1
|
Dong X, Shao J, Wu X, Dong J, Tang P. Lipidomic profiling reveals the protective mechanism of nitrogen-controlled atmosphere on brown rice quality during storage. Food Chem 2025; 473:143081. [PMID: 39884227 DOI: 10.1016/j.foodchem.2025.143081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Rice, a globally important staple, requires effective preservation methods to maintain its quality during extended storage. This study explored the efficacy of nitrogen-controlled atmosphere (NCA) storage in preserving the quality of brown rice during a one-year period using UHPLC-MS/MS based lipidomic profiling. A total of 1013 lipids were identified and categorized into five main groups. Specific lipids including triglycerides (TG), diglycerides (DG), phosphatidylethanolamines (PE), cardiolipins (CL), and ceramides (Cer), were highlighted as potential biomarkers for assessing rice rancidity. NCA storage significantly suppressed lipase and lipoxygenase activities, reducing lipid hydrolysis and oxidation to effectively delayed rice quality deterioration. Furthermore, NCA regulated glycerolipid and glycerophospholipid metabolisms, promoting lipid remodeling while reducing the degradation of TGs and phospholipids. This regulation preserved cellular membrane integrity, limited fatty acid release, and mitigate rancidity and quality loss during storage. These findings elucidate the mechanism by which NCA storage delays deterioration and extends the stored rice shelf-life.
Collapse
Affiliation(s)
- Xue Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jin Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Xueyou Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jialin Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Peian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Wang X, Zhou D, Liu F, Wang Q, Li C, Guo X, Tong P, Yin F, Liu X, Cao J. Distribution of different forms of metal ions in Antarctic krill (Euphausia superba) oil: A mechanism of their pro-oxidant effects relating to association colloids. Food Chem 2025; 472:142944. [PMID: 39827554 DOI: 10.1016/j.foodchem.2025.142944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Due to the fact that association colloids were formed in krill oil, the oxidation mechanism of krill oil was more complicated. In this study, water-soluble ferrous sulfate (Fe2(SO4)3), oil-soluble ferrous fumarate (C54H99FeO6) and insoluble ferric oxide (Fe3O4) were added to krill oil and stored at 60 °C for accelerated oxidation. Peroxide value, thiobarbituric acid reactive substances and aldehyde content showed that Fe2(SO4)3 had a stronger pro-oxidative effect. This was caused by the fact that water-soluble Fe3+ was mainly accumulated in extremely high content at oil-water interface of association colloids. In contrast, oil-soluble C54H99FeO6 was mainly distributed in the oil phase. Lipidomic analysis revealed that, phospholipids were rapidly catalytically decomposed by water-soluble Fe3+ at the oil-water interface and produced lipid hydroperoxides and free radicals. Subsequently, the produced free radicals could enter the oil phase and set off a chain reaction of free radical formation, and then promote the oxidation of glycerides.
Collapse
Affiliation(s)
- Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fujun Liu
- Liao Fishing Group Limited Company, Dalian 116000, China
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xu Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Peiyong Tong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jun Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Hülsebusch L, Heyn TR, Amft J, Schwarz K. Extrusion of plant proteins: A review of lipid and protein oxidation and their impact on functional properties. Food Chem 2025; 470:142607. [PMID: 39740432 DOI: 10.1016/j.foodchem.2024.142607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Extrusion processing can improve the functional and nutritional value of plant proteins, making them a sustainable source for various applications. During both low- and high-moisture extrusion, raw materials are subjected to harsh process conditions, leading to lipid and protein oxidation. In general, oxidation products are associated with adverse effects on product properties and human health. The oxidation rates are influenced by a number of factors, including temperature, water, oil content, and protein source, with lipid-protein interactions playing a significant role in oxidation dynamics and measurement accuracy. Higher extrusion temperatures and water content promote oxidation, yet are also necessary for fiber formation. Mild protein oxidation can improve functional properties and digestibility, while extensive oxidation tends to reduce both. Therefore, adjusting extrusion parameters is critical for controlling oxidation. In addition, natural antioxidants may reduce oxidation during extrusion, but their impact on functional properties requires further investigation.
Collapse
Affiliation(s)
- Loana Hülsebusch
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Timon R Heyn
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Jonas Amft
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Karin Schwarz
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| |
Collapse
|
4
|
Mavlanov U, Czaja TP, Nuriddinov S, Dalimova D, Dragsted LO, Engelsen SB, Khakimov B. The effects of industrial processing and home cooking practices on trans-fatty acid profiles of vegetable oils. Food Chem 2025; 469:142571. [PMID: 39721446 DOI: 10.1016/j.foodchem.2024.142571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The intake of trans-fatty acids (TFA) is strongly associated with an increased risk of cardiovascular diseases and elevated low-density lipoprotein cholesterol levels in blood. This review explores the critical factors influencing TFA formation during industrial vegetable oil processing and home cooking practices, particularly deep-frying. While hydrogenation, a major source of TFA, has been largely eliminated in developed countries, it remains unregulated in many developing countries, posing significant health risks. Temperature emerged as a critical factor increasing TFA levels during hydrogenation and frying, while linoleic and linolenic acids being highly prone to trans-isomerization. In home cooking, studies also indicate that, apart from frying temperature and time, additional factors such food composition (proteins, carbohydrates, and antioxidants) and frying vessel material type significantly impact TFA formation within the food matrix. This review highlights the urgent need for regulatory measures and awareness to minimize TFA exposure from industrially produced and home cooked foods, reducing associated health risks.
Collapse
Affiliation(s)
- Umrbek Mavlanov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Tomasz Pawel Czaja
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | | | - Dilbar Dalimova
- Center for Advanced Technologies, Talabalar Shaharchasi 3A, 100041 Tashkent, Uzbekistan
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
5
|
Jin X, Zheng Q, Yi EJ, Huh JW, Thi Minh Nguyen T, Park SJ, Yi GS, Yang SJ, Yim SV, Yi TH. Exploration of old-age odor inhibition and reduction by Leuconostoc mesenteroides THF-10 isolated from oriental melon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-14. [PMID: 39967012 DOI: 10.1080/09603123.2025.2467181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Old age odor is associated with delayed skin renewal and fatty acid oxidation by skin bacteria, potentially causing discomfort and health issues. While previous studies primarily targeted 2-nonenal inhibition, this study examined the antibacterial, antioxidant, biofilm inhibition, SDS-PAGE analysis, and trans-2-nonenal scavenging effects of Leuconostoc mesenteroides THF-10, a lactic acid bacterium isolated from Cucumis melo. The cell-free supernatant inhibited S. epidermidis, S. aureus, and P. aeruginosa, with MIC values of 1.25 mg/mL, which decreased to 0.31, 0.62, and 0.04 mg/mL after ethyl acetate fractionation. THF-10 effectively inhibited biofilm formation and exhibited enhanced antioxidant activity, leading to radical scavenging and a 39% reduction in ROS production at 20 µg/mL. The trans-2-nonenal scavenging assay demonstrated a 73% inhibition rate, with no observed toxicity in HaCaT cells. These findings suggest that L. mesenteroides THF-10 possesses strong antimicrobial and antioxidant properties, supporting its potential for mitigating old age odor.
Collapse
Affiliation(s)
- Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Ji-Won Huh
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | | | - Se-Jig Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Gyeong-Seon Yi
- Department of Biopharmaceutical Biotechnology, Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Su-Jin Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
6
|
Pei XC, Zeng XB, Li DY, Wang XM, Yin FW, Liu HL, Zhou DY. The change rule of lipid oxidation and hydrolysis driven via water in Antarctic krill oil: Based on association colloid formation. Food Chem 2025; 463:141448. [PMID: 39348769 DOI: 10.1016/j.foodchem.2024.141448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
The residual water and amphiphilic compounds such as phospholipids in bulk oil can form reverse micelles, which affect oxidative stability. In this study, the Antarctic krill oil (AKO) samples with different water contents were subjected to accelerated storage. During storage, AKO exhibited oxidative changes, manifested as increased POV, TBARS values, and volatile compound levels but decreased PUFA percentages. Meanwhile, AKO underwent hydrolysis, evidenced by decreased PC, PE, and TG contents but increased FFA contents. Moreover, the degree of lipid oxidation and hydrolysis is dose-dependent with water added. Cryogenic scanning electron microscopy imaging and micelle size distribution measurement proved the presence of reverse micelle, and their size and interfacial area improved with increased water contents. Correlation analysis suggested that lipid oxidation and hydrolysis positively correlated with the size and interfacial area of reverse micelle. Therefore, it is speculated that the oil-water interface may be the site of lipid oxidation and hydrolysis.
Collapse
Affiliation(s)
- Xue-Chen Pei
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiang-Bo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - De-Yang Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xin-Miao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fa-Wen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hui-Lin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Da-Yong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
7
|
Marino R, Caroprese M, Santillo A, Sevi A, Albenzio M. Impact of Dietary-Forage-to-Concentrate Ratio on Podolian Young Bulls' Performance and Nutritional Properties of Meat. Animals (Basel) 2025; 15:166. [PMID: 39858166 PMCID: PMC11758616 DOI: 10.3390/ani15020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Animal feeding has a great impact on the management of beef farms, also affecting the nutritional properties of the meat. Therefore, in this study, the following two forage-to-concentrate ratios were tested on twenty farmed Podolian young bulls: high forage-to-concentrate (HF:C) ratio of 65:35 vs. low forage-to-concentrate (LF:C) ratio of 45:55. The fatty acid profile, bioactive compounds, α-tocopherol content, and oxidative stability were evaluated on Longissimus thoracis muscle vacuum-packaged and aged at 2 °C for 11 and 18 days, respectively. Feeding the highest forage-to-concentrate ratio improved the fatty acid profile by decreasing the saturated fatty acids (p < 0.01) and increasing the monounsaturated (p < 0.05) and n-3 polyunsaturated fatty acids (p < 0.001). In particular, the percentages of linolenic acid (C18:3n-3), eicosapentaenoic acid (EPA-C20:5n-3), DPA (C22:5n-3), and docosahexaenoic acid (DHA-C22:6n3) were significantly higher (p < 0.01) in the HF:C group than the LF:C group. The highest forage-to-concentrate ratio also increased the contents of bioactive compounds, such as creatine (p < 0.001), carnosine (p < 0.01), and anserine (p < 0.05). This study suggests that a diet composed of 65% forage may be a feasible strategy to enrich meat with healthy bioactive compounds.
Collapse
Affiliation(s)
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy; (R.M.); (A.S.); (A.S.); (M.A.)
| | | | | | | |
Collapse
|
8
|
Kerr BJ, Wilson VC, Zhang J, Chen C. Influence of feeding thermally peroxidized lipids on the performance of growing pigs. J Anim Sci 2025; 103:skaf015. [PMID: 39864056 PMCID: PMC11829200 DOI: 10.1093/jas/skaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025] Open
Abstract
Feeding pigs lipids containing high levels of lipid oxidation products (LOP) has been shown to reduce growth performance, but data is lacking on quantitative relationships between LOP and pig growth, feed intake, and feed efficiency. Four experiments (EXP) were conducted using soybean oil (SO) in EXP 1, 2, and 3, as well as SO, choice white grease and palm oil (PO) in EXP 4, to evaluate the impact of feeding diets containing different amounts of LOP on pig performance. Lipid peroxidation was carried out using variable heating temperatures and durations to generate lipids with a broad range of peroxide (PV, mEq) and anisidine value (AnV, unitless). Lipids were added to the diets at 10%, 10%, 8%, and 7.5% for EXP 1, 2, 3, and 4, respectively, with dietary PV and AnV calculated using lipid peroxidation concentrations of PV and AnV times the dietary lipid inclusion rate. Within each experiment, pig performance (6.2 to 13.4 kg, EXP 1; 13.5 to 23.7 kg, EXP 2; 20.3 to 36.9 kg, EXP 3; 29.6 to 44.1 kg, EXP 4) was affected differently depending on dietary PV and AnV concentrations. Using the control-fed pigs within each experiment as a baseline of 100%, correlations of pooled relative pig performance data (dependent variables of ADG, ADFI, and GF) from EXP 1, 2, 3, and 4 with their respective dietary LOP values (independent variables of dietary PV and AnV due their ability to be measured commercially) resulted in significant (P ≤ 0.01) regression equations for relative ADG [ADG, % = 101.2 - [(0.321 × PV) + (1.019 × AnV)], R2 = 0.81], ADFI [ADFI, % = 100.8 - [(0.320 × PV) + (0.629 × AnV)], R2 = 0.68], and GF [GF, % = 101.3 - [(0.016 × PV) + (0.525 × AnV)], R2 = 0.70], albeit PV was not a significant regression coefficient in the GF model (P = 0.90). This data shows that the values of primary and secondary LOP (i.e., PV and AnV, respectively) could be effectively used in predicting the effect of feeding oxidized lipids on growth, feed intake, and feed efficiency in growing pigs.
Collapse
Affiliation(s)
- Brian J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
| | - Victoria C Wilson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Junwei Zhang
- University of Minnesota, Department of Food Science and Nutrition, St. Paul, MN 55108 USA
| | - Chi Chen
- University of Minnesota, Department of Food Science and Nutrition, St. Paul, MN 55108 USA
| |
Collapse
|
9
|
Ying X, Li X, Deng S, Zhang B, Xiao G, Xu Y, Brennan C, Benjakul S, Ma L. How lipids, as important endogenous nutrient components, affect the quality of aquatic products: An overview of lipid peroxidation and the interaction with proteins. Compr Rev Food Sci Food Saf 2025; 24:e70096. [PMID: 39812142 DOI: 10.1111/1541-4337.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical. At the same time, some lipid oxidation products have been found to interact with aquatic product proteins in various ways, posing a safety risk. This paper provides an in-depth exploration of the pathways, specific effects, and hazards of lipid oxidation in aquatic products, with a particular focus on the interaction of lipid oxidation products with proteins. Additionally, it discusses the impact of non-thermal treatment techniques on lipids in aquatic products and examines the application of natural antioxidants in aquatic products. Future research endeavors should delve into the interactions between lipids and proteins in these products and their specific effects to mitigate the impact of non-thermal treatment techniques on lipids, thereby enhancing the safety of aquatic products and ensuring food safety for future generations.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
10
|
Chen X, Yan F, Qu D, Wan T, Xi L, Hu CY. Aroma characterization of Sichuan and Cantonese sausages using electronic nose, gas chromatography-mass spectrometry, gas chromatography-olfactometry, odor activity values and metagenomic. Food Chem X 2024; 24:101924. [PMID: 39582659 PMCID: PMC11582465 DOI: 10.1016/j.fochx.2024.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
The interest of Chinese consumers in meat-free sausages has increased considerably due to their health benefits, but the aroma quality is far from reaching the traditional fermented meat sausages. This study evaluated the aroma characterization of Sichuan and Cantonese sausages using electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity values (OAVs) and metagenomic. Ninety-eight volatile compounds were identified. Among them, 23 odorants were perceived, and their intensity differed in the two groups of sausages. There was a significant difference in the volatile compound profile between Sichuan and Cantonese cooked sausages. E-nose sensors could differentiate them through specific responses to these volatile compounds. Furthermore, there was a significant difference in microbial communities between Sichuan and Cantonese sausages. For aroma quality improvement of meat-free sausages, studies should focus on controlling the formation of aroma compounds by aroma precursors and using different microorganisms to produce diverse meat aromas. Our results provide a reference for the implementation of these strategies.
Collapse
Affiliation(s)
- Xiaohua Chen
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C., Hanzhong, Shaanxi, China
| | - Fei Yan
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Dong Qu
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Qinba State Key Laboratory of Biological Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Tian Wan
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Linjie Xi
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ching Yuan Hu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA
| |
Collapse
|
11
|
Kerr BJ, Wilson VC, von Schamburg PC, Parsons CM. Effects of peroxidized soybean oil on growth and energy digestibility in broilers. Poult Sci 2024; 104:104725. [PMID: 39754928 PMCID: PMC11758531 DOI: 10.1016/j.psj.2024.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025] Open
Abstract
Peroxidized lipids have been shown to reduce broiler performance whereupon it was theorized that dietary peroxide value (PV) plus anisidine value (AnV) may be predictive of broiler performance. In experiment (EXP) 1, 64 pens (8 broilers/pen) were fed diets containing 8 levels of peroxidized soybean oil (SO). Broilers were fed diets from 7 to 35 d of age with 8 replications per dietary treatment. Broilers fed diets containing SO processed at 135°C resulted in a reduction in average daily gain (ADG) and average daily feed intake (ADFI, P ≤ 0.05) compared to birds fed diets containing the unheated SO while birds fed diets containing SO processed at 90°C resulted in a reduction in gain to feed (GF, P ≤ 0.05) compared to birds fed diets containing the unheated SO. Summarization of this data with published data resulted in significant (P ≤ 0.01) regression models for relative ADG [ADG, % = 101.9 - (0.05 × PV) - (0.30 × AnV), SE = 4.1, R2 = 0.43], ADFI [ADFI, % = 101.7 - (0.09 × PV) - (0.19 × AnV), SE = 3.3, R2 = 0.32], and GF [GF, % = 100.4 + (0.05 × PV) - (0.14 × AnV), SE = 2.6, R2 = 0.27], albeit PV was not a significant regression parameter (P ≥ 0.36) for any equation. In EXP 2, the TMEn of four different SO was determined using the precision-fed rooster assay. Diets consisted of ground corn with SO added at 0, 7.5 or 15 % of the diet at the expense of ground corn with 4 roosters per treatment. Relative bioavailability (RBV) was determined using slope-ratio methodology where it was determined that the reduction in the RBV of peroxidized SO ranged from 12 to 29 percent compared to the unheated SO sample. These data suggests that bird performance relative to birds consuming unperoxidized lipids can be predicted based on dietary levels of PV and AnV, although the slopes for performance decline are relatively flat with the combination of PV and AnV accounting for 27 to 43 % of the response variable variance.
Collapse
Affiliation(s)
- Brian J Kerr
- USDA-Agricultural Research Service, Ames, IA 50011, USA.
| | - Victoria C Wilson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Carl M Parsons
- Department of Animal Science, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Liu C, He E, Fu P, He L, Zhou L, Lou A, Liu Y, Fu H, Shen Q, Luo J, Quan W. Quality Characteristics Changes of the Fat Portion of Chinese Bacon During Processing Based on Physicochemical Properties and Microstructure Studies. Foods 2024; 13:3821. [PMID: 39682893 DOI: 10.3390/foods13233821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
In order to elucidate the development of quality properties in the fat portion of Chinese bacon during low-temperature smoking (LTS), raw pork was cured for five days, followed by infusion with smoked liquid and a subsequent ten-day smoking period characterized by alternating high and low-temperature conditions. The physicochemical characteristics and microstructures of the fat portion of the Chinese bacon were examined at three stages: the raw meat stage (Control), the curing stage (C3d and C5d), and the smoking stage (S5d and S10d). The results showed that LTS increased the hardness, transparency, and b* value of bacon fat. The increased contents of neutral lipids and free fatty acids, increased activities of neutral lipase and lipoxygenase, and increased peroxide and thiobarbituric acid reactive substance value indicated significant lipolysis and lipid oxidation of bacon fat during LTS. After the treatment, a decreased melting point and increased β'- and β-type fat crystal formation were observed in the fat portion. Moreover, the treatment led to disruption of the adipocyte membrane structure. Therefore, the destruction of adipocytes after lipolysis and lipid oxidation during low-temperature smoking treatment might contribute to the development of quality properties of bacon fat portions. Precise control of temperature and time enhances the stability of the fat portion of bacon, thereby improving quality characteristics such as texture and appearance.
Collapse
Affiliation(s)
- Chuxin Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Enqi He
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Peitao Fu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Leli He
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yan Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haohua Fu
- Tangrenshen Group Co., Ltd., Zhuzhou 412000, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Jin SK, Moon SS. Quality and Shelf-Life Properties of Ready to Eat Dry-Cured Ham Slices under Different Packaging Systems during Storage. Food Sci Anim Resour 2024; 44:1358-1372. [PMID: 39554822 PMCID: PMC11564136 DOI: 10.5851/kosfa.2024.e71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 11/19/2024] Open
Abstract
This study has aimed to assess the quality and shelf-life stability of dry-cured ham under different packaging systems during storage. The types of packaging systems were: aerobic packing (AP), vacuum packing (VP), and modified atmosphere packaging (MAP). Pork bicep femoris muscles (n=20) were salted with 5% NaCl, 0.01% NaNO2 and 0.05% sodium erythorbate and then inoculated with Lactobacillus pentosus (4.0×109 CFU/g) and Staphylococcus carnosus (6.0×109 CFU/g). The products were cured, ripened, and dried for 12 mon by using a commercially available manufacturing process. The end products were sliced into 2 mm-thick slices, placed in pouches or trays, and packed with AP (overwrapping), VP, and MAP (70% N2 and 30% CO2). The packed samples were stored at 10°C for 84 d, and then analyzed for color, total volatile basic nitrogen (TVBN), lipid oxidation, microorganisms, tastes-related amino acids and fatty acids. The results showed that after 84 d of storage, the VP- and MAP-packed samples exhibited better color stability. Lower rates of TVBN formation and lipid oxidation were observed in VP- and MAP-packed samples (p<0.05). Noticeably, a slower decrease in sweet amino acid and unsaturated fatty acid content was found in the VP- and MAP-packed samples after 84 d of storage (p<0.05). Hence, to retain the quality, taste, and nutritional value during storage, ready-to-eat dry-cured ham slices should be packed under VP or MAP conditions.
Collapse
Affiliation(s)
- Sang-Keun Jin
- Division of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
| | - Sung-Sil Moon
- Global Communication
Division, Sunjin, Seoul 05372, Korea
| |
Collapse
|
14
|
Guo Y, Pina A, Gabbanini S, Valgimigli L. Absolute kinetics of peroxidation and antioxidant protection of intact triglyceride vegetable oils. Food Chem 2024; 452:139289. [PMID: 38713979 DOI: 10.1016/j.foodchem.2024.139289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
To verfy their difference from isolated fatty acids, the absolute kinetics of peroxidation was studied for seven triglyceride-based oils of olive (OLI-1, OLI-2), high-oleic sunflower (SUN-HO), high-oleic and high-linoleic safflower (SAF-HO, SAF-HL) grapeseed (GRA) and borage (BOR), by oxygen uptake monitoring, using 2,6-di-tert-butyl-4-methoxyphenol and 2,2,5,7,8-pentamethyl-6-chromanol as reference inhibitors. Propagation constants (kp/M-1 s-1 at 303 K in PhCl) were respectively 34.8 ± 2.3, 35.1 ± 1.8, 40.6 ± 5.5, 36.0 ± 7.7, 160.8 ± 5.1, 145.1 ± 24.5, 275.1 ± 63.8, while oxidizability responded to empirical equation kp(2kt)-½/M-½s-½ = 1.63 × 10-3[allyl >CH2/M] + 1.82 × 10-2[bisallyl >CH2/M], based on fatty acids residues assessed by GC-MS. Peroxidation kinetics was markedly different from that of isolated fatty acids. The H-bond basicity of all oils was measured by FT-IR affording Abraham's βH2 values in the range 0.55 ± 0.03. H-bonding explained the protection of oils measured for seven reference phenolic antioxidants, except for the catechols quercetin and caffeic acid phenethyl ester, which were 2-to-4-folds more effective than expected, supporting a proposed different mechanism.
Collapse
Affiliation(s)
- Yafang Guo
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy
| | - Albert Pina
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy
| | - Simone Gabbanini
- BeC s.r.l., R&D Division, Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Luca Valgimigli
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy; Tecnopolo di Rimini, Via Dario Campana 71, 47922 Rimini, Italy.
| |
Collapse
|
15
|
Wang L, Gao J, Li G, Cheng J, Yuan G, Zhang T, Zeng W, Lu H. Identification of Metabolites in Muscles of Lueyang Black-Bone Chickens: A Comparative Analysis of Caged and Cage-Free Rearing Modes Using Untargeted Metabolomic Techniques. Animals (Basel) 2024; 14:2041. [PMID: 39061503 PMCID: PMC11274139 DOI: 10.3390/ani14142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The Lueyang black-bone chicken is a specific native chicken strain in China. This study aimed to investigate the effects of different rearing systems on the meat quality of Lueyang black-bone chickens. Six hundred Lueyang black-bone hens were randomly divided into two groups at 7 weeks of age and raised in cage and cage-free systems for 20 weeks. The carcass yield, meat quality, and total metabolites were measured in both the leg and breast muscles. By comparison, the carcass yield of hens in the cage-free (CF) group (1.26 ± 0.09 kg) was significantly lower than that in the caged rearing (CR) group (1.52 ± 0.15 kg). However, the shear force of leg muscles in the CF group (27.98 ± 2.43 N) was significantly greater than that in the CR group (24.15 ± 1.93 N). In addition, six samples from each group were randomly selected and their metabolites were detected by the non-targeted metabolomics technique. Among these metabolites, 408 and 354 significantly differentially abundant metabolites were identified in breast and leg muscles, which were mainly involved in glycerophospholipid metabolism, unsaturated fatty acid biosynthesis, arginine and proline metabolism, and nucleotide metabolism. We found that the levels of 19 phospholipids, mainly phosphatidylcholines and lysophosphatidylcholines, were significantly greater in the CF group than in the CR group. Additionally, the contents of eight unsaturated fatty acids, linoleic acid, and linolenic acid were dramatically greater in the CF group than in the caged group. The accumulation of 4-hydroxy-proline, glutamate, and adenosine 3'-monophosphate (AMP) was enhanced in the CF group. Moreover, many more volatile organic compounds were identified in the muscles of the cage-free group, enhancing the flavor of the chicken meat. In conclusion, the cage-free rearing mode facilitates the accumulation of nutrients and flavor substances in the chicken meat and is a better rearing system for Lueyang black-bone chickens.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jie Gao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Guojin Li
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Guoqiang Yuan
- Shaanxi Baiweiyuan Network Technology Company, Hanzhong 724300, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
16
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
17
|
Van Wayenbergh E, Langenaeken NA, Verheijen J, Foubert I, Courtin CM. Mechanistic understanding of the stabilisation of vitamin A in oil by wheat bran: The interplay between vitamin A degradation, lipid oxidation, and lipase activity. Food Chem 2024; 436:137785. [PMID: 37866098 DOI: 10.1016/j.foodchem.2023.137785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Wheat bran stabilises vitamin A (retinyl palmitate, RP) in oil during storage, but the stabilisation mechanism remains unknown. We here studied the effect of the concentration of RP in oil (0.1-2%) and of RP-enriched oil in the system (5-50%) on the RP retention during accelerated storage of systems with native and toasted wheat bran. Generally, toasted bran showed better RP stabilisation than native bran. After four weeks of storage, up to 65% RP was retained in toasted bran systems, whereas the RP retention for native bran was below 10%. For native bran, a higher oil-to-bran ratio and, thus, a lower wheat lipase level resulted in better RP retention. For toasted bran, combined high oil and high RP concentrations resulted in the lowest RP retention. We, therefore, conclude that wheat bran protects RP and lipids from oxidation. This protection is reduced by the pro-oxidative effect of RP, lipid oxidation and lipase.
Collapse
Affiliation(s)
- Eline Van Wayenbergh
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Niels A Langenaeken
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jolien Verheijen
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Imogen Foubert
- KU Leuven Kulak, Department of Microbial and Molecular Systems (M(2)S), Research Unit of Food and Lipids & Leuven Food Science and Nutrition Research Centre (LFoRCe), Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Christophe M Courtin
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
18
|
Fu B, Zheng M, Yang H, Zhang J, Li Y, Wang G, Tian J, Zhang K, Xia Y, Li Z, Gong W, Li H, Xie J, Yang H, Yu E. The effect of broad bean diet on structure, flavor and taste of fresh grass carp: A comprehensive study using E-nose, E-tongue, TPA, HS-SPME-GC-MS and LC-MS. Food Chem 2024; 436:137690. [PMID: 37844508 DOI: 10.1016/j.foodchem.2023.137690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Broad bean (Vicia faba L.) has received particular attention with regards to the improvement of flesh meat quality. However, the effect of broad bean diet on structure, flavor and taste of flesh meat is unclear. In present study, E-nose, E-tongue, TPA, HS-SPME-GC-MS, and LC-MS were used to characterize the structure, flavor and taste of grass carp (Ctenopharyngodon idellus) fed with broad bean. Overall, broad bean significantly improved the texture of grass carp muscle, but reduced the overall taste and flavor. The 50 volatile compounds were detected using HS-SPME-GC-MS. The 252 differential metabolites were identified by LC-MS, of which 107 were up-regulated and 145 were down-regulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated this reduction in taste and flavor was associated with the metabolism of amino acids, lipids and nucleotides. Our findings provide a theoretical basis for improving meat quality and the functional applications of broad bean.
Collapse
Affiliation(s)
- Bing Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Mengping Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Huici Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Junming Zhang
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Yichao Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guangjun Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jingjing Tian
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kai Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yun Xia
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhifei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wangbao Gong
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun Xie
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| | - Ermeng Yu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
19
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
20
|
Dong M, Liang F, Cui S, Mao BB, Huang XH, Qin L. Insights into the effects of steaming on organoleptic quality of salmon (Salmo salar) integrating multi-omics analysis and electronic sensory system. Food Chem 2024; 434:137372. [PMID: 37741235 DOI: 10.1016/j.foodchem.2023.137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
The effect of steaming treatment on salmon quality was explored by different multi-omics and electronic sensory system in this study. A comparison between conventional steaming (CS) and anaerobic steaming (AS) was conducted in organoleptic quality of salmon. Twelve key volatile compounds were identified, which contributed to the flavor difference. The concentrations of hexanal, (E)-2-octen-1-al, and decanal in AS salmon were significantly lower than in CS salmon, which account for 68.9-80.5 % of the latter. During steaming, the fatty acids and diacylglycerols decreased significantly by 37.4 % and 57.9 %, respectively. Anaerobic steaming limited the degradation of some oxidized lipids, further reduced some volatile secondary oxidation products. Nucleotides and derivatives, succinic acid, glutamic acid, hydroxyproline and betaine contributed to the saltness, umami, richness of steamed salmon. Metabolomics data revealed that the higher creatinine, Ala-Ala and Ala-Leu provided more umami and less bitterness to AS salmon.
Collapse
Affiliation(s)
- Meng Dong
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Feng Liang
- Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, Foshan 528311, Guangdong, China
| | - Shuang Cui
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Bing-Bing Mao
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Yoo K, Kim S, Kim MJ, Oh W, Lee J. Effects of association colloidal structures on the oxygen solubility in oil-in-water emulsion matrix. Food Sci Biotechnol 2024; 33:569-577. [PMID: 38274193 PMCID: PMC10805683 DOI: 10.1007/s10068-023-01338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 01/27/2024] Open
Abstract
Although association colloidal structures are believed as major oxidation places, relationship of oxygen molecules with association colloids have not been evaluated in oil-in-water (O/W) emulsion. Oxygen solubility was determined in O/W emulsion containing dispersed phases with different charges of emulsifiers, numbers of dispersed droplets, and surface areas of dispersed droplets. The rates of lipid oxidation were also examined. O/W emulsion made of positively charged emulsifier had higher oxygen solubility than negatively charged and neutral emulsifiers. As number and surface area of oil droplet in O/W emulsion increased, higher oxygen solubility was observed, implying that dispersed phases could be places for oxygen molecules. O/W emulsion made of positively charged emulsifier had higher lipid oxidation than neutral emulsifier. O/W emulsion with more interfaces had lower oxidative stability, implying interfaces of association colloids could affect rates of lipid oxidation. Dispersed phase in O/W emulsion can be places for oxygen molecules.
Collapse
Affiliation(s)
- KeunCheol Yoo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - SeHyeok Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - WonYoung Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| |
Collapse
|
22
|
Nguyen KA, Hennebelle M, van Duynhoven JPM, Dubbelboer A, Boerkamp VJP, Wierenga PA. Mechanistic kinetic modelling of lipid oxidation in vegetable oils to estimate shelf-life. Food Chem 2024; 433:137266. [PMID: 37666121 DOI: 10.1016/j.foodchem.2023.137266] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/15/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Estimating the shelf-life of vegetable oils is important to develop solutions to reduce spoilage by lipid oxidation. Typically, the shelf-life is predicted by detecting secondary oxidation markers in accelerated shelf-life tests, which are time-consuming. Existing numerical approaches using early primary oxidation products as predictive markers do not account for variations in fatty acid types, antioxidants, or storage conditions. A mechanistic kinetic model was developed incorporating these factors as a step towards shelf-life prediction for vegetable oils. Specific kinetic constants for the reactions of each unsaturated fatty acid type account for variations in fatty acid composition, and oxygen mass transfer accounts for variations in oxygen conditions. A second acceleration of lipid oxidation observed in long-term storage experiments was described by a multiplication factor for the kinetic constants related to oxidation products. Our model accurately extrapolates short-time experimental data to estimate long term formation of oxidation products under the same conditions.
Collapse
Affiliation(s)
- Khoa A Nguyen
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Marie Hennebelle
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - John P M van Duynhoven
- Unilever Food Innovation Centre, Bronland 14, 6708 WH Wageningen, The Netherlands; Wageningen University & Research, Laboratory of Biophysics, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Arend Dubbelboer
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Vincent J P Boerkamp
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Peter A Wierenga
- Wageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
23
|
Rahmani-Manglano NE, Andersen ML, Guadix EM, García-Moreno PJ. Oxidative stability and oxygen permeability of oil-loaded capsules produced by spray-drying or electrospraying measured by electron spin resonance. Food Chem 2024; 430:136894. [PMID: 37544150 DOI: 10.1016/j.foodchem.2023.136894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
The oxidative stability and the oxygen permeability of oil-loaded capsules were investigated by Electron Spin Resonance (ESR). The capsules were produced by spray-drying or electrospraying in the monoaxial or coaxial configuration using glucose syrup as the encapsulating agent. ESR-spin trapping results showed that electrosprayed capsules oxidized faster and during the early stages of incubation, irrespective of the emitter configuration (monoaxial or coaxial), when compared to those produced by spray-drying. Furthermore, ESR oximetry showed that oxygen inside the spray-dried capsules reached equilibrium with the surrounding atmosphere significantly slower than the monoaxially electrosprayed capsules (i.e., ∼2h and ∼10 min, respectively). These findings have been attributed to the larger particle size of the spray-dried capsules influencing the oxygen diffusion area (i.e., lower surface-to-volume ratio) and diffusion path (i.e., thicker encapsulating wall for a fixed oil load). Together, the lower oxygen uptake reported for the spray-dried capsules correlated well with their higher oxidative stability.
Collapse
Affiliation(s)
| | - Mogens L Andersen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, Granada, Spain
| | | |
Collapse
|
24
|
Wang S, Zeng MH, Mao YP, Luo TT, Xu HY, Wang K, Li YX, Li Y, Chen LH, Wu WJ. Impact of Cooking Methods on Sensory Evaluation and Nutritional Properties of Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 2024; 26:75-87. [PMID: 39704621 DOI: 10.1615/intjmedmushrooms.2024055599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study addresses the alterations in nutrients [calcium, iron, and vitamins C and E (VC and VE, respectively)] and cordycepin content, alongside its sensory appeal in Cordyceps militaris, subjected to five distinct cooking methods: boiling, steaming, roasting, microwaving, and deep-frying. A comparative analysis showed the notable decline in nutrient content across most cooking methods excluding deep-frying. In notable contrast, the content of VE was substantially amplified during deep-frying, thereby emphasizing its value in preserving nutrients. However, an exception was noted wherein VE content remained essentially unchanged in the microwaved samples. Notably, the cordycepin content in boiled C. militaris reduced significantly, contrastingly, an elevation in this content was recorded for steamed, microwaved, or deep-fried samples, with roasting producing a stable content comparable to raw samples. The principal component analysis further discerned the iron, VC, and cordycepin as primary influencers on raw and roasted C. militaris, signifying superior retention during roasting, whereas deep-fried samples were predominantly affected by the calcium and VE content. Observation on nutrient losses revealed that boiling, steaming, and microwaving were less efficacious, compared with roasting and deep-frying. Sensory evaluations inductively favored steaming as synonymous with the finest culinary attribute, whereas deep-frying ranked least favorably on the sensory scale. Consequently, the present study offers refined dietary advice for the consumption of C. militaris catered to specific demographic groups, deepening understanding of the effects of various culinary practices on its overall nutrient profile and organoleptic properties.
Collapse
Affiliation(s)
- Shuo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China; Jiangsu Alphay Bio-Technology Co. Ltd., Nantong, Jiangsu 226010, P.R. China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127, P.R. China
| | - Ming-Hui Zeng
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127, P.R. China
| | - Yue-Ping Mao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China
| | - Ting-Ting Luo
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China
| | - Hong-Yun Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China
| | - Kun Wang
- JiangSu Konen Bioengineering Limited by Share Ltd., Yangzhou, Jiangsu 211413, P.R. China
| | - Yun-Xia Li
- JiangSu Konen Bioengineering Limited by Share Ltd., Yangzhou, Jiangsu 211413, P.R. China
| | - Yi Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127, P.R. China
| | - Li-Hua Chen
- Jiangsu Alphay Bio-Technology Co. Ltd., Nantong, Jiangsu 226010, P.R. China
| | - Wei-Jie Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China; Jiangsu Alphay Bio-Technology Co. Ltd., Nantong, Jiangsu 226010, P.R. China
| |
Collapse
|
25
|
Jiang W, Xiang W, Lu W, Yuan D, Gao Z, Hu B, Li Y, Wu Y, Feng Z. Emulsifying performance of the hexadecyltrimethylammonium bromide (CTAB) complexed alginate microgels: Effects from their deformability on oil-water interface. Int J Biol Macromol 2023; 253:127509. [PMID: 37865370 DOI: 10.1016/j.ijbiomac.2023.127509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Hexadecyltrimethylammonium bromide complexed alginate-Ca2+ microgels (C/AMGs) were developed as emulsifiers, which shown remarkably improved emulsifying performance than non-complexed alginate-Ca2+ microgels (AMGs) in previous study. This work focus on the impact of deformability on the emulsifying performance of C/AMGs. By regulating alginate concentration (1.0-4.0 wt%), microgels with different deformability were prepared. Deformability was proved to have great influence on the emulsifying performance of C/AMGs, which was evaluated by Langmuir trough measurements, emulsion appearance, centrifugation stability, digestive behavior, and oxidative stability. Particle size and SEM images indicated microgels prepared with lower alginate concentration are more deformable. C/AMGs (2.0 wt%) exhibits the best emulsifying performance, which could be ascribed to the appreciated deformability and mechanical strength. Digestive behavior and oxidative stability of alginate-Ca2+ microgel (2.0 wt%) stabilized emulsions were further investigated. Compared with alginate-Ca2+ microgel (2.0 wt%) stabilized emulsions, C/AMGs (2.0 wt%) stabilized emulsions shown delayed lipid digestion and lower POV. Results of this work supporting that Mickering mechanism have potential in fabricating functional emulsions based on natural polysaccharides.
Collapse
Affiliation(s)
- Wenxin Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Wei Xiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Wei Lu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Dan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Zhiming Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China.
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Yanlei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yuehan Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Zhengpeng Feng
- Pro-Health (China), West Ring South Road BDA, Beijing 100176, PR China
| |
Collapse
|
26
|
Chemat A, Song M, Li Y, Fabiano-Tixier AS. Shade of Innovative Food Processing Techniques: Potential Inducing Factors of Lipid Oxidation. Molecules 2023; 28:8138. [PMID: 38138626 PMCID: PMC10745320 DOI: 10.3390/molecules28248138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
With increasing environmental awareness and consumer demand for high-quality food products, industries are strongly required for technical innovations. The use of various emerging techniques in food processing indeed brings many economic and environmental benefits compared to conventional processes. However, lipid oxidation induced by some "innovative" processes is often "an inconvenient truth", which is scarcely mentioned in most studies but should not be ignored for the further improvement and optimization of existing processes. Lipid oxidation poses a risk to consumer health, as a result of the possible ingestion of secondary oxidation products. From this point of view, this review summarizes the advance of lipid oxidation mechanism studies and mainly discloses the shade of innovative food processing concerning lipid degradation. Sections involving a revisit of classic three-stage chain reaction, the advances of polar paradox and cut-off theories, and potential lipid oxidation factors from emerging techniques are described, which might help in developing more robust guidelines to ensure a good practice of these innovative food processing techniques in future.
Collapse
Affiliation(s)
- Aziadé Chemat
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| | - Mengna Song
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Anne-Sylvie Fabiano-Tixier
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| |
Collapse
|
27
|
Laemont J, Barringer S. Effect of pH, Reducing Sugars, and Protein on Roasted Sunflower Seed Aroma Volatiles. Foods 2023; 12:4155. [PMID: 38002212 PMCID: PMC10670587 DOI: 10.3390/foods12224155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Sunflower seeds are a popular snack in many countries, such as the United States, China, and Spain. Sunflower seeds are typically roasted to create desirable aromas before being eaten. The desirable aromas are created by the Maillard and lipid oxidation reactions. Increasing the volatiles created by these reactions can create a more desirable product, increasing consumer acceptance of sunflower seeds. Seeds were soaked in solutions at pH 4, 7, and 9 and with added glucose, fructose, whey protein isolate, or whey protein concentrate before roasting. The resulting seeds were evaluated by selected-ion flow tube mass spectrometry to determine the volatile concentrations and by an untrained panel of consumers to determine acceptability. Increasing the pH increased the pyrazines but did not affect other volatiles. Adding reducing sugars or whey protein increased most volatiles. The fructose increased dimethylpyrazines, 2-methylpyrazine, and trimethylpyrazine concentrations more than glucose. However, the glucose increased furfural concentration more than fructose. The whey protein concentrate increased volatile levels more than any other treatment. The total Maillard volatiles and Browning index were increased by the same treatments. Sensory indicated that fructose increased desirable aroma the most, followed by whey protein treatments, and both were liked more than the pH 7 control. Optimizing roasting conditions by increasing the pH and reducing sugar and protein content can favor the Maillard reaction conditions, increasing the positive aromas associated with roasted sunflower seeds.
Collapse
Affiliation(s)
| | - Sheryl Barringer
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA;
| |
Collapse
|
28
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
29
|
Ma T, Huang W, Li Y, Jin H, Kwok LY, Sun Z, Zhang H. Probiotics alleviate constipation and inflammation in late gestating and lactating sows. NPJ Biofilms Microbiomes 2023; 9:70. [PMID: 37741814 PMCID: PMC10517943 DOI: 10.1038/s41522-023-00434-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Constipation and systemic inflammation are common in late pregnant and lactating sows, which cause health problems like uteritis, mastitis, dystocia, or even stillbirth, further influencing piglets' survival and growth. Probiotic supplementation can improve such issues, but the beneficial mechanism of relieving constipation and enhancing gut motility remains underexplored. This study aimed to investigate the effects and mechanism of probiotic supplementation in drinking water to late pregnant sows on constipation, inflammation, and piglets' growth performance. Seventy-four sows were randomly allocated to probiotic (n = 36) and control (n = 38) groups. Probiotic treatment significantly relieved sow constipation, enhanced serum IL-4 and IL-10 levels while reducing serum IL-1β, IL-12p40, and TNF-α levels, and increased piglet daily gain and weaning weight. Furthermore, probiotic administration reshaped the sow gut bacteriome and phageome structure/diversity, accompanied by increases in some potentially beneficial bacteria. At 113 days of gestation, the probiotic group was enriched in several gut microbial bioactive metabolites, multiple carbohydrate-active enzymes that degrade pectin and starch, fecal butyrate and acetate, and some serum metabolites involved in vitamin and amino acid metabolism. Our integrated correlation network analysis revealed that the alleviation of constipation and inflammation was associated with changes in the sow gut bacteriome, phageome, bioactive metabolic potential, and metabolism.
Collapse
Affiliation(s)
- Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Weiqiang Huang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yalin Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
30
|
Li Y, Chen F, Gao Z, Xiang W, Wu Y, Hu B, Ni X, Nishinari K, Fang Y. Influence of interfacial properties/structure on oxygen diffusion in oil-in-water emulsions. Food Res Int 2023; 170:112973. [PMID: 37316056 DOI: 10.1016/j.foodres.2023.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Oxygen diffusion played an important role in the lipid oxidation of food emulsions. In this study, a simple method was developed to quantitatively observe the oxygen diffusion in the oil-water biphasic system, and it was further applied to investigate the relationship between the oxygen diffusion and lipid oxidation in O/W emulsions. Various factors that related to the emulsion oxidation were considered, from their influence on the oxygen diffusion and lipid oxidation in the emulsions. Results showed that there was obvious correlation between the oxygen diffusion and lipid oxidation in O/W emulsions, which reveals the inhibition of oxygen diffusion could apparently slow down the lipid oxidation. Moreover, the changes of oil phase, water phase and interfacial layer of the emulsions, which were related to the oxygen diffusion, could improve the oxidative stability of the emulsions effectively. Our findings are helpful for deep understanding the mechanisms of the lipid oxidation in food emulsions.
Collapse
Affiliation(s)
- Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fangfang Chen
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Wei Xiang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yuehan Wu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xuewen Ni
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
31
|
Julizan N, Ishmayana S, Zainuddin A, Van Hung P, Kurnia D. Potential of Syzygnium polyanthum as Natural Food Preservative: A Review. Foods 2023; 12:2275. [PMID: 37372486 DOI: 10.3390/foods12122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Food preservation is one of the strategies taken to maintain the level of public health. Oxidation activity and microbial contamination are the primary causes of food spoilage. For health reasons, people prefer natural preservatives over synthetic ones. Syzygnium polyanthum is widely spread throughout Asia and is utilized as a spice by the community. S. polyanthum has been found to be rich in phenols, hydroquinones, tannins, and flavonoids, which are potential antioxidants and antimicrobial agents. Consequently, S. polyanthum presents a tremendous opportunity as a natural preservative. This paper reviews recent articles about S. polyanthum dating back to the year 2000. This review summarizes the findings of natural compounds presented in S. polyanthum and their functional properties as antioxidants, antimicrobial agents, and natural preservatives in various types of food.
Collapse
Affiliation(s)
- Nur Julizan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Pham Van Hung
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 721400, Vietnam
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
32
|
Thirumdas R. Partial hydrogenation of oils using cold plasma technology and its effect on lipid oxidation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1674-1680. [PMID: 37187979 PMCID: PMC10169972 DOI: 10.1007/s13197-022-05434-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/20/2021] [Accepted: 03/15/2022] [Indexed: 05/17/2023]
Abstract
The formation of trans-fatty acids during the hydrogenation of oils using traditional methods is a known fact. Hydrogenation involves the conversion of unsaturation to saturation to enhance the keeping quality of oils. These trans-fatty acids are considered harmful leading to several cardiovascular diseases. Methods like the use of novel catalysts, interesterification, supercritical CO2 hydrogenation and electrocatalytic hydrogenation have been employed to reduce the trans-fatty acid formation. Recently, the application of cold plasma for hydrogenation was employed as an eco-friendly technology. The use of hydrogen as a feed gas will be the source of atomic hydrogen required for the conversion of unsaturated to saturated bonds. The hydrogenation using cold plasma did not result in the formation of trans-fatty acids. However, some reports have shown insignificant levels of trans-fatty acids and secondary lipid oxidation compounds after the plasma treatment. Therefore, it is necessary to optimize the plasma parameters, feed gas type and composition, processing condition to avoid practical implications. It can be concluded that after the detailed investigation of role of reactive species in the partial hydrogenation of oils cold plasma can be considered as an alternative technology.
Collapse
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology, College of Food Science and Technology, PJTSAU, Hyderabad, India
| |
Collapse
|
33
|
Ma G, Wang Y, Li Y, Zhang L, Gao Y, Li Q, Yu X. Antioxidant properties of lipid concomitants in edible oils: A review. Food Chem 2023; 422:136219. [PMID: 37148851 DOI: 10.1016/j.foodchem.2023.136219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Edible oils are indispensable for human life, providing energy and necessary fatty acids. Nevertheless, they are vulnerable to oxidation via a number of different mechanisms. Essential nutrients deteriorate as well as toxic substances are produced when edible oils are oxidized; thus, they should be retarded wherever possible. Lipid concomitants have a strong antioxidant capacity and are a large class of biologically active chemical substances in edible oils. They have shown remarkable antioxidant properties and were documented to improve the quality of edible oils in varied ways. An overview of the antioxidant properties of the polar, non-polar, and amphiphilic lipid concomitants present in edible oils is provided in this review. Interactions among various lipid concomitants and the probable mechanisms are also elucidated. This review may provide a theoretical basis and practical reference for food industry practitioners and researchers to understand the underlying cause of variations in the quality of edible oils.
Collapse
Affiliation(s)
- Gaiqin Ma
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuanyuan Wang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuefan Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Lingyan Zhang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuan Gao
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Qi Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China.
| |
Collapse
|
34
|
Lan T, Wang J, Bao S, Zhao Q, Sun X, Fang Y, Ma T, Liu S. Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Res Int 2023; 168:112784. [PMID: 37120231 DOI: 10.1016/j.foodres.2023.112784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Fruit and vegetable juice (FVJ) has become a favorite beverage for all age groups because of its excellent sensory and nutritional qualities. FVJ has a series of health benefits such as antioxidant, anti-obesity, anti-inflammatory, anti-microbial and anti-cancer. Except for raw materials selection, processing technology and packaging and storage also play a vital role in the nutrition and functional components of FVJ. This review systematically reviews the important research results on the relationship between FVJ processing and its nutrition and function in the past 10 years. Based on the brief elucidation of the nutrition and health benefits of FVJ and the unit operation involved in the production process, the influence of a series of key technology units, including pretreatment, clarification, homogenization, concentration, sterilization, drying, fermentation and packaging and storage, on the nutritional function of FVJ was systematically expounded. This contribution provides an update on the impacts of technical processing units on the nutrients and functional components of FVJ and new perspectives for future studies.
Collapse
|
35
|
Gu L, Xiao X, Zhao G, Kempen P, Zhao S, Liu J, Lee SY, Solem C. Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer. Microb Biotechnol 2023; 16:1277-1292. [PMID: 36860178 DOI: 10.1111/1751-7915.14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/22/2023] [Indexed: 03/03/2023] Open
Abstract
Lactococcus lactis, a lactic acid bacterium with a typical fermentative metabolism, can also use oxygen as an extracellular electron acceptor. Here we demonstrate, for the first time, that L. lactis blocked in NAD+ regeneration can use the alternative electron acceptor ferricyanide to support growth. By electrochemical analysis and characterization of strains carrying mutations in the respiratory chain, we pinpoint the essential role of the NADH dehydrogenase and 2-amino-3-carboxy-1,4-naphtoquinone in extracellular electron transfer (EET) and uncover the underlying pathway systematically. Ferricyanide respiration has unexpected effects on L. lactis, e.g., we find that morphology is altered from the normal coccoid to a more rod shaped appearance, and that acid resistance is increased. Using adaptive laboratory evolution (ALE), we successfully enhance the capacity for EET. Whole-genome sequencing reveals the underlying reason for the observed enhanced EET capacity to be a late-stage blocking of menaquinone biosynthesis. The perspectives of the study are numerous, especially within food fermentation and microbiome engineering, where EET can help relieve oxidative stress, promote growth of oxygen sensitive microorganisms and play critical roles in shaping microbial communities.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ge Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paul Kempen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Gupta P. Role of oxygen absorbers in food as packaging material, their characterization and applications. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 61:1-11. [PMID: 36785798 PMCID: PMC9908507 DOI: 10.1007/s13197-023-05681-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
To preserve the environment and to prevent the damage caused by packaging materials, the development of biodegradable, organic, and nano-active films for packaging is progressively being accentuated. As the demand for getting fresh and preservative-free food is increasing, an improved level of clarity and stability for consumers about the packaging is required. Presently, oxygen scavengers are used in the form of films, sachets, powders, or as part of the packaging material itself along with other means of preservation such as the use of chemicals, reduced water activity, pH, multilayer composite material, and or vacuum or modified packaging. Today's current demand increases their incorporation directly into the packaging material rather than being a part of the food itself. The present review, therefore, is based on the availability of types of natural sources of oxygen scavenging systems like antioxidants, and nano iron, and their possible scope of use in the food packaging industry.
Collapse
Affiliation(s)
- Prerna Gupta
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar, 144411 India
| |
Collapse
|
37
|
Li J, Zhang S, Kuang Y, Bi Y, Wang H. A review on losses and transformation mechanisms of common antioxidants. J AM OIL CHEM SOC 2023. [DOI: 10.1002/aocs.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Shuning Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yongyan Kuang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yanlan Bi
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Hongyan Wang
- College of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou Henan China
| |
Collapse
|
38
|
Di Paolo M, Ambrosio RL, Lambiase C, Vuoso V, Salzano A, Bifulco G, Barone CMA, Marrone R. Effects of the Aging Period and Method on the Physicochemical, Microbiological and Rheological Characteristics of Two Cuts of Charolais Beef. Foods 2023; 12:foods12030531. [PMID: 36766061 PMCID: PMC9914319 DOI: 10.3390/foods12030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Wet-aging (WA) and dry-aging (DA) methods are usually used in the beef industry to satisfy the consumers' tastes; however, these methods are not suitable for all anatomical cuts. In this study, WA and DA were applied to improve the quality of two cuts of Charolais beef (Longissimus dorsi and Semitendinosus). For 60 days (i.e., 2 days, 15 days, 30 days and 60 days of sampling), a physicochemical, rheological, and microbiological analysis were performed at WA (vacuum packed; temperature of 4 ± 1 °C) and at DA (air velocity of 0.5 m/s; temperature of 1 ± 1 °C; relative humidity of 78 ± 10%) conditions. The results showed that the aging method influenced the aging loss (higher in the DA), cooking loss (higher in the WA), malondialdehyde concentration (higher in the DA) and fatty acid profile (few changes). No differences in the drip loss and color were observed, which decreased after 30 days of aging. The WBSF and TPA test values changed with increasing an aging time showing that the aging improved the tenderness of meat regardless of the aging method. Moreover, the aging method does not influence the microbiological profile. In conclusion, both WA and DA enhanced the quality of the different beef cuts, suggesting that an optimal method-time and aging combination could be pursued to reach the consumers' preferences.
Collapse
Affiliation(s)
- Marika Di Paolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Rosa Luisa Ambrosio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Claudia Lambiase
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy
| | - Valeria Vuoso
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Giovanna Bifulco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | | | - Raffaele Marrone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
- Correspondence: ; Tel.: +39-081-2536469
| |
Collapse
|
39
|
Gao Y, Cui N, Liu J, Ma Q, Zhao T, Yang Z, Zhao H, Zhang B, Liang L. Application of metabolomics to explore the automatic oxidation process of hazelnut oil. Food Res Int 2022; 162:111888. [DOI: 10.1016/j.foodres.2022.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/04/2022]
|
40
|
Tian T, zaaboul F, Yin S, Ye Z, Sun Y, Zhao J, Xu Y, Liu Y. Studies on the lipid oxidation and oleosomes behavior in raw pecan kernels during storage. Food Chem 2022; 405:134867. [DOI: 10.1016/j.foodchem.2022.134867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
41
|
Li X, Wang Z, Xing C, Chen Z, Sun W, Xie D, Xu G, Wang X. Investigation of oxidized triglyceride monomer (oxTGM) produced in deteriorated soybean oil at frying temperatures: a kinetic study. Food Res Int 2022; 162:112121. [DOI: 10.1016/j.foodres.2022.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/26/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
42
|
A unifying approach to lipid oxidation in emulsions: Modelling and experimental validation. Food Res Int 2022; 160:111621. [DOI: 10.1016/j.foodres.2022.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
|
43
|
Osheter T, Campisi-Pinto S, Resende MT, Linder C, Wiesman Z. 1H LF-NMR Self-Diffusion Measurements for Rapid Monitoring of an Edible Oil's Food Quality with Respect to Its Oxidation Status. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186064. [PMID: 36144797 PMCID: PMC9505792 DOI: 10.3390/molecules27186064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
The food quality of edible oils is dependent on basic chemical and structural changes that can occur by oxidation during preparation and storage. A rapid and efficient analytical method of the different steps of oil oxidation is described using a time-domain nuclear magnetic resonance (TD-NMR) sensor for measuring signals related to the chemical and physical properties of the oil. The degree of thermal oxidation of edible oils at 80 °C was measured by the conventional methodologies of peroxide and aldehyde analysis. Intact non-modified samples of the same oils were more rapidly analyzed for oxidation using a TD-NMR sensor for 2D T1-T2 and self-diffusion (D) measurements. A good linear correlation between the D values and the conventional chemical analysis was achieved, with the highest correlation of R2 = 0.8536 for the D vs. the aldehyde concentrations during the thermal oxidation of poly-unsaturated linseed oils, the oil most susceptible to oxidation. A good correlation between the D and aldehyde levels was also achieved for all the other oils. The possibility to simplify and minimize the time of oxidative analysis using the TD NMR sensors D values is discussed as an indicator of the oil’s oxidation quality, as a rapid and accurate methodology for the oil industry.
Collapse
|
44
|
Mouhoub A, Guendouz A, Belkamel A, El Alaoui Talibi Z, Ibnsouda Koraichi S, El Modafar C, Delattre C. Assessment of the antioxidant, antimicrobial and antibiofilm activities of essential oils for potential application of active chitosan films in food preservation. World J Microbiol Biotechnol 2022; 38:179. [PMID: 35941332 DOI: 10.1007/s11274-022-03363-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
In the food industry, the development of microbial biofilms is a serious problem that leads to the contamination and deterioration of food products. To overcome that, our aim consists of searching for natural antimicrobial and non-toxic compounds (essential oils EOs), which might be used alone or adsorbed on natural biopolymer films (chitosan). In this work, the antioxidant activity of eight EOs was evaluated by DPPH radical-scavenging method while their antibacterial activity was determined by diffusion on agar and microdilution methods. Among all tested EOs, Eugenia caryophyllus, Cinnamomum zeylanicum Blume and Thymus satureioides Cosson showed high antioxidant activities at the concentration of 25.6 mg/mL, with respective values of (86.26%, 81.75%, and 76%), and strong antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Enterococcus hirae, with (MIC) values ≤ 4 µL/mL. At the concentration of 1 µL/mL, these EOs tested alone, showed values of antibiofilm-forming activity ranging from 79.43 to 99.33% and from 44.18 to 94.17%, when they are adsorbed onto chitosan film. These promising results confirm that these three EOs have a good potential for an eventual application in the food industry, as antimicrobial and antioxidant agents, or as active biodegradable food packaging, if combined with chitosan.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Amine Guendouz
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Abdeljalil Belkamel
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France. .,Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
45
|
Li DY, Li N, Dong XH, Tan ZF, Na XK, Liu XY, Zhou DY. Effect of phytic acid combined with lactic acid on color and texture deterioration of ready-to-eat shrimps during storage. Food Chem 2022; 396:133702. [PMID: 35853373 DOI: 10.1016/j.foodchem.2022.133702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
To retard the deterioration of texture and color of ready-to-eat (RTE) shrimps during storage, phytic acid (PA) and lactic acid (LA) were used to soak the shrimp prior to cooking. The factors affecting texture (water holding capacity, protein oxidation and degradation, and microstructure) and color (Maillard reaction and lipid oxidation) were determined separately. The free radical and copper ion content were also determined in order to investigate the regulation mechanism of phytic acid and lactic acid on the texture and color of RTE shrimps. It was found that the inhibitor-treated RTE shrimps showed better texture and color properties than the control group, and the compound inhibitor (PA + LA) showed a better inhibition effect than single inhibitor. In addition, PA and LA prevented the oxidation of RTE shrimps by scavenging free radicals and chelating copper ions, which in turn enabled the regulation of color and texture deterioration.
Collapse
Affiliation(s)
- De-Yang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Na Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xing-Hua Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhi-Feng Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Xiao-Kang Na
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Xiao-Yang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China.
| |
Collapse
|
46
|
Kim S, Kim S, Oh WY, Lee Y, Lee J. Evaluation of the effects of amphiphilic compounds on oxygen solubility in bulk oil. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- SeHyeok Kim
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - SungHwa Kim
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - Won Young Oh
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - YoonHee Lee
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| |
Collapse
|
47
|
Mandala A, Dobrinskikh E, Janssen RC, Fiehn O, D’Alessandro A, Friedman JE, Jonscher KR. Maternal Pyrroloquinoline Quinone Supplementation Improves Offspring Liver Bioactive Lipid Profiles throughout the Lifespan and Protects against the Development of Adult NAFLD. Int J Mol Sci 2022; 23:6043. [PMID: 35682720 PMCID: PMC9181499 DOI: 10.3390/ijms23116043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal obesity and consumption of a high-fat diet significantly elevate risk for pediatric nonalcoholic fatty liver disease (NAFLD), affecting 10% of children in the US. Almost half of these children are diagnosed with nonalcoholic steatohepatitis (NASH), a leading etiology for liver transplant. Animal models show that signs of liver injury and perturbed lipid metabolism associated with NAFLD begin in utero; however, safe dietary therapeutics to blunt developmental programming of NAFLD are unavailable. Using a mouse model of maternal Western-style diet (WD), we previously showed that pyrroloquinoline quinone (PQQ), a potent dietary antioxidant, protected offspring of WD-fed dams from development of NAFLD and NASH. Here, we used untargeted mass spectrometry-based lipidomics to delineate lipotoxic effects of WD on offspring liver and identify lipid targets of PQQ. PQQ exposure during pregnancy altered hepatic lipid profiles of WD-exposed offspring, upregulating peroxisome proliferator-activated receptor (PPAR) α signaling and mitochondrial fatty acid oxidation to markedly attenuate triglyceride accumulation beginning in utero. Surprisingly, the abundance of very long-chain ceramides, important in promoting gut barrier and hepatic function, was significantly elevated in PQQ-treated offspring. PQQ exposure reduced the hepatic phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratio in WD-fed offspring and improved glucose tolerance. Notably, levels of protective n - 3 polyunsaturated fatty acids (PUFAs) were elevated in offspring exposed to PQQ, beginning in utero, and the increase in n - 3 PUFAs persisted into adulthood. Our findings suggest that PQQ supplementation during gestation and lactation augments pathways involved in the biosynthesis of long-chain fatty acids and plays a unique role in modifying specific bioactive lipid species critical for protection against NAFLD risk in later life.
Collapse
Affiliation(s)
- Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (J.E.F.)
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (J.E.F.)
| | - Oliver Fiehn
- Genome Center-Metabolomics, University of California Davis, Davis, CA 95616, USA;
| | - Angelo D’Alessandro
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (J.E.F.)
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (J.E.F.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
48
|
Demets R, Van Broekhoven S, Gheysen L, Van Loey A, Foubert I. The Potential of Phaeodactylum as a Natural Source of Antioxidants for Fish Oil Stabilization. Foods 2022; 11:foods11101461. [PMID: 35627032 PMCID: PMC9140547 DOI: 10.3390/foods11101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Worldwide, fish oil is an important and rich source of the health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). It is, however, troubled by its high susceptibility towards lipid oxidation. This can be prevented by the addition of (preferably natural) antioxidants. The current research investigates the potential of Phaeodactylum carotenoids in this regard. The oxidative stability of fish oil and fish oil with Phaeodactylum addition is evaluated by analyzing both primary (PV) and secondary (volatiles) oxidation products in an accelerated storage experiment (37 °C). A first experimental set-up shows that the addition of 2.5% (w/w) Phaeodactylum biomass is not capable of inhibiting oxidation. Although carotenoids from the Phaeodactylum biomass are measured in the fish oil phase, their presence does not suffice. In a second, more elucidating experimental set-up, fish oil is mixed in different proportions with a Phaeodactylum total lipid extract, and oxidative stability is again evaluated. It was shown that the amount of carotenoids relative to the n-3 LC-PUFA content determined oxidative stability. Systems with a fucoxanthin/n-3 LC-PUFA ratio ≥ 0.101 shows extreme oxidative stability, while systems with a fucoxanthin/n-3 LC-PUFA ratio ≤ 0.0078 are extremely oxidatively unstable. This explains why the Phaeodactylum biomass addition did not induce oxidative stability.
Collapse
Affiliation(s)
- Robbe Demets
- Research Unit Food & Lipids, Campus KULAK, KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (R.D.); (S.V.B.); (L.G.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
| | - Simon Van Broekhoven
- Research Unit Food & Lipids, Campus KULAK, KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (R.D.); (S.V.B.); (L.G.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
| | - Lore Gheysen
- Research Unit Food & Lipids, Campus KULAK, KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (R.D.); (S.V.B.); (L.G.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
| | - Ann Van Loey
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
- Centre for Food and Microbial Technology, Laboratory of Food Technology, KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Imogen Foubert
- Research Unit Food & Lipids, Campus KULAK, KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (R.D.); (S.V.B.); (L.G.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
- Correspondence: ; Tel.: +32-56-24-61-73
| |
Collapse
|
49
|
Dahmer PL, McDonald FB, Chun CKY, Zumbaugh CA, Jones CK, Crane AR, Kott T, Lattimer JM, Chao MD. Evaluating the impact of feeding dried distillers grains with solubles on Boer goat growth performance, meat color stability and antioxidant capacity. Transl Anim Sci 2022; 6:txac060. [PMID: 35702176 PMCID: PMC9186308 DOI: 10.1093/tas/txac060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
A total of 72 male Boer goat kids (21.7 ± 0.5 kg) were fed for 21 d with 3 kids per pen and 12 pens per treatment. Dietary treatments were: 0% inclusion of dried distillers grains with solubles (DDGS; 0% DDGS) or 33% DDGS inclusion (33% DDGS) and were provided ad libitum. Goats and feeders were weighed weekly to collect body weights (BW) and determine feed disappearance in order to calculate average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (G:F). At the conclusion of the feeding study, a subset (n = 30; 2–3 goats from each pen representing six6 pens per treatment) of goats were harvested, carcasses evaluated, and loins were fabricated into 2.54 cm chops. Goat chop discoloration was evaluated by trained panelists and measured for L*, a*, and b* values on days 0, 4, 7, and 10 under retail display conditions. Samples were collected and analyzed for lipid oxidation, fatty acid profile, and hydrophilic and lipophilic antioxidant capacity. No evidence of differences was observed for final BW, ADFI, G:F, and carcass characteristics (P > 0.05). However, goats fed the 0% DDGS diet had greater ADG compared with those fed a diet containing 33% DDGS (P = 0.05). Overall, visual evaluation of discoloration, L*, a*, and b* as well as lipid oxidation data confirmed that feeding 33% DDGS to goats had no effect on goat chop discoloration and lipid oxidation (P > 0.10). However, all chops demonstrated a display effect, which they increased in visual discoloration and lipid oxidation and decreased in a* and b* values (P < 0.01) over the entirety of the 10-d period of retail display, regardless of the dietary treatments. As expected, feeding 33% DDGS to goats decreased relative percentage of multiple and total monounsaturated fatty acids, but increased relative percentage of multiple and total polyunsaturated fatty acids (PUFA; P < 0.05). The antioxidant capacity measurements showed no treatment difference in the hydrophilic portion (P > 0.10), but chops from the 33% DDGS treatment had greater lipophilic antioxidant activity compared with the 0% DDGS chops (P < 0.05). In conclusion, including 33% DDGS to the diet may negatively impact goat growth performance, but did not impact any carcass characteristics. Feeding a diet with 33% DDGS resulted in an increase in the PUFA content of goat chops but did not appear to impact meat color or lipid oxidation. The supposed negative consequence from increased PUFA is likely counterbalanced by the increased antioxidant capacity in the lipid component of meat, resulting in no difference in meat shelf-life.
Collapse
Affiliation(s)
- Payton L Dahmer
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | - Faith B McDonald
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | - Colin K Y Chun
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | - Charles A Zumbaugh
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | - Cassandra K Jones
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | - Alison R Crane
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | - Tamra Kott
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | - James M Lattimer
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | - Michael D Chao
- Kansas State University Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| |
Collapse
|
50
|
Kim HM, Park MK, Mun SJ, Jung MY, Lee SM, Kim YS. Study on Volatile Profiles, Polycyclic Aromatic Hydrocarbons, and Acrylamide Formed in Welsh Onion ( Allium fistulosum L.) Fried in Vegetable Oils at Different Temperatures. Foods 2022; 11:1335. [PMID: 35564059 PMCID: PMC9100245 DOI: 10.3390/foods11091335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Welsh onion (Allium fistulosum L.) is widely used in diverse Asian cuisines, especially in stir-fried and deep-fried foods. This study investigated the effects of different temperatures (140, 165, and 190 °C) and types of the vegetable frying oil (soybean, corn, canola, and palm oils) on the formation of volatile profiles and hazardous compounds [polycyclic aromatic hydrocarbons (PAHs) and acrylamide] in Welsh onion. Specific volatile chemical groups such as aldehydes, sulfur-containing compounds, and furans/furanones were major volatiles in Welsh onion fried (WOF). The composition of aldehydes and sulfur-containing compounds decreased, while those of furans/furanones increased when WOF samples were exposed to higher temperatures. At 190 °C, PAHs were detected at lower than the EU maximum tolerable limit (the sum of 4 PAHs, <10 µg/kg), and acrylamide was detected below 36.46 μg/kg. The integrated study of both the quality and safety properties can provide fundamental data for the industrial processing of WOF.
Collapse
Affiliation(s)
- Hye-Min Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Korea; (H.-M.K.); (M.-K.P.); (S.-J.M.)
| | - Min-Kyung Park
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Korea; (H.-M.K.); (M.-K.P.); (S.-J.M.)
| | - Soo-Jeong Mun
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Korea; (H.-M.K.); (M.-K.P.); (S.-J.M.)
| | - Mun-Yhung Jung
- School of Food Science, Woosuk University, Samrea-up, Wanju-Kun 55338, Korea;
| | - Sang-Mi Lee
- Department of Food and Nutrition, Inha University, Incheon 22212, Korea;
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Korea; (H.-M.K.); (M.-K.P.); (S.-J.M.)
| |
Collapse
|