1
|
Thayer RC, Polston ES, Xu J, Begun DJ. Regional specialization, polyploidy, and seminal fluid transcripts in the Drosophila female reproductive tract. Proc Natl Acad Sci U S A 2024; 121:e2409850121. [PMID: 39453739 PMCID: PMC11536144 DOI: 10.1073/pnas.2409850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024] Open
Abstract
Sexual reproduction requires the choreographed interaction of female cells and molecules with sperm and seminal fluid. In internally fertilizing animals, these interactions are managed by specialized tissues within the female reproductive tract (FRT), such as a uterus, glands, and sperm storage organs. However, female somatic reproductive tissues remain understudied, hindering insight into the molecular interactions that support fertility. Here, we report the identification, molecular characterization, and analysis of cell types throughout the somatic FRT in the premier Drosophila melanogaster model system. We find that the uterine epithelia is composed of 11 distinct cell types with well-delineated spatial domains, likely corresponding to functionally specialized surfaces that interact with gametes and reproductive fluids. Polyploidy is pervasive: More than half of lower reproductive tract cells are ≥4C. While seminal fluid proteins (SFPs) are typically thought of as male products that are transferred to females, we find that specialized cell types in the sperm storage organs heavily invest in expressing SFP genes. Rates of amino acid divergence between closely related species indicate heterogeneous evolutionary processes acting on male-limited versus female-expressed seminal fluid genes. Together, our results emphasize that more than 40% of annotated seminal fluid genes are better described as shared components of reproductive transcriptomes, which may function cooperatively to support spermatozoa. More broadly, our work provides the molecular foundation for improved technologies to catalyze the functional characterization of the FRT.
Collapse
Affiliation(s)
- Rachel C. Thayer
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | | | - Jixiang Xu
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
2
|
Awuoche E, Smallenberger G, Bruzzese D, Orfano A, Weiss BL, Aksoy S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620045. [PMID: 39484388 PMCID: PMC11527105 DOI: 10.1101/2024.10.24.620045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tsetse flies (Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes (Gff). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma-mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the midgut tissue along with functional assays. Our findings reveal elevated oxidative stress in the midgut environment in the presence of Spiroplasma, evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like, homologous to Stomoxyns first discovered in the stable fly Stomoxys calcitrans. We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. GffStomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic GffStomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro. Reducing GffStomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo. Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma-infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, GffStomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the midgut and prevent gut colonization. We discuss the molecular characteristics of GffStomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics.
Collapse
Affiliation(s)
- Erick Awuoche
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Gretchen Smallenberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Daniel Bruzzese
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Alessandra Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
3
|
Odeniran PO, Paul-Odeniran KF, Ademola IO. The comprehensive epidemiological status of human African trypanosomiasis in Nigeria: meta-analysis and systematic review of the full story (1962-2022). Parasitol Res 2024; 123:291. [PMID: 39102014 DOI: 10.1007/s00436-024-08312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Human African trypanosomiasis (HAT) in Nigeria is caused primarily by Trypanosoma brucei gambiense (gHAT), which has historically been a major human and animal health problem. This study aims to examine the status of gHAT in Nigeria over the past 60 years. The World Health Organization (WHO) set two targets to eliminate HAT as a public health concern by 2020 and terminate its global transmission by 2030. The former target has been achieved, but accurate monitoring and surveillance are important for maintaining this success and delivering the second target. Although recent cases in Nigeria are rare, accurately estimating the national seroprevalence and actual prevalence of gHATs remains challenging. To address this, a meta-analysis reviewed studies on gHATs in Nigeria from databases such as Embase, Global Health, Ovid Medline, Web of Science, and Google Scholar. Ten studies were included, ranging between 1962 and 2016, covering 52 clusters and 5,671,877 individuals, even though databases were scrutinized up to 2022. The seroprevalence ranged from 1.75 to 17.07%, with an overall estimate of 5.01% (95% CI 1.72-9.93). The actual gHAT prevalence detected by parasitological or PCR methods was 0.001 (95% CI 0.000-0.002), indicating a prevalence of 0.1%. Notably, the seroprevalence was greater in southern Nigeria than in northern Nigeria. These findings suggest that the disease might be spreading unnoticed due to the increased movement of people from endemic areas. This study highlights the paucity of studies in Nigeria over the last 60 years and emphasizes the need for further research, systematic surveillance, and proper reporting methods throughout the country.
Collapse
Affiliation(s)
- Paul Olalekan Odeniran
- Department of Veterinary Parasitology and Entomology, University of Ibadan, Ibadan, 200001, Nigeria.
| | | | - Isaiah Oluwafemi Ademola
- Department of Veterinary Parasitology and Entomology, University of Ibadan, Ibadan, 200001, Nigeria
| |
Collapse
|
4
|
Weaving H, Terblanche JS, English S. Heatwaves are detrimental to fertility in the viviparous tsetse fly. Proc Biol Sci 2024; 291:20232710. [PMID: 38471560 DOI: 10.1098/rspb.2023.2710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Heatwaves are increasing in frequency and intensity due to climate change, pushing animals beyond physiological limits. While most studies focus on survival limits, sublethal effects on fertility tend to occur below lethal thresholds, and consequently can be as important for population viability. Typically, male fertility is more heat-sensitive than female fertility, yet direct comparisons are limited. Here, we measured the effect of experimental heatwaves on tsetse flies, Glossina pallidipes, disease vectors and unusual live-bearing insects of sub-Saharan Africa. We exposed males or females to a 3-day heatwave peaking at 36, 38 or 40°C for 2 h, and a 25°C control, monitoring mortality and reproduction over six weeks. For a heatwave peaking at 40°C, mortality was 100%, while a 38°C peak resulted in only 8% acute mortality. Females exposed to the 38°C heatwave experienced a one-week delay in producing offspring, whereas no such delay occurred in males. Over six weeks, heatwaves resulted in equivalent fertility loss in both sexes. Combined with mortality, this lead to a 10% population decline over six weeks compared to the control. Furthermore, parental heatwave exposure gave rise to a female-biased offspring sex ratio. Ultimately, thermal limits of both survival and fertility should be considered when assessing climate change vulnerability.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Terradas G, Macias VM, Peterson H, McKeand S, Krawczyk G, Rasgon JL. The Development and Expansion of in vivo Germline Editing Technologies in Arthropods: Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and Beyond. Integr Comp Biol 2023; 63:1550-1563. [PMID: 37742320 PMCID: PMC10755176 DOI: 10.1093/icb/icad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control's main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Vanessa M Macias
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Hillary Peterson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Sage McKeand
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Grzegorz Krawczyk
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| |
Collapse
|
6
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
7
|
Fouks B, Harrison MC, Mikhailova AA, Marchal E, English S, Carruthers M, Jennings EC, Chiamaka EL, Frigard RA, Pippel M, Attardo GM, Benoit JB, Bornberg-Bauer E, Tobe SS. Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond. iScience 2023; 26:107832. [PMID: 37829199 PMCID: PMC10565785 DOI: 10.1016/j.isci.2023.107832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/13/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.
Collapse
Affiliation(s)
- Bertrand Fouks
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Mark C. Harrison
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Alina A. Mikhailova
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Elisabeth Marchal
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Emily C. Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ezemuoka L. Chiamaka
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ronja A. Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Geoffrey M. Attardo
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Erich Bornberg-Bauer
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Stephen S. Tobe
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
9
|
Attardo GM, Benoit JB, Michalkova V, Kondragunta A, Baumann AA, Weiss BL, Malacrida A, Scolari F, Aksoy S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis. iScience 2023; 26:107108. [PMID: 37534171 PMCID: PMC10391724 DOI: 10.1016/j.isci.2023.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023] Open
Abstract
Lipid metabolism is critical for insect reproduction, especially for species that invest heavily in the early developmental stages of their offspring. The role of symbiotic bacteria during this process is understudied but likely essential. We examined the role of lipid metabolism during the interaction between the viviparous tsetse fly (Glossina morsitans morsitans) and its obligate endosymbiotic bacteria (Wigglesworthia glossinidia) during tsetse pregnancy. We observed increased CTP:phosphocholine cytidylyltransferase (cct1) expression during pregnancy, which is critical for phosphatidylcholine biosynthesis in the Kennedy pathway. Experimental removal of Wigglesworthia impaired lipid metabolism via disruption of the Kennedy pathway, yielding obese mothers whose developing progeny starve. Functional validation via experimental cct1 suppression revealed a phenotype similar to females lacking obligate Wigglesworthia symbionts. These results indicate that, in Glossina, symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity.
Collapse
Affiliation(s)
- Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aaron A. Baumann
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anna Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Institute of Molecular Genetics (IGM), Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
10
|
Santhakumari PR, Dhanabalan K, Virani S, Hopf-Jannasch AS, Benoit JB, Chopra G, Subramanian R. Variability in phenylalanine side chain conformations facilitates broad substrate tolerance of fatty acid binding in cockroach milk proteins. PLoS One 2023; 18:e0280009. [PMID: 37384723 PMCID: PMC10310036 DOI: 10.1371/journal.pone.0280009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Diploptera punctata, also known as the Pacific beetle cockroach, is a viviparous cockroach that gives birth to live offspring and secretes a highly concentrated mixture of glycosylated proteins as a source of nourishment for developing embryos. These proteins are lipocalins that bind to lipids and crystallize in the gut of the embryo. A structure of milk crystals harvested from the embryos showed that the milk-derived crystals were heterogeneous and made of three proteins (called Lili-Mips). We hypothesized that the isoforms of Lili-Mip would display different affinities for fatty acids due to the ability of the pocket to bind multiple acyl chain lengths. We previously reported the structures of Lili-Mip from crystals grown in vivo and recombinantly expressed Lili-Mip2. These structures are similar, and both bind to several fatty acids. This study explores the specificity and affinity of fatty acid binding to recombinantly expressed Lili-Mip 1, 2 & 3. We show that all isoforms can bind to different fatty acids with similar affinities. We also report the thermostability of Lili-Mip is pH dependent, where stability is highest at acidic pH and declines as the pH increases to physiological levels near 7.0. We show that thermostability is an inherent property of the protein, and glycosylation and ligand binding do not change it significantly. Measuring the pH in the embryo's gut lumen and gut cells suggests that the pH in the gut is acidic and the pH inside the gut cells is closer to neutral pH. In various crystal structures (reported here and previously by us), Phe-98 and Phe-100 occupy multiple conformations in the binding pocket. In our earlier work, we had shown that the loops at the entrance could adapt various conformations to change the size of the binding pocket. Here we show Phe-98 and Phe-100 can reorient to stabilize interactions at the bottom of the cavity-and change the volume of the cavity from 510 Å3 to 337 Å3. Together they facilitate the binding of fatty acids of different acyl chain lengths.
Collapse
Affiliation(s)
- Partha Radhakrishnan Santhakumari
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, India
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - KanagaVijayan Dhanabalan
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Saniya Virani
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States of America
| | - Amber S. Hopf-Jannasch
- Bindley Biosciences Centre, Purdue University, West Lafayette, Indiana, United States of America
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States of America
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, India
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Biosciences Centre, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
11
|
English S, Barreaux AM, Leyland R, Lord JS, Hargrove JW, Vale GA, Haines LR. Investigating the unaccounted ones: insights on age-dependent reproductive loss in a viviparous fly. Front Ecol Evol 2023; 11:1057474. [PMID: 39534876 PMCID: PMC7616795 DOI: 10.3389/fevo.2023.1057474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Most empirical and theoretical studies on reproductive senescence focus on observable attributes of offspring produced, such as size or postnatal survival. While harder to study, an important outcome of reproduction for a breeding individual is whether a viable offspring is produced at all. While prenatal mortality can sometimes be directly observed, this can also be indicated through an increase in the interval between offspring production. Both direct reproductive loss and presumed losses have been found to increase in older females across several species. Here, we study such reproductive loss (or "abortion") in tsetse, a viviparous and relatively long-lived fly with high maternal allocation. We consider how age-dependent patterns of abortion depend on the developmental stage of offspring and find that, as per previous laboratory studies, older females have higher rates of abortion at the late-larval stage, while egg-stage abortions are high both for very young and older females. We track the reproductive output of individual females and find little evidence that experiencing an abortion is an adaptive strategy to improve future reproductive outcomes. After an abortion, females do not generally take less time to produce their next offspring, these offspring are not larger, and there is no sex bias towards females, the sex with presumed higher fitness returns (being slightly larger and longer-lived than males, and with high insemination rates). Abortion rates are higher for breeding females experiencing stress, measured as nutritional deprivation, which echoes previous work in tsetse and other viviparous species, i.e., humans and baboons. We discuss our results in the context of studies on reproductive loss across taxa and argue that this is an important yet often overlooked reproductive trait which can vary with maternal age and can also depend on environmental stressors.
Collapse
Affiliation(s)
- Sinead English
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Antoine M.G. Barreaux
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Intertryp, Université Montpellier, CIRAD, IRD, Montpellier, France
- Animal Health Theme, ICIPE, Nairobi, Kenya
| | - Robert Leyland
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jennifer S. Lord
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John W. Hargrove
- South African Centre for Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa
| | - Glyn A. Vale
- National Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Lee R. Haines
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
12
|
Ebrahim SA, Dweck HK, Weiss BL, Carlson JR. A volatile sex attractant of tsetse flies. Science 2023; 379:eade1877. [PMID: 36795837 PMCID: PMC10204727 DOI: 10.1126/science.ade1877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/18/2023]
Abstract
Tsetse flies transmit trypanosomes-parasites that cause devastating diseases in humans and livestock-across much of sub-Saharan Africa. Chemical communication through volatile pheromones is common among insects; however, it remains unknown if and how such chemical communication occurs in tsetse flies. We identified methyl palmitoleate (MPO), methyl oleate, and methyl palmitate as compounds that are produced by the tsetse fly Glossina morsitans and elicit strong behavioral responses. MPO evoked a behavioral response in male-but not virgin female-G. morsitans. G. morsitans males mounted females of another species, Glossina fuscipes, when they were treated with MPO. We further identified a subpopulation of olfactory neurons in G. morsitans that increase their firing rate in response to MPO and showed that infecting flies with African trypanosomes alters the flies' chemical profile and mating behavior. The identification of volatile attractants in tsetse flies may be useful for reducing disease spread.
Collapse
Affiliation(s)
- Shimaa A.M. Ebrahim
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Hany K.M. Dweck
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Brian L. Weiss
- Dept. of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, USA
| | - John R. Carlson
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Zhang Q, Zhou Q, Han S, Li Y, Wang Y, He H. The genome of sheep ked (Melophagus ovinus) reveals potential mechanisms underlying reproduction and narrower ecological niches. BMC Genomics 2023; 24:54. [PMID: 36717784 PMCID: PMC9887928 DOI: 10.1186/s12864-023-09155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Melophagus ovinus is considered to be of great veterinary health significance. However, little is known about the information on genetic mechanisms of the specific biological characteristics and novel methods for controlling M. ovinus. RESULTS In total, the de novo genome assembly of M. ovinus was 188.421 Mb in size (330 scaffolds, N50 Length: 10.666 Mb), with a mean GC content of 27.74%. A total of 13,372 protein-coding genes were functionally annotated. Phylogenetic analysis indicated that the diversification of M. ovinus and Glossina fuscipes took place 72.76 Mya within the Late Cretaceous. Gene family expansion and contraction analysis revealed that M. ovinus has 65 rapidly-evolving families (26 expansion and 39 contractions) mainly involved DNA metabolic activity, transposases activity, odorant receptor 59a/67d-like, IMD domain-containing protein, and cuticle protein, etc. The universal and tightly conserved list of milk protein orthologues has been assembled from the genome of M. ovinus. Contractions and losses of sensory receptors and vision-associated Rhodopsin genes were significant in M. ovinus, which indicate that the M. ovinus has narrower ecological niches. CONCLUSIONS We sequenced, assembled, and annotated the whole genome sequence of M. ovinus, and launches into the preliminary genetic mechanisms analysis of the adaptive evolution characteristics of M. ovinus. These resources will provide insights to understand the biological underpinnings of this parasite and the disease control strategies.
Collapse
Affiliation(s)
- Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Ye Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
Benoit JB, McCluney KE, DeGennaro MJ, Dow JAT. Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:129-149. [PMID: 36270273 PMCID: PMC9936378 DOI: 10.1146/annurev-ento-120120-091609] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Kevin E McCluney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA;
| | - Matthew J DeGennaro
- Department of Biological Sciences, Florida International University and Biomolecular Sciences Institute, Miami, Florida, USA;
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, United Kingdom;
| |
Collapse
|
15
|
Benoit JB, Lahondère C, Attardo GM, Michalkova V, Oyen K, Xiao Y, Aksoy S. Warm Blood Meal Increases Digestion Rate and Milk Protein Production to Maximize Reproductive Output for the Tsetse Fly, Glossina morsitans. INSECTS 2022; 13:997. [PMID: 36354821 PMCID: PMC9695897 DOI: 10.3390/insects13110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The ingestion of blood represents a significant burden that immediately increases water, oxidative, and thermal stress, but provides a significant nutrient source to generate resources necessary for the development of progeny. Thermal stress has been assumed to solely be a negative byproduct that has to be alleviated to prevent stress. Here, we examined if the short thermal bouts incurred during a warm blood meal are beneficial to reproduction. To do so, we examined the duration of pregnancy and milk gland protein expression in the tsetse fly, Glossina morsitans, that consumed a warm or cool blood meal. We noted that an optimal temperature for blood ingestion yielded a reduction in the duration of pregnancy. This decline in the duration of pregnancy is due to increased rate of blood digestion when consuming warm blood. This increased digestion likely provided more energy that leads to increased expression of transcript for milk-associated proteins. The shorter duration of pregnancy is predicted to yield an increase in population growth compared to those that consume cool or above host temperatures. These studies provide evidence that consumption of a warm blood meal is likely beneficial for specific aspects of vector biology.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology at Virginia Polytechnic Institute and State Univerity, Blacksburg, VA 24061, USA
| | - Geoffrey M. Attardo
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Veronika Michalkova
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Serap Aksoy
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
| |
Collapse
|
16
|
Fronk DC, Sachs JL. Symbiotic organs: the nexus of host-microbe evolution. Trends Ecol Evol 2022; 37:599-610. [PMID: 35393155 DOI: 10.1016/j.tree.2022.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
Diverse plants and animals have evolved specialized structures to filter and house beneficial microbes. These symbiotic organs form crucial points of exchange between host and symbiont, are often shaped by both partners, and exhibit features that facilitate a suite of microbial services. While symbiotic organs exhibit varied function, morphology, and developmental plasticity, they share core features linked to the evolutionary maintenance of beneficial symbiosis. Moreover, these organs can have a significant role in altering the demographic forces that shape microbial genomes, driving population bottlenecks and horizontal gene transfer (HGT). To advance our understanding of these 'joint phenotypes' across varied systems, future research must consider the emergent forces that can shape symbiotic organs, including fitness feedbacks and conflicts between interacting genomes.
Collapse
Affiliation(s)
- David C Fronk
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Joel L Sachs
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
17
|
Kern CC, Gems D. Semelparous Death as one Element of Iteroparous Aging Gone Large. Front Genet 2022; 13:880343. [PMID: 35754809 PMCID: PMC9218716 DOI: 10.3389/fgene.2022.880343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The aging process in semelparous and iteroparous species is different, but how different? Death in semelparous organisms (e.g., Pacific salmon) results from suicidal reproductive effort (reproductive death). Aging (senescence) in iteroparous organisms such as humans is often viewed as a quite different process. Recent findings suggest that the nematode Caenorhabditis elegans, widely used to study aging, undergoes reproductive death. In post-reproductive C. elegans hermaphrodites, intestinal biomass is repurposed to produce yolk which when vented serves as a milk to support larval growth. This apparent benefit of lactation comes at the cost of intestinal atrophy in the mother. Germline removal and inhibition of insulin/IGF-1 signaling (IIS) suppress C. elegans reproductive pathology and greatly increase lifespan. Blocking sexual maturity, e.g., by gonadectomy, suppresses reproductive death thereby strongly increasing lifespan in semelparous organisms, but typically has little effect on lifespan in iteroparous ones. Similarly, reduced IIS causes relatively modest increases in lifespan in iteroparous organisms. We argue that the more regulated and plastic mechanisms of senescence in semelparous organisms, involving costly resource reallocation under endocrine control, exist as one extreme of an etiological continuum with mechanisms operative in iteroparous organisms. We suggest that reproductive death evolved by exaggeration of mechanisms operative in iteroparous species, where other mechanisms also promote senescence. Thus, knowledge of C. elegans senescence can guide understanding of mechanisms contributing to human aging.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
18
|
Lee MH, Medina Munoz M, Rio RVM. The Tsetse Metabolic Gambit: Living on Blood by Relying on Symbionts Demands Synchronization. Front Microbiol 2022; 13:905826. [PMID: 35756042 PMCID: PMC9218860 DOI: 10.3389/fmicb.2022.905826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies have socioeconomic significance as the obligate vector of multiple Trypanosoma parasites, the causative agents of Human and Animal African Trypanosomiases. Like many animals subsisting on a limited diet, microbial symbiosis is key to supplementing nutrient deficiencies necessary for metabolic, reproductive, and immune functions. Extensive studies on the microbiota in parallel to tsetse biology have unraveled the many dependencies partners have for one another. But far less is known mechanistically on how products are swapped between partners and how these metabolic exchanges are regulated, especially to address changing physiological needs. More specifically, how do metabolites contributed by one partner get to the right place at the right time and in the right amounts to the other partner? Epigenetics is the study of molecules and mechanisms that regulate the inheritance, gene activity and expression of traits that are not due to DNA sequence alone. The roles that epigenetics provide as a mechanistic link between host phenotype, metabolism and microbiota (both in composition and activity) is relatively unknown and represents a frontier of exploration. Here, we take a closer look at blood feeding insects with emphasis on the tsetse fly, to specifically propose roles for microRNAs (miRNA) and DNA methylation, in maintaining insect-microbiota functional homeostasis. We provide empirical details to addressing these hypotheses and advancing these studies. Deciphering how microbiota and host activity are harmonized may foster multiple applications toward manipulating host health, including identifying novel targets for innovative vector control strategies to counter insidious pests such as tsetse.
Collapse
Affiliation(s)
- Mason H Lee
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States
| | - Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States.,Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
19
|
Barreaux AMG, Higginson AD, Bonsall MB, English S. Incorporating effects of age on energy dynamics predicts nonlinear maternal allocation patterns in iteroparous animals. Proc Biol Sci 2022; 289:20211884. [PMID: 35168397 PMCID: PMC8848239 DOI: 10.1098/rspb.2021.1884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Parental allocation varies across age and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This nonlinear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life-history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake and environmentally driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation when energetic costs and energy intake increase with age and also when energy intake decreases and energetic costs increase or decrease. Feeding success and environmentally driven mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of nonlinear maternal allocation across diverse taxonomic groups.
Collapse
Affiliation(s)
- Antoine M. G. Barreaux
- School of Biological sciences, University of Bristol, Bristol BS8 1TQ, UK
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France
- INTERTRYP, Univ Montpellier, CIRAD, IRD, 34000 Montpellier, France
| | - Andrew D. Higginson
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - Michael B. Bonsall
- Department of Zoology, Mathematical Ecology Research Group, University of Oxford, Oxford OX1 3PS, UK
- St Peters College, Oxford OX1 2DL, UK
| | - Sinead English
- School of Biological sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
20
|
Lee SK. "Cutting and Burning Guts" Nourish the Young Caenorhabditis elegans lyse their guts to produce nutritious yolk milk to feed larvae. Mol Cells 2022; 45:1-3. [PMID: 35114642 PMCID: PMC8819495 DOI: 10.14348/molcells.2021.5036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Sciences, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
21
|
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc Biol Sci 2021; 288:20211993. [PMID: 34814751 PMCID: PMC8611330 DOI: 10.1098/rspb.2021.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- St Peter's College, Oxford, OX1 2DL
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
22
|
Kern CC, Townsend S, Salzmann A, Rendell NB, Taylor GW, Comisel RM, Foukas LC, Bähler J, Gems D. C. elegans feed yolk to their young in a form of primitive lactation. Nat Commun 2021; 12:5801. [PMID: 34611154 PMCID: PMC8492707 DOI: 10.1038/s41467-021-25821-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
The nematode Caenorhabditis elegans exhibits rapid senescence that is promoted by the insulin/IGF-1 signalling (IIS) pathway via regulated processes that are poorly understood. IIS also promotes production of yolk for egg provisioning, which in post-reproductive animals continues in an apparently futile fashion, supported by destructive repurposing of intestinal biomass that contributes to senescence. Here we show that post-reproductive mothers vent yolk which can be consumed by larvae and promotes their growth. This implies that later yolk production is not futile; instead vented yolk functions similarly to milk. Moreover, yolk venting is promoted by IIS. These findings suggest that a self-destructive, lactation-like process effects resource transfer from postreproductive C. elegans mothers to offspring, in a fashion reminiscent of semelparous organisms that reproduce in a single, suicidal burst. That this process is promoted by IIS provides insights into how and why IIS shortens lifespan in C. elegans.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - StJohn Townsend
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Antoine Salzmann
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Nigel B Rendell
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, NW3 2PF, UK
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, NW3 2PF, UK
| | - Ruxandra M Comisel
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Lazaros C Foukas
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
23
|
Savini G, Scolari F, Ometto L, Rota-Stabelli O, Carraretto D, Gomulski LM, Gasperi G, Abd-Alla AMM, Aksoy S, Attardo GM, Malacrida AR. Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biol 2021; 19:211. [PMID: 34556101 PMCID: PMC8461966 DOI: 10.1186/s12915-021-01148-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glossina species (tsetse flies), the sole vectors of African trypanosomes, maintained along their long evolutionary history a unique reproductive strategy, adenotrophic viviparity. Viviparity reduces their reproductive rate and, as such, imposes strong selective pressures on males for reproductive success. These species live in sub-Saharan Africa, where the distributions of the main sub-genera Fusca, Morsitans, and Palpalis are restricted to forest, savannah, and riverine habitats, respectively. Here we aim at identifying the evolutionary patterns of the male reproductive genes of six species belonging to these three main sub-genera. We then interpreted the different patterns we found across the species in the light of viviparity and the specific habitat restrictions, which are known to shape reproductive behavior. RESULTS We used a comparative genomic approach to build consensus evolutionary trees that portray the selective pressure acting on the male reproductive genes in these lineages. Such trees reflect the long and divergent demographic history that led to an allopatric distribution of the Fusca, Morsitans, and Palpalis species groups. A dataset of over 1700 male reproductive genes remained conserved over the long evolutionary time scale (estimated at 26.7 million years) across the genomes of the six species. We suggest that this conservation may result from strong functional selective pressure on the male imposed by viviparity. It is noteworthy that more than half of these conserved genes are novel sequences that are unique to the Glossina genus and are candidates for selection in the different lineages. CONCLUSIONS Tsetse flies represent a model to interpret the evolution and differentiation of male reproductive biology under different, but complementary, perspectives. In the light of viviparity, we must take into account that these genes are constrained by a post-fertilization arena for genomic conflicts created by viviparity and absent in ovipositing species. This constraint implies a continuous antagonistic co-evolution between the parental genomes, thus accelerating inter-population post-zygotic isolation and, ultimately, favoring speciation. Ecological restrictions that affect reproductive behavior may further shape such antagonistic co-evolution.
Collapse
Affiliation(s)
- Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ludvik M Gomulski
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
24
|
Son JH, Weiss BL, Schneider DI, Dera KSM, Gstöttenmayer F, Opiro R, Echodu R, Saarman NP, Attardo GM, Onyango M, Abd-Alla AMM, Aksoy S. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathog 2021; 17:e1009539. [PMID: 34529715 PMCID: PMC8478229 DOI: 10.1371/journal.ppat.1009539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/28/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.
Collapse
Affiliation(s)
- Jae Hak Son
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniela I. Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kiswend-sida M. Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Insectarium de Bobo-Dioulasso—Campagne d’Eradication de la mouche Tse´-tse´ et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Norah P. Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Maria Onyango
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
25
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
26
|
Yang L, Weiss BL, Williams AE, Aksoy E, de Silva Orfano A, Son JH, Wu Y, Vigneron A, Karakus M, Aksoy S. Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly's midgut environment. PLoS Pathog 2021; 17:e1009475. [PMID: 34107000 PMCID: PMC8216540 DOI: 10.1371/journal.ppat.1009475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse's ability to transmit trypanosomes by strengthening the fly's natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse's PM in order to establish an infection in the fly, and PM structural integrity negatively correlates with trypanosome infection outcomes. Bloodstream form trypanosomes shed variant surface glycoproteins (VSG) into tsetse's gut lumen early during the infection establishment, and free VSG molecules are internalized by the fly's PM-producing cardia. This process results in a reduction in the expression of a tsetse microRNA (miR275) and a sequential molecular cascade that compromises PM integrity. miRNAs are small non-coding RNAs that are critical in regulating many physiological processes. In the present study, we investigated the role(s) of tsetse miR275 by developing a paratransgenic expression system that employs tsetse's facultative bacterial endosymbiont, Sodalis glossinidius, to express tandem antagomir-275 repeats (or miR275 sponges). This system induces a constitutive, 40% reduction in miR275 transcript abundance in the fly's midgut and results in obstructed blood digestion (gut weights increased by 52%), a significant increase (p-value < 0.0001) in fly survival following infection with an entomopathogenic bacteria, and a 78% increase in trypanosome infection prevalence. RNA sequencing of cardia and midgut tissues from paratransgenic tsetse confirmed that miR275 regulates processes related to the expression of PM-associated proteins and digestive enzymes as well as genes that encode abundant secretory proteins. Our study demonstrates that paratransgenesis can be employed to study microRNA regulated pathways in arthropods that house symbiotic bacteria.
Collapse
Affiliation(s)
- Liu Yang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Adeline E. Williams
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Alessandra de Silva Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Jae Hak Son
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Mehmet Karakus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Medical Microbiology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
27
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
28
|
Kimenyi KM, Abry MF, Okeyo W, Matovu E, Masiga D, Kulohoma BW. Detecting bracoviral orthologs distribution in five tsetse fly species and the housefly genomes. BMC Res Notes 2020; 13:318. [PMID: 32616010 PMCID: PMC7331153 DOI: 10.1186/s13104-020-05161-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/27/2020] [Indexed: 01/22/2023] Open
Abstract
Objective Mutualism between endogenous viruses and eukaryotes is still poorly understood. Several endogenous double-stranded polydnaviruses, bracoviruses, homologous to those present in parasitic braconid wasp genomes were detected in the tsetse fly (Glossina morsitans morsitans). This is peculiar since tsetse flies do not share a reproductive lifestyle similar to wasps, but deliver fully developed larvae that pupate within minutes of exiting their mothers. The objective of this study is to investigate genomic distribution of bracoviral sequences in five tsetse fly species and the housefly, and examine its value as a potential vector control strategy target point. We use comparative genomics to determine the presence, distribution across Glossina species genomes, and evolutionary relationships of bracoviruses of five tsetse fly species and the housefly. Results We report on homologous bracoviruses in multiple Dipteran genomes. Phylogenetic reconstruction using within-species concatenated bracoviral orthologs shows great congruence with previously reconstructed insect species phylogenies. Our findings suggest that bracoviruses present in Diptera originate from a single integration event of the viral genome that occurred in an ancestor insect before the evolutionary radiation of different insect orders.
Collapse
|
29
|
English S, Barreaux AMG. The evolution of sensitive periods in development: insights from insects. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Finch G, Nandyal S, Perretta C, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Bailey ST, Chen X, Oyen K, Didion EM, Chakraborty S, Lee RE, Denlinger DL, Matter SF, Attardo GM, Weirauch MT, Benoit JB. Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Sci Rep 2020; 10:19791. [PMID: 33188214 PMCID: PMC7666147 DOI: 10.1038/s41598-020-76139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.
Collapse
Affiliation(s)
- Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Sonya Nandyal
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Carlie Perretta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Drew E Spacht
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
31
|
Haines LR, Vale GA, Barreaux AMG, Ellstrand NC, Hargrove JW, English S. Big Baby, Little Mother: Tsetse Flies Are Exceptions to the Juvenile Small Size Principle. Bioessays 2020; 42:e2000049. [DOI: 10.1002/bies.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Lee R. Haines
- Vector Biology Department Liverpool School of Tropical Medicine Liverpool L3 5QA UK
| | - Glyn A. Vale
- DSI‐NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA) University of Stellenbosch Stellenbosch 7602 South Africa
- Natural Resources Institute University of Greenwich Chatham ME4 4TB UK
| | | | - Norman C. Ellstrand
- Department of Botany and Plant Sciences University of California Riverside CA 92521 USA
| | - John W. Hargrove
- DSI‐NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA) University of Stellenbosch Stellenbosch 7602 South Africa
| | - Sinead English
- School of Biological Sciences University of Bristol Bristol BS8 1TQ UK
| |
Collapse
|
32
|
Interpreting Morphological Adaptations Associated with Viviparity in the Tsetse Fly Glossina morsitans ( Westwood) by Three-Dimensional Analysis. INSECTS 2020; 11:insects11100651. [PMID: 32977418 PMCID: PMC7650751 DOI: 10.3390/insects11100651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 01/26/2023]
Abstract
Simple Summary Tsetse flies, the sole transmitters of African Sleeping Sickness parasites, have a unique reproductive biology. They only develop one offspring at a time, they carry that offspring in their uterus for its entire immature development and provide nourishment for that offspring via milk-like secretions. This specialized reproductive biology has required dramatic modifications to the morphology of the reproductive organs in these and related flies. Here, we use phase contrast micro-Computed Tomography (Micro-CT) to visualize these adaptations in three dimensions for the first time. These adaptations include cuticular modifications allowing increased abdominal volume, expanded abdominal and uterine musculature, reduced egg development capacity, structural features of the male seminal secretions and detailed visualization of the gland responsible for synthesis and secretion of “milk” to feed intrauterine larvae. The ability to examine these tissues within the context of the rest of the organ systems in the fly provides new functional insights into how these changes have facilitated the evolution of the mating and reproductive biology of these flies. Abstract Tsetse flies (genus Glossina), the sole vectors of African trypanosomiasis, are distinct from most other insects, due to dramatic morphological and physiological adaptations required to support their unique biology. These adaptations are driven by demands associated with obligate hematophagy and viviparous reproduction. Obligate viviparity entails intrauterine larval development and the provision of maternal nutrients for the developing larvae. The reduced reproductive capacity/rate associated with this biology results in increased inter- and intra-sexual competition. Here, we use phase contrast microcomputed tomography (pcMicroCT) to analyze morphological adaptations associated with viviparous biology. These include (1) modifications facilitating abdominal distention required during blood feeding and pregnancy, (2) abdominal and uterine musculature adaptations for gestation and parturition of developed larvae, (3) reduced ovarian structure and capacity, (4) structural features of the male-derived spermatophore optimizing semen/sperm delivery and inhibition of insemination by competing males and (5) structural features of the milk gland facilitating nutrient incorporation and transfer into the uterus. Three-dimensional analysis of these features provides unprecedented opportunities for examination and discovery of internal morphological features not possible with traditional microscopy techniques and provides new opportunities for comparative morphological analyses over time and between species.
Collapse
|
33
|
Ren L, Shang Y, Yang L, Wang S, Wang X, Chen S, Bao Z, An D, Meng F, Cai J, Guo Y. Chromosome-level de novo genome assembly of Sarcophaga peregrina provides insights into the evolutionary adaptation of flesh flies. Mol Ecol Resour 2020; 21:251-262. [PMID: 32853451 DOI: 10.1111/1755-0998.13246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/29/2023]
Abstract
Sarcophaga peregrina is considered to be of great ecological, medical and forensic significance, and has unusual biological characteristics such as an ovoviviparous reproductive pattern and adaptation to feed on carrion. The availability of a high-quality genome will help to further reveal the mechanisms underlying these charcateristics. Here we present a de novo-assembled genome at chromosome scale for S. peregrina. The final assembled genome was 560.31 Mb with contig N50 of 3.84 Mb. Hi-C scaffolding reliably anchored six pseudochromosomes, accounting for 97.76% of the assembled genome. Moreover, 45.70% of repeat elements were identified in the genome. A total of 14,476 protein-coding genes were functionally annotated, accounting for 92.14% of all predicted genes. Phylogenetic analysis indicated that S. peregrina and S. bullata diverged ~ 7.14 million years ago. Comparative genomic analysis revealed expanded and positively selected genes related to biological features that aid in clarifying its ovoviviparous reproduction and carrion-feeding adaptations, such as lipid metabolism, olfactory receptor activity, antioxidant enzymes, proteolysis and serine-type endopeptidase activity. Protein-coding genes associated with ovoviparity, such as yolk proteins, transferrin and acid sphingomyelinase, were identified. This study provides a valuable genomic resource for S. peregrina, and sheds insight into further revealing the underlying molecular mechanisms of adaptive evolution.
Collapse
Affiliation(s)
- Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Li Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shiwen Wang
- Department of Forensic Science, School of Basic Medical Sciences, Xinjiang Medical University, Ürümqi, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Shan Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | | | - Dong An
- OE biotech Co. Ltd, Shanghai, China
| | - Fanming Meng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
34
|
Freitas L, Mesquita RD, Schrago CG. Survey for positively selected coding regions in the genome of the hematophagous tsetse fly Glossina morsitans identifies candidate genes associated with feeding habits and embryonic development. Genet Mol Biol 2020; 43:e20180311. [PMID: 32555940 PMCID: PMC7288665 DOI: 10.1590/1678-4685-gmb-2018-0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/23/2019] [Indexed: 11/22/2022] Open
Abstract
Tsetse flies are responsible for the transmission of Trypanossoma sp. to vertebrate animals in Africa causing huge health issues and economic loss. The availability of the genome sequence of Glossina morsitans enabled the discovery of several genes related to medically important phenotypes and novel physiological features. However, a genome-wide scan for coding regions that underwent positive selection is still missing, which is surprising given the evolution of traits associated with the hematophagy in this lineage. In this study, we employed an experimental design that controlled for the rate of false positives and we performed a scan of 3,318 G. morsitans genes. We found 145 genes with significant historical signal of positive selection. These genes were categorized into 18 functional classes after careful manual annotation. Based on their attributed functions, we identified candidate genes related with feeding habits and embryonic development. When our results were contrasted with gene expression data, we confirmed that most genes that underwent adaptive molecular evolution were frequently expressed in organs associated with key physiological evolutionary innovations in the G. morsitans lineage, namely, the salivary gland, the midgut, fat body tissue, and in the spermatophore.
Collapse
Affiliation(s)
- Lucas Freitas
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Laboratório de Bioinformática, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Rafael D Mesquita
- Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Laboratório de Bioinformática, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Carlos G Schrago
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Lesne P, Srivastav SP, El-Hefnawy A, Parrott JJ, Sanford MR, Tarone AM. Facultative Viviparity in a Flesh Fly (Diptera: Sarcophagidae): Forensic Implications of High Variability in Rates of Oviparity in Blaesoxipha plinthopyga (Diptera: Sarcophagidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:697-704. [PMID: 31909421 DOI: 10.1093/jme/tjz230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Flesh flies are major primary consumers of carrion and are commonly found on human remains. Due to this latter feeding habit, their development rates can be used to provide temporal information in forensic investigations. This is usually done by referencing published flesh fly development datasets. Flesh flies are typically assumed to be strictly viviparous and datasets reporting their development rates therefore start at the first larval instar. However, an increasing number of studies has identified oviposition by flesh flies, including the forensically relevant species Blaesoxipha plinthopyga Wiedemann. To assess the impact of egg-laying behavior on casework, oviparity rates and time before larval hatching were assessed under controlled laboratory conditions that reflect common casework conditions in Harris County, Texas. We demonstrated systematic deposition of viable eggs but at a very variable rate between samples. Similarly, the duration between oviposition and larval hatching was highly variable, with some eggs taking more than a day to hatch after deposition. These results highlight the need to account for embryonic development in forensic investigations including B. plinthopyga and advocates for the re-evaluation of the assumed strict viviparity of the Sarcophagidae.
Collapse
Affiliation(s)
- Pierre Lesne
- Department of Entomology, Texas A&M University, College Station, TX
| | | | - Ahmed El-Hefnawy
- Entomology Department, Faculty of Science, Benha University, Benha, Qualiobya, Egypt
| | - Jonathan J Parrott
- Department of Entomology, Texas A&M University, College Station, TX
- School of Math and Natural Sciences, Arizona State University, Glendale, AZ
| | | | - Aaron M Tarone
- Department of Entomology, Texas A&M University, College Station, TX
| |
Collapse
|
36
|
Jennings EC, Korthauer MW, Hendershot JM, Bailey ST, Weirauch MT, Ribeiro JMC, Benoit JB. Molecular mechanisms underlying milk production and viviparity in the cockroach, Diploptera punctata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103333. [PMID: 32119906 PMCID: PMC7293887 DOI: 10.1016/j.ibmb.2020.103333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 05/09/2023]
Abstract
Viviparous reproduction is characterized by maternal retention of developing offspring within the reproductive tract during gestation, culminating in live birth. In some cases, a mother will provide nutrition beyond that present in the yolk; this is known as matrotrophic viviparity. While this phenomenon is best associated with mammals, it is observed in insects such as the viviparous cockroach, Diploptera punctata. Female D. punctata carry developing embryos in the brood sac, a reproductive organ that acts as both a uterus and a placenta by protecting and providing a nutritive secretion to the intrauterine developing progeny. While the basic physiology of D. punctata pregnancy has been characterized, little is known about the molecular mechanisms underlying this phenomenon. This study combined RNA-seq analysis, RNA interference, and other assays to characterize molecular and physiological changes associated with D. punctata reproduction. A comparison of four stages of the female reproductive cycle and males revealed unique gene expression profiles corresponding to each stage and between sexes. Differentially regulated transcripts of interest include the previously identified family of milk proteins and transcripts associated with juvenile hormone metabolism. RNA interference and methoprene application experiments established the potential impacts of bothbreakdown and synthesis reduction of juvenile hormone in maintaining pregnancy in D. punctata. These studies provide the comprehensive molecular mechanisms associated with cockroach viviparity, which will be a critical resource for comparative purposes among viviparity in insect systems.
Collapse
Affiliation(s)
- Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Matthew W Korthauer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jacob M Hendershot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jose M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Bethesda, MD, 20892, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
37
|
Dong B, Quan RC, Chen ZQ. Prolonged milk provisioning and extended maternal care in the milking spider Toxeus magnus: biological implications and questions unresolved. Zool Res 2019; 40:241-243. [PMID: 31161756 PMCID: PMC6680124 DOI: 10.24272/j.issn.2095-8137.2019.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Prolonged milk provisioning and extended parental care for nutritionally independent offspring, previously considered to only co-occur in long-lived mammals (Clutton-Brock, 1991; Royle et al., 2012), were recently reported in the reproduction of the milking spider, Toxeus magnus (Chen et al. 2018). Newly hatched T. magnus spiderlings require 53 days to develop to maturity, with an average adult body length of 6.6 mm. The mother provides milk droplets to her newly hatched spiderlings until they develop into subadults (~38 days old), during which their body lengths increase from 0.9 mm at birth to 5.3 mm at weaning. Although spiderlings can forage for themselves at around 20 days old, they remain in the breeding nest for weeks after maturity.
Collapse
Affiliation(s)
- Bing Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Yunnan 666303, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Chang Quan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Yunnan 666303, China
| | - Zhan-Qi Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Yunnan 666303, China
| |
Collapse
|
38
|
Abstract
Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector’s MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects. Many symbionts supplement their host’s diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly’s salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is “hijacked” by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission.
Collapse
|
39
|
Chahda JS, Soni N, Sun JS, Ebrahim SAM, Weiss BL, Carlson JR. The molecular and cellular basis of olfactory response to tsetse fly attractants. PLoS Genet 2019; 15:e1008005. [PMID: 30875383 PMCID: PMC6420007 DOI: 10.1371/journal.pgen.1008005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
Dipteran or "true" flies occupy nearly every terrestrial habitat, and have evolved to feed upon a wide variety of sources including fruit, pollen, decomposing animal matter, and even vertebrate blood. Here we analyze the molecular, genetic and cellular basis of odor response in the tsetse fly Glossina morsitans, which feeds on the blood of humans and their livestock, and is a vector of deadly trypanosomes. The G. morsitans antenna contains specialized subtypes of sensilla, some of which line a sensory pit not found in the fruit fly Drosophila. We characterize distinct patterns of G. morsitans Odor receptor (GmmOr) gene expression in the antenna. We devise a new version of the "empty neuron" heterologous expression system, and use it to functionally express several GmmOrs in a mutant olfactory receptor neuron (ORN) of Drosophila. GmmOr35 responds to 1-hexen-3-ol, an odorant found in human emanations, and also alpha-pinene, a compound produced by malarial parasites. Another receptor, GmmOr9, which is expressed in the sensory pit, responds to acetone, 2-butanone and 2-propanol. We confirm by electrophysiological recording that neurons of the sensory pit respond to these odorants. Acetone and 2-butanone are strong attractants long used in the field to trap tsetse. We find that 2-propanol is also an attractant for both G. morsitans and the related species G. fuscipes, a major vector of African sleeping sickness. The results identify 2-propanol as a candidate for an environmentally friendly and practical tsetse attractant. Taken together, this work characterizes the olfactory system of a highly distinct kind of fly, and it provides an approach to identifying new agents for controlling the fly and the devastating diseases that it carries.
Collapse
Affiliation(s)
- J. Sebastian Chahda
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Neeraj Soni
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer S. Sun
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Shimaa A. M. Ebrahim
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Dept. of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - John R. Carlson
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
40
|
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
41
|
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O'Neill MB, Wang J, Aksoy S. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLoS Pathog 2019; 15:e1007470. [PMID: 30817773 PMCID: PMC6394900 DOI: 10.1371/journal.ppat.1007470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.
Collapse
Affiliation(s)
- Brian L Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michele A Maltz
- Southern Connecticut State University, New Haven, Connecticut, United States of America
| | - Aurélien Vigneron
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Yineng Wu
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Katharine S Walter
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michelle B O'Neill
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Jingwen Wang
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| |
Collapse
|
42
|
Procházka E, Michalková V, Daubnerová I, Roller L, Klepsatel P, Žitňan D, Tsiamis G, Takáč P. Gene expression in reproductive organs of tsetse females - initial data in an approach to reduce fecundity. BMC Microbiol 2018; 18:144. [PMID: 30470199 PMCID: PMC6251150 DOI: 10.1186/s12866-018-1294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tsetse flies are vectors of African trypanosomes, and their vectorial capacity results in a major public health emergency and vast economic losses in sub-Saharan Africa. Given the limited ability of trypanosome prevention and eradication, tsetse vectors remain major targets of control efforts. Larvae of all three instars are developed in mothers' uteri, nourished through milk, and 'larviposited' shortly before pupation. The past few years have witnessed the emergence of approaches based on knockdown of genes involved in milk production, resulting in a significant reduction of fecundity. RESULTS In order to identify further genes applicable in the control of tsetse flies, we determined the expression of protein-coding genes in ovaries and uteri from both virgin and heavily pregnant Glossina morsitans morsitans females. Comparison of expression profiles allowed us to identify candidate genes with increased expression in pregnant individuals. Lists with the highest increases include genes involved in oocyte and embryonic development, or nourishment. Maximum ovarian fold change does not exceed 700, while the highest uterine fold change reaches to more than 4000. Relatively high fold changes of two neuropeptide receptors (for corazonin and myosuppressin) propose the corresponding genes alternative targets. CONCLUSIONS Given the higher fold changes in the uterus, targeting gene expression in this tissue may result in a more evident reduction of fecundity. However, ovaries should not be neglected, as manifested by several genes with top fold changes involved in early developmental stages. Apart from focusing on the highest fold changes, neuropeptide receptors with moderate increases in expression should be also verified as targets, given their roles in mediating the tissue control. However, this data needs to be considered initial, and the potential of these genes in affecting female fecundity needs to be verified experimentally.
Collapse
Affiliation(s)
- Emanuel Procházka
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Veronika Michalková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Georgiou Seferi St, Agrinio, Greece
| | - Peter Takáč
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia. .,Scientica, Ltd., Hybešova 33, 831 06, Bratislava, Slovakia.
| |
Collapse
|
43
|
Kariithi HM, Boucias DG, Murungi EK, Meki IK, Demirbaş-Uzel G, van Oers MM, Vreysen MJB, Abd-Alla AMM, Vlak JM. Coevolution of hytrosaviruses and host immune responses. BMC Microbiol 2018; 18:183. [PMID: 30470186 PMCID: PMC6251100 DOI: 10.1186/s12866-018-1296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hytrosaviruses (SGHVs; Hytrosaviridae family) are double-stranded DNA (dsDNA) viruses that cause salivary gland hypertrophy (SGH) syndrome in flies. Two structurally and functionally distinct SGHVs are recognized; Glossina pallidipes SGHV (GpSGHV) and Musca domestica SGHV (MdSGHV), that infect the hematophagous tsetse fly and the filth-feeding housefly, respectively. Genome sizes and gene contents of GpSGHV (~ 190 kb; 160-174 genes) and MdSGHV (~ 124 kb; 108 genes) may reflect an evolution with the SGHV-hosts resulting in differences in pathobiology. Whereas GpSGHV can switch from asymptomatic to symptomatic infections in response to certain unknown cues, MdSGHV solely infects symptomatically. Overt SGH characterizes the symptomatic infections of SGHVs, but whereas MdSGHV induces both nuclear and cellular hypertrophy (enlarged non-replicative cells), GpSGHV induces cellular hyperplasia (enlarged replicative cells). Compared to GpSGHV's specificity to Glossina species, MdSGHV infects other sympatric muscids. The MdSGHV-induced total shutdown of oogenesis inhibits its vertical transmission, while the GpSGHV's asymptomatic and symptomatic infections promote vertical and horizontal transmission, respectively. This paper reviews the coevolution of the SGHVs and their hosts (housefly and tsetse fly) based on phylogenetic relatedness of immune gene orthologs/paralogs and compares this with other virus-insect models. RESULTS Whereas MdSGHV is not vertically transmitted, GpSGHV is both vertically and horizontally transmitted, and the balance between the two transmission modes may significantly influence the pathogenesis of tsetse virus. The presence and absence of bacterial symbionts (Wigglesworthia and Sodalis) in tsetse and Wolbachia in the housefly, respectively, potentially contributes to the development of SGH symptoms. Unlike MdSGHV, GpSGHV contains not only host-derived proteins, but also appears to have evolutionarily recruited cellular genes from ancestral host(s) into its genome, which, although may be nonessential for viral replication, potentially contribute to the evasion of host's immune responses. Whereas MdSGHV has evolved strategies to counteract both the housefly's RNAi and apoptotic responses, the housefly has expanded its repertoire of immune effector, modulator and melanization genes compared to the tsetse fly. CONCLUSIONS The ecologies and life-histories of the housefly and tsetse fly may significantly influence coevolution of MdSGHV and GpSGHV with their hosts. Although there are still many unanswered questions regarding the pathogenesis of SGHVs, and the extent to which microbiota influence expression of overt SGH symptoms, SGHVs are attractive 'explorers' to elucidate the immune responses of their hosts, and the transmission modes of other large DNA viruses.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Kaptagat Rd, Loresho, Nairobi, 00200, Kenya. .,Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria. .,Present Address: US National Poultry Research Centre, Southeast Poultry Research Laboratory, USDA-ARS, 934 College Station Road, Athens, GA, 30605, USA.
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL, 32611, USA
| | - Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, 20115, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria.,Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Güler Demirbaş-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
44
|
Schneider DI, Parker AG, Abd-alla AM, Miller WJ. High-sensitivity detection of cryptic Wolbachia in the African tsetse fly (Glossina spp.). BMC Microbiol 2018; 18:140. [PMID: 30470185 PMCID: PMC6251158 DOI: 10.1186/s12866-018-1291-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In African tsetse flies Glossina, spp. detection of bacterial symbionts such as Wolbachia is challenging since their prevalence and distribution are patchy, and natural symbiont titers can range at levels far below detection limit of standard molecular techniques. Reliable estimation of symbiont infection frequency, especially with regard to interrelations between symbionts and their potential impact on host biology, is of pivotal interest in the context of future applications for the control and eradication of Glossina-vectored African trypanosomosis. The presence or absence of symbionts is routinely screened with endpoint polymerase chain reaction (PCR), which has numerous advantages, but reaches its limits, when detecting infections at natural low titer. To not only determine presence of native tsetse symbionts but also to localize them to specific host tissues, fluorescence in situ hybridization (FISH) can be applied. However, classic FISH assays may not detect low-titer infections due to limitations in sensitivity. RESULTS We have compared classic endpoint PCR with high-sensitivity blot-PCR. We demonstrate that the latter technique allows for clear detection of low-titer Wolbachia in the morsitans and palpalis groups while classic endpoint PCR does not. In order to localize Wolbachia in situ in high and low-titer Glossina species, we applied high-end Stellaris® rRNA-FISH. We show that with this high sensitivity method, even low amounts of Wolbachia can be traced in specific tissues. Furthermore, we highlight that more tissues and organs than previously recorded are infested with Wolbachia in subspecies of the morsitans and palpalis groups. CONCLUSIONS Our results demonstrate that overall symbiont infection frequencies as well as the presence in specific host tissues may be underestimated when using low-sensitivity methods. To better understand the complex interrelation of tsetse flies and their native symbionts plus the pathogenic trypanosomes, it is important to consider application of a broader range of high-sensitivity detection tools.
Collapse
Affiliation(s)
- Daniela I Schneider
- Department Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Present Address: Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M Abd-alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Wolfgang J Miller
- Department Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiol 2018; 18:150. [PMID: 30470176 PMCID: PMC6251153 DOI: 10.1186/s12866-018-1278-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.
Collapse
|
46
|
Griffith BC, Weiss BL, Aksoy E, Mireji PO, Auma JE, Wamwiri FN, Echodu R, Murilla G, Aksoy S. Analysis of the gut-specific microbiome from field-captured tsetse flies, and its potential relevance to host trypanosome vector competence. BMC Microbiol 2018; 18:146. [PMID: 30470178 PMCID: PMC6251097 DOI: 10.1186/s12866-018-1284-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The tsetse fly (Glossina sp.) midgut is colonized by maternally transmitted and environmentally acquired bacteria. Additionally, the midgut serves as a niche in which pathogenic African trypanosomes reside within infected flies. Tsetse’s bacterial microbiota impacts many aspects of the fly’s physiology. However, little is known about the structure of tsetse’s midgut-associated bacterial communities as they relate to geographically distinct fly habitats in east Africa and their contributions to parasite infection outcomes. We utilized culture dependent and independent methods to characterize the taxonomic structure and density of bacterial communities that reside within the midgut of tsetse flies collected at geographically distinct locations in Kenya and Uganda. Results Using culture dependent methods, we isolated 34 strains of bacteria from four different tsetse species (G. pallidipes, G. brevipalpis, G. fuscipes and G. fuscipleuris) captured at three distinct locations in Kenya. To increase the depth of this study, we deep sequenced midguts from individual uninfected and trypanosome infected G. pallidipes captured at two distinct locations in Kenya and one in Uganda. We found that tsetse’s obligate endosymbiont, Wigglesworthia, was the most abundant bacterium present in the midgut of G. pallidipes, and the density of this bacterium remained largely consistent regardless of whether or not its tsetse host was infected with trypanosomes. These fly populations also housed the commensal symbiont Sodalis, which was found at significantly higher densities in trypanosome infected compared to uninfected flies. Finally, midguts of field-captured G. pallidipes were colonized with distinct, low density communities of environmentally acquired microbes that differed in taxonomic structure depending on parasite infection status and the geographic location from which the flies were collected. Conclusions The results of this study will enhance our understanding of the tripartite relationship between tsetse, its microbiota and trypanosome vector competence. This information may be useful for developing novel disease control strategies or enhancing the efficacy of those already in use. Electronic supplementary material The online version of this article (10.1186/s12866-018-1284-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bridget C Griffith
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joana E Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Florence N Wamwiri
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
47
|
Kariithi HM, Meki IK, Schneider DI, De Vooght L, Khamis FM, Geiger A, Demirbaş-Uzel G, Vlak JM, iNCE IA, Kelm S, Njiokou F, Wamwiri FN, Malele II, Weiss BL, Abd-Alla AMM. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives. BMC Microbiol 2018; 18:179. [PMID: 30470182 PMCID: PMC6251094 DOI: 10.1186/s12866-018-1280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - Daniela I Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, 00100, Nairobi, Kenya
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Guler Demirbaş-Uzel
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - ikbal Agah iNCE
- Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Sorge Kelm
- Department of Medical Microbiology, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey
| | - Flobert Njiokou
- Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Florence N Wamwiri
- Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, BP 812 Cameroon
| | - Imna I Malele
- Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Adly M M Abd-Alla
- Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| |
Collapse
|
48
|
Engl T, Michalkova V, Weiss BL, Uzel GD, Takac P, Miller WJ, Abd-Alla AMM, Aksoy S, Kaltenpoth M. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol 2018; 18:145. [PMID: 30470188 PMCID: PMC6251160 DOI: 10.1186/s12866-018-1292-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host's nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography - mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies. RESULTS All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays. CONCLUSIONS While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.
Collapse
Affiliation(s)
- Tobias Engl
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
- Present Address: Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Güler D Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Austria
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Vienna, Austria
| | - Peter Takac
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Laboratories of Genome Dynamics, Department Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Austria
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
49
|
Scolari F, Attardo GM, Aksoy E, Weiss B, Savini G, Takac P, Abd-Alla A, Parker AG, Aksoy S, Malacrida AR. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol 2018; 18:169. [PMID: 30470198 PMCID: PMC6251095 DOI: 10.1186/s12866-018-1289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Tsetse flies (Diptera, Glossinidae) display unique reproductive biology traits. Females reproduce through adenotrophic viviparity, nourishing the growing larva into their modified uterus until parturition. Males transfer their sperm and seminal fluid, produced by both testes and male accessory glands, in a spermatophore capsule transiently formed within the female reproductive tract upon mating. Both sexes are obligate blood feeders and have evolved tight relationships with endosymbionts, already shown to provide essential nutrients lacking in their diet. However, the partnership between tsetse and its symbionts has so far been investigated, at the molecular, genomic and metabolomics level, only in females, whereas the roles of microbiota in male reproduction are still unexplored. Results Here we begin unravelling the impact of microbiota on Glossina m. morsitans (G. morsitans) male reproductive biology by generating transcriptomes from the reproductive tissues of males deprived of their endosymbionts (aposymbiotic) via maternal antibiotic treatment and dietary supplementation. We then compared the transcriptional profiles of genes expressed in the male reproductive tract of normal and these aposymbiotic flies. We showed that microbiota removal impacts several male reproductive genes by depressing the activity of genes in the male accessory glands (MAGs), including sequences encoding seminal fluid proteins, and increasing expression of genes in the testes. In the MAGs, in particular, the expression of genes related to mating, immunity and seminal fluid components’ synthesis is reduced. In the testes, the absence of symbionts activates genes involved in the metabolic apparatus at the basis of male reproduction, including sperm production, motility and function. Conclusions Our findings mirrored the complementary roles male accessory glands and testes play in supporting male reproduction and open new avenues for disentangling the interplay between male insects and endosymbionts. From an applied perspective, unravelling the metabolic and functional relationships between tsetse symbionts and male reproductive physiology will provide fundamental information useful to understanding the biology underlying improved male reproductive success in tsetse. This information is of particular importance in the context of tsetse population control via Sterile Insect Technique (SIT) and its impact on trypanosomiasis transmission. Electronic supplementary material The online version of this article (10.1186/s12866-018-1289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Geoffrey Michael Attardo
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA.,Present Address: Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Emre Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Brian Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia
| | - Adly Abd-Alla
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Andrew Gordon Parker
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | | |
Collapse
|
50
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|