - Valérie Trichet
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,INSERM UMR1238 Phy-Os, Université de Nantes, Nantes, France
| | - Olivier Herault
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,The Organization for Partnerships in Leukemia (OPALE) Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.,Centre National de la Recherche scientifique (CNRS) ERL7001 LNOx, EA7501, Tours University, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| |
Collapse
|
45
|
Abraham DM, Herman C, Witek L, Cronstein BN, Flores RL, Coelho PG. Self-assembling human skeletal organoids for disease modeling and drug testing. J Biomed Mater Res B Appl Biomater 2021; 110:871-884. [PMID: 34837719 DOI: 10.1002/jbm.b.34968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 01/09/2023]
Abstract
Skeletal conditions represent a considerable challenge to health systems globally. Barriers to effective therapeutic development include a lack of accurate preclinical tissue and disease models. Most recently, work was attempted to present a novel whole organ approach to modeling human bone and cartilage tissues. These self-assembling skeletal organoids mimic the cellular milieu and extracellular organization present in native tissues. Bone organoids demonstrated osteogenesis and micro vessel formation, and cartilage organoids showed evidence of cartilage development and maturation. Skeletal organoids derived from both bone and cartilage tissues yielded spontaneous polarization of their cartilaginous and bone components. Using these hybrid skeletal organoids, we successfully generated "mini joint" cultures, which we used to model inflammatory disease and test Adenosine (A2A ) receptor agonists as a therapeutic agent. The work and respective results indicated that skeletal organoids can be an effective biological model for tissue development and disease as well as to test therapeutic agents.
Collapse
Affiliation(s)
- Diana M Abraham
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Calvin Herman
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Bruce N Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
46
|
Born G, Nikolova M, Scherberich A, Treutlein B, García-García A, Martin I. Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells. J Tissue Eng 2021; 12:20417314211044855. [PMID: 34616539 PMCID: PMC8488506 DOI: 10.1177/20417314211044855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/21/2021] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are frequently located around the bone marrow (BM) vasculature. These so-called perivascular niches regulate HSC function both in health and disease, but they have been poorly studied in humans due to the scarcity of models integrating complete human vascular structures. Herein, we propose the stromal vascular fraction (SVF) derived from human adipose tissue as a cell source to vascularize 3D osteoblastic BM niches engineered in perfusion bioreactors. We show that SVF cells form self-assembled capillary structures, composed by endothelial and perivascular cells, that add to the osteogenic matrix secreted by BM mesenchymal stromal cells in these engineered niches. In comparison to avascular osteoblastic niches, vascularized BM niches better maintain immunophenotypically-defined cord blood (CB) HSCs without affecting cell proliferation. In contrast, HSPCs cultured in vascularized BM niches showed increased CFU-granulocyte-erythrocyte-monocyte-megakaryocyte (CFU-GEMM) numbers. The vascularization also contributed to better preserve osteogenic gene expression in the niche, demonstrating that niche vascularization has an influence on both hematopoietic and stromal compartments. In summary, we have engineered a fully humanized and vascularized 3D BM tissue to model native human endosteal perivascular niches and revealed functional implications of this vascularization in sustaining undifferentiated CB HSPCs. This system provides a unique modular platform to explore hemato-vascular interactions in human healthy/pathological hematopoiesis.
Collapse
Affiliation(s)
- Gordian Born
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwill, Switzerland
| | - Marina Nikolova
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwill, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andrés García-García
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwill, Switzerland
| |
Collapse
|
47
|
Zhang H, Ma Y, Cheng X, Wu D, Huang X, Chen B, Ren Y, Jiang W, Tang X, Bai T, Chen Y, Zhao Y, Zhang C, Xiao X, Liu J, Deng Y, Ye T, Chen L, Liu HM, Friedman SL, Chen L, Ding BS, Cao Z. Targeting epigenetically maladapted vascular niche alleviates liver fibrosis in nonalcoholic steatohepatitis. Sci Transl Med 2021; 13:eabd1206. [PMID: 34613814 DOI: 10.1126/scitranslmed.abd1206] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yongyuan Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xinying Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingming Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yafeng Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Bai
- Department of Cardiology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yutian Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yilin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Chunxue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Deng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Tinghong Ye
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Scott L Friedman
- Fibrosis Research Program, Division of Pulmonary and Critical Care Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Liping Chen
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Fibrosis Research Program, Division of Pulmonary and Critical Care Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Fibrosis Research Program, Division of Pulmonary and Critical Care Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
48
|
Morin-Poulard I, Tian Y, Vanzo N, Crozatier M. Drosophila as a Model to Study Cellular Communication Between the Hematopoietic Niche and Blood Progenitors Under Homeostatic Conditions and in Response to an Immune Stress. Front Immunol 2021; 12:719349. [PMID: 34484226 PMCID: PMC8415499 DOI: 10.3389/fimmu.2021.719349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In adult mammals, blood cells are formed from hematopoietic stem progenitor cells, which are controlled by a complex cellular microenvironment called "niche". Drosophila melanogaster is a powerful model organism to decipher the mechanisms controlling hematopoiesis, due both to its limited number of blood cell lineages and to the conservation of genes and signaling pathways throughout bilaterian evolution. Insect blood cells or hemocytes are similar to the mammalian myeloid lineage that ensures innate immunity functions. Like in vertebrates, two waves of hematopoiesis occur in Drosophila. The first wave takes place during embryogenesis. The second wave occurs at larval stages, where two distinct hematopoietic sites are identified: subcuticular hematopoietic pockets and a specialized hematopoietic organ called the lymph gland. In both sites, hematopoiesis is regulated by distinct niches. In hematopoietic pockets, sensory neurons of the peripheral nervous system provide a microenvironment that promotes embryonic hemocyte expansion and differentiation. In the lymph gland blood cells are produced from hematopoietic progenitors. A small cluster of cells called Posterior Signaling Centre (PSC) and the vascular system, along which the lymph gland develops, act collectively as a niche, under homeostatic conditions, to control the balance between maintenance and differentiation of lymph gland progenitors. In response to an immune stress such as wasp parasitism, lymph gland hematopoiesis is drastically modified and shifts towards emergency hematopoiesis, leading to increased progenitor proliferation and their differentiation into lamellocyte, a specific blood cell type which will neutralize the parasite. The PSC is essential to control this emergency response. In this review, we summarize Drosophila cellular and molecular mechanisms involved in the communication between the niche and hematopoietic progenitors, both under homeostatic and stress conditions. Finally, we discuss similarities between mechanisms by which niches regulate hematopoietic stem/progenitor cells in Drosophila and mammals.
Collapse
Affiliation(s)
| | - Yushun Tian
- MCD/UMR5077, Centre de Biologie Intégrative (CBI), Toulouse, France
| | - Nathalie Vanzo
- MCD/UMR5077, Centre de Biologie Intégrative (CBI), Toulouse, France
| | | |
Collapse
|
49
|
Yang RZ, Xu WN, Zheng HL, Zheng XF, Li B, Jiang LS, Jiang SD. Exosomes derived from vascular endothelial cells antagonize glucocorticoid-induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts. J Cell Physiol 2021; 236:6691-6705. [PMID: 33590921 DOI: 10.1002/jcp.30331] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
High dose and long-term steroid treatment can alter antioxidative ability and decrease the viability and function of osteoblasts, leading to osteoporosis and osteonecrosis. Ferroptosis, a new type of cell death characterized by excessive lipid peroxidation due to the downregulation of GPX4 and system Xc- , is involved in glucocorticoid-induced osteoporosis. Endothelial cell-secreted exosomes (EC-Exos) are important mediators of cell-to-cell communication and are involved in many physiological and pathological processes. However, the effect of EC-Exos on osteoblasts exposed to glucocorticoids has not been reported. Here, we explored the role of EC-Exos in glucocorticoid-induced osteoporosis. In vivo and in vitro experiments indicated that EC-Exos reversed the glucocorticoid-induced osteogenic inhibition of osteoblasts by inhibiting ferritinophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Run-Ze Yang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ning Xu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Mesnieres M, Böhm AM, Peredo N, Trompet D, Valle-Tenney R, Bajaj M, Corthout N, Nefyodova E, Cardoen R, Baatsen P, Munck S, Nagy A, Haigh JJ, Khurana S, Verfaillie CM, Maes C. Fetal hematopoietic stem cell homing is controlled by VEGF regulating the integrity and oxidative status of the stromal-vascular bone marrow niches. Cell Rep 2021; 36:109618. [PMID: 34433017 PMCID: PMC8411121 DOI: 10.1016/j.celrep.2021.109618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) engraftment after transplantation during anticancer treatment depends on support from the recipient bone marrow (BM) microenvironment. Here, by studying physiological homing of fetal HSPCs, we show the critical requirement of balanced local crosstalk within the skeletal niche for successful HSPC settlement in BM. Transgene-induced overproduction of vascular endothelial growth factor (VEGF) by osteoprogenitor cells elicits stromal and endothelial hyperactivation, profoundly impacting the stromal-vessel interface and vascular architecture. Concomitantly, HSPC homing and survival are drastically impaired. Transcriptome profiling, flow cytometry, and high-resolution imaging indicate alterations in perivascular and endothelial cell characteristics, vascular function and cellular metabolism, associated with increased oxidative stress within the VEGF-enriched BM environment. Thus, developmental HSPC homing to bone is controlled by local stromal-vascular integrity and the oxidative-metabolic status of the recipient milieu. Interestingly, irradiation of adult mice also induces stromal VEGF expression and similar osteo-angiogenic niche changes, underscoring that our findings may contribute targets for improving stem cell therapies. Establishment of BM hematopoiesis is coupled to development of the skeletal niches Primary HSPC seeding of bone depends on balanced molecular crosstalk in the niche Stromal VEGF triggers EC activation and controls stromal-vascular niche integrity Excessive skeletal VEGF deranges cell metabolism and induces oxidative stress in BM
Collapse
Affiliation(s)
- Marion Mesnieres
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Anna-Marei Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nicolas Peredo
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Roger Valle-Tenney
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Manmohan Bajaj
- Stem Cell and Developmental Biology Unit, Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, VIB BioImaging Center, KU Leuven, 3000 Leuven, Belgium; Research Group Molecular Neurobiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Elena Nefyodova
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Ruben Cardoen
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain & Disease Research, VIB BioImaging Center, KU Leuven, 3000 Leuven, Belgium; Research Group Molecular Neurobiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Sebastian Munck
- VIB-KU Leuven Center for Brain & Disease Research, VIB BioImaging Center, KU Leuven, 3000 Leuven, Belgium; Research Group Molecular Neurobiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Obstetrics and Gynecology, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Satish Khurana
- Stem Cell and Developmental Biology Unit, Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, 695551 Kerala, India
| | - Catherine M Verfaillie
- Stem Cell and Developmental Biology Unit, Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|